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Abstract: Social media data are widely used in disaster management for event 

detection, response, and recovery. To find disaster relevant social media messages 
and automatically categorize them into different classes (e.g. damage or donation), 

current approaches utilize natural language processing methods based on keywords , 
or machine learning algorithms relying on text only. However, these classification 

approaches have not been perfected due to the variability and uncertainty in language 
used on social media and ignoring the geographic context of the messages when 

posted. Meanwhile, a disaster relevant social media message is highly sensitive to its 
posting location and time. Thus, additional features related to space and time could 

be useful for differentiating relevant posts by informing its geographic context, and 
therefore improving purely text-based approaches. However, limited studies exist to 

explore what spatial features and the extent of how temporal, and especially spatial 
features can aid text classification. To fill the research gap, this paper proposes a 

context-aware text mining method to incorporate spatial and temporal information 
derived from social media and authoritative datasets  (e.g., Earth observations, 
physical model output, official reports), along with the text information, for classifying 

disaster relevant social media posts. With the 2012 Hurricane Sandy as a case study, 
we designed and demonstrated how diverse types of spatial features, such as wind, 

flooding, and proximity, and temporal features can be derived from spatial data, and 
then used to enhance text mining. The deep learning based method, convolution 

neural networks, and commonly used machine learning algorithms (e.g., support 
vector machine), assessed the accuracy of the enhanced text-mining method. The 

performance results of different classification models generated by various 
combinations of textual, spatial, and temporal features indicate that additional spatial 

and temporal features help improve the overall accuracy of the classification by 4 
percentage points on average. This study demonstrates the need and provides a 

guidance for the incorporation of geographic data sources to improve data retrieval 
while leveraging social media for disaster applications. 

Keywords: spatial data science; spatially enabled text mining; situational awareness; 
deep learning; GeoAI; spatial features 
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1. Introduction 

The rise in social media such as Facebook, Twitter, Flickr, LinkedIn, YouTube, and many 
others, in the past decade has changed the way people interact with each other, and 

gain situational awareness (SA) during a disaster event. Social media, on one hand, 
can be used as a platform to provide critical information to the public about hazardous  

events for relief and recovery efforts (Houston et al. 2015). Disaster managers, on the 
other hand, can also gather social media data to monitor disaster events in real -time. 

With this approach, citizens involved with the disaster act as “sensors” providing geo-
located information to supplement authoritative data sources (De Longueville, Smith, 
and Luraschi 2009). Having a geographical SA through social media enables the 
identification of areas with infrastructure damage, affected people, and evacuation 
zones (Huang and Xiao 2015). 

To identify social media data relevant to a disaster event and extract useful data for 
disaster coordination and response, different approaches have been developed 

(Ashktorab et al. 2014; de Albuquerque et al. 2015; Huang et al. 2015). One of the 
typical approaches, known as the text-based approach, involves text-matching by 

searching for specific keywords or groupings of words using machine learning 
algorithms to determine if the social media data is relevant (Ashktorab et al. 2014; 

Huang and Xiao 2015; Bakillah, Li, and Liang 2015; Landwehr and Carley 2014). This 
approach builds a classifer that categorizes text on the existence of keywords . 

Although text-based classification is a fast way to organize large datasets, it has two 
major limitations while identifying or differentiating all social media data related to a 

disaster:  

 Uncertainty and variability in language used on social media (Bruns and Liang 
2012). For instance, an algorithm might look on Twitter for the 
“#hurricanekatrina” hashtag. If a user is unaware of the hashtag or even 

misspells it, the likelihood of the classifying the data as disaster relevant 
decreases (Bruns and Liang 2012). 

 Social media data can be easily misidentified by purely relying on text without 
considering the geographic context. For example, during a flooding event, the 
message “the water is very high right now” could have different contexts. 
While an individual on a riverfront within the disaster area most likely 
indicates, “the water level is high”, another individual at home far from the 
impact region could mean, “the water in the bathtub is high.” 

To overcome these limitations, this study develops a context-aware texting mining 
method that integrates spatial and temporal information, revealing the geographic 
context of a social media post, to classify whether a tweet is relevant or not to a 
disaster. A variety of spatial data could contribute to inform the geographic and 
environmental context. Some spatial data are highly domain-specific. For example, 
during a flood event, information about how much rain has fallen and areas of lower 
elevation are important. This type of information can be derived from radar data 

products, weather station observations, and a digital elevation model. However, 
during a forest fire event, climate conditions (e.g., humidity) in the area or wind 
patterns are more relevant data. Other spatial data are less domain specific, the most 
prominent being proximity to the disaster. Based on Tobler’s First Law of Geography, 
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individuals posting on social media about a tornado going through their town are more 
related to the disaster than an individual reading about the same event on social 
media hundreds of miles away (Tobler 1970). In addition to space, time is another 
important dimension useful in classifying disaster events. For management purposes, 
a disaster can be broken down into four phases: mitigation, preparedness, emergency 

response, and recovery. These phases can also be used as general references for social 
media data (Huang and Xiao 2015; Zou et al. 2018). Therefore, the first objective of 

this paper is to identify spatial data from which spatial and temporal features can be 
produced to help inform the geographic context of text messages. 

In addition, current text-based classification models cannot directly assimilate raw 
spatial (e.g., remote sensing imagery) and temporal data. Instead, the classifier reads 

features, like text, as coded numeric values. Determining how to code each spatial and 
temporal feature is an area previously not well studied, but vital for this research. 

Therefore, this paper also aims to examine how spatial and temporal features can be 
derived, and to provide a reference on the utilization of the spatial and temporal data 

as features in the classification models. Furthermore, existing studies show that deep 
learning based methods, such as convolution neural network (CNN) and recurrent 
neural network (RNN), significantly outperformed traditional machine learning 
approaches, such as support vector machine (SVM; Joachims 1998) for text 
classification tasks (Yu et al. 2019). However, it is not clear whether the integration of 
spatial and temporal features will improve the deep learning based methods. As such, 
this study will then compare the performance of CNN models, one of the popular deep 

learning based methods, with traditional text-mining approaches (e.g., SVM). In 
addition, we will further identify the spatial and temporal features that are useful to 

improve the accuracy of CNN models based on its performance evaluation while 
combining varying spatial, temporal and textual features.  

To sum up, the following contributions are addressed in this research:  

1. First, the paper introduces a methodology for integrating geographic context 
into classifying disaster relevant social media datasets by fusing spatial data 
with social media. The method addresses the shortcomings of utilizing only 

text to identify and extract disaster relevant social media data when 
considering geographic context is necessary. 

2. Second, this paper demonstrates how to best process spatial and temporal 

data to derive associated features for classifying and identifying disaster 
relevant information.  

3. Third, this paper assesses the types of spatial and temporal features necessary 
for the classification of disaster relevant social media data. Both domain and 

non-domain specific features are included in the assessment.  

4. Finally, this work evaluates both traditional machine learning algorithms  (e.g., 
SVM), and the state-of-the-art work deep learning based method, CNNs, on SA 
information classification with spatial, temporal and textual features.  

2. Literature Review 
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2.1. Social Media for Disaster Events 

Social media data presents many advantages, such as timeliness of information, 
relevance at the community level, low cost, and adaptability (Keim and Noji 2011), 
over standard communication methods during disaster events (Houston et al. 2015). 

