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ABSTRACT
Accurate forecasting of electricity demand is vital to the resilient management of energy systems. Recent
efforts in harnessing smart-meter data to improve forecasting accuracy have primarily centered around
cluster-based approaches (CBAs), where smart-meter data are grouped into a small number of clusters and
separate prediction models are developed for each cluster. The cluster-based predictions are then aggregated
to compute the total demand. CBAs have provided promising results compared to conventional approaches
that are generally not conducive to integrating smart-meter data. However, CBAs are computationally
costly and suffer from the curse of dimensionality, especially under scenarios involving smart-meter data
from millions of customers. In this work, we propose an efficient reduced model approach (RMA) that
leverages a novel hierarchical dimension reduction algorithm to enable the integration of fine-resolution
high-dimensional smart-meter data for millions of customers in load prediction. We demonstrate the
applicability of our proposed approach by using data from a utility company, based in Illinois, United States,
with more than 3.7 million customers and present model performance in-terms of forecast accuracy. The
proposed hierarchical dimension reduction approach enables utilizing the high-resolution data from smart-
meters in a scalable manner that is not exploitable otherwise. The results shows significant improvements
in forecast accuracy compared to the available approaches that either do not harness fine-resolution data or
are not scalable to large-scale smart-meter big data.

INDEX TERMS Short-term load forecasting, Smart-meter data, Big data, Hierarchical dimension reduction

I. INTRODUCTION

Accurate load forecasting lies at the heart of integrated
adequacy planning, and is critical for reliable and resilient
operation of electric power systems [1]. Electricity supply
and demand have to be matched in real time and since
large-scale energy storage technology is still cost-prohibitive
[2], electric utilities must carefully plan their dispatch to
minimize energy loss. Moreover, accurate load prediction is
an integral component of demand-side management in smart
grids [3].

Electricity demand forecasting can be generally classified
into short-, medium- and long-term forecasting [4]. Short-
term forecasting involves predicting demand with a lead time

of a few minutes to a few days, and is critical for economic
dispatch [5]. Medium-term forecasts involve a prediction
lead time of a few weeks to a few months, and can help
electric utilities with scheduling of fuel supplies, mainte-
nance actions and negotiation of their contracts [6]. Long-
term forecasts project energy demand over a multidecadal
time horizon which is crucial for capacity expansion planning
under uncertain climate, policy and technological changes
[7]. In this paper, we focus on short-term forecasting which
allows utility companies to optimize their bidding strategies
when purchasing electricity from the modern energy markets
[8]. Short-term forecasting is poised to play an increasingly
important role in the smart operation of the next generation
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power systems in the age of big-data.
The majority of studies in the literature that focus on short-

term load forecasting are concerned with selecting or devel-
oping learning algorithms that result in the most accurate
predictions. These include parametric and non-parametric
statistical learning methods. Linear regression [9] and au-
toregressive integrated moving average (ARIMA) [10], are
among the most widely-used parametric methods. The main
advantages of these methods are their simplicity, fast training
process, and high degree of interpretability [11]. With ad-
vances in statistical learning theory and computing, complex
non-parametric approaches are being increasingly used to
capture the non-linear patterns in demand data. Neural net-
works are among the most prevalent non-parametric models,
with attractive features such as massive learning capability,
parallelizable training process, and robustness to noise. Sev-
eral studies have successfully employed neural networks for
short-term load forecasting [12]–[14]. The training procedure
for neural networks is, however, rather intricate. Particularly,
selecting the proper architecture of (deep) neural networks
and tailoring the network structure to problem complexity
can be challenging. Support vector regression (SVR), an-
other type of non-parametric algorithm, has a comparatively
more straightforward training procedure and has also been
extensively used for load forecasting [15]–[18]. Several other
techniques such as genetic programming [19], random forests
[20], Bayesian additive regression trees [21], and Gaussian
process regression [22] have also been used for electricity
demand prediction. Additionally, with the goal of improving
forecast accuracy, researchers have proposed integration of
learning methods and developed several hybrid approaches
such as hybrid of ARIMA and SVM [23], and hybrid of
neural networks and ARIMA [24] for short-term load fore-
casting.

