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Abstract

Recently several conjectures were made regarding the Fourier spectrum of low-
degree polynomials. We show that these conjectures imply new correlation bounds for
functions related to Majority. Then we prove several new results on correlation bounds
which aim to, but don’t, resolve the conjectures. In particular, we prove several new
results on Majority which are of independent interest and complement Smolensky’s
classic result.

The recent “polarizing random walks” paradigm [CHHL18, CHLT19, CHH20, CGL*20]
constructs new pseudorandom generators against classes of functions with “bounded Fourier
tails.” For a function f:{0,1}" — {—1,1} define

Li(f) = >

SC{1,2,...n}:|S|=k

M= Y s),

SC{1,2,...,n}:|S|=k

i),

where f(S) := E,f(x)xs(z) for yg(x) := (—=1)Zies” is the Fourier transform of f
[O’D14]. These papers construct pseudorandom generators for functions with small Lj or
M, for several settings of parameters.

In an effort to use this framework to improve the state of pseudorandom generators
against low-degree polynomials over Fy = {0,1} [BV10a, Lov09, Vio09b, FSUV13], several
conjectures have been put forth about polynomials. Let p be a degree-d polynomial over F,
in n variables. For f := (—1)? it has been conjectured (see [CHHL18, CHLT19, CGL*20]):

Li(f) < 20Uk V. (1)
Ly(f) < O(d?), (2)
My (f) < 20t)FOKloglogn) Vk < O(logn). (3)

Conjecture (1) would not imply new pseudorandom generators, but would come close
to matching the state-of-the-art using this framework — something which was eventually
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achieved in [CGLT20]. But conjectures (2) and (3) would imply new generators, improving
on long-standing open problems. One interesting feature of this approach is that, unlike the
influential approach by Nisan [Nis91], it is not based on correlation bounds. In particular,
Conjecture (2) is not known to imply such bounds. Still, correlation bounds where shown
to be sufficient for this approach in [CHH™20].

We show that in fact correlation bounds are also necessary. That is, we show that this
approach requires proving new correlation bounds for polynomials. This is new information
about Conjecture (2). Conjecture (3) was shown in [CGL120] to imply new pseudorandom
generators with good dependence on the error, and the latter are known to imply new
correlation bounds for a function in NP [Vio09b]. We give a direct proof of this implication
which yields a function in P (and other parameter improvements). In fact, we show that even
weaker versions of the conjectures, such as My < o(y/n) for polynomials of degree log,n,
already imply new correlation bounds.

Correlation bounds. We say that a function f : {0,1}" — {—1,1} has d-advantage (or
(1—0)-error) (probabilistic) degree d if there is a distribution P on polynomials p : {0,1}" —
{0,1} over Fy of degree d such that for every input x we have P[(—1)7®) = f(x)] > §.
By Yao’s min-max argument [Yao77|, a function f has d-advantage degree d iff for every
distribution D on {0,1}" it has d-advantage degree d under D, meaning there exists a
polynomial p over F, of degree d such that P[(—1)?P) = f(D)] > 4. If f has range {0, 1}
instead of {—1,1} we use the same notation except (—1)”® is replaced simply by P(z).

For two functions f and g from {0,1}" to {—1,1} we define their correlation under a
distribution D by E[f(D)g(D)], which we note equals 2(P[f(D) = g(D)] — 1/2) and so it is
(twice) the distance of 1/2 from the advantage.

Since the classical works by Razborov and Smolensky [Raz87, Smo87] the best-available
explicit probabilistic-degree lower bound for degree d > log, n gives error at best

1/2 = Q(d/v/n) (4)

which holds for the Majority function on n bits. In particular, it is consistent with our
knowledge that every explicit function has (1/2+1/4/n)-advantage degree log, n (while non-
constructively there exist functions which do not even have advantage exponentially close to
1/2 for polynomial degree). For recent progress on functions computable in exponential-time
classes see [Vio.

Proving correlation bounds is a fundamental open problem whose solution stands in the
way of progress on a striking variety of fronts, including: circuit lower bounds, multiparty
communication complexity, and matrix rigidity. For more on this long-standing challenge and
a discussion of the just-mentioned implications, we refer the reader to [Vio09a, Viol7, Vio].

The conjectures imply new correlation bounds. We show that bounds on M} imply
new probabilistic-degree lower bounds for an explicit function hi. We now define h; and
state our results.