As a result, they are widely used for real-time dissemination of information by allowing 
for both sending and receiving of messages during disaster events (Xiao, Huang, and 

Wu 2015; Keim and Noji 2011). When traditional sources of communication lack 
information or cannot keep up to date on current information, social media can also 

serve as a backchannel communication platform allowing user-driven information 
acquisition and sharing (Xiao, Huang, and Wu 2015; Sutton, Palen, and Shklovski 

2008). Peer-to-peer backchannel communications on social media fill information 
gaps when official sources of information are unavailable. 

Meanwhile, social media is also widely leveraged for disaster event detection (Ford 
2011), SA establishment (Huang and Xiao 2015), and disaster mapping (Li et al. 2018). 

For example, during an earthquake in Virginia in 2011, people in the eastern United 
States reported learning about the event on Twitter before feeling the earthquake at 
their location (Ford 2011). Another form of event detection is finding users in need of 
assistance on social media. For instance, during a 2011 tsunami off the coast of Japan, 
several tweets were direct requests for assistance (Acar and Muraki 2011). One of the 

tweets read, “We’re on the 7th floor of Inawashiro Hospital, but because of the risen 
sea level, we’re stuck. Help us!” (Acar and Muraki 2011) . This type of message is 
critical to detect, but requires a high degree of verification (Lindsay 2011). To 
overcome the difficulty of disaster event detection, one of the emerging uses of social 

media for disaster events is extraction of SA for coordination and relief operations 
(Huang and Xiao 2015). For example, Ashktorab et al. (2014), created Tweedr, a 

Twitter based data mining tool that extracts actionable information for disaster relief 
workers during natural disasters based on keywords. Zahra et al. (2017) investigated 

different types of sources on tweets related to eyewitnesses and classifies them into 
three types (i) direct eyewitnesses, (ii) indirect eyewitnesses, and (iii) vulnerable 

eyewitnesses.  

While the use of social media for disasters clearly has a variety of advantages over 

traditional methods of communication, social media has raised concerns to the 
veracity of its data and grand challenges while being used to make decisions 
(Goodchild and Glennon 2010; Goodchild and Li 2012). The first issue is in the accuracy 
of the information. Using geo-tagged tweets to find incident locations can pose a 
problem if the user is tweeting about something he or she experienced at a different 
time and location (Gao, Barbier, and Goolsby 2011). Another case of data inaccuracy 
occurred in 2011 during the Tohoku earthquake. Tweets seeking assistance appeared 
long after the people in need were rescued creating greater confusion for disaster 
managers (Lindsay 2011). During a disaster event, disaster managers must make 

timely decisions based on the data available. If the data is unreliable, the decisions 
could have catastrophic consequences. Another problem with the veracity of social 

media data is when social media is used maliciously (Huang and Xiao 2015; Yang et al. 
2019). The generation of social media for pranks, attacks, and rumors is common 

(Lindsay 2011). Falsified requests for help can draw first responders away from helping 
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those in true need of assistance. Moreover, the rumors and falsified reports can 
spread through social media easily (Lindsay 2011).  

To tackle the reliability issues associated with social media data during a disaster 

event, a temporal understanding of the generation of social media from the beginning 
to the end of the disaster is important. Houston et al. (2015) proposed a simple three-

phase disaster classification for social media, pre-event, event, and post-event. During 
the pre-event phase, social media users send and receive information about the 

disaster event. The three-phase classification is a simple way to classify social media 
data during a disaster event. Other efforts classified social media into the typical four-

phase categorization (mitigation, preparedness, response, and recovery) or even 
forty-seven different themes during different disaster phases (Huang and Xiao 2015). 

However, in a real-time disaster event the sheer volume of data from social media 
poses a challenge for storing and analyzing the data generated in real-time and at 

changing rates. Among the massive data generated during a disaster event, only a 
small portion contributes to the establishment of SA. Any solution for utilizing relevant 

social media data during disaster events must have the processing capabilities to 
handle the stream of data efficiently. The proposed method will overcome the 
challenges of data volume by using text mining techniques to automatically search 
through the social media data for SA relevant information. 

2.2. Text Mining for Extracting Disaster Relevant Information 

One way to overcome the challenges associated with the volume of social media data 
is by searching through the text for patterns in the words that might signify data 
related to a disaster. Many different techniques have been applied for text mining 
social media data by developing a classification scheme or model to predict if a 
particular social media post relates to the disaster event. The first step in creating a 
model is generating a set of keywords. With Hurricane Sandy, the keywords might be 

sandy, hurricanesandy, or hurricanenyc (Huang and Xiao 2015). These keywords act 
as an initial filter to remove messages irrelevant to the disaster. One inevitable 
consequence of this filtering approach is not capturing all messages relating to the 
disaster event. Some social media data users might be unaware of the existence of a 
certain keyword being used, they might use a unique keyword no one else is using, or 
their data contains only a picture or video and no text at all (Bruns and Liang 2012). 

To improve the overall accuracy, an understanding of the data misclassified as 

irrelevant in the current research methodology is necessary. 

The next step is determining the n-grams used to train the model. N-grams are a set 
of co-occurring words within a set of words. For example, during a flood a user posts 
the message “I am stuck in a flash flood please help!” Using the unigram or 1-gram 
approach means each word becomes a single token read by the classifier. Increasing 
to a bigram or 2-gram would lead to two word tokens, such as “flash flood” or “please 
help.” While increasing the amount of words per token yields more information, the 
classification accuracy does not improve significantly (Halteren, Zavrel, and 

Daelemans 2001). Hence, when creating a model for disaster events, unigrams are 
standard practice (Ashktorab et al. 2014; Spinsanti and Ostermann 2013; Huang and 
Xiao 2015). 
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Finally, a classification algorithm runs using training data. Traditionally, five machine 
learning algorithms, K-nearest neighbors, decision trees, naïve Bayes (Zahra, 
Ostermann, and Purves 2017), logistic regression (LR), SVM, and Random Forest 
(Zahra, Imran, and Ostermann 2020), are commonly used for text mining (Ashktorab 
et al. 2014; Spinsanti and Ostermann 2013; Huang and Xiao 2015; Bruns and Liang 

2012; Zahra, Ostermann, and Purves 2017). However, recent studies indicate that 
deep learning based methods achieved better performance than these algorithms and 

in various natural language processing tasks (Yu et al. 2019). For example, a toponym 
recognition model, extending a general bidirectional recurrent neural network model, 

is developed for accurate location recognition in social media messages with various 
language irregularities (Wang, Hu, and Joseph 2020).  Improving the accuracy of text 

mining approaches is the main motivation for this research. Instead of following the 
current research track of focusing solely on the classification schemes and algorithms 

themselves, this research incorporates spatial information about the social media data 
into the classification algorithm, and also compared the performance of deep learning 

based CNN models, with several traditional classification models for SA information 
classification. 

