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Abstract— Accurate seizure prediction is important for de-
sign of wearable and implantable devices that can improve the
lives of subjects with epilepsy. Such implantable devices can be
used for closed-loop neuromodulation. However, there are many
challenges that inhibit the performance of prediction models.
One challenge in accurately predicting seizures is the nonsta-
tionarity of the EEG signals. This paper presents a patient-
specific deep learning approach to improve predictive perfor-
mance by transforming EEG data before extracting features
for seizure prediction. In the proposed approach, a Sequence
Transformer Network (STN) is first used to learn temporal and
magnitude invariances in EEG data. The proposed method fur-
ther computes the short-time Fourier transform (STFT) of the
transformed EEG signals as input features to a convolutional
neural network (CNN). A k-out-of-n post-processing method is
used to reduce the significance of isolated false positives. The
approach is tested using intracranial EEG from the American
Epilepsy Society Seizure Prediction Challenge dataset. Leave-
one-out cross validation is used to evaluate the model. The
proposed model achieves an overall sensitivity of 82%, false
prediction rate of 0.38/hour, and average AUC of 0.746.

I. INTRODUCTION

Epilepsy is one of the most common neurological diseases,
affecting approximately 70 million people worldwide [1]. It
is a disorder in the brain that is diagnosed when an individual
has had two or more unprovoked seizures. Epileptic seizures
are accompanied by abnormal electrical activity in the brain,
as opposed to other types of seizures that may be caused by
external factors such as head injury or reaction to medication.
Because epileptic seizures occur with no apparent cause,
the ability to predict the onset of an epileptic seizure could
considerably increase the quality of life in epileptic patients.
Providing a warning or alarm prior to a seizure would allow
epileptic patients to utilize treatment such as anti-epileptic
drugs or brain stimulation more effectively. Seizure predic-
tion can be accomplished by analyzing electroencephalogram
(EEG) or intra-cranial EEG (iEEG) recordings of the brain.

The EEG pattern of an epileptic patient can be split
into four phases: preictal phase, occurring before the actual
seizure; ictal phase, which includes the onset of the seizure
and the time when an individual is actively seizing; postictal
phase, occurring after the seizure; and the interictal phase,
accounting for all other time periods. Specifically, the seizure
prediction problem can be defined as a binary classification
of EEG data between the interictal and preictal phases. This
is possible because studies have demonstrated that EEG
patterns during the preictal phase are different than patterns

This research was supported in part by the National Science Founda-
tion under grant number CCF-1954749.

R. Chen and K. K. Parhi are with the Department of Electrical and
Computer Engineering, University of Minnesota, Minneapolis, MN 55455,
USA (email: chen5296@umn.edu; parhi@umn.edu).

during the interictal phase [2]. However, the underlying cause
behind an epileptic seizure remains unclear. This has led
to extensive research on determining the features of EEG
signals that best differentiate the interictal and preictal phases
of epileptic seizures. Previous features used for seizure
prediction include power spectral density, short-time Fourier
transform, and univariate linear measures [3]–[6] of the EEG
signal.

Past seizure prediction algorithms utilizing traditional ma-
chine learning methods such as support vector machines
(SVM) have achieved high sensitivity and low false positive
rates [4], [7]. However, algorithms that achieve outstanding
results often rely on hand-crafted, patient-specific feature
engineering which can be time consuming. Additionally,
EEG signals are nonstationary [8]. Thus, the features that are
optimal for predicting seizures could change over time and
render a prediction model obsolete. This paper attempts to
use a sequence transformer network (STN) to first transform
EEG data, in an effort to overcome some of the challenges
associated with the nonstationary nature of EEG signals. The
STN learns parameters to apply temporal and magnitude
transformations to EEG data. In the proposed approach, EEG
data is first transformed with the STN. The short-time Fourier
transform is then applied to the transformed EEG data and
used as input feature maps to a convolutional neural network
(CNN) for further feature extraction and classification.

II. MATERIALS AND METHODS

A. Data Description

The American Epilepsy Society Prediction Challenge
dataset consists of intracranial EEG from five canine subjects
and two human subjects [9]. The Institutions Ethical Review
Board approved all experimental procedures involving hu-
man patients. The experimental procedures involving animal
models were approved by the Institutional Animal Care and
Ethics Committee.

