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ABSTRACT

Second harmonic amplification — a hybridization of optical parametric amplification and second harmonic gen-
eration — is a route to ultra-e�cient parametric amplification. Requiring the simultaneous phase matching
of two parametric wave-mixing processes, it has limited frequency coverage in the collinear geometry in bulk
media. Here we show that noncollinear birefringent phase matching can provide wide frequency tunability of
second harmonic amplification across the near- and mid-infrared in the materials ZnGeP2, CdSiP2, LiNbO3,
��BaB2O4, and KD2PO4 in applications designed for accommodating high-energy picosecond pulses generated
by solid state lasers. We discuss practical limitations including acceptance angle, phase-matching bandwidth,
spatial walk o↵, and parasitic processes.

Keywords: Second harmonic amplification, Noncollinear optical parametric amplification, E�cient picosecond
pulse amplification, Back-conversion suppression, Idler second harmonic generation, Near-infrared generation,
Mid-infrared generation

1. INTRODUCTION

Optical parametric amplification (OPA) is used to extend the frequency range of modern ultrafast laser systems
and is commonly implemented in bulk birefringent media, allowing wide crystal apertures for high peak power and
high average power applications.1–5 However, conventional OPA schemes su↵er from inherently low conversion
e�ciencies due to spatiotemporally inhomogeneous back-conversion.6–8 Two types of approaches have been
proposed, and in a few cases implemented, to combat the problem. One approach is to homogenize the conversion
back-conversion cycle as best as possible, using flattop or conformal profiling techniques.7–12 This is not a
widespread solution due to the di�culty of shaping the pump and seed profiles without incurring significant losses
in the process. Another homogenization method uses the passive pump pulse reshaping caused by spatiotemporal
variations in impedance matching within an enhancement cavity.13,14

The other approach is to use back-conversion suppression.15 Adiabatic frequency conversion,16 which uses the
nonlinear optical analog of rapid adiabatic passage via a swept phase-matching condition, is one such method.
However, while adiabatic frequency conversion can achieve full photon population inversions in the presence of
a strong wave in sum- and di↵erence-frequency generation and four-wave mixing Bragg scattering,17–20 in OPA,
where the aim is to deplete the strong pump wave, there is still a bandwidth-e�ciency trade-o↵.16,21,22 Thus,
while e�ciency gains have been observed in adiabatic OPA processes, the technique is used more widely to
extend bandwidth.23–29

Another method for back-conversion suppression is the use of loss at the idler wavelength to prevent signal-
idler recombination. First proposed and demonstrated using linear loss, the technique has been used to achieve
40% conversion to the signal.30–34 Recently we proposed the fully nonlinear, fully conservative process of second
harmonic amplification (SHA) — a hybridization of OPA and idler second harmonic generation (SHG) — as an
alternative route to achieving ultra-e�cient parametric amplification and frequency conversion by prevention of
signal-idler recombination.35 Though the four-wave system is Hermitian (closed and loss-free), it possesses the
dynamics of a non-Hermitian system due to the idler SHG process mimicking photon loss to a heat bath, with
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(a) (b)
Figure 1: Second Harmonic Amplification. (a) SHA Photon Exchange Diagram. In OPA, photons at the pump
frequency are annihilated when interacting with the nonlinear crystal’s polarization field, creating equal photon
numbers at the signal and idler frequencies. Simultaneously, in the SHG process pairs of photons from the idler
field are annihilated while generating photons at double the idler’s frequency. (b) SHA Schematic. A strong
pump and weak signal are input to a second order nonlinear crystal and through SHA the signal and idler’s
second harmonic are amplified.

unidirectional flow of photons to the idler second harmonic (SH).36 The dynamics of SHA are damped conversion
back-conversion cycles that allow nearly all spatiotemporal coordinates to achieve full pump depletion at the
same crystal length, thus avoiding the inhomogeneous spatiotemporal back-conversion that limits the e�ciency of
most OPA devices. The resulting pump-to-signal conversion e�ciencies of over 50%, with most of the remaining
power in the idler SH wave.35

