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ABSTRACT

The deployment of vaccines across the US provides significant defense against serious illness and
death from COVID-19. Over 70% of vaccine-eligible Americans are at least partially vaccinated,
but there are pockets of the population that are under-vaccinated, such as in rural areas and some de-
mographic groups (e.g. age, race, ethnicity). These unvaccinated pockets are extremely susceptible
to the Delta variant, exacerbating the healthcare crisis and increasing the risk of new variants. In this
paper, we describe a data-driven model that provides real-time support to Virginia public health of-
ficials by recommending mobile vaccination site placement in order to target under-vaccinated pop-
ulations. Our strategy uses fine-grained mobility data, along with US Census and vaccination up-
take data, to identify locations that are most likely to be visited by unvaccinated individuals. We
further extend our model to choose locations that maximize vaccine uptake among hesitant groups.
We show that the top recommended sites vary substantially across some demographics, demonstrat-
ing the value of developing customized recommendation models that integrate fine-grained, hetero-
geneous data sources. In addition, we used a statistically equivalent Synthetic Population to study
the effect of combined demographics (eg, people of a particular race and age), which is not possi-
ble using US Census data alone. We validate our recommendations by analyzing the success rates
of deployed vaccine sites, and show that sites placed closer to our recommended areas administered
higher numbers of doses. Our model is the first of its kind to consider evolving mobility patterns in
real-time for suggesting placement strategies customized for different targeted demographic groups.
Our results will be presented at IAAI-22, but given the critical nature of the pandemic, we offer this
extended version of that paper for more timely consideration of our approach and to cover additional
findings.

1 Introduction

As of August 2, 2021, at least 70% of American adults aged 18 and older had received at least one dose of a COVID-
19 vaccine Reuters (2021). However, in many subpopulations, including young people, Black people, people of Latinx
ethnicity, and in rural areas, the vaccination rate runs far below that UCSF (2021); PBS (2021). Strategies have been
devised to address vaccine accessibility — free child care, paid time off for employees, and other financial incentives —
but these measures have not proven effective for these under-vaccinated demographic groups.

In order to increase the rate of vaccination among the under-vaccinated or less vaccine-enthusiastic populations, the
Virginia Department of Health (VDH) has begun deployment of mobile vaccine distribution sites. These mobile units
distribute the one-dose Johnson & Johnson vaccine in order to simplify scheduling and encourage “impulse” vaccina-
tions (i.e., seizing the opportunity to get vaccinated when presented). When VDH started this program, deployment
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was driven primarily by intuition or educated guesses by local public health officials. However, three important factors
were not well-addressed in this deployment strategy: (¢) each demographic group has its own mobility patterns and may
frequent different locations; (i7) mobility patterns have been evolving as the lockdown has eased; and (¢:¢) the locations
for these sites have not been well-publicized. Therefore, a more methodical, real-time deployment plan was needed to
maximize uptake among targeted demographic groups, and to increase responsiveness to dynamic mobility patterns.

The success of mobile site placements depends on (z) the accessibility of these sites for the target populations, (¢%) their
willingness to get vaccinated (acceptance/hesitancy), and (ii7) strategic outreach, or advertisement, of these sites. In
this paper we focus primarily on accessibility and secondarily on acceptance/hesitancy. To address the accessibility
aspect, we propose that areas with high foot traffic from the target demographic groups would be productive locations
to place mobile vaccination units. To this end, we employ a dynamic, data-driven recommendation model, using
heterogeneous data sources, that can recommend locations with high probability of vaccination uptake success in real-
time.

Our model works as follows:

First, it uses aggregated and anonymized mobility data from SafeGraph to identify areas with high mobility concen-
trations and the Census Block Groups (CBGs) that contribute to that traffic. Such data has been used extensively as a
means to study the spread of COVID-19 and to track the degree of compliance with social distancing directives Badr
et al. (2020); Buckee et al. (2020); Warren and Skillman (2020); Wellenius et al. (2020); Chang et al. (2021a); Wang
et al. (2020). The candidate areas are defined as tessellations indexed by Google’s S2 Geometry.

Second, it leverages multiple data sources containing the demographic profile of each CBG to adjust the previously
computed mobility for target demographic groups using a set of equations. Based on this adjusted mobility, it ranks
the tessellations separately for each demographic group.

Third, it is equipped with a module to estimate vaccine acceptance across different demographic groups in order to
refine the previous rankings.

Overall, our model can be described as a rule-based system which consists of a set of rules (equations) used to process
the heterogeneous knowledge graph data sources (SafeGraph + Census data) and takes subsequent actions (recom-
mendations). The model also champions fairness and equity, which are lingering issues in Al. Machine learning mod-
els can suffer from bias, serving certain demographic groups better than others Sweeney et al. (2019), but our model
mitigates this issue by employing the rules after taking into account the racial heterogeneity of CBGs.

To evaluate how our placement strategy compared with actual placements made by public health officials, we review
existing mobile distribution site placements from data provided by VDH and observe how many people were vacci-
nated at these locations. Furthermore, we analyze the robustness of our model for various demographic groups and
different weeks.

