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Abstract: Social media data are widely used in disaster management for event
detection, response, and recovery. To find disaster relevant social media messages
and automatically categorize them into different classes (e.g. damage or donation),
current approaches utilize natural language processing methods based on keywords,
or machine learning algorithms relying on text only. However, these classification
approaches have not been perfected due to the variability and uncertainty in language
used on social media and ignoring the geographic context of the messages when
posted. Meanwhile, a disaster relevant social media message is highly sensitive to its
posting location and time. Thus, additional features related to space and time could
be useful for differentiating relevant posts by informing its geographic context, and
therefore improving purely text-based approaches. However, limited studies exist to
explore what spatial features and the extent of how temporal, and especially spatial
features can aid text classification. To fill the research gap, this paper proposes a
context-aware text mining method to incorporate spatial and temporal information
derived from social media and authoritative datasets (e.g., Earth observations,
physical model output, official reports), along with the text information, for classifying
disaster relevant social media posts. With the 2012 Hurricane Sandy as a case study,
we designed and demonstrated how diverse types of spatial features, such as wind,
flooding, and proximity, and temporal features can be derived from spatial data, and
then used to enhance text mining. The deep learning based method, convolution
neural networks, and commonly used machine learning algorithms (e.g., support
vector machine), assessed the accuracy of the enhanced text-mining method. The
performance results of different classification models generated by various
combinations of textual, spatial, and temporal features indicate that additional spatial
and temporal features help improve the overall accuracy of the classification by 4
percentage points on average. This study demonstrates the need and provides a
guidance for the incorporation of geographic data sources to improve data retrieval
while leveraging social media for disaster applications.
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1. Introduction

The risein social media such as Facebook, Twitter, Flickr, LinkedIn, YouTube, and many
others, in the past decade has changed the way people interact with each other, and
gain situational awareness (SA) during a disaster event. Social media, on one hand,
can be used as a platform to provide critical information to the public about hazardous
events for relief and recovery efforts (Houston et al. 2015). Disaster managers, on the
other hand, canalso gather social media data to monitor disaster events in real-time.
With this approach, citizens involved with the disaster actas “sensors” providing geo-
located information to supplement authoritative data sources (De Longueville, Smith,
and Luraschi 2009). Having a geographical SA through social media enables the
identification of areas with infrastructure damage, affected people, and evacuation
zones (Huang and Xiao 2015).

To identify social media data relevant to a disaster event and extract useful data for
disaster coordination and response, different approaches have been developed
(Ashktorab et al. 2014; de Albuquerque et al. 2015; Huang et al. 2015). One of the
typical approaches, known as the text-based approach, involves text-matching by
searching for specific keywords or groupings of words using machine learning
algorithms to determine if the social media data is relevant (Ashktorab et al. 2014;
Huang and Xiao 2015; Bakillah, Li, and Liang 2015; Landwehr and Carley 2014). This
approach builds a classifer that categorizes text on the existence of keywords.
Although text-based classificationis a fast way to organize large datasets, it has two
major limitations while identifying or differentiating all social media data related to a
disaster:

e Uncertainty and variability in language used on social media (Bruns and Liang
2012). For instance, an algorithm might look on Twitter for the
“#hurricanekatrina” hashtag. If a user is unaware of the hashtag or even
misspells it, the likelihood of the classifying the data as disaster relevant
decreases (Bruns and Liang 2012).

e Social media data can be easily misidentified by purely relying on text without
considering the geographic context. For example, during a flooding event, the
message “the water is very high right now” could have different contexts.
While an individual on a riverfront within the disaster area most likely
indicates, “the water level is high”, another individual at home far from the
impact region could mean, “the water in the bathtub is high.”

To overcome these limitations, this study develops a context-aware texting mining
method that integrates spatial and temporal information, revealing the geographic
context of a social media post, to classify whether a tweet is relevant or not to a
disaster. A variety of spatial data could contribute to inform the geographic and
environmental context. Some spatial data are highly domain-specific. For example,
during a flood event, information about how much rain has fallen and areas of lower
elevation are important. This type of information can be derived from radar data
products, weather station observations, and a digital elevation model. However,
during a forest fire event, climate conditions (e.g., humidity) in the area or wind
patterns are more relevant data. Other spatial data are less domain specific, the most
prominent being proximity to the disaster. Based on Tobler’s First Law of Geography,



individuals posting on social media about a tornado going through their town are more
related to the disaster than an individual reading about the same event on social
media hundreds of miles away (Tobler 1970). In addition to space, time is another
important dimension useful in classifying disaster events. For management purposes,
a disaster can be broken down into four phases: mitigation, preparedness, emergency
response, and recovery. These phases canalsobe used as general references for social
media data (Huang and Xiao 2015; Zou et al. 2018). Therefore, the first objective of
this paper is to identify spatial data from which spatial and temporal features can be
produced to help inform the geographic context of text messages.

In addition, current text-based classification models cannot directly assimilate raw
spatial (e.g., remote sensing imagery) and temporal data. Instead, the classifier reads
features, like text, as coded numeric values. Determining how to code each spatial and
temporal feature is an area previously not well studied, but vital for this research.
Therefore, this paper also aims to examine how spatial and temporal features can be
derived, and to provide a reference on the utilization of the spatial and temporal data
as features in the classification models. Furthermore, existing studies show that deep
learning based methods, such as convolution neural network (CNN) and recurrent
neural network (RNN), significantly outperformed traditional machine learning
approaches, such as support vector machine (SVM; Joachims 1998) for text
classification tasks (Yu et al. 2019). However, it is not clear whether the integration of
spatial and temporal features will improve the deep learning based methods. As such,
this study will then compare the performance of CNN models, one of the popular deep
learning based methods, with traditional text-mining approaches (e.g., SVM). In
addition, we will further identify the spatial and temporal features that are useful to
improve the accuracy of CNN models based on its performance evaluation while
combining varying spatial, temporal and textual features.

To sum up, the following contributions are addressed in this research:

1. First, the paper introduces a methodology for integrating geographic context
into classifying disaster relevant social media datasets by fusing spatial data
with social media. The method addresses the shortcomings of utilizing only
text to identify and extract disaster relevant social media data when
considering geographic context is necessary.

2. Second, this paper demonstrates how to best process spatial and temporal
data to derive associated features for classifying and identifying disaster
relevant information.

3. Third, this paper assesses the types of spatial and temporal features necessary
for the classification of disaster relevant social media data. Both domain and
non-domain specific features are included in the assessment.

4. Finally, this work evaluates both traditional machine learning algorithms (e.g.,
SVM), and the state-of-the-art work deep learning based method, CNNs, on SA
information classification with spatial, temporal and textual features.