2.3. Remote Sensing for Tracking Disaster Events 

Remote sensing data provides additional geographic information for detecting and 
tracking a disaster event. For example, algorithms detect tornadoes by finding slight 
differences in the patterns of radar images (Alberts et al. 2011). The methods used for 
detection and tracking of disaster events are similar to the text mining approaches  
mentioned in the previous section (Roy and Kovordányi 2012). However, unlike text 
mining where training data are discrete, remote sensing data for disasters involves 
training data that are continuous leading to more complex pattern recognition and 
processing (Lakshmanan and Smith 2009). Moreover, data mining remote sensing 
images requires separate identification algorithms and attribute extraction methods  
for each type of disaster event. In other words, the algorithm to detect and track a 
hurricane will be vastly different from that of a tornado, whereas generalized text 
mining algorithms apply to many disasters. Consequently, a high degree of domain 
knowledge of the disaster in the context of remote sensing is required to accurately 
detect these types of disasters (Lakshmanan and Smith 2009). The proposed a context-
aware text mining method builds upon the current remote sensing data mining 

methods described by Lakshmanan and Smith (2009) by combining the 
spatiotemporal information about the disaster with social media data to determine 

disaster relevant social media data. 

2.4. Social Media and Authoritative Data Fusion 

During a disaster event, disaster managers and planners use many different data 
sources to assess the situation. Leveraging other data sources, like satellite or other 

geographic data, could improve the analysis of social media data during a disaster 
event. In previous works, Twitter data estimated trajectories of earthquakes, tracked 

the locations of tornadoes, and detected wildfire hotspots (Crooks et al. 2013; Jain 
2015; De Longueville, Smith, and Luraschi 2009). Meanwhile, disaster detection is not 
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always possible using social media as was determined during a 2013 flooding event 
(Fuchs et al. 2013). 

One promising area of research is to fuse social media data with other forms of spatial 

data for disaster events. Albuquerque et al. (2015) used “authoritative” hydrological 
data for a flood event with social media messages to confirm the presence of the flood 

in the disaster region. They also found that the closer the social media data was to the 
event, the more likely it was to be about the flood event. This simple quantitative 

assessment shows how additional datasets can improve social media data 
identification. Similarly, Spinsanti and Ostermann (2013) introduced an approach that 

first geo-references and retrieves content from social media data, followed by an 
enrichment with additional geographic context information from authoritative data 

sources, and clustering spatio-temporally to support filtering and verification. 

Another approach to fusing remote sensing data with social media is by using the 
social media data as a way to overcome limitations of remote sensing data (Wang et 
al. 2018; Huang, Wang, and Li 2018a). For example, social media data was used to 
verify the presence of water in a specific area during a flooding event when remote 

sensing imagery was unavailable (Schnebele and Cervone 2013). Alternatively, Huang 
et al. (2018) introduced an approach to retrieve near real-time flood probability map 

by integrating the post-event remote sensing data with the real-time tweets (Huang, 
Wang, and Li 2018a). A flood inundation reconstruction model was further proposed 

to enhance the normalized difference water index derived from remote sensing 
imagery with both stream gauge readings and social media messages (Huang, Wang, 

and Li 2018b). Rosser et al. (2017) fused remote sensing, social media and topographic 
data sources for rapidly estimating flood inundation extent by a Bayesian statistical 

model to estimate the probability of flood inundation through weights-of-evidence 
analysis. 

To sum up, much progress has been made to extract useful social media information, 
enrich them with additional authoritative datasets (de Albuquerque et al. 2015; 
Spinsanti and Ostermann 2013), and overcome the limitations of or enhance remote 
sensing data with social media data (Wang et al. 2018; Huang, Wang, and Li 2018a), 

(Rosser, Leibovici, and Jackson 2017; Schnebele and Cervone 2013). Given the infancy 
of spatial and social media data fusion for disaster management, no prior work fully 
examines the temporal, and particularly spatial features, and incorporates these 

features for extracting disaster relevant social media data. As such, this paper presents 
the context-aware text mining method, including the methodology for both social 

media and spatial data extraction using data mining algorithms. 

3. Geographic Context-aware Text Mining 
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Figure 1. The workflow of geographic context-aware text mining 

Context-aware text mining is an enhanced text mining method that incorporates SA 
about the disaster in the form of geographic data into the text classification. The 

proposed method includes five key components (Figure 1): 

1. Social media and spatial data streams: A real-time disaster management scenario 
is the intended use of the method. Data in a variety of formats (e.g. point, polygon, 
raster, text) and volumes stream into the workflow from multiple sources. 

2. Database storage: With the high volume of data generated dynamically, storage is 
necessary before and after processing. Due to scalability and spatial functionality, 

the storage of social media and spatial data is separate. NoSQL databases (e.g., 
MongoDB) can handle the high volume of social media content, while 
PostgreSQL/PostGIS supports a variety of spatial queries and operations of spatial 
data. 

3. Data pre-processing: The social media data streams in a uniform format of text 
with an associated point in time. However, the challenge with the spatial data is 

its variety. Before the spatial information can be stored, scripts process the data 
into uniform data types and file formats. This is also the point in the method where 
event detection takes place. Disaster event detection is an important step for 
creating a dynamic spatial filter within the method compared to a traditional 
bounding box. In turn, the method uses spatial information associated with the 
dynamic assessment of the disaster extent as a feature in the text classification. It 
is important to note detecting a disaster event using spatial data is an active 
research topic that is highly domain specific. 

4. Spatial feature generation: The center of the spatial text mining method is the 

spatial feature extraction. Using fuzzy logic, spatiotemporal information from a 
social media post generates the spatial features relevant to the disaster. The result 

is a social media post with metadata in the form of spatial features. 

5. Text classifier development: Staying consistent with current methods, social media 

data with geographic metadata travel through a classifier to determine disaster 
relevant social media posts. This paper evaluates and validates the results from 

the classifier to determine if the addition of geographic information improves the 

text classification. 

3.1. Data Streams, Processing, and Storage 
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3.1.1. Case study 

To test the context-aware text mining method, Hurricane Sandy from 2012 was 
selected for the case study. Hurricane Sandy (October 22, 2012 – November 2, 2012) 

was the 18th named tropical cyclone for the 2012 Atlantic Hurricane. It made landfall 
in the United States (US) as an extratropical cyclone, much weaker than when it hit 

Cuba days earlier. However, Sandy had a significant spatial impact with winds 
spanning 945 miles in diameter, making it the largest storm ever observed in the 

Atlantic (Blake et al. 2013). Another important factor for measuring a hurricane is the 
sustained wind. Numerous weather stations in New York and New Jersey reported 

sustained winds greater than 70 kts or hurricane strength even though the storm was 
an extratropical cyclone. The highest recorded wind gust after landfall was 83 kts on 

the north shore of Long Island, New York (Blake et al. 2013). Rainfall is another impact 
from hurricanes that can lead to flooding, especially in urban and low-lying areas. The 

heaviest rain occurred in parts of Maryland, Virginia, and Delaware receiving between 
five and seven inches. The meteorological impact that resulted in the greatest 

causalities and damage was the storm surge. Sandy caused water levels to rise from 
Florida to Maine. The highest storm surge and greatest inundation on land occurred 
in New Jersey and New York, especially in and around New York City. 

3.1.2. Data and Data Processing 

Before the collection of data, a study area for Hurricane Sandy was selected. Hurricane 

Sandy affected states in the southeastern US, like South and North Carolina, as well as 
many states in the northeast. To capture the disaster beginning right before the stage 

of landfall, a 400 by 450 mile bounding box was constructed and centered at the 
location of landfall (Figure 2). With a diameter over 800 miles at landfall, the bounding 

box contains the storm and includes major metropolitan areas, such as New York City 
and Washington, DC. 

