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Abstract. As the complexity of our food systems increases, they also
become susceptible to unanticipated natural and human-initiated events.
Commodity trade networks are a critical component of our food systems
in ensuring food availability. We develop a generic data-driven framework
to construct realistic agricultural commodity trade networks. Our work
is motivated by the need to study food flows in the context of biological
invasions. These networks are derived by fusing gridded, administrative-
level, and survey datasets on production, trade, and consumption. Fur-
ther, they are periodic temporal networks reflecting seasonal variations
in production and trade of the crop. We apply this approach to create
networks of tomato flow for two regions – Senegal and Nepal. Using statis-
tical methods and network analysis, we gain insights into spatiotemporal
dynamics of production and trade. Our results suggest that agricultural
systems are increasingly vulnerable to attacks through trade of com-
modities due to their vicinity to regions of high demand and seasonal
variations in production and flows.

1 Introduction

1.1 Background and Motivation

With rapid population growth, shrinking farm acreage and intensive agricul-
ture, society has come to critically depend on long distance flows of agricultural
commodities [25]. This phenomenon has led to availability of a variety of com-
modities round the year. However, it has also made our food systems increas-
ingly susceptible to threats such as invasive species [11], food contamination [14],
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extreme weather events [22], and even pandemics like COVID-19 [23]. For exam-
ple, trade networks act as conduits, enabling the rapid dispersal of pests and
pathogens through crops, livestock, packaging, propagating material, etc. In the
US alone, the annual economic impact of biological invasions is estimated to be
over $120B [20]. Therefore, modeling food systems in all their complexity and
understanding their vulnerabilities is critical to ensure food security, biodiversity,
health and economic stability.

As the complexity of the systems that are part of society and everyday life
continues to grow, the need for more models with increasing levels of resolution
and fidelity is continuously growing. Network models, be they simple, hierar-
chical, and/or multi-scale, have become ubiquitous all throughout science and
applications in order to keep up with the demands for analysis, discovery, and
support for policy formation. As is the case with many built infrastructures,
food flows naturally yield to multi-scale network representations [6,15,19,21].
Depending on the problem being studied, nodes of the network represent loca-
tions such as operations, markets, cities, counties, states, or countries, connected
by transportation infrastructure, and edges representing flow (commodity spe-
cific or aggregated). This work focuses on the construction and analysis of real-
istic representations of production, trade, and consumption of agricultural crops
that can be applied to epidemiological processes such as invasive species spread,
food poisoning, and biological warfare. Epidemiological models are being increas-
ingly applied in the context of invasive species spread [4,6,15]. Such models can
inform policy makers on a variety of aspects such as forecasting, causality, inva-
sion source detection, surveillance, interventions, and economic impact.

1.2 Challenges

Inferring or estimating commodity flow networks is a major challenge as there
is hardly any data available on commodity-specific flows. Even if available, the
spatial and temporal resolutions of such datasets are not adequate. For example,
datasets on inter-country commodity-specific trade are available [8] at yearly
resolution. The same holds for production, which is typically available at the
state level for a country. Besides, the availability of data differs by country or
study region, thus posing a hurdle to generalizing the construction framework.
To cope with such challenges, simple models for production and commodity flow
have been used. For example, production systems have been mostly weather
driven, and host crop production can be modeled using simple regression models
with environmental variables as input parameters to sophisticated mechanistic
models. But increasingly, farmers are relying on protected cultivation methods,
and are thus able to extend the cultivation period to offseasons. Distance between
production and consumption area need not be a driver of flows as trade depends
on other factors such as crop type, environment, trade & transport infrastructure
and pricing. Hence, traditional spatial interaction models might not be able
to characterize commodity flows. It is important to incorporate knowledge of
growing periods, whole-sale market locations, fine-resolution estimates of crop
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production, imports, and exports. Fusion of multi-type datasets, misaligned in
space and time and validation are major challenges.

1.3 Contributions

Framework. In this work, we develop a general framework to construct high-
resolution temporal networks that capture the production, trade, and consump-
tion of agricultural crops. The framework is developed in the context of invasive
species spread through multiple pathways, but is generic enough to be applied to
other problems such as mentioned above. We use a number of datasets (at grid-
level, administrative unit-level, and qualitative) including crop production, grow-
ing seasons, market locations, trade, imports and exports, spatial data capturing
human activities, and human population all fused together to obtain multi-scale
networks with node and edge attributes.