2. Literature Review



2.1. Social Media for Disaster Events

Social media data presents many advantages, such as timeliness of information,
relevance at the community level, low cost, and adaptability (Keim and Noji 2011),
over standard communication methods during disaster events (Houston et al. 2015).
As a result, they are widely used for real-time dissemination of information by allowing
for both sending and receiving of messages during disaster events (Xiao, Huang, and
Wu 2015; Keim and Noji 2011). When traditional sources of communication lack
information or cannot keep up to date on current information, social media can also
serve as a backchannel communication platform allowing user-driven information
acquisition and sharing (Xiao, Huang, and Wu 2015; Sutton, Palen, and Shklovski
2008). Peer-to-peer backchannel communications on social media fill information
gaps when official sources of information are unavailable.

Meanwhile, social media is also widely leveraged for disaster event detection (Ford
2011), SA establishment (Huang and Xiao 2015), and disaster mapping (Li et al. 2018).
For example, during an earthquake in Virginiain 2011, people in the eastern United
States reported learning about the event on Twitter before feeling the earthquake at
their location (Ford 2011). Another form of event detection is finding users in need of
assistance on social media. Forinstance, during a 2011 tsunami off the coast of Japan,
several tweets were direct requests for assistance (Acarand Muraki 2011). One of the
tweets read, “We’re on the 7th floor of Inawashiro Hospital, but because of the risen
sea level, we're stuck. Help us!” (Acar and Muraki 2011) . This type of message is
critical to detect, but requires a high degree of verification (Lindsay 2011). To
overcome the difficulty of disaster event detection, one of the emerging uses of social
media for disaster events is extraction of SA for coordination and relief operations
(Huang and Xiao 2015). For example, Ashktorab et al. (2014), created Tweedr, a
Twitter based data mining tool that extracts actionable information for disaster relief
workers during natural disasters based on keywords. Zahra et al. (2017) investigated
different types of sources on tweets related to eyewitnesses and classifies theminto
three types (i) direct eyewitnesses, (ii) indirect eyewitnesses, and (iii) vulnerable
eyewitnesses.

While the use of social media for disasters clearly has a variety of advantages over
traditional methods of communication, social media has raised concerns to the
veracity of its data and grand challenges while being used to make decisions
(Goodchild and Glennon 2010; Goodchild and Li2012). The firstissueis inthe accuracy
of the information. Using geo-tagged tweets to find incident locations can pose a
problem if the user is tweeting about something he or she experienced at a different
time and location (Gao, Barbier, and Goolsby 2011). Another case of data inaccuracy
occurred in 2011 during the Tohoku earthquake. Tweets seeking assistance appeared
long after the people in need were rescued creating greater confusion for disaster
managers (Lindsay 2011). During a disaster event, disaster managers must make
timely decisions based on the data available. If the data is unreliable, the decisions
could have catastrophic consequences. Another problem with the veracity of social
media data is when social media is used maliciously (Huang and Xiao 2015; Yang et al.
2019). The generation of social media for pranks, attacks, and rumors is common
(Lindsay2011). Falsified requests for help can draw first responders awayfrom helping



those in true need of assistance. Moreover, the rumors and falsified reports can
spread through social media easily (Lindsay 2011).

To tackle the reliability issues associated with social media data during a disaster
event, a temporal understanding of the generation of social media from the beginning
to the end of the disasteris important. Houston et al. (2015) proposed a simple three-
phase disasterclassification for social media, pre-event, event, and post-event. During
the pre-event phase, social media users send and receive information about the
disaster event. The three-phase classification is a simple way to classify social media
data during a disaster event. Other efforts classified social media into the typical four-
phase categorization (mitigation, preparedness, response, and recovery) or even
forty-seven different themes during different disaster phases (Huang and Xiao 2015).
However, in a real-time disaster event the sheer volume of data from social media
poses a challenge for storing and analyzing the data generated in real-time and at
changing rates. Among the massive data generated during a disaster event, only a
small portion contributes to the establishment of SA. Any solution for utilizing relevant
social media data during disaster events must have the processing capabilities to
handle the stream of data efficiently. The proposed method will overcome the
challenges of data volume by using text mining techniques to automatically search
through the social media data for SA relevant information.

2.2. Text Mining for Extracting Disaster Relevant Information

One way to overcome the challenges associated with the volume of social media data
is by searching through the text for patterns in the words that might signify data
related to a disaster. Many different techniques have been applied for text mining
social media data by developing a classification scheme or model to predict if a
particular social media post relates to the disaster event. The first step in creating a
model is generating a set of keywords. With Hurricane Sandy, the keywords might be
sandy, hurricanesandy, or hurricanenyc (Huang and Xiao 2015). These keywords act
as an initial filter to remove messages irrelevant to the disaster. One inevitable
consequence of this filtering approach is not capturing all messages relating to the
disaster event. Some social media data users might be unaware of the existence of a
certain keyword being used, they might use a unique keyword no one else is using, or
their data contains only a picture or video and no text at all (Bruns and Liang 2012).
To improve the overall accuracy, an understanding of the data misclassified as
irrelevant in the current research methodology is necessary.

The next step is determining the n-grams used to train the model. N-grams are a set
of co-occurring words within a set of words. For example, during a flood a user posts
the message “l am stuck in a flash flood please help!” Using the unigram or 1-gram
approach means each word becomes a single token read by the classifier. Increasing
to a bigram or 2-gram would lead to two word tokens, such as “flash flood” or “please
help.” While increasing the amount of words per token yields more information, the
classification accuracy does not improve significantly (Halteren, Zavrel, and
Daelemans 2001). Hence, when creating a model for disaster events, unigrams are
standard practice (Ashktorab et al. 2014; Spinsanti and Ostermann 2013; Huang and
Xiao 2015).



Finally, a classification algorithm runs using training data. Traditionally, five machine
learning algorithms, K-nearest neighbors, decision trees, naive Bayes (Zahra,
Ostermann, and Purves 2017), logistic regression (LR), SVM, and Random Forest
(Zahra, Imran, and Ostermann 2020), are commonly used for text mining (Ashktorab
et al. 2014; Spinsanti and Ostermann 2013; Huang and Xiao 2015; Bruns and Liang
2012; Zahra, Ostermann, and Purves 2017). However, recent studies indicate that
deep learning based methods achieved better performance thanthese algorithms and
in various natural language processing tasks (Yu et al. 2019). For example, a toponym
recognition model, extending a general bidirectional recurrent neural network model,
is developed for accurate location recognition in social media messages with various
language irregularities (Wang, Hu, and Joseph 2020). Improving the accuracy of text
mining approaches is the main motivation for this research. Instead of following the
current research track of focusing solely on the classification schemes and algorithms
themselves, this research incorporates spatial information about the social media data
into the classificationalgorithm, and also compared the performance of deep learning
based CNN models, with several traditional classification models for SA information
classification.

