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thickness, and yield strength of the metal sheets were found to in
crease the penetration resistance of the DL-SIPs. However, the spe
cific energy absorption decreased with increasing the foam core 
density and the metal sheet thickness under the impact velocities less 
than 25.0 m/s. While the foam core thickness was determined to only 
marginally affect the specific energy absorption of the DL-SIPs, the 
effect of the foam core thickness on the maximum displacement was 
pronounced. With increasing the core thickness by 50 mm, the 
maximum displacement decreased by 45%. As for the metal sheets, 
increasing the yield strength provided similar specific energy ab
sorptions when the debris did not penetrate through the DL-SIPs. 
When the perforation occurred, however, the specific energy ab
sorption increased by 63% with using the metal sheets that had the 
yield strength of 550 MPa instead of 330 MPa.  

• The impact simulation results were paired with a set of global 
sensitivity analyses to quantify the influence of the main design pa
rameters on the impact response of DL-SIPs. For this purpose, the 
Sobol’s method was employed. The front sheet thickness, density of 
the two foam cores, and yield strength of the metal sheets were 
determined to majorly affect the maximum displacement of the DL- 
SIPs. Their penetration resistance, however, was mainly influenced 
by the front sheet thickness and the yield strength of the metal sheets, 
accounting for a total contribution above 80%. In contrast to the 
maximum displacement and projectile penetration, the specific en
ergy absorption was significantly affected by the middle and back 
sheet thicknesses. This further explained how a double-layer 
configuration helps with resisting the impact-induced loads. 

• For an efficient design of DL-SIPs, a multi-objective design optimi
zation was performed, considering a wide range of design variables 
under three optimization scenarios. In the absence of any closed- 

form solutions, two surrogate models, i.e., RBF network and krig
ing model, were employed to approximate the impact responses. 
Compared to the RBF network, the kriging model was found to better 
approximate the maximum displacement, penetration depth, and 
specific energy absorption. From the MDO results, a thick high- 
strength front sheet in combination with a thick foam core was 
determined to effectively reduce the maximum displacement. On the 
other hand, a thick high-strength front sheet was deemed sufficient 
to reduce the projectile penetration depth. Such wall configurations 
help save on materials (and their associated costs), while ensuring 
that the performance expectations are properly met. 
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Table 2 
Optimal design configurations for MDO I.  

Metal Sheet Properties Foam Core Properties Response Measure 

tF(mm)  tM(mm)  tB(mm)  σst(MPa)  ρ1(kg/ 
m3)  

ρ2(kg/ 
m3)  

tC1(mm)  tC2(mm)  Maximum Displacement 
(mm) 

Specific Energy 
Absorption (J/kg) 

Penetration Depth (mm) 

0.46 0.49 0.41 460.9 20.1 14.0 53.9 73.3 19.4 26.7 133.9 
0.85 0.40 0.40 547.6 16.2 14.0 50.5 50.1 17.6 24.7 27.5 
0.87 0.50 0.41 547.9 18.4 14.0 56.6 54.8 15.5 23.5 21.9 
0.86 0.77 0.44 546.0 18.4 14.0 63.4 73.9 11.9 20.5 20.3 
0.90 0.88 0.99 545.0 25.2 14.3 67.0 74.8 8.6 16.1 20.4  

Table 3 
Optimal design configurations for MDO II.  

Metal Sheet Properties Foam Core Properties Response Measure 

tF(mm)  tM(mm)  tB(mm)  σst(MPa)  ρ1(kg/ 
m3)  

ρ2(kg/ 
m3)  

tC1(mm)  tC2(mm)  Penetration Depth 
(mm) 

Specific Energy Absorption 
(J/kg) 

Maximum Displacement 
(mm) 

0.42 0.40 0.40 457.8 14.0 14.0 50.1 50.2 130.2 28.6 28.1 
0.43 0.40 0.40 526.2 14.0 14.0 50.1 50.1 102.2 27.6 22.7 
0.59 0.40 0.40 548.4 14.0 14.0 50.1 50.2 72.3 26.3 22.5 
0.68 0.40 0.40 548.1 14.0 14.0 50.1 50.2 54.1 25.7 21.2 
0.76 0.40 0.40 547.3 14.0 14.0 50.1 50.1 38.7 25.3 19.3  

Table 4 
Optimal design configurations for MDO III.  

Metal Sheet Properties Foam Core Properties Response Measure 

tF(mm)  tM(mm)  tB(mm)  σst(MPa)  ρ1(kg/ 
m3)  

ρ2(kg/ 
m3)  

tC1(mm)  tC2(mm)  Maximum Displacement 
(mm) 

Penetration Depth 
(mm) 

Specific Energy Absorption 
(J/kg) 

0.46 0.40 0.40 454.8 15.5 14.1 51.8 51.9 21.5 129.7 28.3 
0.61 0.40 0.41 548.7 14.2 14.0 50.3 51.4 22.2 67.9 26.1 
0.83 0.41 0.40 545.4 18.7 14.2 59.5 50.3 17.0 28.9 24.3 
0.87 0.69 0.41 547.6 16.9 14.1 58.7 72.3 12.7 20.2 21.3 
0.93 0.50 0.65 539.9 104.3 15.3 69.4 73.5 12.1 20.0 16.6  
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