The energy exchange of SHA is depicted in Fig. 1. As shown, SHA requires the simultaneous phase matching
of both OPA and SHG of the idler beam. In other words, SHA occurs when the phase mismatch of OPA and
idler SHG are both zero:

�kOPA = kp � ks � ki = 0, (1)

and
�kSHG = kiSH � 2ki = 0. (2)

Birefringent phase matching in a collinear geometry and quasi-phase matching of SHA have been investigated
in prior work. In these approaches, the simultaneous phase matching of OPA and idler SHG occurs only at a
specific signal wavelength for any given pump wavelength.35 In this work, we investigate noncollinear SHA in
bulk media to enable broad tunability and high power applications. We note that while a wide body of literature
has investigated hybridized parametric processes,37 including works specifically investigating simultaneous phase
matching of OPA and SHG, e.g.,38–40 here we address the problem in the context of high e�ciency frequency
conversion by SHA and the associated limiting factors of the noncollinear application in bulk materials. We
show that type-I noncollinear birefringent phase matching can be used for wide frequency tuning of SHA across
the near- and mid-infrared in various nonlinear crystals, including ZnGeP2, CdSiP2, LiNbO3, � � BaB2O4,
and KD2PO4. We also discuss practical limitations such as acceptance angle, phase-matching bandwidth, and
gain competition between SHA, conventional OPA, and two parasitic processes. Through its use of low-loss bulk
nonlinear media, noncollinear SHA may provide a general solution for e�cient and tunable amplification with
high-energy picosecond laser beams.

2. NONCOLLINEAR BIREFRINGENT SECOND HARMONIC AMPLIFICATION

It is desirable for an amplifier to be tunable, i.e., to provide flexible choice of signal wavelength for a given pump
wavelength. SHA is not tunable when all beams are collinear. For a fixed set of wavelengths, idler SHG is phase
matched at one crystal orientation and collinear OPA is phase matched at another. If these angles are not the
same, collinear SHA is not possible for that set of wavelengths.

Our proposed route to tunability uses a noncollinear geometry. While noncollinear phase matching is widely
used to extend the phase-matching bandwidth of OPAs to the few-cycle regime,1 in which the angle between
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(a) (b)
Figure 2: (a) Wave-vector diagram for noncollinear SHA. We can either refer to the beams by their propagation
with respect to the optical axis ✓ or by their propagation relative to the pump (↵ for the signal and � for the idler
SH. (b) Illustration of why noncollinear SHA typically has either 0 or 2 solutions for a given set of wavelengths,
allowing for tunability. This diagram sketches the phase matching in a negative uniaxial crystal, so the idler
SH and pump lie on the extraordinary axis. There is only one angle that phase matches idler SHG, so the idler
wave vector is fixed. The signal wave vector has fixed length but can point in any direction (green circle of
possibilities). The pump wave vector varies with angle (blue ellipse), leading to two points where the sum of
idler and signal wave vectors equal the pump’s - that is, where OPA and idler SHG are simultaneously phase
matched, and the process of SHA can occur.

pump and seed beams provides an additional degree of freedom for achieving their group-velocity matching, here
we use the new degree of freedom to satisfy the dual phase matching of OPA and SHG for signal wavelengths
in a given nonlinear medium with a given pump wavelength. The noncollinear geometry is shown in Fig. 2a.
Assuming idler photons are generated with a single polarization, idler SHG is necessarily a type-I process. The
OPA could be either type-I or type-II. In this paper we only consider type-I phase matching in birefringent
uniaxial crystals and find that this o↵ers a wide tuning range. Our diagrams show the case of negative uniaxial
crystals, but can be extended to positive uniaxial crystals.

Figure 2b illustrates how noncollinearity allows for dual phase matching. Idler SHG is phase matched at one
angle for a given signal wavelength, so the magnitude and direction of the idler wave vector are fixed. The signal
wave vector has fixed length, but it can point in any direction in a noncollinear setup. If we superimpose all
possible pump angles, we see that there can be up to two points where simultaneous phase matching of OPA
and idler SHG is possible for a given set of pump and signal wavelengths. In general, noncollinear SHA can have
up to 2 solutions, so we label the solution that has the pump at a smaller ✓ as solution 1.

