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A B S T R A C T   

The success of total joint replacements has led to consistent growth in the use of arthroplasty in progressively 
younger patients. However, more than 10 percent of patients require revision surgeries due to implant failure 
caused by osteolytic loosening. These failures are classified as either aseptic or septic and are associated with the 
presence of particulate wear debris generated by mechanical action between implant components. Aseptic 
loosening results from chronic inflammation caused by activation of resident immune cells in contact with 
implant wear debris. In contrast, septic loosening is defined by the presence of chronic infection at the implant 
site. However, recent findings suggest that subclinical biofilms may be overlooked when evaluating the cause of 
implant failure, leading to a misdiagnosis of aseptic loosening. Many of the inflammatory pathways contributing 
to periprosthetic joint infections are also involved in bone remodeling and resorption. In particular, wear debris 
is increasingly implicated in the inhibition of the innate and adaptive immune response to resolve an infection or 
prevent hematogenous spread. This review examines the interconnectivity of wear particle- and infection- 
associated mechanisms of implant loosening, as well as biomaterials-based strategies to combat infection- 
related osteolysis.   

1. Introduction 

Total joint arthroplasty is among the most widely used surgical in
terventions in orthopedics. It is projected that by 2030 there will be 
635,000 total hip replacements and 1.28 million total knee replacements 
annually in the US, with more than 10% requiring revision surgeries due 
to loosening [1]. Over time, mechanical forces and biological in
teractions at the joint generate micro- and nano-scale debris, which can 
initiate localized inflammatory responses mediated by macrophages and 
foreign-body giant cells, resulting in bone resorption (osteolysis) at the 
bone-implant interface. Loosening of implants by osteoclastic resorption 
is a major cause of invasive revision surgeries, and a better under
standing of this process is needed to effectively evaluate arthroplasty 
products, particularly when manufacturers intend to pursue pre-market 
claims regarding the advantages of specific technologies. Adjustments to 
the composition of the implants like crosslinking polyethylene, vitamin 
E enrichment or replacement with novel polymers aim to improve 

patient outcomes by reducing wear. However, no device on the market is 
free of wear debris, and the challenges associated with biological re
sponses to wear debris are ongoing. 

In general, total joint arthroplasty is a successful technique in 
replacing the form and function of hip, knee, shoulder, TMJ, and fingers 
of patients suffering from degenerative diseases such as osteoarthritis. 
Positive clinical outcomes have expanded the scope and indications for 
joint reconstructive surgeries, and the typical patient age for hip and 
knee replacements is now estimated to be less than 65 years [2]. The 
dramatically increasing number of younger patients receiving total joint 
arthroplasty [3] is resulting in higher failure rates in these younger and 
more active populations [4–8]. The most common complication for the 
procedure is chronic inflammation eventually resulting in bone resorp
tion. Long-term implant survival and considerations of hypersensitivity 
and infection risk must be adapted for a changing patient population. 

The complex interplay between innate immune response, adaptive 
immune response, biofilms, and particulates is evolving but currently 
under met in most efforts to understand osteolysis. Importantly, 
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histological analysis of revision surgeries reveals macrophages, foreign- 
body giant cells, T cells and B cells even in tissues that were not pre
sumed infected [9]. Wear-associated inflammation in aseptic and septic 
conditions has been shown recently to be interconnected [10–12]. In 
particular, modulation of the innate and adaptive immune response by 
wear debris can contribute to septic loosening through inhibition of the 
normal response to microbial infection putting patients at greater risk of 
failure. This review summarizes the generation and consequences of 
biomaterial wear debris, and highlights the interaction between par
ticulate wear and biofilms as a contributor to both aseptic and septic 
osteolytic loosening. It also introduces biomaterial strategies for 
reducing infection risk, as a means to prevent implant failure. 

