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Abstract— This paper investigates the effect of filtering (or
modulating) the functional magnetic resonance imaging (fMRI)
time-series on intelligence metrics predicted using dynamic
functional connectivity (dFC). Thirteen brain regions that have
highest correlation with intelligence are selected and their
corresponding time-series are filtered. Using filtered time-series,
the modified intelligence metrics are predicted. This experiment
investigates whether modulating the time-series of one or two
regions of the brain will increase or decrease the fluid ability
and fluid intelligence among healthy humans. Two sets of
experiments are performed. In the first case, each of the thirteen
regions is separately filtered using four different digital filters
with passbands: i) 0 - 0.257, ii) 0.257 - 0.57, iii) 0.57 - 0.757,
and iv) 0.757 — 7, respectively. In the second case, two of
the thirteen regions are filtered simultaneously using a low-
pass filter of passband 0 - 0.257. In both cases, the predicted
intelligence declined for 45-65% of the subjects after filtering
in comparison with the ground truths. In the first case, the
low-pass filtering process had the highest predicted intelligence
among the four filters. In the second case, it was noticed that
the filtering of two regions simultaneously resulted in a higher
prediction of intelligence for over 80% of the subjects compared
to low-pass filtering of a single region.

I. INTRODUCTION

Recent studies have shown that deep brain stimulation
(DBS) is effective in treating various neurological and psy-
chiatric conditions such as treatment-resistant depression [1]
and Parkinson’s disease [2], [3]. It has been believed that
brain stimulation can increase human intelligence. However,
this has never been confirmed because an experiment to test
the hypothesis on healthy humans poses serious risks and
side effects. We attempt to partly answer this question by
modulating the time-series of functional magnetic resonance
imaging (fMRI) signals of a healthy human brain at one or
two regions of the brain. The filtering of the fMRI time-
series is assumed to capture the effect of brain stimulation.
This may not represent the true stimulation effect of a DBS
device on the fMRI time-series; nevertheless, this may lead
to some understanding of effect of modulating time-series on
human intelligence in healthy humans.

The statistical interdependence between the regions of
the brain that share functional properties is referred to as
functional connectivity and the change in this functional
connectivity over time is termed as dynamic Functional
Connectivity (dFC) [4]. In prior work [5], we showed that
dFC can be used to predict intelligence metrics such as
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fluid ability and fluid intelligence with a smaller mean
square error compared to other methods such as partial
least square, correlation, network features, node entropy and
edge entropy. It also identified statistically significant spatial
components that correlate with intelligence metrics. Four
types of digital filtering operations are performed for selected
brain regions that correlate with intelligence to understand
the effect of time-series modulation on intelligence. Filtering
of two regions simultaneously is also performed to compare
the predicted intelligence against filtering the time-series of
a single region.

In particular, the contributions of the paper are as follows.
First, we analyze the predicted intelligence metrics for the
modulated fMRI time-series with ground truth. Our goal is
to identify the possibility of enhancing human intelligence
by stimulation of suitable brain regions. Moreover, our
experimental result also enables us to identify subjects for
whom modulation would be beneficial.

The remainder of the paper is organized as follows.
Section II briefly describes the data, pre-processing of fMRI
and the digital filtering methods. Section III describes the
experimental results.

II. EXPERIMENTAL SETUP

The data and pre-processing steps are described in [5] and
are summarized in subsections II-A, II-B and II-C. Filtering
of fMRI time-series is described in Subsection II-D.

A. Data

The Q2 release of Human Connectome Project (HCP)
Database [6], [7] consisting of resting-state and task fMRI
data of 475 subjects is used for the experiment. The task
data contains the fMRI data when the subjects performed
the following seven tasks: a) Emotion, b) Gambling, c)
Language, d) Motor, e) Relational, f) Social, and g) Working
Memory. The collection of the data was approved by the
Institutional Review Board at the University of Minnesota.

The intelligence metrics are modeled by two target values:

o Fluid Intelligence: It is estimated using the Penns Pro-
gressive Matrices (PMAT) [8], which is a shortened
version of Ravens Progressive Matrices. This test had a
mean of 16.09, standard deviation of 5.98 and range
of 4-24. The participants in this test were given an
incomplete puzzle with a visual pattern and they filled
the missing piece from a given set of pieces.

o Fluid Ability: This metric is impacted by the age as
it changes from childhood to adolescence and reduces
thereafter upon aging. It is characterized using The
Pattern Comparison test where the subjects were asked



to identify if a given set of images are the same. The
scores were normalized to obtain an age-adjusted scale.
This test result has a range of 47-150.