Regardless of the choice of learning algorithm, the major-
ity of studies on load forecasting use an aggregated model
for predicting demand at spatially aggregated levels. Such
aggregated models solely use previously observed aggre-
gated demand as input and do not leverage fine-resolution
smart-meter data [15], [16], [23], [24]. More recently, cluster-
based approaches (CBAs) have been used as an alternative
to aggregated models to leverage fine-resolution data [25]–
[32]. CBAs involve grouping smart-meter data into clusters
and developing separate prediction models for every cluster.
The predicted demands across all clusters are subsequently
aggregated to estimate the total demand. CBAs havev been
applied to demand forecasting for both residential [25] and
industrial [27] sections, and use different clustering methods
including k-means [28], kernel spectral [29], and k-shape
[30]. Aside from the choice of clustering algorithms, they
have shown higher prediction accuracy when compared to
aggregated models that are not conducive to exploiting high-
resolution smart-meter data. However, a review of studies
that use different CBAs for load forecasting highlights an
existing gap in their applicability with large-scale data (i.e.,
on the order of millions customers). In fact, a close look

at the most recent, well-cited studies that employ CBAs—
summarized in Table 1—reveals application to limited size
datasets, from a few hundreds to a few thousands customers,
with more emphasis on improving the accuracy through op-
timal clustering [26] and using more advanced learning algo-
rithms such as neural networks [27], deep learning [30], and
hybrid methods [33]. The fact that CBAs have not been used
for large datasets is mostly because of the high computational
cost of widely-used clustering algorithms, such as K-means,
which become computationally intractable when clustering
fine-resolution smart-meter data from millions of customers
is of interest. While more advanced clustering algorithms
that use parallelization may alleviate the challenge to some
extent, their implementation often involves complexities that
prohibit their use by utility companies serving several mil-
lion customers [34], [35]. Additionally, selecting the optimal
number of clusters has been shown to significantly impact
the accuracy of predictions [25]–[30]. The selection process,
however, requires running the clustering algorithm several
times for various number of clusters, a process which makes
CBAs even more computationally costly.

TABLE 1: Size of datasets used for validation of cluster-based
approaches in the literature.

Study Num. of units in the dataset
Quilumba et al. (2014) 5000
Wijaya et al. (2015) 3639
Shahzadeh et al. (2015) 6000
Wang et al. (2016) 3000
Fahman et al. (2017) 3176
Fu et al. (2018) 653
Bian et al. (2020) 200

The extensive computational cost of CBAs warrants the
need for an alternative approach that is conducive to big
smart-meter data. In this work, we propose an efficient ap-
proach that can be readily implemented by utility compa-
nies for accurate short-term load forecasting due to (a) its
scalability, rendering it an ideal approach for exploiting fine-
resolution smart-meter big data, and (b) its ease of integration
with various parametric and non-parametric learning algo-
rithms.

The idea is based on hierarchically reducing data dimen-
sionality so as to avoid overwhelming the computational
and storage capacities. More specifically, we propose hier-
archical principal component analysis (HPCA) to reduce the
dimensionality of the input space, in a hierarchical manner,
such that the reduced fine-resolution smart-meter data can
be directly used as inputs to the prediction model. The
development here is based on the premise that the application
of classical PCA will be challenged by the sheer scale of
fine-resolution smart-meter data from millions of customers,
as even the declaration of the full matrix associated with
such high-dimensional data could exceed the standard com-
putational platforms available to energy systems operator.
It is also in contrast to the conventional aggregated model
approaches in literature that simply use spatially aggregated
demand at previous time-steps as model inputs [15], [16],
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[23], [24]. In fact, this work, to our best knowledge, marks
the first effort to explore direct exploitation of smart-meter
data in load forecasting through a hierarchical approach
that significantly reduces the dimensionality of data in a
computationally affordable manner. This work also, for the
first time, uses an extremely large-scale smart-meter dataset
from more than 3.7 customer units for load forecasting.
Such large-scale dataset demonstrates the shortcoming of the
available CBAs in dealing with smart-meter big data and
further highlights the applicability of HPCA for effective
dimension reduction and its efficiency and scalability when
it comes to exploitation of fine-resolution smart-meter data
in load forecasting. Finally we demonstrate the versatility
and ease of implementation of the HPCA through integration
with a variety of learning algorithms for demand prediction.