To visualize the SHA solutions for a fixed pump wavelength, we plot the tuning curves of propagation angle
✓ vs signal wavelength. Figure 3 is the SHA tuning curve in lithium niobate (LiNbO3) pumped at 1030 nm.
Since idler SHG only occurs at one angle for a given wavelength set, we can plot the idler tuning curve (red
line). Any OPA tuning curves that have the idler propagate along this red line are SHA solutions and are also
plotted (solution 1 is solid and 2 is dashed). For this particular case, the only collinear solution is at degeneracy
(�s = �i = 2.06 µm), but with other pump wavelengths or other crystals the tuning curve di↵ers and can have
two collinear solutions. At degeneracy, SHA is equivalent to OPA alone, and there will always be one collinear
solution.

2.1 ANGULAR ACCEPTANCE AND BANDWIDTH TOLERANCE

SHA requires phase matching over the entire bandwidth and angular spread of the beams for both the OPA
and SHG processes for e�cient conversion. Otherwise, some portion of the OPA process will experience back-
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Figure 3: SHA Tuning: Propagation directions ✓ of beams for phase matched SHA in lithium niobate pumped at
1030 nm. In red is the (only) idler tuning curve, and in solid and dashed lines are two possible pump and signal
tuning curves. The di↵erence in direction between the pump (blue) and signal (green) is the signal noncollinear
angle ↵.

conversion, and the problem of spatiotemopral conversion inhomogeneity will persist. We use the heuristic that
SHA occurs most e�ciently when f(�s, ✓p, ✓s) = (�k2

OPA + �k2
SHG)

1/2 is minimized. While previous work
has shown SHA e�ciency depends on the relative signs of �kOPA and �kSHG,35 we find this to be a suitable
condition for optimizing the process. Figure 3 showed all points �s, ✓p, ✓s, and ✓i where f(�s, ✓p, ✓s) = 0. For
perfect phase matching there is a direct relation between signal and idler directions, but the relation is not
obvious for f(�s, ✓p, ✓s) 6= 0. In normal OPA, the idler propagates at an angle that minimizes �kOPA.41 For
SHA, where the first process that occurs is OPA, the idler still appears in the direction that minimizes �kOPA.

To determine the SHA acceptance bandwidth and angular divergence, we plot a surface of constant f(�s, ✓p, ✓s)
superimposed on boxes representing ranges in our parameter space. The length of the box along �s, ✓p, and ✓s

corresponds to the signal bandwidth, pump divergence, and signal divergence respectively. The constant value
of f(�s, ✓p, ✓s) was chosen according to collinear simulations35 as 0.1 mm

�1. Locations where the box protrudes
from the constant surface of f(�s, ✓p, ✓s) violates our phase matching constraint. Figures 4a, 4b, and 4c depict
the surfaces of f(�s, ✓, ↵) = 0.1 mm

�1 and the boxes in parameter space that correspond to di↵erent experi-
mental parameters for SHA in lithium niobate pumped at 1.03 µm with a signal wavelength of about 1.88 µm.
It is desirable for most of the box to lie within the surface, as this implies that a large portion of the beams will
simultaneously have low phase mismatch of OPA and SHG.

There are two possible routes to better phase matching at a given wavelength: decreasing the beam divergences
or decreasing the signal bandwidth. The roughly doubled beam sizes in Fig. 4b result in much more of the
parameter space being phase matched compared to that of Fig. 4a - so we see that the angular-acceptance
constraint strongly favors large beam sizes. Figures 4a and 4c depict parameter-boxes corresponding to beams
of equal size but with bandwidths of 3-ps and 10-ps transform-limited pulses, respectively. The phase matching
is only slightly better for the 10-ps pulse. Though the amplification bandwidth depends on the particular set of
wavelengths and beam sizes, the bandwidth tolerance of SHA is theoretically broad enough to amplify picosecond
pulses.