In line with the continuing support our group has provided to various local, state, and federal public health authori-
ties since the onset of the pandemic, we presented two prototypes of our model to VDH and received valuable guid-
ance integral to the current implementation and the selection of demographic groups for deployment. Our model has
been operational since the beginning of June 2021, continuously providing real-time placement recommendations. Al-
though we have not received quantifiable data reflecting the effectiveness of these sites, VDH does rely on these rec-
ommendations for mobile vaccination site planning. Francisco Diaz, the Vaccine Administration Support Supervisor
for VDH, has stated that this program allows VDH to identify where vaccines are needed. This improves their ability
to focus their efforts on reaching target demographic groups in locations that are accessible and convenient to them.
His complete statement is available at Diaz (2021).

One of the key aspects where our model outshines complex deep learning models and other location-theory algorithms
is its simplicity. For a safety-critical use case such as ours, policymakers prefer a solution that is transparent and
easy to interpret. Alternatively, location-theory algorithms are often difficult to solve, while deep learning models are
difficult to interpret. Our model alleviates both caveats by incorporating simple rules to generate recommendations
and presenting them in a transparent fashion. From this aspect, our model advocates interpretable Al

In recent times, there have been studies evaluating the effectiveness of different vaccination strategies for different
scenarios Saldana et al. (2021); Chen et al. (2021); Buckner et al. (2021); Jentsch et al. (2021). These studies are
mostly conducted by simulating different scenarios using compartmental models, and although they can tell us who to
vaccinate, the answer to where to vaccinate these individuals is still absent in the literature. Our work is the first of its
kind to develop a data-driven model that considers evolving mobility patterns and finds a real-time placement strategy
that is accessible to different targeted demographic groups.
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The rest of this paper is organized as follows. We describe similar previous works relying on mobility data in Section 2.
In Section 3, we describe the incremental design and implementation of our model to create a ranking of areas for
placement of vaccine distribution sites. The delivery process of these recommended areas to VDH is described in
Section 4, along with other salient insights about the mobility of different demographic groups obtained from our
models and comparisons between our recommended locations and existing sites. Lastly, we explore the utility and
implications of our model in Section 5.

2 Related Work

Mobility and Vaccination A first set of works Saldafia et al. (2021); Chen et al. (2021); Buckner et al. (2021); Jentsch
et al. (2021) simulated different vaccination strategies for various scenarios and studied their effectiveness. Jentsch
et al. (2021) found that if there is a delay in vaccine availability, it is more effective to target individuals with high
social contact instead of focusing on the elderly; Chen et al. (2021) reached similar conclusions, except they compared
between high contact people and essential workers. Saldafia et al. (2021) evaluated the effectiveness of different
vaccination strategies by simulating a meta-population model across several scenarios. Buckner et al. (2021) used a
mathematical model that indicated that the prioritization strategy should vary depending on the objective; for example,
targeting essential workers minimizes infection, but targeting older individuals minimizes the number of deaths. In
terms of vaccination, these works focus mainly on who but not where, whereas in our work we focus on both aspects.

In a separate study using anonymized geospatial mobility data, Huang et al. (2021) developed a method for calculating
the social contact rate of individuals and assessed the future impacts with and without vaccination. They found that,
in the absence of vaccination, it is necessary to strongly enforce physical distancing, and the degree of enforcement
should increase in accordance with the population density in the area. They also assessed the impact of vaccination,
and inferred that in low-density areas vaccination alone can reduce transmission by a fair amount, but in high-density
areas moderate levels of physical distancing are required along with vaccination to achieve the same result.

COVID-19 systems to aid policymakers Similar to how our system is designed to provide data-driven, real-time
support to policymakers, quite a few systems have been developed to aid policymakers during the pandemic. Some
were designed for surveillance purposes, e.g. visualizing infection rates and trends at different spatial resolutions Dong
et al. (2020); Peddireddy et al. (2020); Wissel et al. (2020), identifying anomalous hotspots Hohl et al. (2020), and
informing policymakers about the necessary levels of restriction in a timely fashion Qiu (2021). Another set of systems
was developed to help policymakers observe the effects of different non-pharmaceutical interventions in order to help
them make informed decisions Barrett et al. (2007); Beckman et al. (2014); Chang et al. (2021b).

What sets our work apart is that we are the first to develop an operational system that provides weekly updates to
policymakers regarding placement strategies for mobile vaccine distribution sites across different demographic groups.
Also, unlike other systems which largely focus on surveillance and retrospective analyses, our system provides real-
time support to policymakers for mitigating disease transmission.

3 Methodology

3.1 Datasets
Fine-grained mobility data (SafeGraph)

Mobility data can reveal important information about populations, such as where people are visiting and how this
behavior evolves over time. For our model, we use anonymized and aggregated data from SafeGraph SafeGraph
(2018). It provides detailed information about non-residential locations visited by individuals (e.g. grocery stores,
parks), also referred to as points of interest (POIs). SafeGraph’s Weekly Patterns dataset!, released on Wednesdays
with the data for the previous week (Monday through Sunday), includes weekly estimates of visits from CBGs to these
POIs. The dataset can be naturally viewed as a bipartite graph, as described later in 3.3. For our work here, we focus
on POIs and CBGs in the Commonwealth of Virginia, where visits from 5,293 CBGs to 74,535 POIs were compiled
in the latest release.