The organization of the rest of this paper is as follows.
Section II reviews the aggregated model and CBAs for load
forecasting, and introduces the proposed reduced model ap-
proach that harnesses smart-meter big data in short-term load
forecasting. This includes the algorithmic details of HPCA
in Section II-C1 and a brief review of the learning techniques
used here to perform short-term forecasting in Section II-C2.
By way of application, three learning methods from differ-
ent classes of predictive models are selected and used to
demonstrate the robustness of the proposed reduced model
approach to the choice of predictive models. Section III
includes a description of the data and performance measures
(Section III-A) as well as an illustration of the performance
of the proposed approach (Section III-B). Finally, Section IV
summarizes some concluding remarks.

II. METHODOLOGY
In this section, we first review the two main conventional ap-
proaches in the literature for utility-scale demand prediction,
namely, aggregated model and cluster-based approaches. We
then introduce our proposed reduced model approach for
efficient utility-scale demand prediction using smart-meter
big data.

A. THE CLUSTER-BASED APPROACH (CBA)

Load forecasting involves predicting the total utility-scale
demand at the next time-step, i.e., u(t + 1), given the ob-
served utility-scale demand of previous time-steps. Consider
the electricity demand at all customer units served by the
utility company to be available at each time-step. A cluster-
based approach typically involves grouping customer units
into K clusters, as illustrated in Figure 1, and developing
a separate demand prediction model for each cluster [25]–
[30]. Specifically, for a given cluster ci, a predictive model is
trained to establish the relationship between the next time-
step demand, uci(t + 1), and recent demand observations
for that cluster, {uci(t), uci(t− 1), · · · , uci(t− r)}, where
r indicates the number of previous observations included
as model input. The total utility-level demand in the next

time-step is then estimated by aggregating the demand in all
clusters:

ũ(t+ 1) =
K∑
i=1

ũci(t+ 1), (1)

where ũci(t + 1) is the predicted demand for the cluster
ci, and ũ(t + 1) is the predicted next time-step utility-scale
demand. The number of clusters, K, can theoretically be
any integer between one and the number of units served
by the utility company, n. However, selecting a large K
means that thousands or millions of prediction models need
to be developed, a process that is computationally costly and
impractical. The optimal number of clusters is often selected
to be smaller than ten (K ≤ 10) [25]–[30]. In addition,
clustering the units into K clusters is computationally costly
and becomes intractable, if not impossible, when the number
of units is very large, i.e., when working with data from mil-
lions of customers. Therefore, demand forecasting studies in
literature often use demonstrative examples with data limited
to a few thousands units to investigate the applicability and
assess the accuracy of CBAs [25]–[30].

FIGURE 1: The schematic of the cluster-based prediction approach

In this work, we use large-scale smart-meter data from a
utility company that serves more than 3.7 million customer
units. Optimal clustering for such large volume of data is very
computationally demanding if not impossible. In absence of
an applicable clustering algorithm, we group customer units
by their zip-codes, i.e., we consider units with similar zip-
codes to be in one cluster. This probably does not provide the
optimal clustering. However, we found this to be the most
intuitive approach considering the large size of data and lack
of clustering algorithms that can handle such large volume of
data. A demand prediction model is then developed for each
zip-code and the results are aggregated to predict the demand
at utility-scale.

B. THE AGGREGATED MODEL APPROACH
Aggregated models consist of aggregating demand for all
customer units and developing a single prediction model for
the total demand [15], [16], [23], [24]. As illustrated in Figure
2, such models do not involve developing several distinct
models at unit or cluster-of-units scale and are not conducive
to exploiting fine-resolution smart-meter data.

C. THE REDUCED MODEL APPROACH (RMA)
Here, we propose an alternative to the aggregated model
approach to allow for the efficient integration of high-
resolution smart-meter data. The idea is to harness the in-
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FIGURE 2: The schematic diagram of the aggregated model predic-
tion approach

herent correlations in very high-dimensional smart-meter
data and transform it to a low-dimensional space. The
transformed low-dimensional data can then be directly used
as inputs in a demand prediction model. Figure 3 shows
the schematic of the proposed RMA. The n-dimensional
data ui, i = 1, ..n, is transformed to a p-dimensional
space ηj , j = 1, ..p, with p � n. The new variables
{η1(t), . . . η1(t− r), . . . , ηp(t), . . . ηp(t− r)} are then used
as model inputs to train the predictive demand model.