Intracranial EEG was recorded from dogs with naturally
occurring epilepsy using an ambulatory monitoring system.
For four of the canine subjects, intracranial EEG was sam-
pled from 16 electrodes at 400 Hz. For the last canine
subject, EEG was sampled from 15 electrodes at 400 Hz.
The canine data supplied for the American Epilepsy Society
Prediction Challenge is a subset of long duration recordings,
spanning multiple months up to a year. To avoid potential
contamination between interictal, preictal, and postictal EEG
signals, interictal data is taken from at least one week before
or after any seizure.

The human patients’ intracranial EEG are sampled at 5000
Hz from a varying number of electrodes: 15 electrodes for



Fig. 1: The architecture for the Sequence Transformer Net-
work used. Input EEG signal denoted as {xi,t}Tt=0. Convo-
lution layers are annotated with the filter size, convolution
type, and number of filters. Convolution layers have stride 1
and ReLU activation. Max-pool layers have the same size
and stride of 10. Temporal Transform is applied with a
discrete mapping, and the Magnitude Transform applies a
linear transformation.

Patient 1, and 24 electrodes for Patient 2. The human data is
taken from shorter monitoring sessions, which may last less
than one week. To avoid potential contamination between the
different phases of the EEG signal, interictal data is taken
from at least four hours before or after any seizure.

The data is supplied as a collection of ten minute EEG
clips, labeled as either preictal or interictal. The preictal data
covers one hour prior to each seizure with a five minute
seizure horizon (i.e., from 1:05 to 0:05 before seizure onset).
This paper uses only 30 minutes of preictal data (i.e., from
0:35 to 0:05 before seizure onset). Additionally, the EEG
data is downsampled to reduce storage requirements and
computational complexity: 200 Hz for dog data, and 1000
Hz for human data.

B. Sequence Transformer Network

One of the biggest challenges in predicting seizures is
the nonstationary nature of EEG signals. This introduces
complexity when attempting to extract features for classi-
fication because metrics such as amplitude, offset, and time
scale of the EEG signal could vary over time within a class.
Therefore, applying a transform to align EEG signals in
both the time and magnitude axes may help overcome these
complexities. Inspired by [10], we use an STN to learn and
apply such transformations to exploit invariances in EEG
signals.

The STN (shown in Fig. 1) uses a CNN to learn the
parameters θ and ϕ. Specifically, the CNN consists of two
convolution layers, two max-pool layers, and two fully-
connected layers. The first convolution layer has 16 filters
with size 20 and stride 1, using rectified linear unit (ReLU)
activation function. The second convolution layer has 32
filters with size 20 and stride 1, and ReLU activation. Both
of the max-pooling layers pool over a region of size 10 with
stride 10. Prior to each fully-connected layer is a dropout
layer with dropout rate 0.5. The first fully-connected layer
has 64 nodes followed by a ReLU activation function. The
second fully-connected layer outputs four values: θ1 and θ0

for the θ parameter, and ϕ1 and ϕ0 for the ϕ parameter. That
is, [

θ
ϕ

]
=

[
θ1 θ0
ϕ1 ϕ0

]
The parameters θ and ϕ are used to apply temporal and
magnitude transformations, respectively, to the EEG signal.
This network is typically incorporated into an end-to-end
trainable architecture. As shown in Fig. 3, the proposed
seizure prediction architecture is end-to-end trainable and
uses the STN prior to feature extraction and classification
by a CNN.

The temporal transformation parameter θ maps each sam-
ple in the input signal to a new temporal location (i.e., from
time t to t′ for the time steps t = 0, ..., T ). This operation
is linear and is shown by the expression,

t′ = θ

[
t
1

]
=

[
θ1 θ0

] [t
1

]
= θ1t+ θ0

However, t′ = θ1t + θ0 is not guaranteed to be an integer,
so the value of xt′ must be inferred in this case. This is
completed by linearly interpolating between the two nearest
points. For example, x2.5 does not exist in the original data
signal; so we calculate x′2.5 as the average of x2 and x3. The
temporal transform maps each sample xt to x′t′ = x′θ1t+θ0 .
Although the EEG signal could be stretched, compressed, or
shifted along the temporal axis, the order of the samples is
preserved because the transform is linear.