However, SafeGraph has some limitations. For instance, it does not cover all POIs or populations (e.g., children).
Furthermore, depending on the number of devices carried by a user, visits may be underreported or overreported. The
GPS signal itself can also be noisy. We describe how we account for some of these limitations in Sections 3.2 and 3.3.

"https://docs.safegraph.com/v4.0/docs/weekly-patterns
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Figure 1: Detailed breakdown of the pipeline of our recommendation model (1a). The pipeline is run weekly on
Wednesdays once Safegraph data is updated with the mobility information about the previous week. Sample HTML
deliverables generated by the model are shown for Danville City for the week of June 21-June 27 for two demographic
groups (1b,1c). The deliverables to VDH are generated by noon on Thursday.

Census Data

Since the SafeGraph dataset does not contain demographic information, we use demographic data from the US Census
American Community Survey (ACS) in conjunction with the visits from the SafeGraph’s CBG-to-POI data to estimate
visits to each POI from each demographic group, or which POIs are frequented by each group. The 2015-2019 release
of the 5-year Census data provides information about the populations of different individual demographic groups (e.g.
Black, Latinx) at the Census Block Group (CBG) level. The data is presented across different files, each containing
information about a set of similar demographic groups. For example, the file cbg_b0I contains populations of different
genders across age groups (e.g. Males of 40 To 44 Years, Females of 40 to 44 years) while the file cbg_b02 contains
the populations of different races (e.g. Black or African American, Asian). The census data comes with a metadata file
called cbg_field_description which contains information about each column across all files and a description about the
information each column provides.

One weakness of the Census data is that it does not allow us to produce populations by combining demographic
groups from different sets, or groups which are present across different files. For example, there is no obvious way to
calculate the population of black males between 40 and 44 years of age from this data. We describe our approach to
obtain information about combined demographic groups in the next section.

Synthetic Populations Data

As discussed earlier, the Census data does not contain information about the populations of combined demographic
groups. To address this problem, we use an approach developed by the Biocomplexity Institute Mortveit et al. (2020)
to create a synthetic population of a given region using US Census data and other sources as a base. The synthetic
population includes detailed information about each synthetic individual, such as age, race, ethnicity, and income.
Given that it is a good representation of the demographic distribution of the actual population, it can be used to address
questions about combined demographic groups.

Our basic approach is to take marginals of demographic group GG; and demographic group G along with Public Use
Microdata Sample (PUMS) data to create a joint distribution using iterative proportional fitting. Individuals can then
be sampled using this joint distribution. A key property of this process is that the marginal distribution of the synthetic
data, as well as the joint distribution, is statistically identical to the given input distributions.

Vaccination Data

Our final dataset, obtained from VDH, contains the number of individuals per census tract who have received vaccine
doses; this data was approved for this study by an Internal Review Board as described in Section 7. However, Safe-
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Graph and ACS Census data are provided at the CBG level. In order to maintain the same level of resolution across
all data sources, we estimate the number of unvaccinated individuals at the CBG level, assuming that the number of
doses in a census tract is distributed proportionately across its underlying CBGs.

3.2 S22 Geometry

Although SafeGraph provides the number of visits to specific POIs, the resolution level is quite dense for calculating
the placement of mobile vaccination sites. Furthermore, the signals picked up for a specific POI do not necessarily
indicate that the device was present in that specific POI at that time of collection due to the noise associated with Global
Positioning Systems (GPS) signals. In order to address these issues, instead of considering individual POIs with high
foot traffic for potential site placement, we identify geographical areas with high foot traffic as described below:

e We divide each county in Virginia into much smaller areas, each of which contains a group of POlIs.
o For each area, we aggregate the foot traffic for all of the POIs in that area, then rank each area inside a region based
on this aggregated foot traffic.

To partition Virginia into regions, we use Google’s S2 geometry?, which divides the world map into nested cells of
decreasing size (LO - L30). Level LO is one cell representing the entire map; it contains 4 L1 cells, each of which
contains 4 L2 cells, each of which contains 4 L3 cells, and so on.

3.3 Placement model

Our data-driven model was guided by two preceding proof-of-concept prototypes. First, a pilot study was conducted
in the Southside Health District of Virginia that recommended mobile vaccination site placement using traditional
location allocation methodologies that minimized driving time, but limited the locations to public sites (e.g. fire houses,
box stores, and schools). We concluded from this study that areas with high foot traffic may be good candidates
for vaccine distribution sites, and, since commercial venues may see higher foot traffic than public sites, it is worth
exploring a more diverse set of POIs.

Building on this information, we developed a second prototype model that recommended a set of L14 cells for each
L8 cell based on the aggregated foot traffic of the POIs within each L14 cell. These results were presented to VDH,
but reconciling the L8s to actual locations required too much overhead for public health officials; thus, VDH requested
that we provide recommendations at the locality (city/county) level. Furthermore, areas with the highest foot traffic
were not necessarily the ones most visited by the under-vaccinated demographic groups, so VDH requested that we
explore recommending areas frequented by specific demographic groups. These recommendations helped us shape
our final model, described below. More detailed information about our previous models can be found in the Appendix
of this paper.

