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ABSTRACT 

Automatic building damage assessment after natural d isasters 

is important fo r emergency response. While existing super- 

vised deep learning models achieved good performance on 

building damage classification, these models require massive 

human labels for training. Additionally, p re-trained models 

often fail to generalize well to new d isaster events due to gaps 

between domains associated with training and testing data. 

In response, this study proposes a novel spatiotemporal con- 

trastive representation learning model for learn ing features of 

building damages with big unlabeled data. Experimental re- 

sults demonstrate superior performance of such features on 

classifying build ing damages resulting from various natural 

disasters (e.g., hurricanes, floods, wild fires, earthquakes, etc.) 

across different geographic locations worldwide, compared 

with the state-of-the-art supervised methods. 

Index Terms— Spatiotemporal, contrastive, representa- 

tion learning, building damage, natural disasters 

 
1.  INTRODUCTION 

Natural disasters (e.g., floods and hurricanes) have posed a 

major threat to human lives and caused huge economic losses. 

Real-time building  damage assessment during or after d isas - 

ters is crit ical for qu ick delivery of accurate rescue and relief  

efforts and mitigation of economic losses [1].  With an in- 

creasing volume of labeled remote sensing (RS) data and ad- 

vancements in art ificial intelligence (AI), many deep learning 

and computer vision based methods have been developed for 

post-disaster building damage assessment, primarily by data- 

driven supervised learning to d iscover the underlying patterns 

of damaged buildings [1, 2]. 

Unfortunately, these methods are not applicable to  near 

real-t ime d isaster response due to the poor model general- 

izability and time-consuming human labeling of new train- 

ing data [3]. Additionally, trad itional machine learning and 

image processing models main ly rely  on hand-crafted image 

features (e.g., textures, edges, and corners [4]), and therefore 
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are case-by-case efforts with a lack of model generalizab ility 

for upcoming disasters. 

With the need for eliminating massive human labels for  

model training, self-supervised learning (SSL) has emerged 

as a new solution with its great potential of image represen- 

tation learning with unlabeled data [3]. Among mult iple SSL 

frameworks, contrastive learning  (CL) of image features has 

shown promising results in recent studies [5, 6]. However, 

the crucial issues with CL remain  unsolved, including inten- 

sive manual data augmentations, specialized neural network 

architectures, the image memory bank, etc. 

This study proposes a novel spatiotemporal contrastive 

representation learning (ST-CRL) model for RS image repre- 

sentation learning. The ST-CRL model learns image features 

with unlabeled data by incorporating the spatial and temporal 

informat ion of geospatial data. It is assumed that the tempo- 

rally adjacent pair of RS images over the same geographic ex- 

tent should have similar features while  geographically distant 

pairs should have different features. Main contributions of 

this work include: (1) The ST-CRL model learns image fea- 

tures without massive human labels, contributing to the near  

real-time and automatic data processing in disaster response. 

(2) The ST-CRL model incorporates the natural spatiotempo- 

ral information to construct the input image samples for con- 

trastive training without the need for intensive manual data 

augmentations and the image memory bank that are required 

in conventional CL. (3) The self-supervised ST-CRL model 

can be trained with new unlabeled data and thus provides a 

strong generalizability for different environments. 

 
2.  METHODOLOGY 

2.1 .  Datasets 

We created xBD-obj, a new dataset of building objects based 

on the xBD dataset [1] which consists of a large number of  

pre- and post-disaster image pairs and building footprints. 

Each post-disaster building is labeled as one of the four 

classes (i.e., no damage, minor damage, major damage, and 

destroyed). With xBD building footprints, we cropped image 

patches centered at each build ing of interest with a buffer of  

around 15 meters (Fig. 1). Image patches are used as building 
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Fig. 1. Building object images. (a) and (b): pre- and post- 

 

Fig. 2. The pre- and post-disaster building object images 
(bpre, bpost) are geographically distant from (bpre, bpost). 

hurricane. (c) and (d): pre- and post-flooding. 

 

objects for object-based building damage classification. We 

use building objects from the xBD train and tier3 subsets for 

model training and validation, the xBD test  and hold subsets 

for evaluation. 

 

2.2 .  Spatiotemporal Knowledge 

The First Law of Geography [7] informs us that geographi- 

cally  near RS images should have similar features while d is - 

tant RS images should have different features. In  the global- 

scale RS dataset xBD-obj, it  is easy to find distant pairs of 

RS images from two different areas. However, a good strat- 

egy is needed for the selection of neighboring image pairs for 

heterogeneous urban areas. Multiple hyperparameters (e.g.,  

the image size and the distance of neighboring images) re- 

quire fu rther fine-tuning to fit the heterogeneous urban envi- 

ronment. 

To address this issue, we leverage the assumption that 

temporally adjacent image pairs over the same geographic ex- 

tent should have similar features despite their d ifferent acqui- 

sition conditions (e.g., weather, illumination, sensor viewing 

 

 

 

 

 

 
Fig. 3. The ST-CRL framework. 

 
cluding (bpre, bpre), (bpre, bpost), (bpost, bpre), and (bpost, bpost). 

It is assumed that, for the global large-scale RS dataset xBD- 

obj, there is a very h igh probability that a randomly selected 

pair of different building objects constructs a negative pair. 

As illustrated in Fig.   3, ST-CRL first encodes build- 

ing object images, including the positive pair (bpre, bpost) for 
i i 

angles, etc.). Although disasters may result in changes be- 

tween the corresponding bi-temporal RS images, the vast ma- 

jority of corresponding image pairs in a large-scale RS dataset 

do not exh ibit a major difference. Additionally, such a differ- 

ence can be considered as a strong natural data augmenta- 

tion, consistent with the strong manual  data augmentation in 

contrastive learning to enhance the learning of major image 

patterns and to avoid the model collapse [5]. 