FIGURE 3: Schematic diagram of the proposed reduced model
approach

1) Dimension reduction via hierarchical principal component
analysis
Principal Component Analysis (PCA) is widely used for
dimension reduction and mapping high-dimensional data to a
low-dimensional subspace [36]. PCA looks to find an orthog-
onal projection of n-dimensional data onto p directions such
that the largest variance comes to lie on the first direction (the
first principal component), the second largest variance on the
second direction, and so on. Consider X to be an M × N
matrix of data, whereM is the number of observations andN
is the number of correlated variables. Let w be a unit vector
specifying an axis in the variable space. The first principal
component w is then sought as the solution of the following
optimization problem:

max
‖w‖=1

wTXTXw, (2)

The above constrained optimization problem can be turned
into an unconstrained one, where the normality constraint is
accounted for through a Lagrange multiplier, λ, as:

max
w,λ

wTXTXw − λ(wTw − 1). (3)

Differentiating equation (3) with respect to w yields the
eigenvalue problem XTXw − λw = 0, suggesting that λ
has to be the largest eigenvalue of XTX and w the eigen-
vector associated with that. Similarly, it can be shown that
the second principal component is the eigenvector associated

with the second largest eigenvalue and so forth. Usually, for
high-dimensional correlated data, it turns out that only the
first few eigenvalues and their associated variables (computed
by projecting the data onto the first few eigenvectors) is
sufficient to explain most of the variance in the data.

Performing PCA has the computational complexity of
O(N3) [37]. In the case of high-resolution electricity de-
mand data in this study,N is equal to the number of customer
units, n, which is on the order of a few millions. Conse-
quently, performing PCA on smart-meter big data is compu-
tationally intractable. In addition, when N is too large, even
forming the full matrix X , can be demanding from the point
of view of memory and storage. We, therefore, propose using
a Hierarchical-PCA (HPCA) that alleviates these challenges.
HPCA involves (i) dividing the data into smaller subsets
(ii) performing PCA on all subsets, and (iii) identifying and
retaining the principal components that account for 99% of
the variance in each subset. Once PCA is performed for all
subsets, a data matrix that includes the selected components
is formed. PCA is then performed again to further reduce
the dimension of the transformed data. Algorithm 1 shows
the pseudo-code for the proposed HPCA where we consider
each subset to include smart-meter data for a single zip-code
served by the utility company, with Nz , the total number of
zip-codes in the service area. In Algorithm 1, Xi includes
smart-meter data for customer units in zip-code i where
Xi(t, j) denotes the demand of unit j in zip-code i at time
t.

Algorithm 1 Hierarchical PCA

1: Initiate ηtemp to be an empty matrix
2: for i = 1 : Nz do . Nz is the number of zip-codes
3: Form matrixXi . Xi includes smart-meter data for

customer units in zip-code i

4: Perform PCA onXi
5: Assign ηi to include the principal components that

explain 99% of variation inXi
6: ηtemp = column-concatenate (ηtemp,ηi)
7: end for
8: Perform PCA on ηtemp
9: Assign η to include the principal components that ex-

plain 99% of variation in ηtemp

As will be discussed in section III-B, HPCA allows for
computationally fast and affordable dimension reduction and
enables the development of a reduced predictive model, as
depicted in Figure 3, that can harness high-resolution smart-
meter big data. It must be noted that hierarchies are defined
in HPCA rather flexibly. For data used in this work, customer
units are grouped by their zip-codes. It is, therefore, intuitive
to use zip-codes as a natural way for grouping data to smaller
subsets. We have, however, observed that the way data is
divided into subsets does not impact the accuracy of the final
forecast model. The only consideration in dividing the initial
data into subsets is therefore the size of subsets. For the
dataset used in this work, each zip-code includes about 104

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3142680, IEEE Access

Alemazkoor et al.: Smart-meter big data for load forecasting

customer units on average, for which performing PCA takes
only about 3 seconds on a personal computer. Consequently,
performing the whole HPCA takes about 20 minutes, which
can be further reduced to only a few minutes through parallel
computing.