1.1. Implant materials and wear debris 

Total joint arthroplasty devices use low-friction designs pioneered by 
Charnley in the 1960s for hip replacements [13]. These devices are 
typically comprised of a metal femoral shaft fitted with a ball made of 
metal (e.g. Co–Cr, Co–Ti, Ti6Al4V, SS) or ceramic (alumina or zirconia) 
[14], which articulates against an acetabular cup made of metal 
(Co–Cr), ceramic (alumina, zirconia), or polymer (ultra-high molecular 
weight polyethylene [UHMWPE]) implanted in the pelvic bone or femur 
using bone cement (polymethyl methacrylate [PMMA]). A popular early 
hip replacement model consisted of an UHMWPE cup and Co–Cr head, 
but particles generated by chronic wear of the UHMWPE has motivated 
the use of alternative materials and designs. 

Approximately 35% of total hip arthroplasties performed in the US in 
2005 used metal-on-metal (MoM) configurations [15]. MoM implants 
and less invasive resurfacing techniques were considered promising al
ternatives for active, younger patients seeking to resume high-impact 
activity [16]. MoM devices are mechanically strong with hard surfaces 
and the larger metallic heads provide great stability and range of motion 
[17,18] while generating less volumetric wear compared to their 
metal-on-polymer (MoP) counterparts. Co–Cr alloy has a linear wear 
rate of 0.1 μm per year (106 cycles) and 316 L stainless steel and 
Ti–6Al–4V releases 0.2 μm and 1 μm of wear per year (106 cycles), 
respectively [19]. While the mechanical properties of MoM joint re
placements are ideal for short term activity, they have a significantly 
higher rate of osteolysis when compared to MoP or ceramic-on-ceramic 
(CoC) [20]. The wear debris from MoM are smaller, more numerous 
[21], and readily phagocytosed by host immune cells [22]. Metal ions 
leeched from metal wear cause metal hypersensitivities [23] and ion 
concentration in blood serum continues to increase up to 10 years after 
surgery [24]. Additional risks from metal wear including pseudotumor 
formation [25] and aseptic lymphocyte-dominated vasculitis-associated 
lesion (ALVAL) [26] contributed to a decline in popularity. In light of 
these complications, no MoM hip replacements have been approved by 
the FDA for use in the US since 2016. 

For decades, conventional UHMWPE has been the predominant 
material of choice in total joint arthroplasty devices because of its 
biocompatibility, low cost, low coefficient of friction and high 
compressive and impact strength. However, UHMWPE generates rela
tively large amounts of volumetric wear when interfacing with the hard 
metallic head of implants. Carbon crosslinking methods such as gamma 
ray irradiation, chemical induction, and silane induction were imple
mented to increase resistance to wear [27] and has become the new 
standard. Irradiated polyethylene is subjected to thermal stabilization 
and vitamin E enrichment to increase oxidation resistance and remove 
free radicals that could cause surface delamination [28,29]. Pseudo 
capsular histological samples of revision surgeries show highly cross
linked UHMWPE wear is 26% smaller in diameter and results in a >90% 
reduction of wear volume compared to conventional polyethylene [30]. 
The size of UHMWPE particles can vary depending on the wear mech
anism, ranging from large particles from adhesive wear to smaller par
ticles from fragmentation of larger particles or exfoliation from the 
surface [19]. Wear from acetabular hip devices over an average 
12.8-year lifespan generates an average of 785 mm3 total volumetric 
wear (59.6 mm3/year), including an average of 5.68 ± 2.16 × 1012 

particles (4.31 ± 1.52 × 1011/year), or approximately 1.3 × 1010 wear 
particles per mg of PE [31]. 