Application. The number of biological invasions at global scale is steadily
increasing. The spread of the South American tomato leafminer [2] over the
last 15 years is exemplar of such intercontinental biological invasion events.
The pest has been responsible for devastating tomato crops globally. To study
its spread, we apply our network generation framework to develop temporal
attributed networks representing tomato production and trade for two differ-
ent regions: Senegal (SN), representative of the spread in West Africa and
Nepal (NP), representative of the spread in South and Southeast Asia. The
pest invaded Senegal and Nepal in the last decade, and the has been preparing
for its impending invasion. The dynamics of tomato production widely differ in
these three regions due to climate and trade infrastructure making for an inter-
esting comparison. Secondly, the datasets available for each region vary leading
to different construction approaches and assumptions.

Analysis and Summary of Results. We rigorously analyze the resulting
networks using statistical methods and structural analysis. Using decision trees,
we identify the factors that drive trade in SN network and NP network. We
assess the potential for invasion of high-production areas in a number of ways.
We investigate the relationship between production areas and characteristics of
nearby localities. Analysis of trade flows in conjunction with production shows
that production at source is a primary driver of flow. In many cases, areas with
high amounts of imports not only have high population, but also have reasonably
high production. Such areas are susceptible to invasions.

1.4 Related Works

Datasets on trade of agricultural commodities are seldom available. The United
Nations maintains country-to-country trade data for several commodities: FAO-
STAT [8] and ComTrade [5]. Ercsey-Ravasz et al. [6] construct an international
food trade network using ComTrade by aggregating product codes corresponding
to food and assess the vulnerabilities of the network to attacks. Nath et al. [18]
and Suweis et al. [24] use production and trade data from FAO and demographics
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information to assess the resilience and the reactivity of the coupled population
food system.

Multi-pathway models that include long-distance trade have been applied
in the invasive species literature [4,15,19,26]. Due to lack of commodity flow
data, spatial interaction models such as the gravity model are applied in many
cases [4,15]. Nopsa et al. [19] analyze rail networks of grain transport in the
context of mycotoxin spread. This work is motivated by the challenges faced in
modeling the spread of the South American leafminer [10,15,26].

Here we give some example works from other domains that share features
with the models introduced in this paper. Human contact networks for epi-
demiology have a natural multi-scale organization being composed as a union of
networks constructed over multiple types of locations such as workplaces, school,
stores, and places of worship. The modeling by for example Mistry et al. [16] and
Voigt et al. [27], directly model and calibrate such component networks using
data on contact rates and and contact duration form the person-person con-
tact network. Eubank et al. [7] construct the same type of network but use the
approach of synthetic populations: by fusing demographic data, highly detailed
geo-spatial data on residences, activity locations, and activity sequences derived
from surveys, one can also derive a person-person contact graph. In Barrett et
al. [1], a coupled, network system involving a contact network, a transporta-
tion network, an electrical power network, and a communication network are
constructed for analysis of the National Planning Scenario no. 1.

2 Network Construction Framework

Here, we briefly describe a multi-pathway spread model, of which the seasonal
commodity flow network is a critical component. Spatial spread processes such as
invasive species spread occur at multiple scales through different pathways that
can be broadly categorized as natural spread (self-mediated, wind, water, etc.)
and human-mediated spread (trade of host crops, transportation, etc.) [4,15].
Our multi-pathway model consists of two component graphs defined at dif-
ferent spatial scales. The first component is the self-mediated dispersal path-
way GS(V,E) defined at a grid level. A grid is overlayed on the study region,
and let V denote the set of grid cells. Each cell v is associated with an attribute
vector a(v, t), where t corresponds to a time stamp. Cell attributes can corre-
spond to administrative levels to which the cell belongs to, quantity of host crop
production and consumption, population, climatic variables, number and types
of operations, etc. The spread occurs from one grid cell to its adjacent cells.
The edge set E is defined accordingly using some distance-based neighborhood
criterion such as Moore or Euclidean-distance-based neighborhood. A schematic
for the construction of this graph is provided in Fig. 1 (gray blocks). Specific
construction details are provided in the description of the SN and NP networks.