Mobility Network: One input to our placement model is a dynamic mobility network which can be represented as a
bipartite graph G(V, E), where V is the set of nodes and FE is the set of time-varying edges. V' is the union of two
disjoint sets C' = {cy, ...,cp } and P = { Py, ..., P,,}. Here C represents the set of CBGs, and P is the set of POIs in
the dataset. Each edge (c;, p;) is associated with a weight wfj, the number of people from c; visiting p; at time ¢.

Let D = {d1,ds, ...} be a set of demographic groups of interest. Each CBG ¢; is associated with its overall population
N; and the population N, which is specific to demographic group dj, (where di, € D). Each CBG ¢; is also associated
with M;, the number of mobile devices from ¢; captured by SafeGraph. Subsequently, each POI p; is also associated
with a small geographic area denoted by S; and a large region indicated by L;. In our final model described below,
each small geographic area is an L14 cell of Google’s S2 geometry as described in Section 3.2 and each large region
is a county. Therefore, we use these notations for denoting the L.14 cell and county also in subsequent paragraphs.

Our placement model takes the dynamic bipartite graph generated from SafeGraph and a set of demographic groups
of interest, and generates as output a ranked list of areas as potential candidates for setting up mobile vaccination units
within each larger region. This is performed as follows:

o First, we adjust the weights along the edges of the graph to estimate the number of actual visits to each POI to mitigate
the under-reporting issue discussed in 3.1. Due to this issue, the actual number of visits is higher than the reported
number of visits. This issue is addressed by upweighting the visits along each edge as : Ufj = wfj ]\A}

e Second, we adjust the weights for each demographic group dj, by obtaining an apportioned estimate of how many
people of that group from CBG c; visited a POI p;. In other words, we apportion the visit along the edge for a particular

: Atk _ prt NF
demographic dj, as : A;7 = Uy N

>https://s2geometry.io/
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e Third, each area (L14 cell) within a region (county) is ranked based on the apportioned visits to the POIs within
that cell. Let S = {s1, s2, ...} be the set of all distinct areas. Then, we aggregate the apportioned number of visits to
the POIs of a particular L14 cell sz, and calculate its visit count at time t for a particular demographic group dj, as:

I(SLﬂ t, k) = ijeP ZciEC AZC]]'SL (SJ)

where:
1 S, = ST,
1, (S;) =+ 7! .
+(55) {O, otherwise
o Finally, we group each area (L14 cell) S; by their corresponding region (county) L;, then sort by their visit counts.
For each county, the 25 top-ranked areas are reported as candidate sites. The conceptual pipeline for the model is
presented in Figure 1a.

3.4 Demographic Acceptance/Hesitancy

Even if vaccination units are placed in easily accessible locations, some individuals may be unwilling or afraid to get
vaccinated CNN (2021); PBS (2021). We employ a simulation-based approach to infer the hesitancy level of different
demographic groups at the county level; this approach is described in the Appendix of this paper. After the simulation,
for each timestamp ¢, each CBG C; and a demographic group d, we have the population count, number of individuals
who had at least one dose of vaccine Vltd and the estimated number of hesitant individuals as per the calibrated model
HY,. In this section, we describe how we incorporate these values into our model.

Overcoming the hesitancy threshold in areas where vaccine acceptance is low can be a challenge; for this reason,
placing mobile sites in these areas may not be the best strategy for maximizing uptake. However, hesitant people may
be influenced to take the vaccine if they see their peers getting vaccinated (i.e. peer pressure). Therefore, our approach
is to improve accessibility to the vaccine-accepting in areas that may also be frequented by the hesitant. Our method
to update the apportioned value in Step 2 of Section 3.3 using this new dataset is described as follows:

e We still pick locations with high foot traffic (emphasis on the original value of the apportioned visits A} )

e We also give higher priority to areas with greater numbers of unvaccinated individuals.

o If vaccine-hesitant people can be influenced by peer pressure, then we want to lower priority in areas where most of
the unvaccinated are hesitant.

Based on this, we calculate an updated apportioned weight Aﬁj by incorporating hesitancy data from the original

: . toage AL — At ¢ ¢
apportioned weight A;; as: A;; = Aj; * Ry, + Xy
t t t
t _ doi—Via t _ do;—Vig—Hig
where R, = ac, and X}, = i

Here, R!, is the ratio of the unvaccinated individuals to the total population of demographic group d in CBG C; at
time ¢. X/, is the ratio of vaccine-accepting individuals to vaccine-hesitant individuals in the population.

Updating the apportioned weight in this approach ensures that places with high mobility are still given importance
Al ;» priority is reduced for CBGs where a majority of the population is vaccinated R!,, and a good balance between
accepting and hesitant populations is maintained.

3.5 Implementation

In this section, we describe how the pipeline was implemented to support our weekly deliveries to VDH.

Demographic population The demographic profiles for all the CBGs were precomputed using the Census dataset and
stored as separate files in memory. Since these values are effectively static across weeks and will not change until a
new census is conducted, precomputing the profiles was one way to save time during the weekly runs.