Numerous causes for aseptic loosening have been proposed, which 
can be broadly categorized into mechanical and/or biological responses 
that ultimately lead to fibrous soft tissue formation and osteolysis. 
Various histological studies of aseptic loosening sites have indicated the 
presence of wear particles from implant components, consisting of metal 
and polymer particles with sizes ranging from submicron to several 
hundred microns [19,30,32,33]. Corresponding immunohistochemical 
studies have shown the presence of macrophages and inflammatory 
mediators at the site [33]. The phagocytic uptake of wear particles by 
resident macrophages and the subsequent release of cytokines result in 
chronic bone resorption or osteolysis around the implant by decreasing 
local bone formation and increasing osteoclastic activity. By definition, 
aseptic loosening occurs without the presence of clinical or microbio
logical evidence of infection. However, numerous in vitro and in vivo 
studies support the concept that bacteria can have a role in aseptic 
loosening [34–36], and therefore, “aseptic loosening” may be a 
misnomer in numerous cases. Though wear particle generation from 
total joint arthroplasty devices is considered inevitable, the degree of 
particle generation is affected by surgical technique contributing to poor 
alignment, inadequate fixation, and mechanical instability reducing the 
lifetime of the device [37], and the effects of these particles may be 
accelerated by infection. 

1.2. Biofilm formation on implants 

Septic loosening from biofilm-related infections is another major 
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cause of implant failure, and may be more prevalent than previously 
thought. Recent findings suggest that many revision surgeries attributed 
to aseptic loosening are actually septic in nature with the presence of 
subclinical biofilms that are overlooked in standard examinations [35, 
36,38]. Advancements in microbial detection and analysis such as 
metagenomic NGS [39] and combining 16 S rRNA PCR with reverse line 
blot hybridization [35] are more accurate and sensitive compared to 
targeted PCR and can consistently identify a broad range of microor
ganisms that compose biofilms. These biofilms are multicellular colonies 
of bacteria, fungi, and protozoa attached to a surface that are typically 
resistant to the host immune system and antibiotics. Biofilms may be 
attributed to contamination during surgery, but circulating bacteria in 
the bloodstream, known as bacteremia, can cause hematogenous peri
prosthetic joint infections from unrelated infection sites after surgery 
[40]. It is estimated that 60–70% of hospital-acquired infections are 
associated with medical device bacterial biofilms [41]. These infections 
eventually cause septic loosening in 25% of total knee arthroplasty and 
15% of total hip arthroplasty revision surgeries [42]. Large-scale eval
uations of microbial contributions to implant complications are limited, 
but one such study from the UK in 2010 found 44% of knee and hip 
periprosthetic infections were caused by Staphylococcus aureus, making 
it the most endemic microbe. An additional 31% of infections involved 
coagulase-negative staphylococci such as Staphylococcus epidermidis 
[43]. The coagulase-positive characteristic of S. aureus makes it partic
ularly virulent as it can generate a staphylothrombin complex that 
promotes blood clot formation from platelet aggregation through fibrin 
conversion of fibrinogen [44]. Geographic studies of drug resistance and 
biofilm composition suggest variable biofilm development and evolu
tion in different regions [45]. For example, a study from Spain observed 
an increasing trend of multi-drug resistant periprosthetic joint infections 
over the course of 10 years attributed to a 2.9% increase in multi-drug 
resistant gram-negative bacilli [46]. 

Biofilm formation begins when planktonic (free floating) bacteria 
attach to a surface and become sessile, as shown schematically in Fig. 1. 
In the case of septic loosening, the surface they attach to is the fibrous 
capsule that forms around the implant due to the host response [47]. 
Serum proteins adhere to the surface of the implant immediately after 
surgery, initiating a series of events that results in the formation of a 
fibrous capsule [41]. The capsule surface provides an attractive sub
strate of collagen, laminin, fibronectin, elastin, and fibrinogen for 
attachment of bacteria via adhesin proteins on their surface [48]. After 
adherence to a surface, bacteria begin to secrete extracellular polymeric 