2.3. Remote Sensing for Tracking Disaster Events

Remote sensing data provides additional geographic information for detecting and
tracking a disaster event. For example, algorithms detect tornadoes by finding slight
differences in the patterns of radar images (Alberts et al. 2011). The methods used for
detection and tracking of disaster events are similar to the text mining approaches
mentioned in the previous section (Roy and Kovordanyi 2012). However, unlike text
mining where training data are discrete, remote sensing data for disasters involves
training data that are continuous leading to more complex pattern recognition and
processing (Lakshmanan and Smith 2009). Moreover, data mining remote sensing
images requires separate identification algorithms and attribute extraction methods
for each type of disaster event. In other words, the algorithm to detect and track a
hurricane will be vastly different from that of a tornado, whereas generalized text
mining algorithms apply to many disasters. Consequently, a high degree of domain
knowledge of the disaster in the context of remote sensing is required to accurately
detect these types of disasters (Lakshmananand Smith 2009). The proposed a context-
aware text mining method builds upon the current remote sensing data mining
methods described by Lakshmanan and Smith (2009) by combining the
spatiotemporal information about the disaster with social media data to determine
disaster relevant social media data.

2.4. Social Media and Authoritative Data Fusion

During a disaster event, disaster managers and planners use many different data
sources to assess the situation. Leveraging other data sources, like satellite or other
geographic data, could improve the analysis of social media data during a disaster
event. In previous works, Twitter data estimated trajectories of earthquakes, tracked
the locations of tornadoes, and detected wildfire hotspots (Crooks et al. 2013; Jain
2015; De Longueville, Smith, and Luraschi 2009). Meanwhile, disaster detection is not



always possible using social media as was determined during a 2013 flooding event
(Fuchs et al. 2013).

One promising area of research is to fuse social media data with other forms of spatial
data for disaster events. Albuquerque et al. (2015) used “authoritative” hydrological
data for a flood event with social media messages to confirm the presence of the flood
in the disaster region. They also found that the closer the social media data was to the
event, the more likely it was to be about the flood event. This simple quantitative
assessment shows how additional datasets can improve social media data
identification. Similarly, Spinsanti and Ostermann (2013) introduced an approach that
first geo-references and retrieves content from social media data, followed by an
enrichment with additional geographic context information from authoritative data
sources, and clustering spatio-temporally to support filtering and verification.

Another approach to fusing remote sensing data with social media is by using the
social media data as a way to overcome limitations of remote sensing data (Wang et
al. 2018; Huang, Wang, and Li 2018a). For example, social media data was used to
verify the presence of water in a specific area during a flooding event when remote
sensing imagery was unavailable (Schnebele and Cervone 2013). Alternatively, Huang
et al. (2018) introduced an approach to retrieve near real-time flood probability map
by integrating the post-event remote sensing data with the real-time tweets (Huang,
Wang, and Li 2018a). A flood inundation reconstruction model was further proposed
to enhance the normalized difference water index derived from remote sensing
imagery with both stream gauge readings and social media messages (Huang, Wang,
and Li 2018b). Rosseret al. (2017) fused remote sensing, social media and topographic
data sources for rapidly estimating flood inundation extent by a Bayesian statistical
model to estimate the probability of flood inundation through weights-of-evidence
analysis.

To sum up, much progress has been made to extract useful social media information,
enrich them with additional authoritative datasets (de Albuquerque et al. 2015;
Spinsanti and Ostermann 2013), and overcome the limitations of or enhance remote
sensing data with social media data (Wang et al. 2018; Huang, Wang, and Li 2018a),
(Rosser, Leibovici, and Jackson 2017; Schnebele and Cervone 2013). Given the infancy
of spatial and social media data fusion for disaster management, no prior work fully
examines the temporal, and particularly spatial features, and incorporates these
features for extracting disasterrelevant social media data. As such, this paper presents
the context-aware text mining method, including the methodology for both social
media and spatial data extraction using data mining algorithms.

3. Geographic Context-aware Text Mining
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Figure 1. The workflow of geographic context-aware text mining
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Context-aware text mining is an enhanced text mining method that incorporates SA
about the disaster in the form of geographic data into the text classification. The
proposed method includes five key components (Figure 1):

1.

Social media and spatial data streams: A real-time disaster management scenario
is the intended use of the method. Data in avariety of formats (e.g. point, polygon,
raster, text) and volumes stream into the workflow from multiple sources.

Database storage: With the high volume of data generated dynamically, storage is
necessary before and after processing. Due to scalability and spatial functionality,
the storage of social media and spatial data is separate. NoSQL databases (e.g.,
MongoDB) can handle the high volume of social media content, while
PostgreSQL/PostGIS supports a variety of spatial queries and operations of spatial
data.

Data pre-processing: The social media data streams in a uniform format of text
with an associated point in time. However, the challenge with the spatial data is
its variety. Before the spatial information can be stored, scripts process the data
into uniform data types and file formats. This is alsothe point in the method where
event detection takes place. Disaster event detection is an important step for
creating a dynamic spatial filter within the method compared to a traditional
bounding box. In turn, the method uses spatial information associated with the
dynamic assessment of the disaster extent as a feature in the text classification. It
is important to note detecting a disaster event using spatial data is an active
research topic that is highly domain specific.

Spatial feature generation: The center of the spatial text mining method is the
spatial feature extraction. Using fuzzy logic, spatiotemporal information from a
social media post generates the spatial features relevant to the disaster. The result
is a social media post with metadata in the form of spatial features.

Text classifier development: Staying consistent with current methods, social media
data with geographic metadata travel through a classifierto determine disaster
relevant social media posts. This paper evaluates and validates the results from
the classifier to determine if the addition of geographic information improves the
text classification.

3.1. Data Streams, Processing, and Storage



3.1.1. Case study

To test the context-aware text mining method, Hurricane Sandy from 2012 was
selected for the case study. Hurricane Sandy (October 22, 2012 — November 2, 2012)
was the 18t named tropical cyclone for the 2012 Atlantic Hurricane. It made landfall
in the United States (US) as an extratropical cyclone, much weaker than when it hit
Cuba days earlier. However, Sandy had a significant spatial impact with winds
spanning 945 miles in diameter, making it the largest storm ever observed in the
Atlantic (Blake et al. 2013). Another important factor for measuring a hurricane is the
sustained wind. Numerous weather stations in New York and New Jersey reported
sustained winds greater than 70 kts or hurricane strength even though the storm was
an extratropical cyclone. The highest recorded wind gust after landfall was 83 kts on
the north shore of Long Island, New York (Blake et al. 2013). Rainfall is another impact
from hurricanes that can lead to flooding, especially in urban and low-lying areas. The
heaviest rain occurred in parts of Maryland, Virginia, and Delaware receiving between
five and seven inches. The meteorological impact that resulted in the greatest
causalities and damage was the storm surge. Sandy caused water levels to rise from
Florida to Maine. The highest storm surge and greatest inundation on land occurred
in New Jersey and New York, especially in and around New York City.