The relative phase-matching bandwidth can be inferred from the tuning curve: the smaller the slope of all of
the beam propagation angles, the larger the bandwidth that can be phase matched for a given set of propagation
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(a) (b)

(c)
Figure 4: Surfaces of f(�s, ✓, ↵) = 0.1 mm

�1, with superimposed box representing the space of desired beam
parameters. (a) Beam parameters determined by: rp = rs = 2 mm (1/e2 max) and the bandwidth of a ⌧ = 3 ps
pulse (FWHM) at �s = 1.88 µm. (b) Beam parameters determined by: rp = 4 mm, rs = 5 mm and duration
⌧ = 3 ps. (c) Beam parameters determined by: rp = rs = 2 mm and duration ⌧ = 10 ps.

angles. For example, in Fig. 3 we see the phase-matching bandwidth is largest near degeneracy. However, as
we discuss in section 2.3, we must avoid wavelengths too close to degeneracy due to parasitic processes that are
phase matched at degeneracy.

2.2 SPATIAL WALK OFF

In SHA, the usual OPA interaction length limitations due to temporal and spatial walk o↵ are complicated by the
presence of four beams. As usual, temporal walk o↵ is the e↵ect of group-velocity mismatch, which is generally
negligible for picosecond pulses in the sub-centimeter devices considered here. Spatial walk o↵ can occur either
when a beam’s wave vector is not parallel to the pump’s wave vector (noncollinear walk o↵) or when the beam is
polarized along the extraordinary axis and induces Poynting vector walk o↵. The beams’ propagation directions
in SHA (ignoring divergence) are outlined in Table 1 for a negative uniaxial crystal. In conventional OPA, a
”walk o↵ compensating” configuration, where the Poynting vectors of the extraordinarily polarized waves walk
toward the propagation direction of the other waves, can be employed to increase the interaction length. SHA,
however, requires significant interaction between all four beams and the notion of walk o↵ compensation doesn’t
apply. Previous work found, for a specific crystal and set of wavelengths, that an estimate for the maximum
allowable separation of beams in SHA is one tenth of the pump’s radius. Larger separations resulted in back-
conversion oscillations that lowered the conversion e�ciency.35 Generally, we find that beams of a few mm in
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Beam Noncollinear walk o↵ Poynting walk o↵ Total walk o↵

�p 0 by definition ⇢p ⇢p

�s �↵ 0 �↵

�i � 0 �

�iSH � ⇢iSH � + ⇢iSH

Table 1: Contributions to total walk o↵ in SHA with respect to the wave vector of the pump kp in a negative
uniaxial crystal.

(a) (b)
Figure 5: Parasitic processes. (a) Photon exchange diagram of the nonlinear processes signal SHG and DFG
between the idler SH and signal. (b) Phase mismatch of these two parasitic processes calculated for points along
the lithium niobate SHA tuning curve shown in Fig. 3. Note that at degeneracy (when !s = !i), both of these
processes are phase matched for one of the SHA solutions.

radius are not quite large enough to mitigate the e↵ects of spatial walk o↵ for signal noncollinear walk o↵ greater
than ⇠ 4�.

2.3 PARASITIC PROCESSES

There are two other parametric processes that must be accounted for when considering the tuning range of SHA:
signal SHG and di↵erence frequency generation (DFG) between the idler SH and signal. The energy diagram
for these processes is shown in Fig. 5a. It is important to note that both of these processes are perfectly phase
matched at the degenerate SHA solution (when !s = !i), so they are close to being phase matched for wavelengths
near degeneracy. These processes are parasitic because they can introduce oscillations that disturb the damped
oscillatory conversion of SHA leading to back-conversion and lowering conversion e�ciencies. Furthermore, signal
SHG removes energy from the signal that we wish to amplify.

Figure 5b displays the phase mismatch of the parasitic processes for the SHA solutions in lithium niobate
pumped by 1030 nm as shown in Fig. 3. If we consider the minimum acceptable phase mismatch of the parasitic
processes to be 4 mm

�1 (estimated from collinear simulations), then solution 1 is not limited by parasitic DFG or
signal SHG over the wavelength ranges 1.5 - 1.91 µm and 3.135 - 4 µm. Solution 2 (dashed) is largely unimpeded
by these parasitic processes - however, it requires noncollinear angles in excess of ↵ = 4�, which imposes its
limitations through spatial walk o↵, discussed in Sec. 2.2.
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Figure 6: Approximate feasible tuning range in various nonlinear crystals pumped by common high-power
picosecond laser systems. Gray: Conventional OPA tuning range (limited by transparency window for 80%
transmission after 1 cm propagation). Colored by pump wavelength (on top of gray): Feasible SHA tuning
range, accounting for spatial walko↵ (↵ < 4�) and parasitic processes (�ksSHG > 4 mm

�1, �kDFG > 4 mm
�1).