 

Figure 2. Study area and storm track of Hurricane Sandy 

For the case study, Twitter, a text-based microblog with millions of active users, is 

selected as social media service for disaster relevant message extraction. Twitter 
provides access to its messages or tweets through two public application 
programming interfaces (API). The search API allows for retrieval of past tweets based 
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on search criteria (location, keyword, user, etc.). The streaming API retrieves up to 1% 
of the most recent tweets based on search keywords and spatial extent (Morstatter 
et al. 2013). In total, 12.3 million geo-tagged Tweets were collected from October 28, 
2012 to November 7, 2012 (Table 1) using Twitter streaming API with the “Hurricane” 
and “Sandy” as search keywords, and global as the  geographical boundary. After 

performing a spatial filter based on the bounding box (Figure 2), the number of Tweets 
was reduced to 2.8 million.  

The meteorological data offers a variety of ways to measure the hurricane both 
qualitatively and quantitatively. Additionally, the generated data is from different 

sources with different formats and different spatial and temporal resolutions (Table 
1). Hurricane track points, produced by the National Hurricane Center, indicate the 

location of the hurricane center at important stages in the li fe of the storm (e.g. 
change in strength or landfall). By connecting the points, one can get a sense of the 

overall track of the storm. To get more detailed weather measurements on the ground, 
128 Automated Weather Observing System (AWOS) stations were used. These 

stations are primarily located at airports and take measurements at least every hour 
depending on the conditions. AWOS units collect data on many weather variables, 
such as wind, temperature, dew point, precipitation, and pressure. The radar data 
comes from six different NWS radar stations in the study area. In terms of data storage, 
the radar data was by far the largest dataset at ~45GB due to the temporal resolution 
(Table 1). Two products were kept for the rest of the study: base reflectivity (the 
common weather radar view) and storm total precipitation. 

Table 1. Hurricane Sandy Data 

The NWS plays a key role in any meteorological disaster by communicating to both 
the government and public the severity of the event. The issuing of watches, warnings, 

Data Source Temporal 
Domain 

Spatial 
Domain 

Spatial 
Resolution 

Temporal 
Resolution 

Format 

Social 
network 

Tweets 
Oct 28 – 
Nov 7 

400 mi x 
450 mi 

N/A Milliseconds Point 

Observat
ions 

Storm Track 

Oct 28 – 
Oct 31 

N/A Minutes Point 

Weather 
Stations 

N/A 
10-60 
Minutes 

Point 

Radar 0.5 x 0.25 km 2-10 Minutes Raster 

Authorita
tive 

Storm Reports N/A Minutes Point 

Watches, 
Warnings, and 
Advisories 

N/A Minutes 
Polygo
n 

Models 

North 
American 
Model 

12 km Hourly Raster 

24 Precip 
Analysis 

4 km Hourly Raster 
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and advisories (Table 2) is one well-known way to accomplish this. Storm reports from 
the NWS were also collected. These reports are a form of volunteer geographic 
information from experts and the public. Information in the reports includes wind 
speeds, rain totals, areas of flooding, and damage caused by the storm. The NWS 
verifies reports through weather data they collected or by in person visits , and 

updates storm reports frequently during a real disaster event. 

The North American Mesoscale Forecast System (NAM) is a high-resolution forecast 

of hundreds of products. The NAM model runs every 6 hours predicting the next 84 
hours in hourly time steps. Being able to predict where the storm is heading is 

important for disaster planning purposes. Five NAM products were selected for this 
study: MSL pressure (for understanding the disaster extent), 1-hour total surface 

accumulation, surface wind speed, categorical rain (a binary rain classification), and 
hybrid radar reflectivity. Finally, the 24-hour precipitation analysis data provides the 

total precipitation over the last day. Derived from radar and rain gauge reports, this 
hybrid product provides a high-resolution understanding of how wet it might be in an 

area (Table 1).  

Table 2. Hurricane Sandy Watch/Warning/Advisory definitions (NWS 2021) 

NWS Issuance Description 

High Wind Watch/Warning Sustained winds of 40 mph or higher for one hour or 
more 

Small Craft Advisory Sustained winds of 18 knots to 33 knots or waves of 4 
feet or higher 

Severe Thunderstorm 
Watch/Warning 

Winds of 58 mph or higher and/or hail 1 inch in 
diameter or larger 

Storm Warning Sustained winds of 48 knots to 63 knots 

Special Marine Warning Sustained marine convective winds or associated gusts 
of 34 knots or greater 

Hurricane Force Wind Warning Sustained winds of 64 knots or greater 

Gale Warning Sustained winds of 34 knots to 47 knots 

Flood Watch/Warning Flooding is imminent or occurring 

Flash Flood Watch/Warning Flash flooding is imminent or occurring 

Coastal Flood 
Watch/Warning/Advisory 

Moderate to major coastal flooding is occurring or 
imminent and will pose a serious risk to life and 
property 

One challenge of using the context-aware text mining method is the data variety. 
Before the data transfers into a database, individual processing of the different data 
sets occurs. For this study, three important standards were established. First, all 

spatial data are transformed into the WGS84 coordinate reference system for data 
analysis. Second, vector data are stored in a Shapefile format and raster data in a 
GeoTIFF format. This standardization allowed for a simple ingestion into the database. 
Finally, all date and time parameters were converted into Epoch time. Having the 
temporal data stored as an integer saves processing time when comparing data. 
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Each dataset presented its own challenges for standardization. For example, the radar 
data exists natively in a binary format. The Weather and Climate Toolkit (Ansari, Del 
Greco, and Hankins 2010), developed by the National Oceanic and Atmospheric 
Administration (NOAA), read and exported the data as GeoTIFFs. Additionally, the 
radar and NAM model data were originally stored as single band GeoTIFFs for each 

product. GDAL (GDAL 2021) was used to merge the data into multiband GeoTIFFs 
based on the timestamp. A final challenge involved reading the weather observation 

data. Each observation comes in a coded text string called a Meteorological Terminal 
Aviation Routine Weather Report (METAR). Using the Python package METAR (Pollard 

2021), each observation was decoded. 

For the purposes of this study, the hurricane track points simulated the event 

detection phase of the context-aware text mining method (Table 1). With proper 
domain knowledge of the event detection algorithms, one could implement this step 

in the workflow. 

3.1.3. Data Storage 

The variety of social media data poses a challenge for traditional data management 

following the relational model (Huang and Xu 2014). Social media services utilize the 
NoSQL database model as a way to best manage their data. Unlike the traditional 

relational model, NoSQL implements many different data structures, such as 
document, graph, or key-value. The flexibility with NoSQL allows for data from 

multiple social media services to be stored in one location within the workflow. 
MongoDB (Banker 2011) was selected as the NoSQL database. In addition to the 

reasons state above, MongoDB stores its data in JavaScript Object Notation (JSON) 
which allows non-uniform fields to be added with no limitations. Most popular 

programming languages also easily parse JSON. Additionally, MongoDB is scalable 
allowing multiple servers to store and access the database. For the meteorological 

data, PostgreSQL was selected as PostgreSQL with the PostGIS extension can store 
both raster and vector data types, is open source, and provides a wide range of spatial 
functionality. Note other database systems could provide similar supports for social 
media data or spatial data management.  For example, PostgreSQL also supports JSON 

data type and offers sufficient JSON operators and function to enable the storage of 
social media data. 

3.2. Spatial Feature Generation 

3.2.1. Spatial Feature Determination 

The key step in the context-aware text mining method is the spatial feature generation. 