substances (EPS) that transform a disconnected population of bacteria 
into a networked and fortified biofilm. The EPS is influenced by the local 
mechanobiology and is composed of polysaccharides, extracellular DNA 
(eDNA), and proteins [49]. The EPS encapsulates the bacterial popula
tion to make a complex interconnected community that functions as a 
single multicellular system. As the population of bacteria changes, they 
demonstrate quorum sensing to regulate gene expression, which allows 
the biofilm to respond to environmental changes as a unit [50]. The 
maturing biofilm is characterized by growth in cell number, increased 
intercellular communication, and coalescing of smaller colonies [51]. As 
the biofilm reaches a critical size and population, the bacterial colony 
exhausts its resources and begins the process of dispersal. Individual 
bacteria or pieces of the biofilm are released from the surface to attach 
elsewhere and propagate the infection. This release is prompted by the 
degradation of the ECM, surfactant-induced decrease of surface tension, 
or cell death [52–55]. These infections can go undetected when evalu
ating patient biopsies, making microbiological identification 
inconsistent. 

1.3. Macrophage and neutrophil response to biofilm and wear 

The macrophage-mediated innate immune response is the first line of 
defense against pathogens and acts in a non-specific manner to resolve 
most bacterial infections, as shown schematically in Fig. 2. Bacteria 
present specific molecular structures referred to as pathogen-associated 
molecular patterns (PAMPs), and which include lipopolysaccharide 
(LPS) for Gram-negative bacteria [56] and lipoteichoic acid (LTA) for 
Gram-positive bacteria [57]. The initial response to infection occurs 
when anti-inflammatory, tissue-resident M2 macrophages are activated 
through pattern recognition receptors (PRRs) that recognize the PAMPs 
of bacteria, leading to the initiation of M1 polarization through TNFα 
[58,59]. Surrounding monocytes, fibroblasts, and endothelial cells 
produce MCP-1/CCL2 to recruit more monocytes to the infected tissue 
[60–62]. In addition to differentiating into macrophages and dendritic 
cells, monocytes help to combat pathogens via phagocytosis and reac
tive oxygen species (ROS) generation [63]. 

Macrophage response to wear particles also induces activation of the 
canonical pro-inflammatory M1 phenotype. Sustained M1 activation 
and stimulation of the inflammatory cascade leads to subsequent oste
oclast activation and osteolysis. Biochemical indicators found in 
explanted tissues include the inflammatory cytokines TNFα [64], IL-1 
[65], and IL-6 [66], especially in conjunction with pathologic 

Fig. 1. Biofilm development in total joint arthroplasty. Planktonic bacteria from surgical contamination or bacteremia attach to the fibrous capsule around the 
implant. Bacteria become sessile as they secrete protective EPS to form a larger biofilm. The bacteria of the biofilm grow rapidly to form a tower-like structure before 
dispersing individual bacteria and masses of the biofilm. The dispersal infects cells and embeds into the surrounding periprosthetic tissue to propagate the infection. 
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osteolysis [67]. In addition, explanted inflamed tissue contains colony 
stimulating factors (CSFs) [68,69], prostaglandin E2 (PGE2) [65,66,70], 
as well as proteolytic enzymes (collagenase and gelatinase) [65]. Mac
rophages can fuse together to form foreign body giant cells during 
fibrous capsule formation at the surface of the implant, or to phagocy
tose wear particles too large for isolated macrophages [71]. Exposure to 
small wear particles also initiates differentiation of macrophages to os
teoclasts by fusion as a result of an increase in TNFα [29], resulting in 
bone resorption in the proximity of the interface. Normally osteoclas
togenesis is promoted by an increase in receptor activator of nuclear 
factor κ-B (NF- κB) ligand (RANKL) produced by inflammatory cells 
relative to osteoprotegerin (OPG) produced by osteoblasts. RANKL and 
OPG compete to bind to receptor activator of nuclear factor κ-B (RANK) 
on the surface of macrophages and monocytes. During infection, the 
RANKL from inflammatory cells increases to shift the balance to osteo
clastogenesis. There is evidence that wear particles can reduce the 
effectiveness of the inflammatory response, since polyethylene and 
ceramic particles have been shown to induce apoptosis in macrophages 
[72]. Macrophages that have interfaced with polyethylene particles 

exhibit an inability to clear bacterial populations [10] leaving the host at 
risk of chronic or persistent infection. The chronic inflammation and 
immunosuppression induced in macrophages by wear debris can 
perpetuate osteolysis adversely affecting patient outcomes. 