3.1.2. Data and Data Processing

Before the collection of data, a study area for Hurricane Sandy was selected. Hurricane
Sandy affected states in the southeastern US, like South and North Carolina, as well as
many states in the northeast. To capture the disaster beginning right before the stage
of landfall, a 400 by 450 mile bounding box was constructed and centered at the
location of landfall (Figure 2). With a diameter over 800 miles at landfall, the bounding
box contains the storm and includes major metropolitan areas, such as New York City
and Washington, DC.
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Figure 2. Study area and storm track of Hurricane Sandy
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For the case study, Twitter, a text-based microblog with millions of active users, is
selected as social media service for disaster relevant message extraction. Twitter
provides access to its messages or tweets through two public application
programming interfaces (API). The search API allows for retrieval of past tweets based



on search criteria (location, keyword, user, etc.). The streaming API retrieves up to 1%
of the most recent tweets based on search keywords and spatial extent (Morstatter
et al. 2013). In total, 12.3 million geo-tagged Tweets were collected from October 28,
2012 to November 7, 2012 (Table 1) using Twitter streaming APl with the “Hurricane”
and “Sandy” as search keywords, and global as the geographical boundary. After
performing a spatial filterbased on the bounding box (Figure 2), the number of Tweets
was reduced to 2.8 million.

The meteorological data offers a variety of ways to measure the hurricane both
qualitatively and quantitatively. Additionally, the generated data is from different
sources with different formats and different spatial and temporal resolutions (Table
1). Hurricane track points, produced by the National Hurricane Center, indicate the
location of the hurricane center at important stages in the life of the storm (e.g.
change in strength or landfall). By connecting the points, one can get a sense of the
overall track of the storm. To get more detailed weather measurements on the ground,
128 Automated Weather Observing System (AWOS) stations were used. These
stations are primarily located at airports and take measurements at least every hour
depending on the conditions. AWQOS units collect data on many weather variables,
such as wind, temperature, dew point, precipitation, and pressure. The radar data
comes from six different NWS radar stations in the study area. In terms of data storage,
the radar data was by far the largest dataset at ~45GB due to the temporal resolution
(Table 1). Two products were kept for the rest of the study: base reflectivity (the
common weather radar view) and storm total precipitation.

Table 1. Hurricane Sandy Data

Data Source Temporal | Spatial | Spatial Temporal Format
Domain Domain | Resolution Resolution
Social Oct 28 — .- .
network Tweets Nov 7 N/A Milliseconds | Point
Storm Track N/A Minutes Point
Observat | Weather 10-60 .
ions Stations N/A Minutes Point
Radar 0.5x0.25 km | 2-10 Minutes | Raster
Storm Reports 400 mi x N/A Minutes Point
Authorita Watches Oct 28 — 450 mi
tive o . Polygo
Warnings, and | Oct 31 N/A Minutes 0
Advisories
North
American 12 km Hourly Raster
Models | Model
24 Prec'|p 4 km Hourly Raster
Analysis

The NWS plays a key role in any meteorological disaster by communicating to both
the government and public the severity of the event. The issuing of watches, warnings,
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and advisories (Table 2) is one well-known way to accomplish this. Storm reports from
the NWS were also collected. These reports are a form of volunteer geographic
information from experts and the public. Information in the reports includes wind
speeds, rain totals, areas of flooding, and damage caused by the storm. The NWS
verifies reports through weather data they collected or by in person visits, and
updates storm reports frequently during a real disaster event.

The North American Mesoscale Forecast System (NAM) is a high-resolution forecast
of hundreds of products. The NAM model runs every 6 hours predicting the next 84
hours in hourly time steps. Being able to predict where the storm is heading is
important for disaster planning purposes. Five NAM products were selected for this
study: MSL pressure (for understanding the disaster extent), 1-hour total surface
accumulation, surface wind speed, categorical rain (a binary rain classification), and
hybrid radar reflectivity. Finally, the 24-hour precipitation analysis data provides the
total precipitation over the last day. Derived from radar and rain gauge reports, this
hybrid product provides a high-resolution understanding of how wet it might be in an
area (Table 1).

Table 2. Hurricane Sandy Watch/Warning/Advisory definitions (NWS 2021)

NWS Issuance

Description

High Wind Watch/Warning

Small Craft Advisory

Severe Thunderstorm
Watch/Warning

Storm Warning

Special Marine Warning

Hurricane Force Wind Warning
Gale Warning

Flood Watch/Warning

Flash Flood Watch/Warning

Coastal Flood
Watch/Warning/Advisory

Sustained winds of 40 mph or higherforone hour or
more

Sustained winds of 18 knots to 33 knots or waves of 4
feetorhigher

Winds of 58 mph or higherand/orhail 1 inchin
diameterorlarger

Sustained winds of 48 knots to 63 knots

Sustained marine convective winds orassociated gusts
of 34 knots or greater

Sustained winds of 64 knots or greater

Sustained winds of 34 knots to 47 knots
Floodingisimminentoroccurring

Flash floodingisimminentoroccurring

Moderate to major coastal floodingis occurring or
imminentand will pose aseriousrisktolife and
property

One challenge of using the context-aware text mining method is the data variety.
Before the data transfers into a database, individual processing of the different data
sets occurs. For this study, three important standards were established. First, all
spatial data are transformed into the WGS84 coordinate reference system for data
analysis. Second, vector data are stored in a Shapefile format and raster data in a
GeoTIFF format. This standardization allowed for a simple ingestion into the database.
Finally, all date and time parameters were converted into Epoch time. Having the
temporal data stored as aninteger saves processing time when comparing data.
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Each dataset presented its own challenges for standardization. For example, the radar
data exists natively in a binary format. The Weather and Climate Toolkit (Ansari, Del
Greco, and Hankins 2010), developed by the National Oceanic and Atmospheric
Administration (NOAA), read and exported the data as GeoTIFFs. Additionally, the
radar and NAM model data were originally stored as single band GeoTIFFs for each
product. GDAL (GDAL 2021) was used to merge the data into multiband GeoTIFFs
based on the timestamp. A final challenge involved reading the weather observation
data. Each observation comes in a coded text string called a Meteorological Terminal
Aviation Routine Weather Report (METAR). Using the Python package METAR (Pollard
2021), each observation was decoded.

For the purposes of this study, the hurricane track points simulated the event
detection phase of the context-aware text mining method (Table 1). With proper
domain knowledge of the event detection algorithms, one could implement this step
in the workflow.

3.1.3. Data Storage

The variety of social media data poses a challenge for traditional data management
following the relational model (Huang and Xu 2014). Social media services utilize the
NoSQL database model as a way to best manage their data. Unlike the traditional
relational model, NoSQL implements many different data structures, such as
document, graph, or key-value. The flexibility with NoSQL allows for data from
multiple social media services to be stored in one location within the workflow.
MongoDB (Banker 2011) was selected as the NoSQL database. In addition to the
reasons state above, MongoDB stores its data in JavaScript Object Notation (JSON)
which allows non-uniform fields to be added with no limitations. Most popular
programming languages also easily parse JSON. Additionally, MongoDB is scalable
allowing multiple servers to store and access the database. For the meteorological
data, PostgreSQL was selected as PostgreSQL with the PostGIS extension can store
both raster and vector data types, is open source, and provides a wide range of spatial
functionality. Note other database systems could provide similar supports for social
media data or spatial data management. For example, PostgreSQL alsosupports JSON
data type and offers sufficient JSON operators and function to enable the storage of
social media data.