 
2.3 .  ST-CRL 

To incorporate the spatiotemporal knowledge into contrastive 

learning, we use the pre- and post-disaster temporally adja- 

cent building object image pairs as positive pairs and the ge- 

ographically distant pairs as negative pairs inspired by the re- 

cent contrastive learning framework [5] (see Fig. 2). 

the building bi and the negative pairs between bpre/post and 

bpre/post, into low-dimensional features hi via the same en- 

coding module fθ( ). In the paper, we use a variant of the 

ResNet architecture [8] without the last output layer for fθ( ). 
Then a multi-layer perceptron (MLP) pγ( ) with  one hid- 

den layer maps building features hi to another space zi for 

computing the contrastive loss. Finally, the contrastive loss 

function encourages the similarity between positive building 

pairs while d iscourages the similarity  between negative pairs. 

Similar to [5], we only keep the pre-trained image encoding 

module fθ( ) for image feature extraction and classification. 
During training, we randomly sample a batch of N pairs 

of pre- and post-disaster building object images (bpre, bpost), 
i = 1, 2, . . . ,  N . For the build ing bi within this batch, we 

compute the cosine similarity between the only positive pair 
(bpre, bpost), and the cosine similarity betwee n multiple nega- 

Let b i(i   =   1, 2, . . . , N ) denotes the building object i i 
pre pre pre post post pre post post 

image, where N is the total number of buildings. Given 

the pre- and post-disaster building object image pair de- 

tive pairs (bi    , bj    ), (bi    , bj     ), (bi      , bj    ), and (bi      , bj     ), 

j = 1, 2, . . . , N and j i. The contrastive loss for the build- 

noted as (bpre, bpost), ST-CRL learns building object fea- ing bi is defined similar to that in [5] as 
i i 

tures hi by maximizing the similarity between positive pairs 

(bpre, bpost) and the dissimilarity between negative pairs in- 
 exp(sim(zpre, zpost)/τ ) 

li = − log i i  (1) 



B =   
L  [

exp (sim(zpre, zpre)/τ ) 

  

+ exp (sim(zpre, zpost)/τ ) (2) 
i j 

+ exp (sim(zpost, zpre)/τ ) 
i j 

+ exp (sim(zpost, zpost)/τ )
]
 

where sim( ) is the cosine similarity, τ is the tempera- 

ture parameter. The final loss for this batch is given by 

(1/N ) 
�N    

li. 

3.  EXPERIMENTS AND RESULTS 

Good image features would  not require  massive labels for im- 

age classification. To evaluate the quality of self-supervised 

SR-CRL features, we train an image classifier on top of image 

features encoded by the pre-trained fθ( ). The logistic regres- 

sion (LR) and MLP classifiers are chosen. We also fine-tune 

the encoding module fθ( ) when train ing the classifiers. For 

comparative analysis, we train a variant of the ResNet in  a 

completely supervised manner for building damage classifi- 

cation. 

We train all classifiers with different sizes of the training 

data. The best model is used for evaluating the classification 

performance on the testing data. The precision, recall, and F1 

score are evaluated for all build ing damage classes including 

no damage (no), minor damage (mi), major damage (ma), and 

destroyed (de). The overall F1 score is computed as 

 

 

 
Fig. 4. LR and MLP trained with self-supervised ST-CRL 

features outperform the fully supervised model. 

 
4.  CONCLUSION 

In this study, we propose a novel self-supervised learning 

framework ST-CRL that learns RS image features by incor- 

porating the spatiotemporal knowledge. ST-CRL offers the 

capability of learning RS image features without human la- 

bels. Experimental results show that self-supervised ST-CRL 

features significantly  boost the performance of build ing dam- 

age classification compared to supervised classifiers trained 

from scratch. Since deep neural networks for image classifi- 

cation (e.g., ResNet) require massive human labels for image 
4 

F 1 =   1   +  1   +  1  +  1   
(3) feature learning, the proposed ST-CRL paves the way to learn 

informative image features in the geospatial domain with un- 

For each size, we train  the classifiers with 10 t rials of ran- 

domly  sampled train ing subsets, in which all damage classes 

have the same class frequency to avoid the impact  of class 

imbalance. Fig. 4 shows the learning curves of the mean 

overall F1 score and the standard deviation with respect to 

the training subset size. It is worth noting that the pre-trained 

fθ( ) learned in ST-CRL with the LR classifier has the same 

architecture as the fully supervised model. As such, Fig. 

4 demonstrates that self-supervised ST-CRL features signif- 

icantly boosted the performance of building damage classifi- 

cation. 

Regarding the classificat ion performance for different 

damages, we report the F1 scores with the mean and standard 

deviation for all damage classes corresponding to 10 trials 

of randomly sampled training subsets of size n = 1000 and 

n = 9000 in Table 1. We observe that it is more challenging 

to identify buildings with minor and major damages com- 
pared to those destroyed or with no damage. It is also worth 

noting that self-supervised ST-CRL image features provide 

better representations of different building damages com- 

pared to the fully supervised model. Fig. 5 visualizes some 

examples of building damages predicted by  a LR classifier on 

self-supervised ST-CRL features and 10,000 labels. 

labeled geospatial big data. In the future, we plan to investi- 
gate the spatial statistics of RS images fo r an  improved con- 

struction of image samples for ST-CRL such that the self- 

supervised ST-CRL image features further inform building 

damage classification. 
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