Let gi : {0,1}" — Z and hy : {0,1}" — {—1,1} be defined as

(@)= 3 xsla),

Si|S|=k
hy(z) = Sign(gx(z)),

where Sign(i) =1 if ¢ > 0 and —1 otherwise (the value on i = 0 is arbitrary).

Theorem 1. Let F be a distribution on functions from {0,1}" to {—1,1} such that P[F(x) =
hi(z)] > 1/2+€ for every x. Then there is an outcome f of F' such that My(f) > 2e-e%,/ (Z)

To illustrate the theorem, consider first £ = 2, in which case the conclusion becomes
My(f) > Q(en). This means that showing even just Ms(p) < o(y/n) for every degree-d
polynomial requires showing that hs does not have (1/2 + Q(1/4/n))-advantage degree d.
This would improve the tradeoff (4) mentioned above when d > log,n. Conjecture (2)
implies the stronger bound M;(p) < O(d?) for every degree-d polynomial p. This would
mean that hy does not even have (1/2 + cd?/n)-advantage degree d for a constant ¢, a
quadratic improvement on the tradeoff (4). Consider now the case of larger k. Assuming
that hy has (1/2+ €)-advantage degree d, and assuming Conjecture (3) and using the bound
(3) = (n/k)* we obtain

%€ - e—k <%)k/2 < 2. e—k <Z> < 20(dk)+0(kloglogn).

This implies ¢ < 2k((d)+0oglogn)=0.5logx(n/k)) - For k = log, n this yields new correlation
bounds. Indeed, let d := log, n. Then because o(d), loglogn, and log(k) are all o(logn) we
obtain

e < 2—&2(klogn) _ 2—&2(log2 n)

which improves on the tradeoff (4).

Proof. Note that for any function f, by linearity of expectation, we have
Mi(f) = Eo f(z)gr ().
Fix any x and let P[F(x) = hy(z)] be equal to 1/2 4+ €, > 1/2 + . We can write
Ep[F(x)gr(z)] = (1/2 + &) - Sign(ge(2)) - gr(x) + (1/2 — &) - (—Sign(gr(2))) - gr(),
holding even if gi(z) = 0. Note that Sign(gx(z)) - gr(z) = |gx(x)|. Hence
Er[F(z)gi(x)] = (1/2+ €)|ge(@)] + (1/2 — &) (=[gr(z)]) = 2€x|ge(2)] = 2€]gp()].

This gives E, pF(2)gr(z) > E,2€|gix(x)|. In particular, there exists an outcome f such
that

B f(x)gr(2) > 2eBy|gr ()]



There remains to bound E,|gx(z)|. We make use of hypercontractivity from the analysis
of Boolean functions. Because gy is a polynomial of degree k, by Theorem 9.22 in [O’D14]

we have
Ex|ge(2)] > e /Eq|gr(z) .

Now observe that

Elg@P=E S xs@xr@) =E. 3 xS@Tm:(Z),

S,T:|S|=|T|=k S,T:|S|=|T|=k

where @ is symmetric difference. The last equality holds because the terms where S # T
have expectation zero, and the others have expectation one. The result follows. O

A natural question is whether Theorem 1 holds even for functions that correlate with hy
under the uniform distribution. We show that it does not.

Theorem 2. Let n be a power of 2. For any integer s between 0 and \/n/2 there is a function
0,1} — {—1,1} such that P[f(x) = ha(z)] >1/2 + Q(s/v/n) but Ma(f) < O(s?).

To get a sense of the parameters let P[f(z) = ho(z)] = 1/2 + €. Then Ms(f) is only
O(€®n) as opposed to Q(en) in Theorem 1. In particular, if s = O(1) and € = O(1//n) we
get My(f) = O(1) as opposed to Q(y/n) in Theorem 1.

We have shown that understanding the probabilistic degree of the functions h; is also
important for the feasibility of recent approaches to pseudorandom generators against poly-
nomials. We obtain new bounds on the probabilistic degree of the functions hy which however
fall short of resolving whether the correlation bounds in the conclusion of Theorem 1 hold or
not. We begin with studying h; which is essentially the majority function Maj. The results
are of independent interest, and a natural step to tackle hy for larger k. Indeed, below we
use techniques developed for Maj to give new results on hs.

We point out that the probabilistic degree tradeoff of Majority is not known. Given the
tremendous interest in this function, this may come as a surprise. One might be tempted to
think that Smolensky’s tradeoff (4) is tight. We can show that it is indeed tight under the
uniform distribution.

Theorem 3. Majority has (1/2+ Q(d/+/n))-advantage degree d under the uniform distribu-
tion.