3.2. Spatial Feature Generation

3.2.1. Spatial Feature Determination

The key step in the context-aware text mining method is the spatial feature generation.
In this step, the spatial data is bound to each social media post as a feature through
fuzzy logic. Before performing this task, useful spatial features for the hurricane case
study should be determined. Hurricanes are characterized by heavy rain, high winds,
and low atmospheric pressure (Roy and Kovordanyi 2012). Thus, it is logical to include
these characterizations as spatial features (i.e. rain, wind, and pressure). Since
pressure is related to the hurricanes strength, the category of the storm instead of a
pressure measurement was used. A few other useful features were also derived from
the core geographic features. A flood feature was added because the flooding and
storm surge often have a dangerous impact. Another derived feature added was the
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presence of an NWS warning meaning an area is in imminent danger of a certain
weather hazard. Distance or proximity from the center of the hurricane was the final
added spatial feature. Two temporal features were added to reveal temporal detail to
the feature space, including (1) the date of the social media post, and (2) a binary
indication of whether the location was currently experiencing the storm or the storm
had past.

3.2.2. Feature Extraction Logic

The feature extraction algorithm for the Hurricane Sandy case study used fuzzy logic
to determine the value associated with each geographic feature. Given the
spatiotemporal complexity of the datasets being used to generate features, ascribing
context at the single time of a social media post requires more than a binary logic.
Table 3 details the general conditional logic for each feature. The first decision point
in the logic was relation of time to the social media post. If a post happened after the
storm dissipated, there was no meteorological data available. However, this does not
necessarily mean a post is not disaster relevant. For example, a person might post a
picture of a fallen tree after the storm has passed. To account for this, the rule was to
use the time when the storm was closestto the point, but note in another feature that
the storm had past. A storm was also denoted as past if the distance exceeded a
threshold and the storm was located to the northwest of the post.

With the time sorted out for a social media post, the next step was to access the data
from various sources. Since data was generated on different temporal scales, it was
highly unlikely that the meteorological data occurred at the same time as the social
media post. To solve this problem, each meteorological data product had a valid time
criterion. For instance, to use an NWS warning, the post had to have happened within
a warning polygon and within the issue and expire times. Another example, to use a
storm report, the post must have occurred within 30 minutes of the report.

After the temporal bounds are determined, the social media post must satisfy s patial
criteria for each meteorological data product. For raster and polygon data, this
involved a simple intersection to attain the attribute value. The numerous point data
products required a distance calculation. For example, in addition to the 30 minute
time limit, a social media post needed to be within 10 miles of the storm report to
attain the attribute value. The exact spatial and temporal features were chosen based
upon accuracy and temporal frequency limitations of the datasets selected as well as
physical characteristics of the disaster event. For instance, the same logic used during
atornado event which occurs on ashort time scale andsmallerarea would not provide
the appropriate context to the social media post.

The last step in the feature generation algorithm was to rank the data products based
on reliability of the data. Each spatial feature had multiple meteorological data
sources that could explain the feature. For instance, when describing the wind feature,
the most accurate data came from weather station observations. Conversely, the
weather model provided wind data, but the spatial and temporal resolutions were not
as great. In the event a social media post had values for both data products, the
weather station observation was chosen. Table 3 lays out the ranking for each
meteorological data product.

Table 3. Spatial Feature Generation Logic
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Feature Description Data Source Ranking

DisasterStatus | Whetheror notthe storm has Twitterand Storm Track
past

Date The date of the social media Twitter
post

Distance The distance fromthe centerof 1. Hurricane Track

the hurricane

Storm Category | The category of storm 1. Hurricane Track

Precipitation How heavy the rainfallis 1. Weather Station; 2. Storm Report;
3. Radar

Wind How strongthe windis 1. Weather Station; 2. Storm Report;
3. NWS Warnings; 4. NAM

Flood Type of flood occurring: flood, 1. Storm Report; 2. Weather Station;

coastal, or flash flood 3. NWS Warnings; 4. 24-hr

Precipitation Analysis; 5. Radar; 6.
NAM

Warning NWS warnings NWS Warnings

3.3. Annotation and Classification

3.3.1. Feature Annotation

After the completion of spatial data processing, all features were annotated with a
class for the supervised classification. While some machine learning algorithms can
handle numerical data, the algorithms used in the spatial text mining framework rely
on categorical data. This approach stayed consistent with the transformation of words
into categorical vectors.

Annotating the social media text data requires a degree of domain knowledge.
Previous studies have created different classification schemes to best describe
disaster related social media (Gao, Barbier, and Goolsby 2011; Huang and Xiao 2015;
Imran et al. 2013; Vieweg et al. 2010). One common methodology is to create a two-
tiered classification scheme (Imran et al. 2013). First, social media messages are
classified as personal, informative, or other. Personal messages are messages only of
interest to the author or their immediate circle. Informative messages are of interest
to people beyond the author’s circle. After the initial filter, informative messages are
further classified into more classes, including (1) Caution and Advice (CA), (2)
Casualties and Damage (CD), (3) Information Sources (IS), (4) Donation and Aid (DA),
and (5) People (Imran et al. 2013; Vieweg et al. 2010). The goal of the two-tiered
classification is to describe the overall understanding in disaster events or SA. Based
on Imran’s (2013) coding schema, a majority of messages are classified as CA.
Therefore, in our work, we created an additional class, named as Infrastructure and
Resource (IR) containing messages reporting the status of infrastructure (e.g.,
transportation) and resource (e.g., gas, power, internet, food), which is not reported
by an official news source or requests for donation or aid (Table 4).

Table 4. Social media classification scheme
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Class Description Example

Cautionand Advice | Warningor a piece of advice Flooded neighborhoodsin Norfolk and

(CA) given about a related itsapproachinglowtide.
incident
Casualties and | Information about Thistree and powerlinesare down at
Damage (CD) casualties or infrastructure the corner of Station Road and
damage Bethlehem Pike in Quakertown.
Information A message from an offidal @NYCMayorsOffice: Mayor:  All
Sources (IS) news source, media or @NYCSchoolsare closedtomorrow.
government
Infrastructure Information related to IR all metro service suspended until

and Resource (IR) | that is not reported by an further notice yikes; NY subways

official news source or scheduled close 7pm tonight; Gas
requestfordonationoraid  statjon lines crazy

People People found or missing please rt:if anyone has any info on the
whereabouts of amanda lanzone of
far rockaway, please pass it on to
@vicosuave89

Donation and Aid | Goods or services offeredor | don't have any money to donate but

(DA) needed by victims | have lots of time, where can | help
/volunteer in #Hoboken? Who do |
call?

Table 5 shows classification scheme of spatial and temporal features, which are not
well studied in the literature. The date feature is the date the post was generated. The
disaster status feature is an indication of the spatiotemporal relationship of the
hurricane and social media post at the time the post was sent. For example, if the
hurricane is moving away from the post, the feature is classified as past. Conversely,
if the hurricane is approaching the post location or is overhead, the classificationis
present. A distance feature measures the proximity of the post to the center of the
storm. Distances from the storm were clustered using the density-based spatial
clustering of applications with noise (DBSCAN) algorithm discussed in Section 4.