Model implementation Due to the large volume of the SafeGraph Weekly Patterns data, SafeGraph issues the reports
for each POI across multiple zipped files without organizing them by location or alphabetically. In order to process
this large volume of data efficiently, the upweight and apportion are done on each separate file in parallel. Moreover,
we filter out the CBGs and POlIs that fall outside of Virginia. Association of the POIs with an L14 cell is also done
during this step.

Afterwards, the output from each parallel job is concatenated into a single dataset, and the visit counts to each POI
are aggregated by their corresponding L.14 cells. Then, we generate a CSV file for each of the demographic groups
containing the S2 identifier of each L14 cell, latitude and longitude of the centroid of that cell, and its visit count. The
L14 cells are ranked based on their visit count for each county.
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For each L14 cell, we also provide two additional pieces of information based on VDH’s feedback. The first is the
day of the week when the L.14 cell had its highest mobility; this required an additional step in the aggregation where
we partitioned the network into the seven days of the week and aggregated them separately for each day. The second
piece of information we provide is the address of the busiest POI within that L.14 cell. For this, we find the POI with
the maximum number of visits by summing the visits during the aggregation step.

Based on guidance from VDH, we are currently delivering recommendations for the target demographic groups Eth-
nicity Latinx (L), Race Black (B), and populations within the ages of 20 to 39 (A1), 20 to 29 (A2), and 30 to 39 (A3).
We also use cumulative vaccination data from VDH to generate recommendations targeting unvaccinated (U) people.
These, along with the population group "Whole population” (W) which considers foot traffic only, means we deliver
recommendations for a total of seven population groups.

Final Output We provide a total of nine CSV files to VDH. The first file contains all L.14 locations in Virginia, along
with their ranks and importance, for all target demographic groups. In a separate file, we provide the top 25 L14
locations per demographic group based on the highest aggregated mobility for each county. The rest of the seven files
each contain the top 25 L14 locations per county for a specific population group.

We also provide seven HTML files, each pertaining to a specific demographic group, which displays the top 25 most
visited L14 cells plotted on a map. For visualization purposes in the HTML, we use the latitude and longitude of the
centroid of the L.14 cell to plot its location, and annotate each site with additional information, including its rank,
the demographic group it targets, and the highest-visited address of that tessellation. In Figure 1b and 1c, we display
sample HTMLs generated by our model for the week of June 21 - June 27; they show recommended locations for the
deployment of mobile vaccination sites in Danville City for two demographic groups. In Figure 2, we show this for
five different demographic groups.

Our model is operationalized to deliver these CSV and HTML files to VDH weekly, which VDH is currently using to
target the 10 health districts with the lowest vaccination rates.

4 Analysis

Rank of visited places

Figure 2: HTML maps for different demographic groups for Danville City for the week of 06-21 to 06-27. The color
of the circles in the map represents the rank of the corresponding area, with lower rank meaning highly visited areas.
Each circle is the centroid of a Level 14 S2 geometry.

4.1 Comparison of model recommendations across demographics and temporality

First, we present comparative analyses across different demographic groups at the state level. Figure 3a tabulates the
number of common recommendations across the top 25 recommended sites in Virginia for pairs of demographic groups
for the week of July 19 - July 25. We observe only two common recommended areas between L and B, indicating
that frequently visited locations by these two demographic groups differ quite a bit. We also find that the locations
frequented by B are quite different compared to those of the other demographic groups, as indicated by the light-colored
cells across the row for B. Therefore, it is worthwhile to consider customized recommendations for different groups.

Analyses performed across each health district also revealed similar differences between B and L, although the degree
is lower than seen at the state-level. We also observe that the recommended areas are similar across different age
groups for many health districts. Further discussion on this can be found in the Appendix.
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Figure 3: Statewide comparison of recommended places across demographics groups for the July 28 delivery.
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Figure 4: Statewide comparison of recommended places across delivery weeks.

Over the course of our weekly deliveries to VDH, we also noticed that recommended sites varied across different
weeks. Figure 4a and 4b show variations for the top 25 recommended areas over a two-month delivery period for
demographic groups W and L, respectively. Interestingly, the recommended areas are largely similar for the four
weeks of June, then again across the four weeks of July. But if we compare any week in June to any week in July, the
recommendations differ significantly. This suggests that mobility patterns changed after June going into the month of
July. The state of emergency mandated by Virginia ended on June 30, and we wondered if this possibly contributed to
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Figure 5: Comparison of recommended places between two base demographic groups and its combined version. The
figure on the left shows the number of areas these groups have in common, and the second figure shows the average
minimum distance (km) between top-ranking areas. We observe that the combined demographic group had more in
common with its race aspect than with its age group in the combined demographic group.

this change in mobility pattern. However, when the analysis was broken down by health district, this monthly similarity
pattern was less noticeable. Detailed discussion on the health district analysis is available in the Appendix.