Let {L1, L2, . . .} denote a collection of nL subsets of V that are mutually
disjoint. Each Li corresponds to a locality vi. Localities represent areas of high
human activity that are relevant to human-mediated spread of the invasive
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species. These include production and consumption areas. Each locality typi-
cally consists of spatially contiguous nodes representing a city or a district for
example. The second component graph corresponds to the inter-locality graph
that captures the locality to locality trade of host crops and its influence on
spread. This graph is denoted by GLD and is defined on the localities. Let VLD

denote the set of all localities. The graph FLD is defined on the locality set L
with each edge directed representing link between two localities. In our case, the
edge weight is directly proportional to the amount of (estimated) flow of the
host crop. A schematic for the construction of this graph is provided in Fig. 1
(blue blocks). Specific construction details are provided in the description of the
SN and NP networks.
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Fig. 1. The pipeline for constructing multi-pathway networks. (Color figure online)

2.1 The Senegal Network (SN)

For each cell, the production was assigned as follows. Spatial Production Allo-
cation Model (MAPSPAM) [28] provides estimates of vegetable production at
a finer grid resolution. This was mapped to the grid cells in our model. For
cell v, let mv denote this value. Even though, this quantity is not representa-
tive of tomato production in the cell, it is indicative of how suitable the cell
is for tomato production. In particular, cells not suitable for any production
can be identified using this quantity. For Senegal, through extensive surveys
seasonal production data at province-level and trade at city and market level
were collected in 2017 [17]. There are three major seasons: cold dry (Novem-
ber to February), hot dry (March to June), and rainy. First, the production
was disaggregated to monthly production by uniformly distributing it to cor-
responding months. Let total tomato production in each department (adminis-
trative unit 2) S be denoted by P (S, t) for month t. For each cell v ∈ S, the
estimated tomato production is given by P (v, t) = P (S, t) × mv/

∑
v′∈S mv′ .

Here, we distribute the production to cells according to weights obtained from
MAPSPAM data. In some states where the production is very low, it is possible
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that ∀v′ ∈ S, mv′ = 0, but P (S, t) �= 0. To avoid such scenarios, initially we add
a small positive constant ε to each mv′ .

For locality construction, we used trade data obtained from survey as the
reference. For most cities we found that mapping each city to the second admin-
istrative unit (referred to as department) was most suitable. However, there are
some cities that are very small compared to the departments they belong to. In
such cases, a circular region with the center corresponding to the coordinates of
the city was chosen as the locality so that the population covered was compa-
rable to the known population of the city. Like production, commodity flow for
each season from locality u to v was divided uniformly over the months corre-
sponding to that season. In Fig. 2, we have visualized the Senegal networks for
the months of January and March in the backdrop of a heatmap of cell-level
tomato production.

Fig. 2. Seasonal tomato flow networks along with production. The edge weights are
proportional to logarithm of the flow volume. In the title, we have the network name
followed by month. In each case, to limit the number of edges displayed, we have applied
a threshold on the edge weight.

2.2 The Nepal Network (NP)

The production and trade data for this network was obtained from Venkatra-
manan et al. [26]. Here, grid and node attributes are created the same way as
in the SN network. Annual tomato production data is provided at the adminis-
trative level 3 (district). Using MAPSPAM and production data, spatial disag-
gregation of the production was performed in the case of Senegal network. For
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temporal disaggregation, we used information about tomato growing seasons.
Unlike Senegal, the period of cultivation of vegetables depends on the region.
Nepal has a unique geography; in a span of 100 kms from south to north, the
elevation increases from near sea level to several thousand meters above sea
level (masl). Accordingly, the country is divided into three regions: Terai (67–
300 masl), Mid Hills (700–3000 masl), and High Hills (>3000 masl). Tomato
production season widely varies across these regions [26]. We used this informa-
tion to uniformly disaggregate the annual production for each cell to monthly
production.