Table 5. Spatial and temporal feature classification schemes

Feature Classification Scheme

Temporal Date The date of the social media post

Spatiotemporal | DisasterStatus Binary, past or present

Spatial Distance DBSCAN clustering algorithm (See Section 4)
Storm Category Saffir-Simpson Scale

Precipitation Light, moderate, or heavy; NWS Radar Scale
(Scale 2021b)

Wind Beaufort Scale
Flood Flood, coastal flood, orflash flood
Warning Binary, warning or nowarning
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The classification schemes about other spatial and temporal features are less
straightforward requiring domain knowledge. In practical applications, domain
experts have generated different scales to measure meteorological features. For
example, hurricane strength is measured on the Saffir-Simpson Hurricane Wind Scale
(NHC 2017). This scaleis represented by the storm category feature. Another useful
meteorological scaleis the Beaufort Wind Scale (Scale 2021a). The scale provides both
land and sea descriptions for different strengths of wind from clam to hurricane force.
The wind feature is calculated from the Beaufort Wind Scale. Precipitation intensity
feature is calculated using the NWS Radar Scale, which converts radar reflectivity into
a precipitation intensity. The final two meteorological features flood and warning,
utilize the NWS categorical watches, warnings, and advisories classification. For
example, if a post occurred in a flash flood warning, flash flood would be assigned to
the flood feature and the warning feature set to true.

3.3.2. Feature Classification

Where the spatial feature generation is the key component of the framework, the text
mining component is necessary for generating the desired outcome. The goal of this
component is to determine if a social media post is disaster relevant or not. Accuracy
is the primary indicator of assessment and relates directly to research question two.
With the text mining features prepared by the spatial feature generation component,
this step required an appropriate choice for text mining algorithms to establish the
classification model. Right now, there is a variety of classification algorithms available,
such as K-nearest neighbor, decision trees, LR, and neural networks. In particular, the
Naive Bayes and support-vector machines models are commonly used (Ashktorab et
al. 2014; Spinsanti and Ostermann 2013; Huang and Xiao 2015; Takahashi, Tandoc Jr,
and Carmichael 2015). However, deep learning has produced better results for various
tasks in text mining, such as topic classification, sentiment analysis, question
answering, and language translation (Yu et al. 2019). As such, this study will examine
the capability of CNN models, one of the popular deep learning based methods, for SA
message classification.

Figure 3 presents the CNN architecture, which is the configuration for tweet message
classification. Preprocessing converts tweets into lists of 50 integers and represents
each word of the tweet by an integer. The preprocessed tweet then passes through
the first layer, word embedding, which expands the word integers to a larger matrix
and represents them in a more meaningful way. The word embedding layer uses
Word2Vec (Mikolov et al. 2013) to embed semantic similarity information in the
representation of words and expands each word into a vector of 300. The convolution
layer extracts features from the word embedding and transforms them through global
max pooling. The convolution layer uses neurons with filter size of 3, stride of 1, zero
padding, and depth of 250 (Table 6). The extracted features are then concatenated
with spatial and temporal features, which represent the tweet’s distance from
hurricane center and the surrounding geographic and meteorological environment.
Then two fully connected layers predict the themes of each tweet. Dropout layers are
utilized before the convolution layer and the last fully connected layer, while
activation functions are used after the convolution layer and the fully connected layers.
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Figure 3. Overall architecture of the CNN: a) tweet text only, and b) using spatially
enhanced tweets.

To generate a training sample for classification, the 2.8 million social media posts were
filtered using the hashtag #sandy. With 33,963 posts remaining, a random sample of
5,000 posts was taken. The authors used the classification (Table 4) to manually
classify the sample. When the class definition of a post was not obvious, experts gave
feedback to finalize the class.

Table 6. Dimensions of layers and operations

Layer Operator Output Output Output
Height Width Depth
Input | - 1 50 -
Embedding 1 50 300
Dropout | Rate =0.25 1 50 300
Convolution | Stride=1, Zero padding =0, Depth = 1 50 250
250, Filter size= 3; Activation = RelLU
Global max | - 1 1 250
pooling
Metadata* | - 1 1 7
Concatenate* | - 1 1 257
Fully connected | Output depth = 250; Activation = 1 1 250
RelU
Dropout | Rate =0.25 1 1 250
Fully connected | Output depth = 5; Activation= 1 1 5
Softmax

*Metadata and concatenate layers only exist for environmental enhanced tweet classification architecture
(Figure 3b). These layers are eliminated for tweet text only classification architecture (Figure 3a).

One limitation of the concatenation between the spatiotemporal features and the
output of the global max pooling layer is that the dimension of the max pooling layer
is significantly higher than the one of the spatiotemporal features. An alternative
approach is to assign the spatiotemporal features with a higher degree of influence
using higher weights.

3.4. Spatiotemporal Distribution of Sample Data
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Before running the classification experiment (Section 4), understanding the
spatiotemporal distribution of the labelled sample data was important for interpreting
the results. Of the 5,000 social media posts sampled, 1,920 posts were labelled as
informative. Within the sample, only 2 posts belong to the People missing or found
class, and therefore this class was removed from the classification experiments due to
the low sample count.

Shown as Figure 4, the breakdown in posts per class were not surprising. CA was the
most general class and contained the most posts, followed by the IR class. The CA
posts include disaster preparation information (e.g., stock up food) and status (e.g.,
wind speed of the Hurricane Sandy) of a disaster event. During the disaster, the IR
class contained posts with information about inaccessible areas or lack of resources.
Additional posts about closures and traffic information fell into this class. CD and DA
classes had roughly the same number of messages. Both classes occur during and after
the disasterevent. The IS class hadvery few samples without a cleartemporal pattern.
Analysis of the IS class is included in Section 4.

602
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Figure 4. The frequency (Left) and temporal distribution (Right) of informative posts

4. Experimental Design and Analysis

This section first describes the experimental design to identify spatial and temporal
features for the Hurricane Sandy case study that are key to describing and then
classifying disaster relevant social media posts, followed by the results from the spatial
and temporal feature determination. Finally, the section discusses the results of the
feature combination experiments.

4.1. Experimental Design

4.1.1. Selected Experiments

To determine if geographic features improve the accuracy of current text-only
methods, a series of experiments were designed (Table 7). A text-only experiment
would serve as the control to the other spatial experiments. The next experiment used
all features. However, utilizing all features poses two problems. First, using too many
features, especially irrelevant and correlated ones, may not necessarily generate
desired model (Kohavi and Sommerfield 1995). Second, the goal of this researchis to
identify the key spatial features or the minimal number of features that give the best
accuracy. As such, four additional experiments tested the number of features based
on hypotheses derived from domain knowledge.