In this step, the spatial data is bound to each social media post as a feature through 
fuzzy logic. Before performing this task, useful spatial features for the hurricane case 

study should be determined. Hurricanes are characterized by heavy rain, high winds, 
and low atmospheric pressure (Roy and Kovordányi 2012). Thus, it is logical to include 

these characterizations as spatial features (i.e. rain, wind, and pressure). Since 
pressure is related to the hurricanes strength, the category of the storm instead of a 

pressure measurement was used. A few other useful features were also derived from 
the core geographic features. A flood feature was added because the flooding and 

storm surge often have a dangerous impact. Another derived feature added was the 
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presence of an NWS warning meaning an area is in imminent danger of a certain 
weather hazard. Distance or proximity from the center of the hurricane was the final 
added spatial feature. Two temporal features were added to reveal temporal detail to 
the feature space, including (1) the date of the social media post, and (2) a binary 
indication of whether the location was currently experiencing the storm or the storm 

had past. 

3.2.2. Feature Extraction Logic 

The feature extraction algorithm for the Hurricane Sandy case study used fuzzy logic 
to determine the value associated with each geographic feature. Given the 

spatiotemporal complexity of the datasets being used to generate features, ascribing 
context at the single time of a social media post requires more than a binary logic. 
Table 3 details the general conditional logic for each feature. The first decision point 
in the logic was relation of time to the social media post. If a post happened after the 
storm dissipated, there was no meteorological data available. However, this does not 
necessarily mean a post is not disaster relevant. For example, a person might post a 
picture of a fallen tree after the storm has passed. To account for this, the rule was to 

use the time when the storm was closest to the point, but note in another feature that 
the storm had past. A storm was also denoted as past if the distance exceeded a 

threshold and the storm was located to the northwest of the post. 

With the time sorted out for a social media post, the next step was to access the data 

from various sources. Since data was generated on different temporal scales, it was 
highly unlikely that the meteorological data occurred at the same time as the social 

media post. To solve this problem, each meteorological data product had a valid time 
criterion. For instance, to use an NWS warning, the post had to have happened within 

a warning polygon and within the issue and expire times. Another example, to use a 
storm report, the post must have occurred within 30 minutes of the report. 

After the temporal bounds are determined, the social media post must satisfy s patial 
criteria for each meteorological data product. For raster and polygon data, this 
involved a simple intersection to attain the attribute value. The numerous point data 
products required a distance calculation. For example, in addition to the 30 minute 
time limit, a social media post needed to be within 10 miles of the storm report to 
attain the attribute value. The exact spatial and temporal features were chosen based 
upon accuracy and temporal frequency limitations of the datasets selected as well as  

physical characteristics of the disaster event. For instance, the same logic used during 
a tornado event which occurs on a short time scale and smaller area would not provide 

the appropriate context to the social media post. 

The last step in the feature generation algorithm was to rank the data products based 

on reliability of the data. Each spatial feature had multiple meteorological data 
sources that could explain the feature. For instance, when describing the wind feature, 
the most accurate data came from weather station observations. Conversely, the 
weather model provided wind data, but the spatial and temporal resolutions were not 

as great. In the event a social media post had values for both data products, the 
weather station observation was chosen. Table 3 lays out the ranking for each 
meteorological data product. 

Table 3. Spatial Feature Generation Logic 



 14 

Feature Description Data Source Ranking 

Disaster Status Whether or not the storm has 
past 

Twitter and Storm Track 

Date The date of the social media 
post 

Twitter 

Distance The distance from the center of 
the hurricane 

1. Hurricane Track 

Storm Category The category of storm 1. Hurricane Track 

Precipitation How heavy the rainfall is 1. Weather Station; 2. Storm Report; 
3. Radar 

Wind How strong the wind is 1. Weather Station; 2. Storm Report; 
3. NWS Warnings; 4. NAM 

Flood Type of flood occurring: flood, 
coastal, or flash flood 

1. Storm Report; 2. Weather Station; 
3. NWS Warnings; 4. 24-hr 
Precipitation Analysis; 5. Radar; 6. 
NAM 

Warning NWS warnings NWS Warnings 

3.3. Annotation and Classification 

3.3.1. Feature Annotation 

After the completion of spatial data processing, all features were annotated with a 

class for the supervised classification. While some machine learning algorithms can 
handle numerical data, the algorithms used in the spatial text mining framework rely 

on categorical data. This approach stayed consistent with the transformation of words  

into categorical vectors. 

Annotating the social media text data requires a degree of domain knowledge. 
Previous studies have created different classification schemes to best describe 
disaster related social media (Gao, Barbier, and Goolsby 2011; Huang and Xiao 2015; 

Imran et al. 2013; Vieweg et al. 2010). One common methodology is to create a two-
tiered classification scheme (Imran et al. 2013). First, social media messages are 
classified as personal, informative, or other. Personal messages are messages only of 
interest to the author or their immediate circle. Informative messages are of interest 

to people beyond the author’s circle. After the initial filter, informative messages are 
further classified into more classes, including (1) Caution and Advice (CA), (2) 
Casualties and Damage (CD), (3) Information Sources (IS), (4) Donation and Aid (DA), 
and (5) People (Imran et al. 2013; Vieweg et al. 2010). The goal of the two-tiered 

classification is to describe the overall understanding in disaster events or SA. Based 
on Imran’s (2013) coding schema, a majority of messages are classified as CA. 

Therefore, in our work, we created an additional class, named as Infrastructure and 
Resource (IR) containing messages reporting the status of infrastructure (e.g., 
transportation) and resource (e.g., gas, power, internet, food), which is not reported 
by an official news source or requests for donation or aid (Table 4). 

Table 4. Social media classification scheme 
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Class Description Example 

Caution and Advice 
(CA) 

Warning or a piece of advice 
given about a related 
incident 

Flooded neighborhoods in Norfolk and 
its approaching low tide. 

Casualties and 
Damage (CD) 

Information about 
casualties or infrastructure 
damage 

This tree and power lines are down at 
the corner of Station Road and 
Bethlehem Pike in Quakertown. 

Information 
Sources (IS) 

A message from an official 
news source, media or 
government 

@NYCMayorsOffice: Mayor: All 
@NYCSchools are closed tomorrow. 

Infrastructure 
and Resource (IR) 

Information related to IR 
that is not reported by an 
official news source or 
request for donation or aid 

all metro service suspended until 
further notice yikes; NY subways 

scheduled close 7pm tonight; Gas 
station lines crazy 

People People found or missing please rt: if anyone has any info on the 
whereabouts of amanda lanzone of 
far rockaway, please pass it on to 
@vicosuave89 

Donation and Aid 
(DA) 

Goods or services offered or 
needed by victims 

I don't have any money to donate but 
I have lots of time, where can I help 
/volunteer in #Hoboken? Who do I 
call? 

Table 5 shows classification scheme of spatial and temporal features, which are not 

well studied in the literature. The date feature is the date the post was generated. The 
disaster status feature is an indication of the spatiotemporal relationship of the 

hurricane and social media post at the time the post was sent. For example, if the 
hurricane is moving away from the post, the feature is classified as past. Conversely, 

if the hurricane is approaching the post location or is overhead, the classification is 
present. A distance feature measures the proximity of the post to the center of the 

storm. Distances from the storm were clustered using the density-based spatial 
clustering of applications with noise (DBSCAN) algorithm discussed in Section 4. 