B. Pre-processing

The fMRI data are processed using the HCP pipeline tool
followed by spatial smoothing and generation of activation
maps. Considering the Freesurfer cortical parcellation atlas
[9], the mean time-series values of voxels for each subject
were then extracted for the 85 regions of interest. The one-
shot absolute Pearson’s correlation values are extracted for
each subject from the mean time-series for analyzing the
static connectivity. The time-series data for each subject were
then divided into multiple sliding windows of varying strides.
As observed in [5], a stride value of 5 yielded best results
in intelligence prediction. The pairwise absolute Pearson’s
correlation were calculated for each subject and each time
window for the 85 regions.

As the values of correlation coefficient are bidirectional,
it is sufficient to consider one set of values for each pair
of regions. From this we get (%) = 3570 edge correlation
values, which can be considered as a 3570 x 1 vector. The
correlation vectors extracted for each window are stacked to
form a dynamic functional connectivity matrix (size 3570x T
where T' depends on the sliding window stride). Dynamic
functional connectivity matrices were then concatenated to
form a 3-dimensional tensor of size 3570 x T" x 475. For the
given HCP time-series data and a stride value of 5, T' = 26.

C. Tensor Decomposition

PARAFAC decomposition [10] of the tensor (obtained
by concatenating the dynamic connectivity matrix of the
475 subjects) was performed, which can be summarized as
follows. The three-dimensional tensor X of size I; x I X I3
can be expressed using smaller rank-1 tensors as:

F
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where o denotes the outer product. From this, the factor
matrices A, B and C of respective size I; x F', I, x F' and
I3 x F are obtained whose corresponding columns are the
associated factors ay, by and cy. The matrix A corresponds
to the estimated connectivity maps, B corresponds to the time
variation and C corresponds to the subject-wise weight.

Using Pearson’s correlation, thirteen regions of signif-
icance are identified in [5]. Matrix C was used for this
purpose and the top 5% of the connecting edges were
identified from the corresponding columns of A.

D. Digital Filtering

Having identified the thirteen regions in the brain that
have high correlation with intelligence, the mean time-series
data from these regions of each subject are filtered using
a digital filter one region at a time. For this, four separate
filtering operations are performed on each of the thirteen
regions. The normalized passband frequency range of each
filter is as follows: i) 0 - 0.257, ii) 0.257 - 0.5, iii) 0.57

- 0.757, and iv) 0.757 — 7. The filtered time-series in each
case is used to construct the dynamic connectivity tensor.
The decomposition of the tensor using the N-way toolbox
[11] is further constrained to retain the same value for the
matrix A that corresponds to the connectivity, as the spatial
connectivity of the 85 regions remain the same. Thus, new
subject-wise weight matrix C,,.,, is obtained for each filtered
time-series.

With the weight matrix corresponding to the original time-
series data (C) used as features and the intelligence metrics
(fluid intelligence and fluid ability) as target values, a bag
of decision trees is used to predict the new values of the
fluid intelligence and fluid ability for the weight matrix
corresponding to the filtered time-series C,,¢,,. This is then
compared with the original value and the prediction of
unfiltered data obtained by using the method described in
[5].

After observing that the low-pass filtering leads to the
highest predicted intelligence, we filter two of the thirteen
regions simultaneously using a low-pass digital filter using
passband O - 0.257 and repeat the process of predicting
fluid intelligence and fluid ability for each of the 78 such
combinations. The findings of both the set of experiments
are described in the next section.

ITI. RESULTS

A. Filtering of a Single Region

Tables I and II show the percentage of users (among
the 475 subjects) whose intelligence metrics increased upon
filtering of the fMRI time-series. It is observed that the
predicted value of the intelligence metrics is less after
filtering than the original value (the ground truth) or the
predicted value of the unfiltered data for about 45% - 65% of
the subjects, depending on the region filtered and the type
of filter. The change in fluid intelligence varied from -10
to +15 and that of fluid ability from -55 to +60. However,
the direction of change remains mostly the same for a given
subject and the magnitude varied based on the region filtered.

It is seen that filtering all the significant regions via low-
pass filter led to the highest predicted intelligence metric
when compared with other filters (though this was less than
ground truth for many). Also, the three-dimensional tensor
obtained by stacking the filtered dFC matrix for the 475
subjects were mostly similar for the filters with passband
range 0.57 - 0.757 and 0.757 — .

B. Simultaneous Low-Pass Filtering of Two Regions

Figures 1 and 2 show the relative percentage of humans
for whom the predicted intelligence metrics are greater than
ground truth among all possible 78 combinations for fluid
intelligence and fluid ability, respectively.

From the figures, the combinations Accumbens(L) and En-
torhinal(L); and Entorhinal(L) and Entorhinal(R) yielded the
highest predicted value for fluid intelligence. The combina-
tions of Amygdala(R) and Entorhinal(L); and Entorhinal(L)
and Lateral Orbitofrontal(R) yielded the highest predicted
value for fluid ability.