Recall this means that there are degree-d polynomials p over Fy such that P,[p(z) =
Maj(z)] > 1/2 + Q(d/+/n), where z is uniform in {0,1}". Such a result was only known for
d=0(1) or d =Q(y/n), see [Vio09a).

However, there are harder distributions. We beat Smolensky’s bound for degree one.
While such polynomials are simple, in light of Theorem 3 this result already requires a
non-uniform distribution.

Theorem 4. Majority does not have (1/2 + ¢/n)-advantage degree one, for some constant
c. This bound s tight up to the value of c.

We now turn to constructions of probabilistic polynomials for majority. This problem is
related to the so-called coin problem, defined next.
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Definition 5. For 6 € [0,1] we denote by Nf the distribution over {0,1}" where the bits
are i.i.d. and each comes up 1 with probability §. We say that a distribution F' on boolean
functions on ¢ bits (1/2 4+ «)-solves the §-coin problem with advantage « if the following is
true:

(1) P[F(Nf) =1] > 1/2 + «; and

(2) P[F(Nf_5)=0]>1/2+ a.

The study of the coin problem for low-degree polynomials goes back to [SV10] (see also the
thesis [Vio06]) and has been the subject of several recent works including [LSS*19, GII*19,
Sri20]. This problem has also been studied in a variety of other models; the terminology
“coin problem” was coined in [BV10b].

However, these works consider large advantage o = Q(1). By contrast, we are interested
in the setting where « is close to 0. We give tight bounds in this setting, showing that with
degree d the best we can do is to boost the bias by d.

Theorem 6. There is a distribution on polynomials of degree O(d) that (1/2+ de)-solves the
(1/2 4 €)-coin problem, whenever de < c for an absolute constant c. Moreover, this is tight
up to the constant in the O(.).

Computing Majority on n bits for odd n can be randomly reduced to solving the (1/2 +
1/n)-coin problem, simply by selecting uniform bits from the input. Hence, Theorem 6
shows that Majority has (1/2 4+ d/n)-advantage degree < O(d). We improve the advantage
to (d?/n), and conjecture that this is tight.

Theorem 7. Magority on n bits, for odd n, has (1/2 + d?/n)-advantage degree < O(d).

Conjecture 8. Theorem 7 is tight. A “hard” distribution can be uniform on the inputs of
Hamming weights n/2 + 271 and n/2 — 271 where d < 2°.

To understand the choice of the hard distribution, recall that symmetric polynomials
of degree d < 2¢ only depend on the weight of the input modulo 2¢ (see Lemma 11). For
example, for £ = 1 symmetric polynomials of degree 1 < 2 only depend on the input weight
modulo 2. The two Hamming weights in the conjecture are congruent modulo 2¢; hence any
symmetric polynomial of degree < 2¢ has correlation zero.

Finally, we turn to he. One can reduce hy to a majority on (g) bits, and then apply
Theorem 7 to obtain advantage 1/2+Q(d?/n?). We improve this to 1/2+Q(d?/n/?), under
a condition on n.

Theorem 9. Let { be the smallest integer such that d < 2°. Suppose that the remainder of
Vn divided by 21190 s not in [0, 2d] U [2°+100 — 24, 2¢+100],
Then hy has (1/2 + d?/n®?)-advantage degree O(d).

This result is not strong enough to disprove Conjecture (2). For that we require advantage
1/2 4+ w(d?*/n).

The rest of the paper is organized as follows. After some preliminaries in Section 1 we
prove the statements in the same order in which we discussed them, except that the proof
of Theorem 2 is in Section 7.



1 Preliminaries

In this section we collect several results which are used in later proofs.
The following lemma shows that the majority of several i.i.d. Bernoulli random variables
increases their bias, even in the regime where the bias is very small to start with.

Lemma 10. PMaj(Nj,,,) = 1] > 1/2 + Q(av/t), whenever ta < ¢ for an absolute
constant c.

We are not aware of a source from which this result can be easily extracted, so we provide
a proof. But Jarostaw Blasiok let us know that this lemma appears as Lemma 8 in [TMB*17].

Proof. We prove P[Maj(Ny ) = 1] -P[Maj(N} 5, ,,) = 0] > Q(ar/t). The former difference
can be written as

t/2
Z <t/2t_|_ i) ((1/2 + a)t/2+i(1/2 — a)t/Q—i —(1/2 - a)t/2+i(1/2 i a)t/z_i) 7
i=1/2

where the sum is for i = 1/2,1+1/2,2+1/2,...,t/2.
Collecting a 2! factor and writing z for 2« this equals

t/2
t ) . ) )
—t t/24+i01 _ \t/2—i _\t/2+44 t/2—i
2 ._21/2 <t/2 N z'> (14 2)"*"(1-2) (1—2)7* (14 2)"*7) .