2) Learning methods
The RMA described in section II-C1 allows any learning
technique to benefit from the high-resolution smart-meter
data. In this work, we perform demand forecasting using
examples from three distinct classes of learning methods to
ensure the robustness of the predictions against the choice
of learning technique. These include: 1) linear regression,
as an example of parametric techniques, 2) SVR, as an
example of deterministic non-parametric techniques, and 3)
Gaussian process regression, as an example of probabilistic
non-parametric techniques which, for the sake of complete-
ness, we briefly present below. It is, however, noted that
the goal is not to compare these three learning methods in
terms of accuracy as performance of a particular method
hinges on the characteristics of the data set. Here, the aim
is to (i) evaluate the amenability of the proposed approach to
various learning methods (ii) validate the independence of the
observed performance on the choice of the learning method.

a: Linear Regression
Regression is simplest and yet the most widely used statisti-
cal model for prediction. In liner regression, the output y is
approximated as a linear function of regressors collected in a
d-dimensional vector, x. That is,

y = b+ 〈c,x〉+ ε, (4)

where b is the intercept, c is the d-dimensional vector
of coefficients, 〈., .〉 denotes the dot product, and ε is
the noise. Given a set of input and output observations,
{(x1, y1), · · · , (xM , yM )} the coefficients of the regression
model can be easily estimated by solving the following
convex minimization problem:

min
c

M∑
j=1

‖yj − b− 〈c,xj〉‖2 , (5)

where M is the number of observations, and yj is the output
associated with the jth realization of input, xj .

b: Support Vector Regression
Consider the set of observations {(x1, y1), · · · , (xM , yM )}.
Support Vector Regression (SVR) with an ε margin of toler-
ance, ε-SVR, aims to find the flattest possible function f(x)
for which the deviation from all observed yi is less than ε
[38]. Consider f to be linear function, i.e, f(x) = b+ 〈c,x〉.
The search for the flattest function with such constraint can
be formulated as:

min
1

2
‖c‖2

s.t. |yj − b− 〈c,xj〉 | ≤ ε.
(6)

The above optimization, however, may not be feasible as
a function f that approximates all observations with error
smaller than ε may not exist. To address this challenge, two
slack variables are introduced [38] and (6) is rewritten as:

min
1

2
‖c‖2 + C

M∑
j=1

(ξj + ξ∗j )

s.t.


yj − b− 〈c,xj〉 ≤ ε+ ξj
b+ 〈c,xj〉 − yj ≤ ε+ ξ∗j

ξj , ξ
∗
j ≥ 0,

(7)

where constant C > 0 determines the trade-off between
the flatness of f and the deviation of approximations from
observations. In order to facilitate computationally efficient
approximation of non-linear cases, SVR utilizes kernel trick.
This trick replaces xj in (7) with φ(xj), i.e., φ is a kernel
function, and implicitly maps the input space into a higher
dimensional space. One of the most widely used kernel
functions is the Gaussian kernel which we use in this work
to construct the SVR models. Readers are referred to [39] for
more details.

c: Gaussian Process Regression

Gaussian Processes Regression (GPR) is a non-parametric
Bayesian approach that extends multivariate Gaussian distri-
bution to infinite dimensions. GPR has been widely used as
it is analytically tractable, and has a robust and probabilistic
work-flow [40]. Consider the regression problem given by:

y = f(x) + ε, (8)

where f(x) is the underlying regression function to be
approximated, and ε is the noise, usually considered to be
Normally distributed, i.e., ε ∼ N (0, σ2

n). GP defines a
probability distribution over f(x), which is (often) specified
by a zero mean and a covariance function k(x,x′). One of
the most commonly used covariance functions is the squared
exponential,

k(x,x′) = σ2
f exp

{
d∑
i=1

(
−(x(i) − x′(i))2

2l2i

)}
+σ2

nδ(x,x
′),

(9)
with σf , l and σn the hyperparameters of the covariance
function, σf the maximum allowable variance, l the vector
of length scale parameters, σn the measurement noise, and
δ(x, x′) the Kronecker delta function. Let θ be the vector of
hyperparameters for the covariance function:

θ := [σf , l, σn]. (10)

Given the training data, i.e., an observed input matrix,
X := (x1; . . . ;xM ), and observed output vector, y, θ
can be estimated through maximum likelihood. Once the
hyperparameters are estimated given the observed data, for
a new input observation, x∗, the output y∗ follows

y∗|x∗,X,y ∼ N (k∗K−1y, k∗∗ − k∗K−1k∗T ), (11)
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where

k∗ := k(x∗,X) =
[
k(x1,x

∗) · · · k(xM ,x
∗)
]
. (12)

K is the n×nmatrix derived from evaluating the covariance
function at observed inputs:

K := k(X,X) =

 k(x1,x1) · · · k(xM ,x1)
...

. . .
...

k(x1,xM ) · · · k(xM ,xM )

 ,
(13)

and k∗∗ := k(x∗,x∗). The mean of the Gaussian distribution
in (11) is finally used as the best estimation for y∗.

FIGURE 4: ComEd service area map. The colored area shows the
ComEd territory.

III. EMPIRICAL RESULTS
In this section, we briefly introduce the data used for this
study and the performance measures used for accuracy eval-
uation. We then discuss the empirical design used to carry
out the investigation, and report the results on prediction
accuracy.

TABLE 2: Mean, median, and standard deviation of 30-min demand
at zip-code level in kWh across all zip-codes in ComEd’s service
territory.

Mean Median Standard deviation
Weekdays 5705 2834 7704
Weekends 5098 2684 6571

A. DATA AND PERFORMANCE MEASURE
We use demand data procured from Commonwealth Edison,
commonly known as ComEd, which is the largest electric
utility in the state of Illinois. ComEd serves more than 500
zip-codes and 3.7 million customer units in Illinois; see
Figure 4 for the service territory of ComEd.

The ComEd data used in this study includes 30-min de-
mands for all units in all zip-codes in ComEd’s service
territory. To provide an understanding of 30-min demand in

FIGURE 5: Distributions of 30-min demand at zip-code level across
all zip-codes in ComEd’s service territory.

ComEd’s service territory, distributions of 30-min demand at
zip-code level across all zip-codes for weekdays and week-
ends are depicted in Figure 5. Additionally, Table 2 includes
the mean, median, and standard deviation of the distributions
shown in Figure 5.
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(b) Cumulative explained variance

FIGURE 6: Percentage of explained variance in smart-meter big
data (a) by individual principal components, and (b) cumulatively.

We use demand data from October 2019 as an example
of an uneventful month with no major holiday or climatic
extremes to ensure a fair comparison of different approaches.
The data is divided into a training set and a test set. The
training set includes 80% of the available data, i.e. the first
25 days of October. As shown in Figures 1–3, inputs to the
models include the demand for r previous time-steps. To
obtain an optimum value for r we use 80% of the data in the
training set for training the predictive models with different
values of r and perform validation using the remaining 20%
of the data in the training set.

Finally, the remaining 20% of the data (i.e., the last 6 days
of October) is used as the test set to evaluate the models’
generalization performance.

In our analysis we found that adding variables that indicate
time-of-day or day-of-week did not improve the prediction
accuracy. Adding weather-related input variables may im-

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3142680, IEEE Access

Alemazkoor et al.: Smart-meter big data for load forecasting

prove the accuracy but was not considered in this work since
the main concern was providing an scheme that allows for
effective incorporation of extremely high-dimensional smart-
meter data in short-term load forecasting. We, however, note
that adding weather-related inputs only slightly increases
the input dimensionality and would be easily feasible if
desired. Additionally, considering the substantial dimension-
reduction achieved by HPCA, we found that only a few
weeks of data is sufficient for training the forecast models.
Reducing the required volume of training data, in fact, can
be seen as another advantage of the proposed approach as it
facilitates the training procedure.
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FIGURE 7: Histogram of prediction error for 30-min prediction
interval using different prediction approaches
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FIGURE 8: Histogram of prediction error for 1-hr prediction inter-
val using different prediction approaches
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FIGURE 9: Histogram of prediction error for 2-hr prediction inter-
val using different prediction approaches