Table 5. Spatial and temporal feature classification schemes 

Feature Classification Scheme 

Temporal Date The date of the social media post 

Spatiotemporal Disaster Status Binary, past or present 

Spatial Distance DBSCAN clustering algorithm (See Section 4) 

Storm Category Saffir-Simpson Scale 

Precipitation Light, moderate, or heavy; NWS Radar Scale  
(Scale 2021b) 

Wind Beaufort Scale 

Flood Flood, coastal flood, or flash flood 

Warning Binary, warning or no warning 
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The classification schemes about other spatial and temporal features are less 
straightforward requiring domain knowledge. In practical applications, domain 
experts have generated different scales to measure meteorological features. For 
example, hurricane strength is measured on the Saffir-Simpson Hurricane Wind Scale 
(NHC 2017).  This scale is represented by the storm category feature. Another useful 

meteorological scale is the Beaufort Wind Scale (Scale 2021a). The scale provides both 
land and sea descriptions for different strengths of wind from clam to hurricane force. 

The wind feature is calculated from the Beaufort Wind Scale. Precipitation intensity 
feature is calculated using the NWS Radar Scale, which converts radar reflectivity into 

a precipitation intensity. The final two meteorological features flood and warning, 
utilize the NWS categorical watches, warnings, and advisories classification. For 

example, if a post occurred in a flash flood warning, flash flood would be assigned to 
the flood feature and the warning feature set to true. 

3.3.2. Feature Classification 

Where the spatial feature generation is the key component of the framework, the text 
mining component is necessary for generating the desired outcome. The goal of this 

component is to determine if a social media post is disaster relevant or not. Accuracy 
is the primary indicator of assessment and relates directly to research question two. 

With the text mining features prepared by the spatial feature generation component, 
this step required an appropriate choice for text mining algorithms to establish the 

classification model. Right now, there is a variety of classification algorithms available, 
such as K-nearest neighbor, decision trees, LR, and neural networks. In particular, the 

Naïve Bayes and support-vector machines models are commonly used (Ashktorab et 
al. 2014; Spinsanti and Ostermann 2013; Huang and Xiao 2015; Takahashi, Tandoc Jr, 

and Carmichael 2015). However, deep learning has produced better results for various 
tasks in text mining, such as topic classification, sentiment analysis, question 

answering, and language translation (Yu et al. 2019). As such, this study will examine 
the capability of CNN models, one of the popular deep learning based methods, for SA 

message classification.  

Figure 3 presents the CNN architecture, which is the configuration for tweet message 

classification. Preprocessing converts tweets into lists of 50 integers and represents  
each word of the tweet by an integer. The preprocessed tweet then passes through 
the first layer, word embedding, which expands the word integers to a larger matrix 

and represents them in a more meaningful way. The word embedding layer uses 
Word2Vec (Mikolov et al. 2013) to embed semantic similarity information in the 

representation of words and expands each word into a vector of 300. The convolution 
layer extracts features from the word embedding and transforms them through global 

max pooling. The convolution layer uses neurons with filter size of 3, stride of 1, zero 
padding, and depth of 250 (Table 6). The extracted features are then concatenated 

with spatial and temporal features, which represent the tweet’s distance from 
hurricane center and the surrounding geographic and meteorological environment. 

Then two fully connected layers predict the themes of each tweet. Dropout layers are 
utilized before the convolution layer and the last fully connected layer, while 

activation functions are used after the convolution layer and the fully connected layers. 
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Figure 3. Overall architecture of the CNN: a) tweet text only, and b) using spatially 
enhanced tweets. 

To generate a training sample for classification, the 2.8 million social media posts were 
filtered using the hashtag #sandy. With 33,963 posts remaining, a random sample of 

5,000 posts was taken. The authors used the classification (Table 4) to manually 
classify the sample. When the class definition of a post was not obvious, experts gave 
feedback to finalize the class.  

Table 6. Dimensions of layers and operations 

Layer Operator Output 
Height 

Output 
Width 

Output 
Depth 

Input - 1 50 - 

Embedding 
 

1 50 300 

Dropout Rate = 0.25 1 50 300 

Convolution Stride=1, Zero padding =0, Depth = 
250, Filter size = 3; Activation = ReLU 

1 50 250 

Global max 
pooling 

- 1 1 250 

Metadata* - 1 1 7 

Concatenate* - 1 1 257 

Fully connected Output depth = 250; Activation = 
ReLU 

1 1 250 

Dropout Rate = 0.25 1 1 250 

Fully connected Output depth = 5; Activation = 
Softmax 

1 1 5 

*Metadata and concatenate layers only exist for environmental enhanced tweet classification architecture 
(Figure 3b). These layers are eliminated for tweet text only classification architecture (Figure 3a).  

One limitation of the concatenation between the spatiotemporal features and the 
output of the global max pooling layer is that the dimension of the max pooling layer 
is significantly higher than the one of the spatiotemporal features. An alternative 

approach is to assign the spatiotemporal features with a higher degree of influence 
using higher weights.   

3.4. Spatiotemporal Distribution of Sample Data 
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Before running the classification experiment (Section 4), understanding the 
spatiotemporal distribution of the labelled sample data was important for interpreting 
the results. Of the 5,000 social media posts sampled, 1,920 posts were labelled as 
informative. Within the sample, only 2 posts belong to the People missing or found 
class, and therefore this class was removed from the classification experiments due to 

the low sample count. 

Shown as Figure 4, the breakdown in posts per class were not surprising. CA was the 

most general class and contained the most posts, followed by the IR class. The CA 
posts include disaster preparation information (e.g., stock up food) and status (e.g., 

wind speed of the Hurricane Sandy) of a disaster event. During the disaster, the IR 
class contained posts with information about inaccessible areas or lack of resources. 

Additional posts about closures and traffic information fell into this class. CD and DA 
classes had roughly the same number of messages. Both classes occur during and after 

the disaster event. The IS class had very few samples without a clear temporal pattern. 
Analysis of the IS class is included in Section 4.  

 

Figure 4. The frequency (Left) and temporal distribution (Right) of informative posts 

4. Experimental Design and Analysis 

This section first describes the experimental design to identify spatial and temporal 

features for the Hurricane Sandy case study that are key to describing and then 
classifying disaster relevant social media posts, followed by the results from the spatial 

and temporal feature determination. Finally, the section discusses the results of the 
feature combination experiments. 

4.1. Experimental Design 

4.1.1. Selected Experiments 

To determine if geographic features improve the accuracy of current text-only 
methods, a series of experiments were designed (Table 7). A text-only experiment 

would serve as the control to the other spatial experiments. The next experiment used 
all features. However, utilizing all features poses two problems. First, using too many 

features, especially irrelevant and correlated ones, may not necessarily generate 

desired model (Kohavi and Sommerfield 1995). Second, the goal of this research is to 
identify the key spatial features or the minimal number of features that give the best 

accuracy. As such, four additional experiments tested the number of features based 
on hypotheses derived from domain knowledge. 