The most abundant leukocytes in circulation, neutrophils are the 
primary actors of the innate immune response to bacteria. Macrophage 
secretion of the chemokines TNFα, IL-1β, and CXCL1 signals neutrophil 
recruitment [73–75]. Polymorphonuclear neutrophils (PMN) are 
equipped with antimicrobial granules of proteases and the capacity to 
produce toxic oxygen metabolites, known as a respiratory burst [76]. 
Neutrophils also recognize PAMPs through PRRs and thereby can 
phagocytose bacteria. The earliest neutrophils to make contact with 
bacteria secrete a variety of chemoattractive signals that elicit a 
neutrophil swarm to surround the infection and insulate the surrounding 
tissue from harm [77]. The assembly of neutrophil extracellular traps 
(NETs) by release of chromatin and granules into the extracellular space 
is required to combat formation of larger clusters of bacteria in biofilms 
[78,79]. Among the proteases composing neutrophil antimicrobial 
granules, azurocidin (also called heparin-binding protein, HBP) can 

Fig. 2. The innate immune response to infection and wear debris. Tissue-resident macrophages encounter pathogens, polarize from the M2 to the M1 state, and 
recruit neutrophils to the site. Neutrophils recruit more monocytes and employ granules to destroy bacteria. Wear debris similarly causes M1 polarization but 
particulate phagocytosis by either macrophages or neutrophils reduces successive phagocytosis of pathogens. Increased TNFα and RANKL production overpowers 
OPG signaling from osteocytes to induce osteoclast formation by fusion of macrophages. The inability to clear infection through macrophages and neutrophils 
perpetuates the inflammatory state with no resolution causing continued osteoclastogenesis. Purple arrows represent osteoclastogenesis pathway. Dotted lines 
indicate cell signaling relationships. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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recruit circulating monocytes and trigger M1 polarization [80–82]. 
Additional release of annexin A1 by neutrophils promotes phagocytic 
activity of macrophages [83]. M1 macrophages then phagocytose bac
teria through PAMP recognition, however macrophages lack the anti
microbial granules that neutrophils use to deconstruct bacteria. As 
bacteria are cleared, neutrophils undergo apoptosis and degranulation, 
releasing their antimicrobial granules to the extracellular space. M1 
macrophages can enhance their antimicrobial capacity through uptake 
of these granules, or trigger neutrophil apoptosis through 
membrane-bound TNFα and phagocytose them directly [84,85]. Neu
trophils are recruited in an active infection by M1 macrophage and the 
release of TNFα, GM-CSF, and G-CSF that maintain neutrophil survival 
and migration [86]. At the resolution of a successful innate immune 
response, macrophages phagocytose the neutrophils and revert to the 
anti-inflammatory M2 phenotype important for tissue repair [87]. 

The generation of wear particulate can disrupt the normal functions 
of neutrophils upsetting the innate immune response and contributing to 
chronic infection and inflammation. The number of PMNs is a key cri
terion in diagnosing periprosthetic joint infection requiring revision 
surgery as their persistence is indicative of chronic infection [88]. In 
response to wear debris, it is established that PMNs can phagocytose 
polyethylene, Co–Cr, and Ti particles and degranulate [89]. In partic
ular, the introduction of UHMWPE wear debris to neutrophils has been 
shown to inhibit their ability to phagocytose bacteria, though they have 
increased metabolic activity indicative of increased ROS production 
[12]. Small particle phagocytosis also sequesters neutrophil elastase, a 

key factor in the formation of NETs to combat biofilm [90]. 
Particle-compromised neutrophils may not be able to effectively clear 
bacteria, leading to further recruitment of monocytes/M1 macrophages, 
which in turn could promote the survival and recruitment of more 
neutrophils. Neutrophils have also been shown to express RANKL both 
at the membrane surface and intracellularly to facilitate osteoclasto
genesis [91]. Macrophages that have phagocytized wear particles have 
increased inflammatory marker expression and can still form functional 
osteoclasts that contribute to implant loosening [92]. This feedback loop 
(Fig. 2) exacerbates the inflammatory conditions needed to disrupt the 
RANKL/OPG balance maintained by osteocytes and cause increased 
osteoclastogenesis associated with implant failure [93]. 