To compare the effectiveness of different predictive mod-
eling approaches and ensure the robustness of results against
the performance measure, we use two different measures,
i.e. the mean absolute percentage error and the coefficient of
variation as measures of error. The mean absolute percentage
error, eMAP, between the vectors of observed total demand u
and predicted total demand ũ is defined as:

eMAP =
1

No

No∑
i=1

|u(i)− ũ(i)|
u(i)

, (14)

where No is the number of observations in the test set. The
coefficient of variation, eCV, reads:

eCV =

√
1

No−1
∑No

i=1(u(i)− ũ(i))2

ū
, (15)

where ū is the average total demand.
The proposed RMA outperforms both the aggregated

model and CBAs due to its ability to efficiently exploit fine-
resolution smart-meter data toward more accurate demand
prediction. In fact, RMA consistently results in the best accu-
racy across different learning methods and different temporal
resolutions.

B. RESULTS
As explained in Section II-C, we use HPCA to reduce the
dimensionality of high-resolution smart-meter data. Figure
6a depicts the contribution of the first 20 principal com-
ponents to total variance of 30-min smart-meter data. As
observed in Figure 6b, the cumulative explained variance
reaches a plateau with the first six principal components
included, accounting for 98% of variance in the data. We thus
use recent observed values, from r previous time-steps, for
the first six principal components as inputs to the reduced
demand prediction models. The results are then compared
with aggregated model and CBAs in-terms of forecast accu-
racy. Table 3 summarizes coefficient of variation, eCV, for
the aggregated model and CBAs as well as the proposed
RMA using the three learning methods. The comparison is
performed for different temporal resolution, i.e. for 30-min,
1-hr, and 2-hr lead times. Since searching for the optimal
number of clusters for data from 3.7 million customer units is
computationally intractable, for the cluster-based approach,
we group customer units data based on their zip-codes. We,
however, note that in the absence of optimal clustering, mim-
icking the clustering process of CBAs with grouping based
on some inherent properties in the data (e.g. zipcodes) results
in relatively poor prediction accuracy. This is not surprising
as the number of clusters has been shown to significantly
impact the accuracy of CBAs [25]–[30]. In summary, CBAs
by virtue of their dependence on optimal clustering, are
not scalable for scenarios where smart-meter big data from
millions of customers is to be dealt with.

Same observation is made when the mean absolute per-
centage error, eMAP, is used as the performance measure
for different models and prediction intervals (see Table 4).
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TABLE 3: Evaluated eCV in % for cluster-based, aggregated model, and reduced model approaches for 30-min, 1-hr, 2-hr prediction interval
using three different learning methods.

Linear regression Support vector regression Gaussian process regression
30-min 1-hr 2-hr 30-min 1-hr 2-hr 30-min 1-hr 2-hr

Cluster-based approach 1.2 2.1 5.6 1.3 3.2 6.5 1.3 2.6 6.5
Aggregated model approach 0.8 1.9 5.5 0.8 1.9 5.8 1.0 2.3 5.6
Reduced model approach 0.6 1.2 2.5 0.8 1.6 4.4 0.6 1.4 2.4

TABLE 4: Evaluated eMAP in % for cluster-based, aggregated model, and reduced model approaches for 30-min, 1-hr, 2-hr prediction interval
using three different prediction models.

Linear regression Support vector regression Gaussian process regression
30-min 1-hr 2-hr 30-min 1-hr 2-hr 30-min 1-hr 2-hr

Cluster-based approach 0.7 1.5 4.4 0.9 2.1 4.9 0.8 2.2 5.4
Aggregated model approach 0.5 1.4 4.4 0.6 1.4 4.7 0.6 1.6 3.7
Reduced model approach 0.4 0.9 1.8 0.6 1.3 2.8 0.4 1.1 1.6

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
Predicted electricity demand (kWh)#106

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

O
b
se

rv
ed

el
ec

tr
ic
it
y

d
em

an
d

(k
W

h
)

#106

(a) 30-min prediction interval

3 3.5 4 4.5 5 5.5
Predicted electricity demand (kWh)#106

3

3.5

4

4.5

5

5.5

6

O
b
se

rv
ed

el
ec

tr
ic
it
y

d
em

an
d

(k
W

h
)

#106

(b) 1-hr prediction interval

6 7 8 9 10 11
Predicted electricity demand (kWh)#106

6

7

8

9

10

11

O
b
se

rv
ed

el
ec

tr
ic
it
y

d
em

an
d

(k
W

h
)

#106

(c) 2-hr prediction interval
FIGURE 10: Observed and predicted demand for different prediction intervals using the cluster-based approach
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FIGURE 11: Observed and predicted demand for different prediction intervals using the aggregated model approach

This further confirms that the improved accuracy obtained by
RMA is robust to the choice of both learning methods and
performance measure.