Further collecting (1 — 2)!/2(1 + 2)%/2 = (1 — 2%)!/? we rewrite it as

e 3 () () -(5)

i=1/2

Note that (132) > 1 and so (if—i)l — (}—;2)2 is positive and increasing with i. Hence for

any s we can bound below the expression by

co-ars () ) () - (5)

Moreover, let us write

1+2\° 1—2\°
. —(1 5 _ (1 — )¢
(1—z) (1—|—z) (1+) ( v)
where © = 2z/(1 — 2z) and y = 2z/(1 + z). We bound below the right-hand side by

ltas—e ¥ >1+as—(1—ys+ (ys)’) = sz +y) —y°s™

We pick s = v/t/100+1/2. The above expression is Q(v/ta) as long as vta = O(st) is
sufficiently small. Morcover, we have

t/2

21 — 2)? 2:: (t/2t+ Z) > Q(1).
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This holds because (1 — 22)¥/2 > Q(1) and the sum of binomial coefficients is also (27)
using Stirling’s approximation to the binomial coefficient. [

We use the following characterization of symmetric polynomials which is Theorem 2.4 in
[BGLO06] and follows from Lucas’ theorem.

Lemma 11. Let f : {0,1}" — {0,1} be a symmetric function that only depends on the
input Hamming weight modulo 2¢. Then f is computable by a symmetric Fy polynomial of
degree < 2¢. Conwersely, any function f : {0,1}" — {0,1} computable by a symmetric Fy
polynomial of degree < 2° only depends on the input Hamming weight modulo 2¢.

Then we need constructions of probabilistic polynomials for symmetric functions, ob-
tained in [AW15]. The bounds in the earlier paper [Sril3] would also suffice for the main
points in this paper. See also [STV19] for a recent characterization.

Lemma 12. [AW15] Let f : {0,1}" — {0,1} be symmetric. Then f has (1 — €)-advantage
degree O(+/nlog(1/e)), for any e.

2 Proof of Theorem 3

The main proof is for odd n. If n is even we can use the polynomial p/(xg, x1,..., 2T, 1) :=
p(zo, 1, ..., Tn—2)(1 — x,_1) where p is the polynomial with the highest correlation v with
majority on input length n — 1. The correlation of p’ with majority is > /2.

We now proceed with the main proof. We can assume without loss of generality that d is
a power of 2 and < 0.1y/n. The polynomial witnessing the correlation will be symmetric. For
a symmetric function f : {0,1}" — {0,1} write f,, : {0,1,...,n} — {0,1} for f(z) = fu(|z|)
where |z| is the Hamming weight of x. The correlation between a symmetric polynomial p
and (—1)M8 can be written as

-n - n w (2 ajw (2
23 (1) com o en.
=0

To construct p we use Lemma 11 for ¢ = logy(2d). That shows that for any f, :
{0,1,...,n} — {0,1} that depends only on the input modulo 2 there is a symmetric poly-
nomial p : {0,1}" — {0, 1} of degree 2¢ such that p,, = f,.

The definition of f, and hence p is as follows. Define Block ¢ to be the 2d integers
2dv + 0,2di + 1,...,2di + 2d — 1. Let ¢* be the smallest 7 such that Block ¢ contains an
integer larger than n/2. Let ¢ be the number of integers less than n/2 in Block i*. (If n 41
is a power of 2 we have t = 0, and below there is no residual chunk.) Define f, to be 1 on
the smallest ¢ inputs, 0 on the next ¢, 0 on the next d — ¢, and finally 1 on the next d — t.
Here’s an example for n = 17,d = 2,t = 1,4* = 2; the last row shows the division in blocks:

weight [0 12 [3[4]5]6[7[8]9f10]11[12]13]14][15]16]17
(Mo |- - - - - - - - -+ ]+ ]+ [+ ]+ ]+ ]+ ]+ ]+
(=P -4+ + -+ -0+ + - -1+ -1+

Note that p,, is by construction anti-symmetric in the sense, different from above, that:
Pw(i) = 1 — py(n —i). The same is true for Maj,. Therefore g(i) := (—1)Pe®(—1)Maju(®
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is symmetric, that is g(i) = g(n — 7). Hence we only need to consider the bigger half of the
Hamming weights. Majority is always 1, and so we can rewrite the correlation as

