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ABSTRACT

Automatic building damage assessment after natural disasters
is important for emergency response. While existing super-
vised deep learning models achieved good performance on
building damage classification, these models require massive
human labels for training. Additionally, pre-trained models
often fail to generalize well to new disasterevents due to gaps
between domains associated with training and testing data.
In response, this study proposes a novel spatiotemporal con-
trastive representation learning model for learning features of
building damages with big unlabeled data. Experimental re-
sults demonstrate superior performance of such features on
classifying building damages resulting from various natural
disasters (e.g., hurricanes, floods, wild fires, earthquakes, etc.)
across different geographic locations worldwide, compared
with the state-of-the-art supervised methods.

Index Terms— Spatiotemporal, contrastive, representa-
tion learning, building damage, natural disasters

1. INTRODUCTION

Natural disasters (e.g., floods and hurricanes) have posed a
majorthreat to human lives and caused huge economic losses.
Real-time building damage assessment during or after disas-
ters is critical for quick delivery of accurate rescue and relief
efforts and mitigation of economic losses [1]. With an in-
creasing volume of labeled remote sensing (RS) data and ad-
vancements in artificial intelligence (AI), many deep learning
and computer vision based methods have been developed for
post-disaster building damage assessment, primarily by data-
driven supervised learning to discover the underlying patterns
of damaged buildings [1, 2].

Unfortunately, these methods are not applicable to near
real-time disaster response due to the poor model general-
izability and time-consuming human labeling of new train-
ing data [3]. Additionally, traditional machine learning and
image processing models mainly rely on hand-crafted image
features (e.g., textures, edges,and comers [4]), and therefore
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are case-by-case efforts with a lack of model generalizability
for upcoming disasters.

With the need for eliminating massive human labels for
model training, self-supervised learning (SSL) has emerged
as a new solution with its great potential of image represen-
tation learning with unlabeled data [3]. Among multiple SSL
frameworks, contrastive learning (CL) of image features has
shown promising results in recent studies [5, 6]. However,
the crucial issues with CL remain unsolved, including inten-
sive manual data augmentations, specialized neural network
architectures, the image memory bank, etc.

This study proposes a novel spatiotemporal contrastive
representation learning (ST-CRL) model for RS image repre-
sentation learning. The ST-CRL model learns image features
with unlabeled data by incorporating the spatial and temporal
information of geospatial data. It is assumed that the tempo-
rally adjacent pair of RS images overthe same geographic ex-
tent should have similar features while geographically distant
pairs should have different features. Main contributions of
this work include: (1) The ST-CRL model learns image fea-
tures without massive human labels, contributing to the near
real-time and automatic data processing in disasterresponse.
(2) The ST-CRL model incorporates the natural spatiotempo-
ral information to construct the input image samples for con-
trastive training without the need for intensive manual data
augmentations and the image memory bank that are required
in conventional CL. (3) The self-supervised ST-CRL model
can be trained with new unlabeled data and thus provides a
strong generalizability for different environments.

2. METHODOLOGY

2.1. Datasets

We created xBD-obj, a new dataset of building objects based
on the xBD dataset [1] which consists of a large number of
pre- and post-disaster image pairs and building footprints.
Each post-disaster building is labeled as one of the four
classes (i.e., no damage, minor damage, major damage, and
destroyed). With xBD building footprints, we cropped image
patches centered at each building of interest with a buffer of
around 15 meters (Fig. 1). Image patches are used as building
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Fig. 1. Building object images. (a) and (b): pre- and post-
hurricane. (c¢) and (d): pre- and post-flooding.

objects for object-based building damage classification. We
use building objects fromthe xBD train and tier3 subsets for
model training and validation, the xBD test and hold subsets
for evaluation.

2.2. Spatiotemporal Knowledge

The First Law of Geography [7] informs us that geographi-
cally near RS images should have similar features while dis -
tant RS images should have different features. In the global-
scale RS dataset xBD-obj, it is easy to find distant pairs of
RS images from two different areas. However, a good strat-
egy is needed for the selection of neighboring image pairs for
heterogeneous urban areas. Multiple hyperparameters (e.g.,
the image size and the distance of neighboring images) re-
quire further fine-tuning to fit the heterogeneous urban envi-
ronment.

To address this issue, we leverage the assumption that
temporally adjacent image pairs overthe same geographic ex-
tent should have similar features despite their different acqui-
sition conditions (e.g., weather, illumination, sensorviewing
angles, etc.). Although disasters may result in changes be-
tween the corresponding bi-temporal RS images, the vast ma-
jority of corresponding image pairs in a large-scale RS dataset
do not exhibit a major difference. Additionally, such a differ-
ence can be considered as a strong natural data augmenta-
tion, consistent with the strong manual data augmentation in
contrastive learning to enhance the learning of major image
patterns and to avoid the model collapse [5].

2.3. ST-CRL

To incorporate the spatiotemporal knowledge into contrastive
learning, we use the pre- and post-disaster temporally adja-
cent building object image pairs as positive pairs and the ge-
ographically distant pairs as negative pairs inspired by the re-
cent contrastive learning framework [5] (see Fig. 2).