1.4. Dendritic cell and T cell responses to biofilm and wear 

Dendritic cell and T lymphocyte interactions with wear debris are 
not fully understood, but the available information suggests they may 
have important implications in implant loosening. Dendritic cells are 
professional antigen presenting cells that act as a bridge between the 
innate and adaptive immune response, as shown in Fig. 3. Tissue- 
resident and monocyte-derived dendritic cells possess PRRs that iden
tify PAMPs of different bacteria types, activating the dendritic cell and 
inducing a pathogen-specific change in mRNA expression and release of 
chemokines [94]. Dendritic cells internalize bacterial antigens by 
phagocytosis, endocytosis, and micropinocytosis [95], and are then 
transported from the infection site by afferent lymphatic vessels to 

Fig. 3. The adaptive immune response to infection and wear debris. Dendritic cells identify pathogens and present corresponding MHC class I or MHC class II to 
CD8+ and CD4+T cells respectively. CD8+ T cells directly destroy pathogen-containing cells, e.g., macrophages. CD4+T cells affect the inflammatory polarization of 
macrophages and activate CD8+ T cells and B cells that release antimicrobial antibodies to attack the infection. Contact with wear debris causes dendritic cells to 
promote osteoclast formation from macrophages. Phagocytosis of wear debris prevents antigen presentation from dendritic cells and causes cell death. Reduced 
dendritic cell function similarly decreases activation of T cells. Particles directly contacting CD4+T cells can induce inflammatory secretome release significant for 
osteoclast formation. Immune disruption allows for infection spread and osteolytic resorption. Purple arrows represent osteoclastogenesis pathway. Dotted lines 
indicate cell signaling relationships. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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secondary lymphoid organs including draining lymph nodes and the 
spleen. Here dendritic cells present antigens in major histocompatibility 
complex (MHC) class I and MHC class II to activate CD8+ cytotoxic T 
cells and CD4+ helper T cells, respectively. 

T lymphocytes are the major actors in the adaptive immune response 
and upon activation circulate to the site of infection. CD4+ T cells are 
responsible for two main functions: 1) release of inflammatory cytokines 
and 2) activation of CD8+ T cells and B cells. The inflammatory secre
tome of activated CD4+ T cells includes interferon gamma (IFNγ) and 
TNFα, which promote M1 polarization and activity of macrophages [96, 
97]. Conversely, monocytes/macrophages have the capacity to polarize 
CD4+ T cells into an inflammatory phenotype through direct cell-cell 
interactions, continuing the cycle until the infection is resolved [98]. 
CD8+ T cells employ perforin and granzyme granule release to directly 
destroy cells that contain bacteria such as phagocytes or infected cells 
holding them in vacuoles [99]. T cell granule destruction is more 
target-specific than the granule release by neutrophils because it is 
released along an immune synapse between antigen presenting cells and 
the T lymphocyte. After contact with an antigen, B cells are activated to 
produce antimicrobial antibodies and CD4+ T cells amplify their pro
duction [100]. The adaptive immune response to bacteria is required to 
clear bacterial infection when the innate immune response fails to do so. 