3. FEASIBLE TUNING RANGE

We estimate the portion of the near- to mid-IR that can be amplified with SHA by considering its limitations in
important OPA crystals pumped by various common pump wavelengths. To get an approximate tuning range
of SHA, we exclude solutions that have either large walk o↵ signified by ↵ > 4� or well phase matched parasitic
processes signified by �ksSHG < 4 mm

�1 and �kDFG < 4 mm
�1.

Figure 6 displays the tuning range of SHA superimposed on that of conventional OPA in the nonlinear crystals
ZnGeP2 (ZGP), CdSiP2 (CSP), LiNbO3 (LN), � � BaB2O4 (BBO), and KD2PO4 (DKDP). The displayed
pump wavelengths were chosen based on existing high-power picosecond laser sources: Ho:YLF at 2050 nm,
Nd:YAG at 1064 nm, Yb:YAG at 1030 and 515 nm, and Ti:Sapphire at 800 nm. Some portions of the tuning
range have two viable SHA solutions for a given crystal, pump, and signal wavelength, but the majority only
have one. The figure illustrates that noncollinear SHA is feasible across about 75% of the range from 0.7 - 5
µm. These tuning ranges are estimates based on the analysis above; numerical simulations of the noncollinear
interaction would define them more precisely.

4. CONCLUSIONS AND FUTURE WORK

We have shown that SHA, requiring the simultaneous phase matching of OPA and idler SHG, is widely tunable
with noncollinear birefringent phase matching in uniaxial crystals. After considering constraints imposed by
angular and bandwidth acceptance, spatial walk o↵ and coincidental phase matching of two parasitic processes,
we concluded that noncollinear SHA is feasible across much of the 0.7� 5 µm range when paired with common
high-power picosecond laser systems. This implies that SHA is a possible avenue to tunable, high-e�ciency,
high-energy frequency conversion for many applications.
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[18] Moses, J., Suchowski, H., and Kärtner, F. X., “Fully e�cient adiabatic frequency conversion of broadband

ti: sapphire oscillator pulses,” Opt. Lett. 37(9), 1589–1591 (2012).
[19] Bahar, E., Ding, X., Dahan, A., Suchowski, H., and Moses, J., “Adiabatic four-wave mixing frequency

conversion,” Opt. Express 26(20), 25582–25601 (2018).
[20] Ding, X., Heberle, D., Harrington, K., Flemens, N., Chang, W.-Z., Birks, T. A., and Moses, J., “Observation

of rapid adiabatic passage in optical four-wave mixing,” Phys. Rev. Lett. 124, 153902 (Apr 2020).
[21] Phillips, C. R. and Fejer, M. M., “E�ciency and phase of optical parametric amplification in chirped

quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (Sep 2010).

3URF��RI�63,(�9RO���������������*��
'RZQORDGHG�)URP��KWWSV���ZZZ�VSLHGLJLWDOOLEUDU\�RUJ�FRQIHUHQFH�SURFHHGLQJV�RI�VSLH�RQ����0D\�����
7HUPV�RI�8VH��KWWSV���ZZZ�VSLHGLJLWDOOLEUDU\�RUJ�WHUPV�RI�XVH



[22] Porat, G. and Arie, A., “E�cient, broadband, and robust frequency conversion by fully nonlinear adiabatic
three-wave mixing,” J. Opt. Soc. Am. B 30(5), 1342–1351 (2013).

[23] Charbonneau-Lefort, M., Afeyan, B., and Fejer, M. M., “Optical parametric amplifiers using chirped quasi-
phase-matching gratings i: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (Apr 2008).