(n-1)/2

n .
9-n .9, —1\Pul(nt+1)/2+44)
S (st s)

1=0

Enumerate the above binomial coefficients starting from the biggest one for ¢ = 0. The term
(—1)Pw((n+D/249) will be +1 on the first t + (d — t) = d, then —1 on the next d, then again
+1 on the next d, and so on. We group the coefficients in chunks of length 2d; in each chunk
the term is 41 for the first half and —1 for the second half. The number of coefficients is
(n + 1)/2. Hence we have |(n + 1)/4d]| chunks, plus a residual truncated chunk of length
¢ < 2d.

Hence we can write the correlation as follows.

[(n+1)/4d] -1 d—1

2. 9. Z Z((n+1/2+2d2+9> ((n+1)/2—:/2di+j+d>>
oo Z(ﬂ_@) )P tn)/24)

By, say, a Chernoff bound the absolute value of the latter summand +27"--- is at most
27U using that £ < 2d = O(y/n). Now consider the first summand. Because the binomials
are decreasing in size, each difference is positive. Hence we obtain a lower bound if we reduce
the range of 7. We reduce it to |y/n/d]. So the correlation is at least

Lvn/d] d—1 n .
27" 2. — — 9%,
2:; ;<<(n+1)/2+2dz‘+j> ((n+1)/2+2dz’+j+d))

The next lemma bounds below the difference of two such binomial coeflicients.

n/2+s

Lemma 13. For s < 4y/n and d < 0.1y/n we have: 27" <( R (n/2+s+d)) > Q(sd/n%?).

We apply the lemma with s = 1/2 + 2di + j which note is < 1/2+2y/n+ 0.1y/n < 3y/n.
The correlation is at least

lvn/d] d—1 Q(yv/n)
> Q)2+ 2di + §)d/n?) = 279 = N Qkd/nP?) — 2790 > Q(d//n).
i=0 j=0 k=0

To justify the first inequality we use 1/2 + 2di + j > di + 7 and then do the change of
variable & = di + j. For the second we use that the sum of all k£ up to Q(y/n) is Q(n). This
concludes the proof except for the lemma.



Proof of lemma We have

(n/2n+ s) a (n/? fs + d)

n! n!
(n/2+ ) (n/2—s)!  (n/2+s+d)(n/2—s—d)!
n! (n/2—-s)(n/2—s—=1)---(n/2—s—d+1)

:(n/2+s)!(n/2—s)! [ 2+ s+d)(n/2+s+d—1)-(n/2+s+1)]

The ratio inside the square bracket is at most

(n/2 — s)?
(n/2)?

where the last inequality holds because 2sd/n < 1.
The binomial coefficient outside of the square bracket is

. onh(1/2+5/n) on(1-0(s2/n?)) on
(”/2+5> = V8n(1/2 + s/n)(1/2 — sn) ZQ( Vn ) ZQ(%)

Here h is the binary entropy function, and the first inequality can be found as Lemma
17.5.1 in [CTO06]. The second and third inequalities follow from the approximation h(1/2 +
x) > 1 — 42?2, valid for every z, and s = O(y/n).

The lemma follows by combining the two bounds.

= (1-2s/n)t < e 2" <1 —sd/n,

3 Proof of Theorem 4

First let us discuss tightness. To show tightness for odd n we simply output a uniformly
selected bit. For even n this works for all inputs except those of Hamming weight = n/2.
To fix this, we modify the distribution on polynomials to equal 1 with probability 1/n.
On input of weight = n/2 we get the right value with probability 1/n + (1 — 1/n)(1/2) >
1/2 + Q(1/n). On inputs of Hamming weight # n/2 we also get the right value with
probability (1 —1/n)(1/2+1/n) > 1/2+ Q(1/n).

We now move to negative results. First we note that we can reduce the case of even n to
that of odd n: simply append a bit whose value is that of majority on balanced inputs. This
does not change the value of majority, and has negligible effect on the advantage. Hence it
suffices to prove a negative result for even n, and we do so in the rest of this section.

We select as the hard distribution the distribution D which is uniform on inputs of
Hamming weight n/2 + 1 and n/2 — 1. Our goal is to show that for every fixed degree-
one polynomial f we have P[f(D) = Maj(D)| < 1/2+ O(1/n). Using generating functions
we obtain a proof which is nearly calculation-free, requiring only elementary bounds on
binomials. Let m =n/2 and f = z1 + x9 + - - - + x}, for a parameter k. Let

b(n,m, k) = Zk:(_w‘ (’?) (’2‘_’?)