Table 7. Context-aware text mining experiment design 
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Feature 
Type 

Feature Text-
only 

All Proxi
mity 

Proximity 
and Time 

Enhanced 
Proximity 
and Time 

Meteor
ological 

Text Text, 1-gram X X X X X X 

URL  X   X  

Temporal Date  X  X X  

Spatio-
temporal 

Disaster 
status 

 X   X  

Spatial Distance  X X X X  

Storm 
Category 

 X    X 

Precipitation  X    X 

Wind  X    X 

Flood  X    X 

Warning  X    X 

 

In a disaster event, distance from the center of the event is important for determining 

the relevancy of social media posts (de Albuquerque et al. 2015). Thus, the hypothesis 
is that distance by itself would improve the classification accuracy when combined 

with text. Another feature hypothesized to aid in the classification accuracy was the 
date feature. The classification scheme utilized in this and many other research studies 
is by nature time sensitive. For example, social media posts about donation and aid 
are more likely to occur during and after a disaster event (Figure 5). Since the machine 
learning algorithms selected for this study are dependent on probabilities, the 
expectation is that the date feature will improve the classification. In addition, 
combining the distance and date feature with the text feature would likely give the 
best results. Out of curiosity, a third experiment related to distance and time was 

created which combined what the authors determined to be the best features for 
describing the study based on empirical tests of the features. The last experiment 
combined the remaining spatial features related to the meteorological data. 

4.1.2. Performance Measures 

To assess the results of different classification experiments, the study incorporated a 
set of performance measures common with model assessment. Running the labelled 
data through a supervised classifier involves taking a subset of the data to train the 

classifier and the remainder of the labelled data to test the classifier. One potential 
error associated with this approach is for bias to exist in the training data resulting 
suboptimal results. Cross-validation is a technique used to evaluate the model by 
partitioning the sample data into k equally sized subsamples. From there k-1 

subsamples represent training data with a single subsample as the test data. The 
cross-validation process repeats k times with the results averaged from the k 
iterations. For this study, the value of k is ten. Moreover, a stratified version of cross -
validation ensures a proportional representation of each class in each subsample. 
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After the cross-validation is complete, several metrics determine the classifiers 
accuracy: precision, recall, and F-1 score. The precision of a class is the number of 
correctly classified samples divided by the total number of samples classified as a class. 
Meanwhile, recall is the number of correctly classified samples divided by the actual 
number of samples for a class. Another way to think about recall is as a measure of 

sensitivity in the classification. In theory, precision and recall are unrelated, but in 
practice, high precision usually leads to a lower recall and vice versa. To overcome this 

problem of metrics, this study also used F-score to evaluate the results. The F-score is 
a single measure based on the harmonic mean of the precision and recall. Overall 

accuracy for an experiment was determined by averaging the F-score over the 
different classes. 

4.1.3. Classifier Selection 

Before the primary feature experiments, a classification experiment was conducted 
using only the text feature to select the most effective classification algorithm, which 
was then used for the remainder of experiments. As discussed earlier, from the well-
established classification algorithms, three were selected based on previous text 

mining studies: LR, SVM, and CNN.  

Not surprisingly, the CNN performed better in text mining tasks demonstrated with 

higher accuracy values than the other two algorithms in all three evaluation metrics 
(Table 8). Therefore, the remaining experiments utilized the CNN. 

Table 8. Text-only algorithm experiment 

Algorithm Precision Recall F1-score 

CNN 0.76 0.74 0.76 

LR 0.56 0.53 0.50 

SVM 0.70 0.69 0.69 

4.2. Feature Determination 

4.2.1. Spatial Features 

Determining the feature annotation for the distance from the center of the disaster is 
not a trivial task (Section 3.5.1). Originally, the distance feature contained classes for 
different distance ranges loosely based on the radius of the storm. For example, if a 
user posted more than 250 miles away from the storm, the distance was coded as 
irrelevant because the post was too far away from the storm. While this simple feature 
annotation provided reasonable results in the classification, there are several issues 

using this strategy. First, having fixed distance ranges does not account for the 
potential temporal variability associated with the different text classes. For instance, 

a social media post classified as DA is more likely to occur after the storm has passed. 
However, the distance from the center of the storm might be greater than the 250-

mile threshold. Second, an arbitrary distance classification does not account for the 
spatial patterns that exist in the sample data. In fact, the sample data mostly clusters 

around metropolitan areas. In theory, the social media posts nearest to one another 
have similar experiences from the disaster. 
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To test the impacts of the distance feature annotation, an experiment was conducted 
using the DBSCAN algorithm (Ester et al. 1996) to cluster the posts based on distance 
from the center (l), the date (d), and the latitude (lat) and longitude (lon). DBSCAN is 
a density-clustering algorithm which groups points based on a minimum number of 
points (i.e., samples; minpts) within a specified epsilon or search distance (eps). High-

density points cluster into groups and low-density points are treated as noise. After 
running DBSCAN, a set of clusters are produced with each cluster and we can assign 

each cluster with a unique ID. Next, each clustered sample point is given its associated 
cluster ID as the distance feature, and the distance feature for all noisy points is set to 

0. To test which attributes (l, d, lat and lon), should be used to calculate distanced 
between samples in DBSCAN, we evaluate the classifiers generated by using the 

clustering results with different combinations of these attributes, including 1) l, 2) l 
and d, 3) lat and lon, and d, and 4) lat and lon, along with text as the input features. It 

is worth noting that the results of DBSCAN are sensitive to the choice of minpts and 
eps value. In our work, minpts value remained at 4 and the eps value was changed 

until a consistent number of clusters were found for each experiment setting. The 
highest F-score occurs when l and d are the clustering attributes. However, using the 
date feature in the DBSCAN and as a feature in the classification (Table 8) could result 
in feature redundancy. To minimize feature redundancy, the second-best trial, lat, lon, 
and l, was selected as the classification of the distance feature. 

4.2.2.  Temporal Feature 

In addition to the distance feature, the temporal feature was hypothesized to be 

important for improving the text classification. As previously mentioned, the text 
classification scheme (Table 4) is associated with time. For example, a day before the 

disaster event, the few messages posted primarily related to the CA and IR class. This 
type of result meets the expectation of a disaster because no damage exists prior to 

the event. 
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Figure 5. Spatial distribution of sample data by different classes at different disaster stages, 
including before (Oct. 28; a), during (Oct. 29-31; b), and after disaster event (Nov. 1-7; c) 

Spatially, the posts before the storm are in metropolitan areas (Figure 5a). As the 
storm affects the disaster area, the IS and CD classes become more prominent (Figure 

5b). While the frequency of posts increases in the metropolitan areas, the areas hit 
hardest along the New Jersey coast extending inland become flooded with messages. 

Finally, after the storm dissipated, the prominent class for social media posts is DA 
(Figure 5c). The posts after the disaster occur in areas significantly impacted by the 

storm. 

4.3. Feature Combination Performance 
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To determine which feature or features best describe the disaster in the classification 
models and examine whether the addition of features improves the accuracy of the 
classification, different feature combination experiments are performed based on the 
CNN models. The 10-fold cross-validation results indicate that each experiment, which 
combined spatial and temporal feature with text, improves the overall accuracy 

compared to the text-only classification by 4 percentage points on average (Table 9). 
The enhanced proximity and time experiment has the highest average accuracy (0.81) 

and F-score (0.80) of the experiments. Adding meteorological features and adding 
distance and time, have a similar amount of improvement to the recall and F-score 

(Table 9). The results from these experiments indicate proximity to the disaster is the 
best feature to describe the disaster event.  