Because the statewide phenomenon was less observed in the underlying health districts, we compared the recom-
mended areas again from a different perspective. In studying the data, we found that the “different” L.14 cells often
shared a border, suggesting that aggregated foot traffic in those cells came from adjacent POIs. Therefore, instead of
looking at common areas, we examined how far apart highly-ranked areas were relative to each other by calculating
the average minimum distance (AMD) between two sets of areas. When comparing pairs of demographic groups for
one week, the two sets are the top 25 recommended areas for those two groups. Consequently, when comparing deliv-
ery weeks for a particular group, the two sets are the top 25 recommended areas for two different weeks for a particu-
lar group.We calculated AMD by matching each area in one set with its closest area in other set and taking the average
of the haversine distance of the matched areas based on their centroids.

We find that while the monthly pattern is still observable for W (Figure 4c), it is not the case for L (Figure 4d). This
is contrary to the similarity observed in Figure 4a and Figure 4b. Furthermore, the AMD between areas are quite
concentrated for L in Figure 4d while the AMD is high between areas recommended for L and other demographic
groups (Figure 3b). This indicates that while the frequently visited locations by Latinx individuals are comparatively
far away from other demographic groups, the locations themselves visited by Latinx individuals remain relatively close
to each other across different weeks.

4.2 Synthetic Population

In this section, we compare the areas recommended for a combined demographic group with its base demographic
group. Here, we use Race Black and Age 20-29 as the base demographic groups and the combined demographic group
represents black individuals between the ages of 20 to 29. We observe both the number of common areas and the
average minimum distance when we compare the combined demographic group with the base demographic groups.

We can observe that for the combined demographic group, it has more commonality with its base demographic group
of Race Black than Age 20 - 29, both in terms of location of areas (Figure 5b) and number of common areas (Figure 5a).
This tells us an individual’s mobility is dominated more by their race than their age, which is somewhat intuitive given
that we did not see much variation across the sampled age groups.

4.3 Acceptance/Hesitancy

In this section, we analyze the effect of incorporating hesitancy into our model by examining the recommended mobile
site placements for B and L. We refer to our base model as M g and the hesitancy-incorporated model as Mp.

First, we observe the number of common recommendations between the two implementations of the two models M p
and Mp. We compare from the top 1 to the top 100 areas recommended by both models and find there are more
differences across the models between the recommended areas for the group B than group L (left y-axis of Figure 6).


https://doi.org/10.1101/2021.12.15.21267736

medRxiv preprint doi: https://doi.org/10.1101/2021.12.15.21267736; this version posted December 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Data-Driven Real-Time Strategic Placement of Mobile Vaccine Distribution Sites A PREPRINT

80 Commaon areas (B) —e— AMD (B)

Common areas (L) AMD (L) [200

70

60

=
o
=1

Average MinimLTm Distance (km)

w
=}

e

0 20 40 60 80 100
Number of top compared areas

Number of common areas

=}

Figure 6: Comparison between outputs of Mp and M.

For example, M p and My have only two common areas between their recommended top 25 areas for group B, while
there are 17 common areas for L. This indicates that many of the areas recommended by the base model for the
Black race see high percentages of vaccine-hesitant individuals, while this phenomenon is less evident for the Latinx
ethnicity group.

To explore this further, we looked at the AMD of the two sets of recommended areas considering from the top 1 to top
100 areas. We see that the two top areas for B in the two models are highly disparate (right y-axis of Figure 6). For
example, the top recommended area by Mp is in Virginia Beach, which is in the Eastern region of Virginia, whereas,
the top recommended area by My is in Stafford, which is in the Northern part, about 200km from Virginia Beach.

Finally, we visualize the top 100 areas recommended by both models on a map. For B, we see that while many areas
in the southern part of Virginia are recommended by Mp, the areas recommended by My are mostly concentrated
within the Central and Northern parts of Virginia. It is also interesting that My does not recommend any area in
Virginia Beach even within its top 100 recommendations, while the area was recommended highly by Mg (Figure 7).
The model is much less sensitive to the Ethnicity Latinx group, as the map tells us that the recommended areas are
mostly the same in both versions of the model (Figure 7b).

4.4 Validation study

Evaluating the effectiveness of our strategy was a bit involved, since ground truth data indicating which of our recom-
mended areas were used, and how accessible they were to different demographic groups, was not available. However,
VDH provided a list of 147 mobile sites deployed between May 19 and June 30 along with the number of daily doses
administered at those sites.

Using these sites, we conducted a retrospective analysis of the effectiveness of our strategy. We looked at the cor-
roboration of our recommendations with these deployed sites using the recommendations for groups B and L over the
month of June. Specifically, for each deployed site, we looked at our closest recommended area and found that most of
the deployed sites were within 1km of at least one of our recommended areas for both groups (Figure 8a), suggesting
that either our placement strategy affected these sites, or the original selection strategy and our strategy corroborated
each other to some extent.

It is also important to look at how effective these conforming sites were with respect to vaccine administration. For this,
we compared the sites within 1km of at least one of our recommended areas with the remaining sites in terms of doses
administered. We find that, in general, sites close to our recommended areas administered higher numbers of doses on
average to both groups (Figure 8b). This indicates that our recommended areas are indeed more accessible, and it is
probable that using our placement strategy could help policymakers to increase uptake among targeted demographic
groups.
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(b) Ethnicity Latinx.

Figure 7: Heatmaps for areas recommended by Mp and M. The left panel of each image shows a heatmap of the top
100 areas in the state recommended by Mg while the right panel is for Mp.