Table 7. Context-aware text mining experiment design
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Feature Feature Text- All Proxi Proximity Enhanced Meteor

Type only mity and Time  Proximity ological
and Time

Text Text, 1-gram X X X X X X
URL X X

Temporal | Date X X X

Spatio- Disaster X X

temporal | status

Spatial Distance X X X X
Storm X X
Category
Precipitation X X
Wind X X
Flood X X
Warning X X

In a disaster event, distance from the center of the event is important for determining
the relevancy of social media posts (de Albuquerque et al. 2015). Thus, the hypothesis
is that distance by itself would improve the classification accuracy when combined
with text. Another feature hypothesized to aid in the classification accuracy was the
date feature. The classificationscheme utilized in this and many other research studies
is by nature time sensitive. For example, social media posts about donation and aid
are more likely to occur during and after a disaster event (Figure 5). Since the machine
learning algorithms selected for this study are dependent on probabilities, the
expectation is that the date feature will improve the classification. In addition,
combining the distance and date feature with the text feature would likely give the
best results. Out of curiosity, a third experiment related to distance and time was
created which combined what the authors determined to be the best features for
describing the study based on empirical tests of the features. The last experiment
combined the remaining spatial features related to the meteorological data.

4.1.2. Performance Measures

To assess the results of different classification experiments, the study incorporated a
set of performance measures common with model assessment. Running the labelled
data through a supervised classifierinvolves taking a subset of the data to train the
classifierand the remainder of the labelled data to test the classifier. One potential
error associated with this approach is for bias to exist in the training data resulting
suboptimal results. Cross-validation is a technique used to evaluate the model by
partitioning the sample data into k equally sized subsamples. From there k-1
subsamples represent training data with a single subsample as the test data. The
cross-validation process repeats k times with the results averaged from the k
iterations. For this study, the value of k is ten. Moreover, a stratified version of cross-
validation ensures a proportional representation of each class in each subsample.
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After the cross-validation is complete, several metrics determine the classifiers
accuracy: precision, recall, and F-1 score. The precision of a class is the number of
correctly classified samples divided by the total number of samples classifiedas aclass.
Meanwhile, recall is the number of correctly classified samples divided by the actual
number of samples for a class. Another way to think about recall is as a measure of
sensitivity in the classification. In theory, precision and recall are unrelated, but in
practice, high precision usuallyleads to a lower recall and vice versa. To overcome this
problem of metrics, this study also used F-score to evaluate the results. The F-score is
a single measure based on the harmonic mean of the precision and recall. Overall
accuracy for an experiment was determined by averaging the F-score over the
different classes.

4.1.3. Classifier Selection

Before the primary feature experiments, a classification experiment was conducted
using only the text feature to select the most effective classification algorithm, which
was then used for the remainder of experiments. As discussed earlier, from the well-
established classification algorithms, three were selected based on previous text
mining studies: LR, SVM, and CNN.

Not surprisingly, the CNN performed better in text mining tasks demonstrated with
higher accuracy values than the other two algorithms in all three evaluation metrics
(Table 8). Therefore, the remaining experiments utilized the CNN.

Table 8. Text-only algorithm experiment

Algorithm Precision Recall F1-score
CNN 0.76 0.74 0.76
LR 0.56 0.53 0.50
SVM 0.70 0.69 0.69

4.2. Feature Determination

4.2.1. Spatial Features

Determining the feature annotation for the distance from the center of the disasteris
not a trivial task (Section 3.5.1). Originally, the distance feature contained classes for
different distance ranges loosely based on the radius of the storm. For example, if a
user posted more than 250 miles away from the storm, the distance was coded as
irrelevant because the post was too far away from the storm. While this simple feature
annotation provided reasonable results in the classification, there are several issues
using this strategy. First, having fixed distance ranges does not account for the
potential temporal variability associated with the different text classes. Forinstance,
a social media post classified as DA is more likely to occur after the storm has passed.
However, the distance from the center of the storm might be greater than the 250-
mile threshold. Second, an arbitrary distance classification does not account for the
spatial patterns that existin the sample data. In fact, the sample data mostly clusters
around metropolitan areas. In theory, the social media posts nearest to one another
have similar experiences from the disaster.
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To test the impacts of the distance feature annotation, an experiment was conducted
using the DBSCAN algorithm (Ester et al. 1996) to cluster the posts based on distance
from the center (/), the date (d), and the latitude (/at) and longitude (/on). DBSCAN is
a density-clustering algorithm which groups points based on a minimum number of
points (i.e., samples; minpts) within a specified epsilon or search distance (eps). High-
density points cluster into groups and low-density points are treated as noise. After
running DBSCAN, a set of clusters are produced with each cluster and we can assign
each cluster with a unique ID. Next, each clustered sample point is given its associated
cluster ID as the distance feature, and the distance feature for all noisy points is set to
0. To test which attributes (/, d, /at and /on), should be used to calculate distanced
between samples in DBSCAN, we evaluate the classifiers generated by using the
clustering results with different combinations of these attributes, including 1) /, 2) /
and d, 3) lat and lon, and d, and 4) /at and lon, along with text as the input features. It
is worth noting that the results of DBSCAN are sensitive to the choice of minpts and
eps value. In our work, minpts value remained at 4 and the eps value was changed
until a consistent number of clusters were found for each experiment setting. The
highest F-score occurs when [ and d are the clustering attributes. However, using the
date feature in the DBSCAN and as a feature in the classification (Table 8) could result
in feature redundancy. To minimize feature redundancy, the second-best trial, /at, lon,
and /, was selected as the classification of the distance feature.

4.2.2. Temporal Feature

In addition to the distance feature, the temporal feature was hypothesized to be
important for improving the text classification. As previously mentioned, the text
classification scheme (Table 4) is associated with time. For example, a day before the
disaster event, the few messages posted primarily related to the CA and IR class. This
type of result meets the expectation of a disaster because no damage exists prior to
the event.
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Figure 5. Spatial distribution of sample data by different classes at different disaster stages,
including before (Oct. 28; a), during (Oct. 29-31; b), and after disaster event (Nov. 1-7; c)

Spatially, the posts before the storm are in metropolitan areas (Figure 5a). As the
storm affects the disaster area, the IS and CD classes become more prominent (Figure
5b). While the frequency of posts increases in the metropolitan areas, the areas hit
hardest along the New Jersey coast extending inland become flooded with messages.
Finally, after the storm dissipated, the prominent class for social media posts is DA
(Figure 5c). The posts after the disaster occur in areas significantly impacted by the
storm.

4.3. Feature Combination Performance
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To determine which feature or features best describe the disasterin the classification
models and examine whether the addition of features improves the accuracy of the
classification, different feature combination experiments are performed based on the
CNN models. The 10-fold cross-validation results indicate that each experiment, which
combined spatial and temporal feature with text, improves the overall accuracy
compared to the text-only classification by 4 percentage points on average (Table 9).
The enhanced proximity and time experiment has the highest average accuracy (0.81)
and F-score (0.80) of the experiments. Adding meteorological features and adding
distance and time, have a similar amount of improvement to the recall and F-score
(Table 9). The results from these experiments indicate proximity to the disasteris the
best feature to describe the disaster event.