[24] Heese, C., Phillips, C. R., Gallmann, L., Fejer, M. M., and Keller, U., “Ultrabroadband, highly flexible
amplifier for ultrashort midinfrared laser pulses based on aperiodically poled mg:linbo3,” Opt. Lett. 35,
2340–2342 (Jul 2010).

[25] Heese, C., Phillips, C. R., Mayer, B. W., Gallmann, L., Fejer, M. M., and Keller, U., “75 mw few-cycle
mid-infrared pulses from a collinear apodized appln-based opcpa,” Opt. Express 20, 26888–26894 (Nov
2012).

[26] Mayer, B. W., Phillips, C. R., Gallmann, L., and Keller, U., “Mid-infrared pulse generation via achromatic
quasi-phase-matched opcpa,” Opt Express 22, 20798–20808 (2014).

[27] Markov, A., Mazhorova, A., Breitenborn, H., Bruhacs, A., Clerici, M., Modotto, D., Jedrkiewicz, O.,
di Trapani, P., Major, A., Vidal, F., and Morandotti, R., “Broadband and e�cient adiabatic three-wave-
mixing in a temperature-controlled bulk crystal,” Opt. Express 26, 4448–4458 (Feb 2018).

[28] Rozenberg, E. and Arie, A., “Broadband and robust adiabatic second-harmonic generation by a temperature
gradient in birefringently phase-matched lithium triborate crystal,” Opt. Lett. 44, 3358–3361 (Jul 2019).

[29] Margules, P., Moses, J., Suchowski, H., and Porat, G., “Ultrafast adiabatic frequency conversion,” Journal

of Physics: Photonics (2021).
[30] Ma, J., Wang, J., Yuan, P., Xie, G., Xiong, K., Tu, Y., Tu, X., Shi, E., Zheng, Y., and Qian, L., “Quasi-

parametric amplification of chirped pulses based on a sm3+-doped yttrium calcium oxyborate crystal,”
Optica 2, 1006–1009 (Nov 2015).

[31] El-Ganainy, R., Dadap, J. I., and Osgood, R. M., “Optical parametric amplification via non-hermitian phase
matching,” Opt. Lett. 40, 5086–5089 (Nov 2015).

[32] Zhong, Q., Ahmed, A., Dadap, J. I., Osgood, R. M., and El-Ganainy, R., “Parametric amplification in
quasi-pt symmetric coupled waveguide structures,” New J. Phys. 18, 125006 (2016).

[33] Ma, J., Wang, J., Zhou, B., Yuan, P., Xie, G., Xiong, K., Zheng, Y., Zhu, H., and Qian, L., “Broadband,
e�cient, and robust quasi-parametric chirped-pulse amplification,” Opt. Express 25, 25149–25164 (Oct
2017).

[34] Yin, Z., Ma, J., Wang, J., Yuan, P., Xie, G., and Qian, L., “Quasi-parametric chirped-pulse amplification
simultaneously enables high peak power and high average power,” IEEE Photonics Journal 11(4), 1–12
(2019).

[35] Flemens, N., Swenson, N., and Moses, J., “Second harmonic amplification,” in [OSA Advanced Photon-

ics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) ], OSA Advanced

Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) , NpM4D.6,
Optical Society of America (2020).

[36] Flemens, N. and Moses, J., “Non-hermitian dynamics mimicked by a fully parametric hybrid nonlinear opti-
cal system,” in [OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC,

SPPCom, SOF) ], OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED,

PSC, SPPCom, SOF) , NpM3E.2, Optical Society of America (2020).
[37] Saltiel, S. M., Sukhorukov, A. A., and Kivshar, Y. S., “Chapter 1 - multistep parametric processes in

nonlinear optics,” Progress in Optics 47, 1–73, Elsevier (2005).
[38] Lee, C.-K., Zhang, J.-Y., Huang, J. Y., and Pan, C.-L., “Generation of femtosecond laser pulses tunable

from 380 nm to 465 nm via cascaded nonlinear optical mixing in a noncollinear optical parametric amplifier
with a type-i phase matched bbo crystal,” Opt. Express 11, 1702–1708 (Jul 2003).
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