5 Discussion

In this work, we have devised a data-driven, equity supportive, dynamic, rule-based recommendation model for the
social good that considers evolving mobility patterns to find a real-time placement strategy for making vaccines more
accessible to targeted demographic groups. This model has been operational since early June 2021, and, since then,
we have delivered mobile vaccination recommendations to VDH every week. Our strategy of using mobility data from
SafeGraph to identify locations with high foot traffic, then refining those sites by using data from the US Census,
vaccination data, and modeled vaccine acceptance data to target under-vaccinated communities, has proven effective.
There are some additional takeaways from this experience that are worth noting, however.

First, some target demographic groups are more divergent than others. This variation demonstrates why a targeted
ranking of locations is relevant, and that foot traffic alone may not be an adequate indicator for all cases. We also find
that, depending on the target demographic group, incorporating hesitancy may be a necessary consideration.

Second, trends can appear at the state level that do not carry through to the underlying districts, which underscores the
need to examine details at finer resolutions. Also, we find that while mobility may differ across different demographic
groups, the mobility patterns of a particular demographic group stays comparatively stable over time.

Third, although our research focuses on the Commonwealth of Virginia, this approach can be generalized for any other
US state. SafeGraph and the Census data have coverage across the US, and vaccine acceptance data can be modelled
across the states. The targeted group that may require more work is the unvaccinated; VDH was able to provide
vaccination data to census tract resolution, but county-level data may be the best we can hope for in some states.
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Figure 8: Effectiveness of our placement strategy.

There are some limitations to our work. It was difficult to validate our work against actual vaccination rates at the mo-
bile vaccination sites, as that data was unavailable for most of the state; however, our site recommendations compared
favorably with the sites placed by VDH where data was available. Our model also assumes that people from a given
CBG who frequent these L.14 locations are demographically similar to the population of that CBG; this may not hold
true in all cases. In the future, we want to factor this into our model by taking into consideration that the mobility of
a particular demographic group from a CBG to a POI not only depends on the demographic distribution of the CBG,
but also the category of the POL.
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A Southside Pilot Study

In this section, we describe a baseline study which helped inform the development of our final model.

In this study, we recommended placement of mobile vaccine clinics serving the Black and Latinx populations in the
Southside Health District of Virginia using traditional location-allocation methodologies as provided by commercial
Geographic Information System Mapping (GIS) software. The goal of these analyses was to select a subset of provided
candidate sites that would collectively minimize travel impedance from demand points Tomintz et al. (2015). Given the
flexibility of the mobile vaccine clinics, our candidate facilities included any large commercial or government building,
or parking lot in the district. Specifically, candidate sites included all public schools as provided by the Virginia
Department of Education, box stores, grocers, movie theaters, sporting arenas, and public buildings, including fire
stations, Emergency Medical Services (EMS) stations, libraries, and government centers found in the OpenStreetMap
points-of-interest dataset Haklay et al. (2008). Candidate sites within 500 meters of each other were clustered using
DBScan and reduced to their collective centroids, resulting in 86 unique entries. Households with at least one Black or
Latinx resident served as demand points, and each household was weighted by the number of such residents as based
on data derived from the Biocomplexity Institute’s synthetic population, which includes individual households with
attached demographic data at the street address level Mortveit et al. (2020); this is described in more detail in Section
3.1. Households were clustered using a 200-meter DBScan, and their weights were aggregated, resulting in 12,441
demand points representing 26,906 individuals.

Location allocations were done using Esri ArcGIS Pro 2.8 and the ArcGIS REST API to calculate and minimize drive
times. As the health district is quite rural and there is minimal public transportation, we did not consider alternative
modes of travel. We calculated two solutions of 20 vaccine clinics each, one minimizing population-weighted travel
time, the other maximizing attendance on the assumption that facility utilization would be inversely proportional to
travel time squared. The former, often called the “P-median” problem, is common in healthcare facility placement
Polo et al. (2015); Rahman et al. (2000), while the latter is based on the gravity model of spatial access Wan, Zou, and
Sternberg (2012); Lowe et al. (1996) and has shown application in predicting healthcare-related distance decay Stulz
et al. (2018). The results were submitted for review by domain experts within the district and compared to existing
VDH-selected sites. The results were also used as a baseline for future mobility-based clinic placements.

Through this study, it became evident that areas with high foot traffic could be potential candidates for vaccine distri-
bution sites. However, instead of choosing only a few categories of POIs, it may have been worthwhile to explore a
more diverse set of POI types. Furthermore, variation was seen in the most visited places across different demographic
groups.

B Model with foot traffic only

In this model, we recommend areas based on overall foot traffic to SafeGraph’s POIs without considering demographic
information. This process was as follows:

1. We found all the S2 Geometry L8 cells inside the state of Virginia. These L8 cells were approximately county-
sized and are defined as regions for this model.

2. Subsequently, we divided each L8 cell into its corresponding S2 Geometry L.14 cells. These L14 cells are
defined as areas. These areas usually contained no more than a dozen POlIs.

3. We identified the areas with the most foot traffic for each region by aggregating the sum of the visits to its
underlying POIs.