1=0



Note that b(n, m, k)/(}) is the probability that a uniform set of size k has odd intersection
with a fixed set of size m, minus the probability that it has even intersection. By the definition
of D and f one obtains that |P[f(D) = Maj(D)] — 1/2| is at most big-Oh of

a(n,n/2 —1,k) =

/2= 1,k) = b(n,n/2+ 1, k)|.
(%)

Note that we can assume that f has no constant term because we are taking absolute
values in the expression |P[f(D) = Maj(D)] — 1/2|.

First we use generating functions to obtain a closed form for b(n,m, k). Recall the
generating functions (see e.g. [GKP94] for background on this technique)

L+2)" =) <:L> 2,

(1-2)" = Z:: (7;) (—1)i2.
We have _
(1—2)™(1+2)"™ = DOZN (’?) (" ; m) (—1)i27 = ; b(n, m, k)2*

If m =n/2 —t the left-hand side can be written as
(1 . Z)n/Q—t(l + Z)n/Q—t(l + Z)2t
:(1 o ZQ)TL/Q—t(1 + Z)Qt
2—1\ o
_Z (n/ > 22(1+2)2t.
>0
Similarly, if m = n/2 + ¢ then it can be written as
(1 . Z)n/z—t(l + Z)n/Z—t(l . Z)Zt
2—1\ o
_Z <n/ > 27,(1 _ Z)Qt.
120

Specializing to t = 1 we obtain

> (b(n,n/2 = 1,k) = b(n,n/2 + 1,k))2*

k>0

_ (”/2_1> (1422 = (1-2))

2-1
T e
iZO

=4y (1) ("/ . >22i+1.
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Equating coefficients of z* yields

b(n,n/2 — 1,k) — b(n,n/2 + 1, k) = 4(—1)¢=1/2 ((Z/_2 1—)/12)

if £ is odd, otherwise the left-hand side is zero.

Hence we get
0

if £ is odd, and a = 0 if £ is even.

There remains to bound the right-hand side. First, we can assume that k < n/2 because
replacing k£ with n—k does not change the value of a. If k = 0,1 we readily have a = O(1/n),
using that n is even. Otherwise we can use the bounds

(n/k)" < (Z) < (en/fh)"

to again show o« = O(1/n). We have

(k—1)/2 k k
n k k 1 k
<4 Y o )
“= <(/<—1)) <n) \/;<\/k:—1 ﬁ)
We can conclude by noticing that if & < 100log, n then this is at most poly logn/n'® <
O(1/n), using k > 2; while if k£ > 100log, n using that £k < n/2 and k — 1 > 0.99%k we have

a<O0(1)- (&) < 0(1)(1/0.5/0.99)" < O(1)(3/4)* < 1/n.

4 Proof of Theorem 6

The theorem follows immediately from the following more general lemma, which we will also
use later.

Lemma 14. There is a distribution P on polynomials on s = O(d?) bits of degree O(d) such
that for every e € [-1/2,1/2], e < 1/d, we have P[P(N},, ) = Sign(e)] > 1/2 + Q(de).

Proof. Let P” : {0,1}° — {0,1} be the probabilistic polynomial of degree O(d) from
Theorem 12 which computes Maj on every input with probability 0.99, with input length
s = O(d?) which is assumed to be odd without loss of generality.

We modify P” so that the probability that it makes a mistake on input = only depends on
||z| —n/2|. That is, it is the same on every two inputs of weights n/2+1i and n/2 —i. First,
let P' pick a random permutation of the input bits, and then apply P”. The probability
that P’ makes a mistake only depends on |z|. Second, define P that on input x tosses a
coin, and if it is heads it outputs P’(z), and if it is tails it complements x to obtain —z, runs
P'(—x), and flips the answer. Because Maj(z) = 1 — Maj(—z) on inputs of odd length, the
probability that it makes a mistake on input x only depends on ||z| — n/2|

11



For an input y of Hamming weight ¢, denote

m; = P[P(y) # Maj(y)].