Contact with nanoscale UHMWPE debris activates dendritic cells 
secretion of the inflammatory cytokines IL-6 and IL-1β [101]. Dendritic 
cells exposed to UHMWPE also increase IFN-γ production by natural 
killer T (NKT) cells, which polarizes macrophages to an M1 phenotype 
and increases macrophage production of TNFα [102]. Subsequently, 
dendritic cells amplify osteoclastogenesis in macrophages responding to 
wear particles, thereby aggravating aseptic loosening [103]. Dendritic 
cells are capable of phagocytizing wear particles and secreting IL-1β, but 
the resulting damage to endosomes can cause release of cathepsins into 
the cytosol that may lead to cell death [104]. Damage to endosomes 
responsible for loading and transferring antigens could also disrupt 
antigen presentation by dendritic cells to T lymphocytes in the sec
ondary lymphoid organs. Histological analysis of the spleen, lymph 
nodes, and liver of patients has revealed the presence of metallic and 
polyethylene particles with higher incidence in patients who suffered 
implant failure [105]. However, polyethylene is difficult to detect at 
lower concentrations and long term effects in these tissues are unknown. 
In cancer, dysfunction of antigen presentation by dendritic cells is 
associated with T cell proliferation and contributes to tumor survival 
[106]. Activation of T lymphocytes in the presence of biomaterial wear 
debris typically occurs through antigen-presenting cells, but studies 
suggest that metal wear debris can act as an antigen and directly in
fluence T cells. CoCr nanoparticles, for example, reduce the proliferation 
of CD8+ T cells in patients with metal-on-metal implants [107]. Analysis 
of the effect of metal particles on human blood-isolated CD4+ T cells 
revealed activation and secretion of both inflammatory and 
anti-inflammatory cytokines, depending on T helper cell subtype 
[108–110]. Taken together, these findings suggest that disruption of the 
cells in adaptive immune response by wear particles may inhibit the 
resolution of bacterial infections and increase incidence of septic 
loosening. 

1.5. Biomaterials-based strategies to counteract biofilm formation 

The development of biomaterials that can prevent or counteract 
biofilm formation offers an opportunity to prevent septic loosening of 
implants. Although wear can be reduced through material modifications 
[29,30,111], the generation of wear debris is essentially unavoidable. 
The antioxidant vitamin E was initially incorporated into UHMWPE to 
improve the integrity of the implant by improving oxidation resistance 
[112]. Studies characterizing wear particulates and the resulting in
flammatory response showed peripheral blood mononuclear cells pro
duce significantly fewer of the osteolytic cytokines TNFα, IL-1β, IL-6, 
and IL-8 in response to vitamin E-enhanced UHMWPE (VE-UHMWPE), 

compared to virgin UHMWPE [29]. Vitamin E also provides protection 
against biofilm formation when added to media in vitro and 
VE-UHMWPE has had similar results in bacterial culture [113,114]. 
While vitamin E is effective at preventing biofilm formation of S. aureus 
and E. coli [115], it has shown less definitive effects in preventing MRSA 
infection [116]. Compared to virgin PE, macrophages incubated with 
VE-UHMWPE exhibited greater survival, reduced TNFα production, and 
greater pathogen response to S. aureus. In vivo results in a mouse cal
varial model corroborated the enhanced clearance of S. aureus and 
reduced osteolysis when VE-UHMWPE was implanted, compared to 
virgin UHMWPE [10]. Although promising, the mechanisms by which 
vitamin E reduces osteolysis and produces antimicrobial effects are still 
unclear. 