Table 9. Feature combination experiment results

Experiment Class Precision Recall F-score
Text-only CA 0.65 0.87 0.75
IR 0.66 0.64 0.65
Ccb 0.58 0.38 0.46
IS 0.93 0.72 0.81
DA 0.89 0.67 0.76
Averages 0.76 0.74 0.74
All CA 0.81 0.77 0.79
IR 0.63 0.85 0.72
Ccb 0.76 0.53 0.62
IS 0.85 0.85 0.85
DA 0.86 0.86 0.86
Averages 0.80 0.80 0.80
Proximity CA 0.81 0.78 0.79
(text, distance) IR 0.63 0.72 0.67
Ccb 0.79 0.63 0.70
IS 0.86 0.87 0.86
DA 0.80 0.84 0.82
Averages 0.80 0.80 0.80
Proximity & Time CA 0.75 0.82 0.78
(text, distance, date) IR 0.65 0.70 0.67
Ccb 0.77 0.50 0.61
IS 0.85 0.85 0.85
DA 0.86 0.76 0.81
Averages 0.79 0.78 0.78
Enhanced Proximity & Time CA 0.82 0.75 0.79
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(text, distance, date, IR 0.62 0.92 0.74
disaster status)

CD 0.78 0.58 0.67
IS 0.86 0.82 0.84
DA 0.86 0.86 0.86
Averages 0.81 0.80 0.80
Meteorological CA 0.73 0.84 0.78
(text, storm category, IR 0.72 0.54 0.61
"‘,’J:rcr:rr:tg‘;tm"' wind, flood, 0.63 0.61 0.62
IS 0.87 0.85 0.86
DA 0.90 0.79 0.84
Averages 0.79 0.79 0.78

Assessing individual classes reveals a few patterns that exist in the different
experiments. First, adding spatial and temporal features had a large impact on the CA
(caution and advice) with an increasing of accuracy and decreasing recall, indicating
that more messages (both true and false positives) are classified as CA. Second, the
precision of IR category stayed relatively consistent for each experiment. However,
the recall increased with the addition of distance and time features, and yet dropped
after adding the meteorological features. Third, in general the DA (damage and
donation) classes improved dramatically in the recall resulting in much higher F-scores.
For disaster relevant information retrieval, identifying a greater number of disaster
relevant posts accurately or increasing the recall is important. In particular, including
a distance feature all improves recall significantly, which makes sense given the class
definitions and sensitivity to space. Finally, the significant decreasing of precision and
increasing of recall indicate that adding addition features can largely reduce false
positives for the IS class.

5. Conclusion and Future Work

This paper presents an enhanced text mining method that considers geographic
context by incorporating spatial data into the classification of disaster-relevant social
media posts. To extract SA information, current approaches focus on matching or text
mining keywords to classify disasterrelevant posts. Given the high degree of variability
in natural language processing, current methods are not without error and have
difficulty understanding context. Specifically, the proposed method ingests and
processes spatial data that can inform the geographic context of the disasteratagiven
place in time to enhance the text data by providing additional SA. Then the method
combines the spatial data with the text data and classifies the posts based on
relevance using a CNN. Data from Hurricane Sandy provided a means for testing the
method. The disaster presents several big data challenges in data volume and variety.
Collection, processing, and standardization varied for each spatial data set. Using fuzzy
logic, spatial features (e.g. distance, wind, flood, and precipitation) were bound to
each social media post in the sample data set.
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A group of experiments were designed to test the performance of the spatial and
temporal features with the text feature. Based on the results, the addition of spatial
and temporal features to the text classification did improve the overall classification
accuracy compared to current methods. Moreover, the distance from the disasterand
the position relative to the post were determined to be the key features in addition to
text for describing the disaster event. From the experiments, the impact of spatial
features on individual classes was relative to the class definition. The additional
features had significantimpact on classes (e.g. casualties and damage or donation and
aid) whose class definitions involved spatial and temporal components.

Currently, research of spatial feature creation and definition is non-existent. For this
study, when possible, authoritative definitions from government sources defined the
feature bins. The development of the model is only as good as the definitions of the
features. In fact, a wide range of diversity of spatial data and varying approaches can
be leveraged to derive and code spatial and temporal features, represented as coded
numeric values in the classification models , and some of the data are highly domain
(or disaster type) specific. This paper defined and characterized several key types of
spatial features (e.g., rain, wind, and pressure) for the task of social media message
classification in hurricanes characterized by heavy rain, high winds, and low
atmospheric pressure. Meanwhile, during an earthquake event, seismic activities (e.g.,
seismic waves, geographic coordinates of its epicenter, depth of the epicenter) inthe
area are more useful. As such, more investigation into optimal spatial feature creation
from multi-sourced spatial data for different types of disaster events is a possible step
in future to improving the classification results given the diversity of spatial data and
approaches to derive and code features.

This study focuses on the common machine-learning algorithms for classifying text
data. However, given the hybrid nature of the data going into the classifier, the
assessment of other algorithms is important for finding the preferred framework
classifier. One possible solution is to utilize an ensemble method that combines the
predictions of several estimators for a given algorithm. Since quick response is
important in disaster management, a framework based on unsupervised learning
(Zhou et al. 2021), and self-learning methods (Peng et al. 2020; Peng, Huang, and Rao
2021), avoiding manual labelling process would be more ideal for our task.
Additionally, as discussed in the literature review, many different classification
schema exist for defining disaster events. Additional research is necessary to
understand and better define a classification schema that can leverage the spatial
features to extract relevant data. In addition to spatial features, visual features
extracted from images associated with the social media posts, could also be further
integrated to enhance the extraction of disasterrelevant messages (Huangetal. 2019).
Further, our labelled datasets include mostly CA (Caution and Advice) and IR
(Infrastructure and Resource) categories, leading to class-imbalance (i.e., some classes
have much fewer training samples than the other classes). In fact, class-imbalance has
been widely acknowledged as one of the most challenging problems in machine
learning and therefore well addressed in the literature (Sahare and Gupta 2012). A
potential future work could employ different methods (e.g., weighing the classes
differently) to improve class imbalance.
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Finally, social media is not going away anytime soon. For disaster applications related
to social media data, this study indicates the need for incorporating spatial data
sources to improve information retrieval and provide greater SA. Existing studies
indicated a high performance for a classification model based on traditional machine
learning algorithms (e.g., Naive Bayes) even when applied to data from a different
geographic region with significant differences in social media user and usage
characteristics (Zahra, Ostermann, and Purves 2017). Further, deep learning based
models pre-training using Twitter data from pastevents have been demonstrated with
higher performance while classifying tweet topic for an upcoming event to establish
SA compared with these traditional classification models (Yu et al. 2019). In other
words, once we build a model with datasets from historical events, it can be applied
to classify disasterrelevant social media messages generated from alater event. Since
spatial datasets for extracting spatial features are generated from real-time
forecasting models (e.g., NAM) and physical sensing networks (e.g., weather station
observations, remote sensing), this framework is applicable to support both real-time
decision making and post disasteranalysis as long as a workflow of automatic retrieval
of relevant datasets is created. Finally, applications of big geosocial media data are
increasing common throughout a range of activities beyond just disaster response,
from urban planning to market research to political activism (Shelton et al. 2014).
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