We conclude the proof assuming ¢ > 0. This will cover the case ¢ < 0 as well, since
PIP(N})5_) = 0] = P[P(Nyj,.) = 1].
Let p; :=P[|N] )y, | = i]. We can write

PIP(Nyj1c) = 1] = sz"(l—mz‘)‘f‘ sz"mi

i>s/2 i<s/2

= Z (pi - (L= my) + ps—i - mis—i)
i>s/2

= Z (pi = mi(pi — Ps—i)) -
i>s/2

Where the last equality holds because by construction m; = m,,_; for every .
Because € > 0 and ¢ > s/2, the factor (p; — ps—;) is positive. Hence we bound the sum
below if we replace m; with its maximum value 0.01, obtaining

> (0= 0.01(p; = pes)) = PMaj(N7 ) = 1](1 = 0.01) +0.01 - PMaj(N7 5,..) = 0].

i>s/2

Writing P[Maj(N?

1/2+€

) = 0] = 1 — P[Maj(N?

©/21¢) = 1] this becomes

P[Maj(N;/,.) = 1](1 = 2-0.01) + 0.01.
By Lemma 10, P[Maj(Ny/5, ) = 1] > 1/2+ Q(de). Hence we conclude

P[P(N})pr) = 1] > (1/2 4 Q(de))(1 — 2 0.01) 4+ 0.01 = 1/2 + Q(de).
]

At first sight, it may seem suspicious that we can tolerate constant error in the polyno-
mials for majority. Some intuition why this might be OK follows. If P[P(N}, ) = 1] is
close to 1, constant error won’t bother us, since we are only aiming for advantage close to
1/2. On the other hand, if that probability is close to 1/2, the loss will recouped thanks to
the symmetrization. That is, mistakes will be made on N} o with the same probability,
boosting the correctness.

To prove that this result is tight, suppose there is a distribution on degree-d polynomials
that solves the (1/2 + ¢)-coin problem with advantage 1/2 + «. If we sample O(1/a)? times
independently these polynomials, and compute the majority, a Chernoff bound shows that
we obtain advantage 0.99. By Lemma 12 the majority computation can be done with error
1/100 by a probabilistic polynomial of degree O(1/«). Composing this with the degree-d
polynomial we obtain a probabilistic polynomial of degree O(d/«a)) which solves the (1/24¢)-
coin problem with advantage 0.98. By averaging we can fix the polynomial and still maintain
advantage 0.96. Now we can appeal to a result proved in [L.SST19] which shows that any
such polynomial has degree Q(1/e). Hence, d/a > Q(1/€). In other words, o < O(de), as
desired.
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5 Proof of Theorem 7

By Yao’s argument mentioned in the introduction, it suffices to show that for every distribu-
tion Z on {0,1}" there exists a polynomial which computes Maj correctly with probability
1/2 4+ Q(d?/n) over Z. By averaging, it suffices to give, for any Z, a distribution P = P(Z)
on polynomials that computes Maj correctly with the same probability over both the input
drawn from Z and P. Our polynomials will depend only on the Hamming weight |Z| of Z.

Case: P[||Z] —n/2| > d] > 0.01. Let M : {0, 1}O(d2) — {0, 1} be the probabilistic poly-

nomial of degree O(d) from Lemma 14. Define P(x) to compute M on an odd number

s 1= O(d?) bits y selected uniformly at random from z. We first analyze the performance of

this polynomial on any fixed input z of Hamming weight w = n(1/2 4 ¢€). Note that y has

the distribution N7y,
We have

P[P(x) = Maj(z)] = PM(N,..) = Sign(6)] > 1/2 + Q(de),

By Lemma 14.

Now we use the assumption on Z. With probability (1), we have |e| > d/n, in which
case the probability is > 1/2 + Q(d?/n). In every other case, the probability is at least 1/2.
Overall, P[P(Z) = Maj(Z)] > 1/2+ Q(d?/n), concluding this case.

Case: P[||Z]| —n/2| <d] >0.99. Let P be the polynomial of degree O(d) from Lemma 11
that computes Maj on every input whose Hamming weight w has distance < d from n/2. In
this case, we have P[P(Z) = Maj(Z)] > P[||Z] — n/2| < d] > 0.99.

6 Proof of Theorem 9

As in the proof of Theorem 7, it suffices to show that for every distribution Z on {0,1}"
there exists a distribution on polynomials which computes hy well over Z. Our polynomials
will again depend only on the Hamming weight |Z| of Z.
From the definition of g, we have that on inputs z with n/2 + ¢ zeroes and n/2 — t ones
we have
go(z) = 2t* — n/2.
As a function of ¢, this is a parabola which roots at t = +1/n/4 = +n - r where r :=

1/v4n. Let L := [-nr —d, —nr + d|(Z and R := [nr — d,nr + d]()Z be the integers at
distance < d from either root.