Table 9. Feature combination experiment results 

Experiment Class Precision Recall F-score 

Text-only CA 0.65 0.87 0.75 

IR 0.66 0.64 0.65 

CD 0.58 0.38 0.46 

IS 0.93 0.72 0.81 

DA 0.89 0.67 0.76 

Averages 0.76 0.74 0.74 

All CA 0.81 0.77 0.79 

IR 0.63 0.85 0.72 

CD 0.76 0.53 0.62 

IS 0.85 0.85 0.85 

DA 0.86 0.86 0.86 

Averages 0.80 0.80 0.80 

Proximity 

(text, distance) 

CA 0.81 0.78 0.79 

IR 0.63 0.72 0.67 

CD 0.79 0.63 0.70 

IS 0.86 0.87 0.86 

DA 0.80 0.84 0.82 

Averages 0.80 0.80 0.80 

Proximity & Time 

(text, distance, date) 

CA 0.75 0.82 0.78 

IR 0.65 0.70 0.67 

CD 0.77 0.50 0.61 

IS 0.85 0.85 0.85 

DA 0.86 0.76 0.81 

Averages 0.79 0.78 0.78 

Enhanced Proximity & Time CA 0.82 0.75 0.79 
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(text, distance, date, 
disaster status)  

IR 0.62 0.92 0.74 

CD 0.78 0.58 0.67 

IS 0.86 0.82 0.84 

DA 0.86 0.86 0.86 

Averages 0.81 0.80 0.80 

Meteorological 

(text, storm category, 
precipitation, wind, flood, 
warning) 

CA 0.73 0.84 0.78 

IR 0.72 0.54 0.61 

CD 0.63 0.61 0.62 

IS 0.87 0.85 0.86 

DA 0.90 0.79 0.84 

Averages 0.79 0.79 0.78 

Assessing individual classes reveals a few patterns that exist in the different 
experiments. First, adding spatial and temporal features had a large impact on the CA 

(caution and advice) with an increasing of accuracy and decreasing recall, indicating 
that more messages (both true and false positives) are classified as CA. Second, the 

precision of IR category stayed relatively consistent for each experiment. However, 
the recall increased with the addition of distance and time features, and yet dropped 

after adding the meteorological features. Third, in general the DA (damage and 
donation) classes improved dramatically in the recall resulting in much higher F-scores. 

For disaster relevant information retrieval, identifying a greater number of disaster 
relevant posts accurately or increasing the recall is important. In particular, including 

a distance feature all improves recall significantly, which makes sense given the class 
definitions and sensitivity to space. Finally, the significant decreasing of precision and 

increasing of recall indicate that adding addition features can largely reduce false 
positives for the IS class. 

5. Conclusion and Future Work 

This paper presents an enhanced text mining method that considers geographic 
context by incorporating spatial data into the classification of disaster-relevant social 
media posts. To extract SA information, current approaches focus on matching or text 
mining keywords to classify disaster relevant posts. Given the high degree of variability 

in natural language processing, current methods are not without error and have 
difficulty understanding context. Specifically, the proposed method ingests and 

processes spatial data that can inform the geographic context of the disaster at a given 
place in time to enhance the text data by providing additional SA. Then the method 
combines the spatial data with the text data and classifies the posts based on 
relevance using a CNN. Data from Hurricane Sandy provided a means for testing the 
method. The disaster presents several big data challenges in data volume and variety. 
Collection, processing, and standardization varied for each spatial data set. Using fuzzy 
logic, spatial features (e.g. distance, wind, flood, and precipitation) were bound to 
each social media post in the sample data set.  
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A group of experiments were designed to test the performance of the spatial and 
temporal features with the text feature. Based on the results, the addition of spatial 
and temporal features to the text classification did improve the overall classification 
accuracy compared to current methods. Moreover, the distance from the disaster and 
the position relative to the post were determined to be the key features in addition to 

text for describing the disaster event. From the experiments, the impact of spatial 
features on individual classes was relative to the class definition. The additional 

features had significant impact on classes (e.g. casualties and damage or donation and 
aid) whose class definitions involved spatial and temporal components.  

Currently, research of spatial feature creation and definition is non-existent. For this 
study, when possible, authoritative definitions from government sources defined the 

feature bins. The development of the model is only as good as the definitions of the 
features. In fact, a wide range of  diversity of spatial data and varying approaches can 

be leveraged to derive and code spatial and temporal features, represented as coded 
numeric values in the classification models , and some of the data are highly domain 

(or disaster type) specific. This paper defined and characterized several key types of 
spatial features (e.g., rain, wind, and pressure) for the task of social media message 
classification in hurricanes characterized by heavy rain, high winds, and low 
atmospheric pressure. Meanwhile, during an earthquake event, seismic activities (e.g., 
seismic waves, geographic coordinates of its epicenter, depth of the epicenter) in the 
area are more useful. As such, more investigation into optimal spatial feature creation 
from multi-sourced spatial data for different types of disaster events is a possible step 

in future to improving the classification results  given the diversity of spatial data and 
approaches to derive and code features.  

This study focuses on the common machine-learning algorithms for classifying text 
data. However, given the hybrid nature of the data going into the classifier, the 

assessment of other algorithms is important for finding the preferred framework 
classifier. One possible solution is to utilize an ensemble method that combines the 

predictions of several estimators for a given algorithm. Since quick response is 
important in disaster management, a framework based on unsupervised learning  

(Zhou et al. 2021), and self-learning methods (Peng et al. 2020; Peng, Huang, and Rao 
2021), avoiding manual labelling process would be more ideal for our task. 

Additionally, as discussed in the literature review, many different classification 
schema exist for defining disaster events. Additional research is necessary to 
understand and better define a classification schema that can leverage the spatial 

features to extract relevant data. In addition to spatial features, visual features 
extracted from images associated with the social media posts, could also be further 
integrated to enhance the extraction of disaster relevant messages (Huang et al. 2019). 
Further, our labelled datasets include mostly CA (Caution and Advice) and IR 

(Infrastructure and Resource) categories, leading to class-imbalance (i.e., some classes 
have much fewer training samples than the other classes). In fact, class-imbalance has 

been widely acknowledged as one of the most challenging problems in machine 
learning and therefore well addressed in the literature (Sahare and Gupta 2012). A 

potential future work could employ different methods (e.g., weighing the classes 
differently) to improve class imbalance.  
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Finally, social media is not going away anytime soon. For disaster applications related 
to social media data, this study indicates the need for incorporating spatial data 
sources to improve information retrieval and provide greater SA. Existing studies 
indicated a high performance for a classification model based on traditional machine 
learning algorithms (e.g., Naïve Bayes) even when applied to data from a different 

geographic region with significant differences in social media user and usage 
characteristics (Zahra, Ostermann, and Purves 2017). Further, deep learning based 

models pre-training using Twitter data from past events have been demonstrated with 
higher performance while classifying tweet topic for an upcoming event to establish 

SA compared with these traditional classification models  (Yu et al. 2019). In other 
words, once we build a model with datasets from historical events, it can be applied 

to classify disaster relevant social media messages  generated from a later event. Since 
spatial datasets for extracting spatial features are generated from real -time 

forecasting models (e.g., NAM) and physical sensing networks (e.g., weather station 
observations, remote sensing), this framework is applicable to support both real-time 

decision making and post disaster analysis as long as a workflow of automatic retrieval 
of relevant datasets is created. Finally, applications of big geosocial media data are 
increasing common throughout a range of activities beyond just disaster response, 
from urban planning to market research to political activism (Shelton et al. 2014). 
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