To construct localities, we used major vegetable wholesale markets data.
Since markets belonging to the same district are very close to each other, we
used the districts as localities. For Nepal, trade data is available for only one
market. Therefore, we applied a doubly-constrained gravity model [13,15,26].
The main assumption here is that the trade volume from locality u to v is
driven by production at u, consumption at v, and the distance between them.
For each locality i, let Oi(t) and Ii(t) denote total outflow and total inflow for
month t. The total outflow accounts for amount of production in the locality,
imports and exports, i.e., Oi(t) = production(i, t) + import(i, t) − export(i, t).
Inflow Ii(t) corresponds to estimated consumption, which is modeled as a func-
tion of population and GDP. The flow Fij from locality vi to city vj is given by
Fij(t) = ai(t)bj(t)Oα1

i (t)Ij(t)α2f(dij), where, dij is the time to travel from vi

to vj , and f(·) is the distance deterrence function: d−β
ij exp(−dij/κ), where α1,

α2, β and κ are model parameters. The coefficients ai and bj are computed
through an iterative process such that the total outflow and total inflow at each
node agree with the input values [13]. For distance, we used the Google API [9]
to compute travel time between pairs of localities. In Fig. 2, we have visualized
the NP network for the months of January and September.

3 Network Analysis

Dynamics of Production and Trade in the SN Network. The SN network
spans 331 cells and comprises of 14 localities. We recall that for SN network, the
trade data was available, while for NP, it was estimated using gravity model.
Using decision trees [3], we analyzed the relationship between the flow and node
attributes (production and population) and edge attribute (distance) between
source and target. The results are in Fig. 3. Our analysis indicates that pro-
duction at source is a primary driver of outflows (plots in the first two rows).
There is no evidence of a clear inverse relationship with distance. We notice
some very long distance flows from a high production area to the city capital.
This could also be attributed to the country’s population distribution, which is
concentrated on the west coast. Another important thing to notice is that tar-
get locality production and target population are highly correlated (last row in
the figure) indicating that much of tomato production occurs close to localities
where there is demand.
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Fig. 3. SN network analysis. Here, “from” means source locality, “to” means target
locality, “prod” is production, “pop” is population, “distance” is the distance between
source and target, and “weight” is the commodity flow volume. In the last row, the
heatmaps are for “All” seasons, “cold dry”, “hot dry”, and “rainy”.

Dynamics of Production and Trade in the NP Network. The NP network
spans 274 cells and comprises of 42 localities, three times that of SN network.
This suggests that the role played by commodity trade in the spread process is
much higher in NP than in SN. For the NP network, even though trade flow
information is unavailable, there is some information on commodity flow from
various districts to one of the most important wholesale markets in the capi-
tal city Kathmandu. We used this information to compare our model outputs
for various parameter values (α1, α2, β). The wholesale market data consists of
inflows. To compare with this dataset, we computed the inflows to the Kath-
mandu locality from each locality as well as aggregated inflows from each zone,
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which is a collection of districts). We used Pearson correlation coefficient for
comparison of the two sets of inflows, and analyzed the correlation with respect
to model parameters using decision tree analysis. The results are in Fig. 4. We
note that at the district level, the correlation is very weak, while at the zone
level, it is very strong. This shows that at a coarser spatial resolution the grav-
ity model is matching the reference data. At the district level, it is possible that
the distribution of production to neighboring localities does not match ground-
truth. However, from a spread perspective, this would be adequate enough to
make useful inferences.

Fig. 4. NP network comparison with respect to an independent dataset on wholesale
market data. The first plot corresponds to district level inflows compared with reference
dataset. The second plot corresponds to zone (coarser) level inflows.

Cell-Level Production and Locality Flows. We recall that localities were
chosen based on the level of human activity such as high population and high
production of the crop. Therefore, the choice of localities is not completely depen-
dent on cell-level production. Here, our goal is to analyze if there is any relation-
ship between spatial distribution of cells with high production and characteristics
of localities. The results are in Fig. 5. The first plot endorses the observation that
production is highly concentrated; very few cells cover a majority of the produc-
tion in each country. In SN, around 10% of the cells cover 90% of the production
as Senegal is a semi-arid region with hardly any production in majority of the
areas. In NP, around 30% of the cells cover 90% of the production. For each
cell, we identified the nearest locality. In the second plot, we note that most of
the high-production cells are very close to localities. This is part by design as
high production areas are deliberately chosen as localities. However, as observed
earlier, in many areas of high population, there is also high production. In the
third plot, we note that for many top producing cells, their nearest localities
have significant outflows. This is quite significant in the case of NP, and could
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be attributed to seasonal shift in production. This shows that many cells are
particularly vulnerable to invasions due to imports from other localities.

Fig. 5. Relationship between cell-level production and locality-level flows. In the last
figure, we note that for SN, the plot corresponds to trade data while for NP, it corre-
sponds to the outcome of the gravity model.