Case: P[|Z] —n/2 € LIJR|] > 0.99. In this case we use polynomials of degree O(d) from
Lemma 11 to compute hy correctly on L|J R. This definition is possible if the elements in L
and R arc not congruent modulo 271, That is, we require that for every z,y of absolute
value at most d the values —nr + x and nr + y are not congruent modulo 2719 For this it
suffices that the remainder of 2nr = y/n divided by 24719 is not in [0, 2d]U[2¢+100 —24, 26+100).
given by assumption.
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Case: P[|Z] —n/2 € LUR|] < 0.01. Consider the following process. With probability
1/(1 4 47?) pick two uniform elements from the input and output their XOR; otherwise
output zero. On any input with weight 1/2 + « the probability the process outputs 1 is

2((a=r)*+2r(a—r)) 2(a? —1r?)
1+ 4r2 1+ 4r2

1/242a*  1/242(r4+a—r1)?
[2re = e 1+ 472 /2%

—1/2+

Note € = 0 exactly when a = 7, and € < 0 exactly when « is between these two roots.

Now repeat the process s times to generate Ny Jote and run the polynomial from Lemma
14 on them.

On any input, we compute correctly with probability > 1/2.

Assume now the input weight is not in L|{J R. Let ¢ := 2/(1 + 4r?).

If o] > r +d/n then € > ¢(d?/n* + 2rd/n) = Q(rd/n).

If |a| <r —d/n then € < c(d*/n? — 2rd/n) = —Q(rd/n).

In either case, by Lemma 14 we compute hy correctly with probability 1/24d-Q(rd/n) =
1/2 + Q(d?/n?/?).

7 Proof of Theorem 2

We essentially define f to have correlation zero with hy on every Hamming weight, except
for s Hamming weights where the value of g9 is as small as possible. Let M := {n/2 +
Vn/2,n/24+/n/2—1,...,n/2++/n/2 — s+ 1} and let Z; be the inputs with i zeroes. For
x € Z;and 1 € M let f(x) = ho(z) = —1. For x € Z, let, say, f(x) = 1 and for x € Z, let
f(x) = —1. For any other Z;, divide the inputs in Z; in two equals parts, which is possible
by Lucas’ theorem because n is a power of 2. Let f be 1 on one part and —1 on the other.

Consider E,[f(x)ha(x)]. We have E,[f(z)he(x)|x € Zy U Z,] = 0, and E,[f(z)he(z)|z €
Zil = 0if i ¢ M and i # 0 and i # n, by definition. Otherwise the expectation is 1.
Hence E,[f(x)h(z)] is the probability that x € Z; for some i € M. Assuming s < /n/2 this
probability is > Q(s)-P[r € Z,, /o1 m/2]. The latter probability is (1/y/n) using the standard
bound (, /2 Ny /2) = O(2"/4/n) which can be verified using Stirling’s approximation. Hence
E,[f(@)ha(2)] = Q(s/v/m), and so Pf(z) = ha(a)] = 1/2 + s/ /).

Now consider E,[f(z)g2(x)]. Again, this is zero unless the number of zeroes of z lies in
M. Note that go(x) = 2t*—n/2 on inputs in Z,, /51, The maximum value of |gz(z)| for inputs
with weights in M is for t = \/n/2 — s + 1 which yields value [2(y/n/2 — s+ 1)*> — n/2| =
12(=s + 1) + (=s + 1)/n| < O(s* + sy/n). For s < /n/2 the latter is O(sy/n). The
chance that the number of zeroes of x lies in M is O(s/4/n) as noted before. Hence we get

My(f) < O(sv/n - s/v/n) < O(s?).

Acknowledgment. I am grateful to Chin Ho Lee for pointing out the work [CGL*20] to
me, and to an anonymous reviewer for suggesting the use of hypercontractivity to bound
E|gk(z)| in the proof of Theorem 1 (alternatively one can reason along the lines of the proof
of Theorem 4).

A preliminary version of this paper had Theorem 7 only for d > Q(n'/?), and the de-
gree bound was O(dv/logn). Jarostaw Blasiok pointed out to us how to improve the proof
to obtain Theorem 7. The proof in the preliminary version was similar, but rather than
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performing a case analysis, detected the two cases explicitly with an auxiliary polynomial,
which led to d > Q(n'/3). It also used the polynomials for Maj with polynomially-small
error, as opposed to constant, which led to the extra /logn factor. Following these ideas,
we also improved the results on the coin problem and hs. We are very grateful to Jarostaw
Btasiok for letting us include the improved results!
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