The magnitude transform aims to exploit amplitude or
offset invariances that could exist in the EEG signal. The
parameter ϕ is used to apply a linear transformation to the
value of each sample (after temporal transformation) and is
shown by the expression,

x̂t′ = ϕ

[
x′t′
1

]
=

[
ϕ1 ϕ0

] [x′t′
1

]
= ϕ1x

′
t′ + ϕ0

This transformation allows the signal to be stretched, com-
pressed, or shifted along the magnitude axis. Overall, the
temporal and magnitude transformations in the STN attempt
to normalize the nonstationary EEG signal. This could im-
prove prediction performance for long-term EEG recordings.

Fig. 2: Logarithm of the absolute value of the short-time
Fourier transform is shown for Dog 5 in the American
Epilepsy Society Prediction Challenge dataset. The same
electrode is shown for the interictal (left) and preictal (right)
data clips.



TABLE I: Summary of the dataset used to evaluate the
proposed seizure prediction model. Clips are 30 seconds long

Subject
Sampling
Frequency

(Hz)

Total
Interictal

Hours

Total # of
Seizures

Oversampling Total # of
Preictal
Clips

Total # of
Interictal

Clips
Time

Step (sec)
Preictal Clips

Generated
Dog 1 200 80 4 0.730 9348 9588 9600
Dog 2 200 83.3 7 1.250 9555 9975 9996
Dog 3 200 240 12 0.730 28044 28764 28800
Dog 4 200 134 17 1.935 14994 16014 16080
Dog 5 200 75 5 0.980 8685 8985 9000

Patient 1 1000 8.3 3 6.333 810 990 1000
Patient 2 1000 7 3 7.916 648 828 840

C. Data Preprocessing

In order to use a two-dimensional CNN for further feature
extraction and classification, the short-time Fourier transform
(STFT) is used to convert the EEG signal into an image-
like matrix with time and frequency axes. First, the EEG
signal is split into 30 second clips. For each clip, the STFT is
computed from 512-point FFTs using a Hann window with
50% overlap. The logarithm of the absolute value of the
STFT is taken as the input feature map to the CNN. This
results in a n × 22 × 257 feature map for the dog EEG at
200 Hz and a n×116×257 feature map for the human EEG
at 1000 Hz, where the dimensions are channels × time ×
frequency. An example of the transformed data for a single
electrode of Dog 5 is shown in Fig. 2.

Additionally, the dataset supplied for the American
Epilepsy Society Prediction Challenge contains much more
interictal data than preictal data for all of the subjects. This is
undesirable as highly imbalanced datasets often lead to poor
performance in classification with a CNN [11]. To overcome
this challenge, the preictal data is oversampled using a sliding
window. The window is set to 30 seconds to match the length
of the original data clips and is shifted across the time axis
of the raw EEG signal. The time step is chosen such that
the total number of preictal data clips after oversampling is
similar to the number of interictal data clips. Table I shows
the sliding window step size and the number of preictal clips
generated for each subject. If the total number of clips is not
equal in the preictal and interictal classes after oversampling,
then clips are randomly removed from the majority class until
they are equal. As seen in Table I, a number of interictal clips
must be removed to balance the classes for all the subjects.

D. Proposed Prediction Model

The architecture of the proposed prediction model is
shown in Fig. 3 (right). The EEG data is transformed by the
STN as described previously. Then the STFT is computed
for the transformed data as input to the CNN. The CNN
consists of three convolution layers and two fully-connected
layers. Each convolution layer contains a convolutional layer
with ReLU activation, a batch normalization layer, and
a max-pooling layer. The number of filters for the three
convolutional layers is 16, 32, and 64 respectively. The first
convolutional layer has filters of size 5×5 with stride 2×2.
The larger stride size acts as an additional downsampling
operation. For the remaining two convolutional layers, filters
of size 3×3 with stride 1×1 are used. All of the max-pooling
layers have size 2×2. After the third max-pooling layer, the

Fig. 3: The architecture for the convolutional neural networks
used for seizure prediction. Convolution layers are annotated
with the filter size, convolution type, and number of filters.
The first convolution layer has stride 1x2x2 in the left model
and stride 2x2 in the right model. Max-pool layers have size
2x2. n refers to the number of channels in the EEG data.
Left: the CNN model from [5] as reference. Output sizes
of each layer are not shown. Right: the proposed model
incorporates a STN in addition to the CNN. The output sizes
shown are for the Dog EEG downsampled to 200 Hz using
short-time Fourier transform with 30s window, 512pt FFT,
and 50% overlap.

features are flattened. The first fully-connected layer has 128
nodes and is followed by a sigmoid activation function. The
second fully-connected layer has 2 nodes and is followed
by a softmax activation function for classification. There are
two dropout layers, each one is placed prior to each fully-
connected layer with 0.5 dropout rate.