Let bii = 1,2,...,N) denotes the building object
image, where N is the total number of buildings. Given
the pre- and post-disaster building object image pair de-
noted as (blE“e, blPOS‘), ST-CRL leams building object fea-
tures hi by maximizing the similarity between positive pairs
(bPre, brosty and the dissimilarity between negative pairs in-

Fig. 2. The pre- and post-disaster building object images
(brre, brest) are geographically distant from (bPre, brosh),

Fig. 3. The ST-CRL framework.

cluding (brre, brre), (bpre, bpost), (brost, ppre), and (bPost, bpost),
It is assumed that, for the global large-scale RS dataset xBD-
obj, there is a very high probability that a randomly selected
pair of different building objects constructs a negative pair.
As illustrated in Fig. 3, ST-CRL first encodes build-
ing object images, including the positive pair (bP', bpes) for
the building bi and the negative pairs between bpPr/Post and

bre/ost into low-dimensional features hi via the same en-
coding module fo( ). In the paper, we use a variant of the
ResNet architecture [8] without the last output layer for fo( ).
Then a multi-layer perceptron (MLP) py( ) with one hid-
den layer maps building features hi to another space z for
computing the contrastive loss. Finally, the contrastive loss
function encourages the similarity between positive building
pairs while discourages the similarity between negative pairs.
Similar to [5], we only keep the pre-trained image encoding
module fo( ) for image feature extraction and classification.
During training, we randomly sample a batch of N pairs
of pre- and post-disaster building object images (bPre, brost),
i=1,2,..., N.Forthe building b: within this batch, we

compute the cosine similarity between the only positive pair

(b2, bposY), and the cosine similarity between multiple nega-

pre  pre pre  post post pre post  post
tive pairs (b; ,b; ), (b; ,b; ), (b; ,b; ), and (b; ,b; ),
j=1,2,...,Nandj 1. The contrastive loss for the build-

ing biis defined similar to thatin [5] as

exp(sim(zP™s, zP°s)/T)
Li=-log L S ¢y
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where sim( ) is the cosine similarity, 7 is the tempera-
ture parameter. The final loss for this batch is given by

(l/N)% L.

3. EXPERIMENTS AND RESULTS

Good image features would not require massive labels for im-
age classification. To evaluate the quality of self-supervised
SR-CRL features, we train an image classifieron top of image
features encoded by the pre-trained fo( ). The logistic regres-
sion (LR) and MLP classifiers are chosen. We also fine-tune
the encoding module fo( ) when training the classifiers. For
comparative analysis, we train a variant of the ResNet in a
completely supervised manner for building damage classifi-
cation.

We train all classifiers with different sizes of the training
data. The best model is used for evaluating the classification
performance on the testing data. The precision, recall, and F1
score are evaluated for all building damage classes including
no damage (no), minor damage (mi), major damage (ma), and
destroyed (de). The overall F1 score is computed as
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Foreach size, we train the classifiers with 10 trials of ran-
domly sampled training subsets, in which all damage classes
have the same class frequency to avoid the impact of class
imbalance. Fig. 4 shows the learning curves of the mean
overall F1 score and the standard deviation with respect to
the training subset size. It is worth noting that the pre-trained
fo() learned in ST-CRL with the LR classifier has the same
architecture as the fully supervised model. As such, Fig.
4 demonstrates that self-supervised ST-CRL features signif-
icantly boosted the performance of building damage classifi-
cation.

Regarding the classification performance for different
damages, we report the F1 scores with the mean and standard
deviation for all damage classes corresponding to 10 trials
of randomly sampled training subsets of size n = 1000 and
n = 9000 in Table 1. We observe that it is more challenging
to identify buildings with minor and major damages com-
pared to those destroyed or with no damage. It is also worth
noting that self-supervised ST-CRL image features provide
better representations of different building damages com-
pared to the fully supervised model. Fig. 5 visualizes some
examples of building damages predicted by a LR classifier on
self-supervised ST-CRL features and 10,000 labels.

Fig. 4. LR and MLP trained with self-supervised ST-CRL
features outperform the fully supervised model.

4. CONCLUSION

In this study, we propose a novel self-supervised learning
framework ST-CRL that learns RS image features by incor-
porating the spatiotemporal knowledge. ST-CRL offers the
capability of learning RS image features without human la-
bels. Experimental results show that self-supervised ST-CRL
features significantly boost the performance of building dam-
age classification compared to supervised classifiers trained
from scratch. Since deep neural networks for image classifi-
cation (e.g., ResNet) require massive human labels for image
feature learning, the proposed ST-CRL paves the way to learn
informative image features in the geospatialdomain with un-
labeled geospatial big data. In the future, we plan to investi-
gate the spatial statistics of RS images for an improved con-
struction of image samples for ST-CRL such that the self-
supervised ST-CRL image features further inform building
damage classification.
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