We next investigate whether the accuracy improvement
achieved by the proposed RMA is statistically significant. For
the sake of brevity, we focus on the results obtained from
the linear regression model. Figures 7, 8, and 9 compare the
distributions of relative demand prediction error for different
approaches for 30-min, 1-hr, and 2-hr prediction intervals,
respectively. It is observed that the proposed approach results
in smaller error variance compared to the aggregated model
and CBAs. Assuming that error has a normal distribution, we
use F -test to investigate whether the observed difference in
error variance is statistically significant. It is found that, for

all prediction intervals, the observed difference is statistically
significant at 99% confidence level. In other words, using
the proposed RMA results in statistically significant im-
provement in load forecast accuracy compared to aggregated
model and CBAs.

Figures 10–12 compare the observed and predicted de-
mand for the test set (i.e., last 6 days of October) using dif-
ferent learning methods for 30-min, 1-hr, and 2-hr prediction
intervals, respectively. It is observed that predictions tend to
deviate more from the observed demand for longer predic-
tion intervals. However, as evident in Figure 12, deviations
from the observed demand are significantly smaller when the
proposed RMA is used for prediction.

To better understand the significance of accuracy improve-
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FIGURE 12: Observed and predicted demand for different prediction intervals using the reduced model approach
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FIGURE 13: Observed and predicted demand for 30-min prediction interval during the last week of October 2019 using different prediction
approaches
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FIGURE 14: Observed and predicted demand for 1-hr prediction interval during the last week of October 2019 using different prediction
approaches

ment, Figures 13–15 compare the observed and predicted
demand for the last 6 days of October 2019. We again observe
that the extent of improvement in accuracy for the proposed
RMA is more evident for longer prediction intervals (as we
move from 13 to 15). This suggests that utility companies
can significantly improve the accuracy of the load fore-
casts through exploiting smart-meter data using the proposed
RMA, specially when the optimal operation requires longer
prediction intervals.

IV. CONCLUSION
Exploiting fine-resolution smart-meter data enables more
accurate short-term load forecasting. The current approaches
developed to ‘mine’ fine-resolution data, however, are com-
putationally expensive and not scalable to large-scale smart-
meter big data. This precludes harnessing the big data rev-

olution for more sustainable and optimal management of
the grid. In this work, we propose a reduced model ap-
proach that exploits hierarchical principal component anal-
ysis (HPCA) for efficient and computationally affordable
integration of smart-meter big data into short-term demand
forecasting. Efficiency is achieved through transforming the
high-dimensional data to a low-dimensional space hierar-
chically and using the transformed data as input to predict
aggregate utility-scale demand.

We use large-scale smart-meter data from a utility com-
pany that serves more than 3.7 customer units to evaluate
the proposed approach in terms of forecast accuracy. We
find that the proposed RMA results in significantly more
accurate forecasts compared to aggregated model and CBAs
that are not suitable for harnessing smart-meter big data. The
ability to harness high resolution data while improving the
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FIGURE 15: Observed and predicted demand for 2-hr prediction interval during the last week of October 2019 using different prediction
approaches

forecast accuracy can help utility companies to better plan
purchasing and selling electric power, load switching, and
optimal system operation, thereby enhancing the reliability
of the system.

In summary, we outline the key gaps in the state-of-
the-art load forecasting and offer a scalable approach for
more accurate and yet efficient projection of the load using
large-scale smart-meter data. Our results have significant
implications for achieving sustainable development goals.
This is because the energy systems play a crucial role in
transitioning to smart and sustainable urban systems, and
access to scalable methodologies that harness the big data is
essentially a prerequisite for its modernization and transition
to the next generation smart grid.
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