Adam optimization is used with learning rate 1e−5, β1
value 0.9, and β2 value 0.999 [12]. Binary cross-entropy is
used as the loss-function. The model is trained for 50 epochs
with early stopping regularization based on the calculated
loss on the validation set. The model is implemented in
Python 3.8.5 with Tensorflow 2.3.0 backend.

In practice, a user should not be notified of an impending



seizure if a single 30 second input results in a preictal
classification. This is because isolated false positives are
common during interictal periods. Thus, in order to mitigate
the effects of isolated false positives, a seizure is predicted
only if k-out-of-n inputs result in a preictal classifictaion.
The proposed prediction model uses k=6 and n=8, meaning
that a seizure is predicted when 180 seconds out of the last
240 seconds result in preictal classification.

After a seizure is predicted, an alarm period starts and
consists of the seizure prediction horizon (SPH) and seizure
occurrence period (SOP). The SPH allows for intervention
before the seizure occurs and is set to 5 minutes as provided
by the American Epilepsy Society Prediction Challenge
dataset. The SOP is the time frame where the seizure is
predicted to occur and is set to 30 minutes. Hence, only
30 minutes of preictal data is used per seizure. Further
predictions are disabled for the 35 minute duration of the
alarm period.

III. EXPERIMENTAL RESULTS

The proposed model was trained and tested on each subject
individually using leave-one-out cross validation. This means
that for a subject with N seizures, we create N folds where
each fold contains preictal data for one seizure. The interictal
data is also partitioned evenly into the N folds. Each fold
is used once as the test set and the remaining N − 1 folds
are used in the training process. The data in the N − 1 folds
are split into 75% for training and 25% for validation. The
loss on the validation data is monitored for early stopping.
Preictal clips that were generated from oversampling are
removed from the test set. The test results are averaged over
three independent runs where the interictal data is randomly
shuffled.

TABLE II: Prediction Performance of the Proposed System

Subject Sensitivity False Predictions
(/hour) AUC

CNN
[5]

STN
+

CNN

CNN
[5]

STN
+

CNN

CNN
[5]

STN
+

CNN
Dog 1 50% 50% 0.19 0.66 - 0.594
Dog 2 100% 100% 0.04 0.20 - 0.956
Dog 3 58.3% 78% 0.14 0.30 - 0.860
Dog 4 78.6% 92% 0.48 0.56 - 0.795
Dog 5 80% 80% 0.08 0.14 - 0.933

Patient 1 100% 78% 0.42 0.24 - 0.710
Patient 2 66.7% 44% 0.86 1.33 - 0.373

Total 75% 82% 0.21 0.38 - 0.746

Table II shows the results of the proposed model in
comparison to the results of a CNN without STN from [5].
The structure of the compared CNN is shown in Fig. 3 (left).
The sensitivity of the proposed model is higher for Dog 3
and Dog 4 at 78% and 92% in comparison to the results
of the CNN at 58.3% and 78.6%, respectively. However, in
the proposed model the sensitivity for Patient 1 and Patient
2 is lower at 78% and 44% compared to the results of the
CNN at 100% and 66.7%, respectively. This suggests that
the use of an STN may not work well on short-term EEG

recordings with few training examples. Overall, the proposed
model achieves an average sensitivity of 82%, an average
false prediction rate of 0.38/hour, an average prediction lead
time of 29 minutes, and an average AUC of 0.746.

IV. CONCLUSION

In this paper, a patient-specific model for seizure predic-
tion using an STN to normalize EEG data before feature
extraction and classification by a CNN has been proposed.
The proposed model achieves an average sensitivity of 82%,
an average false prediction rate of 0.38/hour, an average
prediction lead time of 29 minutes, and an average AUC of
0.746. Prediction performance for subjects with short-term
EEG recordings is poor, suggesting that a STN may not be
effective at exploiting temporal and magnitude invariances
without longer term recordings. More research should be
conducted to determine methods to overcome the challenges
of the nonstationary EEG signal.
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