4 Conclusion

In this work, we developed a framework for constructing realistic agricultural
commodity flow networks from disparate datasets. We applied it to construct
two domestic tomato trade network in the context of invasive species spread. The
resulting networks exhibit richer spatio-temporal characteristics than revealed
by any individual dataset that was used to construct them. Future directions
include, but are not limited to dynamical analysis of these networks using simu-
lators, constructing networks for other regions of interest and other application
domains (for e.g., economic impact), and novel network analytics to understand
and validate these networks. In this regard, a potential candidate for applying the
developed methods is the region of North America, which has been preparing for
the impending invasion of the South American leafminer. Aggregate vegetable
trade networks [12] and high-resolution gridded production data is available for
this region, which present interesting opportunities as well as unique challenges
for network inference. Our work emphasizes the need for developing representa-
tions that reflect the complexity of the phenomena being studied.
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L.M. (eds.) COMPLEX NETWORKS 2018. SCI, vol. 812, pp. 524–535. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-05411-3 43

19. Nopsa, J.F.H., et al.: Ecological networks in stored grain: key postharvest nodes for
emerging pests, pathogens, and mycotoxins. BioScience 65(10), 985–1002 (2015)

https://informs-sim.org/wsc13papers/includes/files/132.pdf
https://informs-sim.org/wsc13papers/includes/files/132.pdf
http://comtrade.un.org/db/
http://www.fao.org/faostat/en/#data
https://developers.google.com/maps/documentation/distance-matrix/
https://developers.google.com/maps/documentation/distance-matrix/
https://doi.org/10.1108/00070700510589512
https://doi.org/10.1108/00070700510589512
https://doi.org/10.1038/s41467-020-20544-y
https://doi.org/10.1038/s41467-020-20544-y
https://doi.org/10.1007/978-3-030-05411-3_43


Realistic Food Networks 179

20. Pimentel, D., Zuniga, R., Morrison, D.: Update on the environmental and economic
costs associated with alien-invasive species in the united states. Ecol. Econ. 52(3),
273–288 (2005)

21. Robinson, C., Shirazi, A., Liu, M., Dilkina, B.: Network optimization of food flows
in the US. In: 2016 IEEE International Conference on Big Data (Big Data), pp.
2190–2198. IEEE (2016)

22. Rosenzweig, C., Iglesius, A., Yang, X.B., Epstein, P.R., Chivian, E.: Climate change
and extreme weather events-implications for food production, plant diseases, and
pests (2001)

23. Singh, S., Kumar, R., Panchal, R., Tiwari, M.K.: Impact of COVID-19 on logistics
systems and disruptions in food supply chain. Int. J. Prod. Res. 59(7), 1993–2008
(2021)

24. Suweis, S., Carr, J.A., Maritan, A., Rinaldo, A., D’Odorico, P.: Resilience and
reactivity of global food security. Proc. Natl. Acad. Sci. 112(22), 6902–6907 (2015)

25. USDA: Farms and Land in Farms 2017 Summary (2018). https://www.nass.usda.
gov/Publications/Todays Reports/reports/fnlo0218.pdf

26. Venkatramanan, S., et al.: Modeling commodity flow in the context of invasive
species spread: study of Tuta Absoluta in Nepal. Crop Prot. 135, 104736 (2020)

27. Voigt, A., et al.: Containing pandemics through targeted testing of house-
holds. BMC Infect. Dis. 21, 548 (2021). https://bmcinfectdis.biomedcentral.com/
articles/10.1186/s12879-021-06256-8

28. You, L., Wood-Sichra, U., Fritz, S., Guo, Z., See, L., Koo., J.: Spatial Production
Allocation Model (SPAM) 2005 v3.2 (2017). http://mapspam.info

https://www.nass.usda.gov/Publications/Todays_Reports/reports/fnlo0218.pdf
https://www.nass.usda.gov/Publications/Todays_Reports/reports/fnlo0218.pdf
https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-021-06256-8
https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-021-06256-8
http://mapspam.info

	Realistic Commodity Flow Networks to Assess Vulnerability of Food Systems
	1 Introduction
	1.1 Background and Motivation
	1.2 Challenges
	1.3 Contributions
	1.4 Related Works

	2 Network Construction Framework
	2.1 The Senegal Network (SN)
	2.2 The Nepal Network (NP)

	3 Network Analysis
	4 Conclusion
	References