For each L8 cell and day of the week, we reported the top 10 highest-mobility .14 cells. Let P, represent the set of
POIs located in a given L14 cell I. Then, we computed [’s foot traffic, W}, on a given day ¢ by summing over the total
foot traffic to any POl in P;:

W= > i (1)
pjEP c;eC

To identify the highest-mobility areas for each day of the week, we summed over data for that day from the most
recent three weeks of SafeGraph’s Weekly Patterns data (which were April 26 to May 16, 2021, at the time when we
conducted this part of the study). We chose to only use data from the most recent weeks, since mobility patterns were
rapidly changing due to lifting of COVID-19 restrictions and widespread vaccination.
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Figure 9: Common recommendations in the top 25 recommended sites per health district across different demographic
groups.

C Vaccine Hesitancy Simulation Equations

Tracking vaccine acceptance and hesitancy is not a straightforward endeavor. While surveys may be employed to
measure hesitancy, it is difficult to conduct a timely survey that can accurately assess acceptance among different
demographic groups within a small geographic area. We instead employ a simulation which models vaccine hesitancy
relative to vaccine uptake. For a given population of n individuals, all persons are in one of three states: hesitant H,
accepting A, or vaccinated V. The model dynamics are explained thoroughly below:

Let V; be the number of people within the population who are vaccinated at time ¢, let A; be the number of people in
the population who are accepting of the vaccine at time ¢, and let [{; be the number of people in the population who
are hesitant. For all ¢, V; + A; + H; = n. We make the further assumption that people move between these states in
fixed proportions as follows.
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Figure 10: Common recommendations in the top 25 recommended places per health district across different delivery
dates for W.

Vigr = Vi + oAy @)
n—Hyg
At+1 = At + Xe_ n — (a + T)At (3)
n—Hyg
Ht+1 = Ht + ’TAt — Xe_ n Ht (4)

In other words, people who are accepting of the vaccine become vaccinated at some rate «.. People who are accepting
either become vaccinated at rate «, or become hesitant at rate 7. People who are hesitant become accepting at a rate

n—H
proportional to e~ = . This models “polarization”; where the fewer people who are hesitant, the less likely it is that
the hesitant become accepting.

This simulation is parameterized by «, 7, , and the initial conditions Vj, Ao, Hyp. We can empirically observe Vj
for each county via vaccine administration data. We assume that « (vaccine accessibility) and A (initial acceptance)
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Figure 11: Common recommendations in the top 25 recommended places per health district across different delivery
dates for L.

vary from county to county, whereas the x and 7 are constant across all of Virginia. We find the best simulation by
enumerating a grid of values, and selecting the simulation that best fits the observed vaccine uptake over all ¢ and p.
The parameter space we used is chi, 7 € [0.05,0.8], a € [0.1,0.4], and Aq € [0.3,0.8].

After finding the best parameters, we then calibrate a simulation for each demographic group. The R? value of our
simulation’s vaccine uptake against empirically observed vaccine uptake was 0.94 for Black populations and 0.99 for
Latinx populations across all Virginia counties for the time period considered.
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Figure 12: AMD between the top 25 recommended sites across different demographic groups per health district .

D Analysis

D.1 Comparison of model recommendations by demographics and temporality across health districts

Figure 9 shows the pairwise demographic analyses performed for each health district. The difference in the top 25
recommended sites between the Black race (B) and other demographic groups can again be observed for some health
districts, although the difference is lower compared to the state-level analysis. Additionally, we find that across some
districts, the Latinx ethnicity group (L) also displays this kind of disparity. Another observation is that the top 25
recommended places are largely similar for different age groups across most of the VDH health districts. This is
apparent from the dark 3.X 3 cluster formed in the top left region of the tables for many health districts (e.g. Cumberland
Plateau, Henrico, and Fairfax).
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Figure 13: AMD between the top 25 recommended sites across delivery weeks per health district for W.

Figure 12 shows the same analysis in terms of average minimum distance. We find that across a lot of health districts,
the top recommended areas are different for B than other demographic groups (e.g. Roanoke, West Piedmont). How-
ever, one thing to note is that the AMD values are lower (mostly within 1 KM) than what was observed at the state-level.

Figure 10 shows the analysis across different delivery weeks. A few health districts show the same monthly similarity
pattern for June and July as we saw at the state level (e.g. Henrico), while some health districts show the pattern for only
one month (e.g. Chesterfield, Mount Rogers). Other health districts do not show the same similarity pattern across the
monthly divide. In figure 11, we make the same analysis for L. The monthly pattern diminishes even more. However,
we do see patches of tri-weekly patterns (e.g. Three Rivers, Prince Williams) in some health districts indicating there
is some correlation between the results for the two demographic groups.

Figures 13 and 14 show the analysis across different delivery weeks in terms of AMD. We see that the monthly pattern
is totally absent for Whole Population (W). In fact, the recommended areas are close to each other in most health
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Figure 14: AMD between the top 25 recommended sites across delivery weeks per health district for L.

districts apart from a few exceptions (e.g. Blue Ridge, Piedmont, and Crater). For L, no clear pattern is observed across
most of the health districts, indicating the mobility pattern is quite diverse for this group and depends upon the locality.
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