TABLE I: Percent of subjects for whom predicted value of fluid intelligence after filtering is greater than the ground truth

Region

LPF BPF-1 | BPF-2 | HPF

Lateral Orbitofrontal (L)
Cuneus (L)

Rostral Anterior Cingulate (L)
Pars Orbitalis (L)
Accumbens (L)
Entorhinal (L)
Caudate (L)

Caudal Anterior Cingulate (R)
Pars Opercularis (R)
Amygdala (R)
Putamen (R)
Entorhinal (R)

Lateral Orbitofrontal (R)

4484 | 40.42 39.37 | 39.58
4442 | 4442 43.79 | 44.00
46.74 | 46.53 46.53 | 45.89
43.58 | 40.42 4042 | 40.42
44.84 | 47.37 47.16 | 48.00
4232 | 46.95 47.16 | 46.95
45.26 | 46.32 46.32 | 45.26
43.79 | 41.68 41.47 | 41.68
44.63 | 43.57 44.00 | 44.42
4547 | 4358 43.37 | 43.58
44.84 | 4653 47.58 | 47.37
45.05 | 40.21 4042 | 40.63
45.05 | 41.26 41.05 | 4042

TABLE II: Percent of subjects for whom predicted value

of fluid ability after filtering is greater than the ground truth

Region

LPF BPF-1 | BPF-2 | HPF

Lateral Orbitofrontal (L)
Cuneus (L)

Rostral Anterior Cingulate (L)
Pars Orbitalis (L)
Accumbens (L)
Entorhinal (L)
Caudate (L)

Caudal Anterior Cingulate (R)
Pars Opercularis (R)
Amygdala (R)
Putamen (R)
Entorhinal (R)

Lateral Orbitofrontal (R)

49.26 | 47.79 47.58 | 4821
48.63 | 39.16 38.95 | 39.79
47.79 | 40.63 39.58 | 39.16
48.84 | 37.89 36.63 | 37.05
47.79 | S1.79 52.00 | 52.21
48.00 | 36.63 3453 | 34.10
49.89 | 51.16 50.74 | 50.32
50.32 | 46.74 46.53 | 46.32
47.58 | 46.11 4547 | 4547
52.63 | 50.11 49.89 | 49.68
46.95 | 44.42 43.58 | 43.37
4947 | 3832 38.11 37.89
51.16 | 55.58 5495 | 55.37
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Fig. 1: Percentage of subjects with predicted fluid intelligence greater than the ground truth for the 78 possible combinations
of low-pass filtering two of the thirteen regions simultaneously.

Table IIT illustrates the number of subjects for whom
the predicted fluid intelligence and fluid ability are greater
if two regions, Amygdala(R) and Entorhinal(L), are low-
pass filtered simultaneously than low-pass filtering of either
Amygdala(R) or Entorhinal(L). When these two regions
are together filtered using a low-pass filter, the predicted
intelligence metric is higher than if either of these regions is
individually filtered for 427 subjects (89.89%) with respect

to fluid intelligence and for 382 subjects (80.42%) for fluid
ability (see Table III). These predicted values are independent
of the ground truth values and of the predicted intelligence
metrics at base line (without any filtering).

IV. CONCLUSION

This paper summarizes the effects of common digital
filtering of fMRI time-series on the predicted intelligence
metrics. Dynamic functional connectivity of human brain’s
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Fig. 2: Percentage of subjects with predicted fluid ability greater than the ground truth for the 78 possible combinations of

low-pass filtering two of the thirteen regions simultaneously.

TABLE III: Number of subjects for whom predicted fluid intelligence and fluid ability improve after low-pass filtering of

one or two regions

Brain Fluid Intelligence Fluid Ability

region # of subjects | % of subjects | # of subjects | % of subjects
Entorhinal (L) 22 4.64 43 9.01
Amygdala (R) 26 5.47 50 10.52
Combination 427 89.89 382 80.47

fMRI data can be devised as a tensor decomposition prob-
lem and the obtained weight matrix is a good feature for
predicting intelligence [5]. Using this, significant regions in
the brain correlating with intelligence were identified. In
this experiment, we observe the change in prediction by
modulating the time-series data of these significant regions
through different digital filters individually, and low-pass
filtering of two regions simultaneously.

The paper has demystified the myth that brain stimulation
can always increase intelligence metrics of a healthy human.
Using filtered time-series as a primitive form of neuromod-
ulation and prediction based on dynamic functional connec-
tivity, it is shown that the intelligence metrics increase for
about less than half the people. Future work will be directed
towards identification of features that can help in classifying
if the modulation is beneficial or detrimental to the subject in
terms of intelligence metrics, and experimenting the filtering
operations with more than two regions at the same time.
Biological interpretation of change in intelligence due to
filtering of time-series needs to be investigated.
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