An alternate strategy to prevent septic loosening is antibiotic loading 
of biomaterials. Antibiotic loaded cement spacers are already imple
mented in revision surgeries for septic loosening, resulting in success 
rates similar to aseptic revision surgeries [117]. Alternatively, the use of 
antibiotic-loaded bone grafts in revision surgeries has shown promising 
results in reducing infection [118], though excessive loading can reduce 
the mechanical integrity [119]. Despite the success of antibiotics, bac
teria have many mechanisms of resistance. Genetic transfer from one 
organism to another, can result in multi-drug resistance. Genetic transfer 
of an alternate penicillin binding protein (PBP2a) caused the emergence 
of methicillin-resistant S. aureus (MRSA) in the 1960s, which resulted in 
new understanding regarding overuse of antibiotics and resulting drug 
resistance [120]. The widespread use of antibiotics like penicillin has 
been linked to β-lactam resistance by MRSA, revealing that drug resis
tance was developed against an entire class of antibiotics more than a 
decade prior to the introduction of methicillin [121,122]. Small colony 
variants (SCV) are slow-growing subpopulations of bacteria under 
metabolic deficiency that provide another form of antibiotic resistance 
by alterations in cellular respiration that reduce potential for drug up
take. Under normal conditions the faster growing populations of bac
teria will outcompete the SCV, but antibiotics eliminate the more 
proliferative bacteria thereby encouraging SCVs to persist. Furthermore, 
the stress from antibiotics can induce the SCV phenotype [123]. How
ever, these bacteria do not remain in this nearly dormant state and 
offspring can mutate into a faster growing population that maintains the 
drug resistance [124]. Bacteria also employ multidrug efflux pumps to 
provide added protection by ejecting antibiotics and metal ions from the 
biofilm. However, these pumps can be inhibited, making them generally 
vulnerable to antibiotics and, importantly, metal ions [125]. 

Bactericidal metal ions incorporated into oxidative or ceramic sur
face coatings represent a developing field of materials research. Natu
rally antimicrobial silver and copper coating of titanium-aluminum 
(TiAl) alloys releases ions that inhibit bacterial growth [126,127]. 
Incorporation of Ag and Cu particles into hydroxyapatite coatings pro
vide antibacterial properties [128–130] and combining growth factors 
like bone morphogenetic protein-2 (BMP-2) shows promise in osseoin
tegration [131]. It has been shown that Ag particles can combine syn
ergistically with the effect of antibiotics in preventing 
implant-associated infections, including MRSA [126,132,133]. Despite 
their potential, metal coatings can have cytotoxic effects on host tissue 
and can only utilize a finite amount of metal ions initially attached 
[134]. 

Whereas antibiotic and metallic coatings can provide short-term 
protection against infection post-surgery, “smart” material coatings 
respond to changes in the microenvironment to react specifically when 
bacteria are present. The stimuli that actuate smart coatings can be 
categorized as bacterial byproducts or external activation. The biofilm 
microenvironment can vary in pH, but infection generally fosters hyp
oxia that creates an acidic microenvironment. The acidity degrades 
specialized hydrogels [135] or thin layers of hydroxyapatite [136] to 
release metal ions and/or antibiotics. Similarly, ROS produced by bac
teria and local inflammation can degrade polymer coatings containing 
antimicrobial agents [137]. Immune-modulatory polymers can respond 
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to infection by releasing adsorbed peptides, nucleic acids, or cytokines 
to polarize macrophages to either inflammatory or anti-inflammatory 
phenotypes [138,139]. External control of smart materials is facili
tated by UV and electrical stimulation to release antimicrobial factors 
into the infection site [140,141]. These innovations illustrate the evo
lution from bioinert materials to materials that exhibit intelligent, 
bioactive responses. 

2. Conclusion 

Aseptic and septic loosening of total join replacements have 
commonly been considered separate processes, but new research shows 
the impact of wear debris on the formation and survival of biofilm, even 
at subclinical levels. Routine microbiological diagnostics may misdiag
nose septic loosening caused by subclinical biofilms, resulting in inef
fective treatment and recurring implant failure. The interaction of 
implant wear debris with macrophages and neutrophils impairs the 
ability of the innate immune system to remove bacteria, thereby 
allowing greater maturation and proliferation of biofilms that are 
already equipped with immunosuppressive mechanisms. In addition to 
compromising the innate immune system, wear particles disrupt the 
dendritic cells and T lymphocytes of the adaptive immune response, 
which are needed to coordinate a targeted reaction to periprosthetic 
joint infection. This disruption exacerbates the inflammatory pathways 
associated with both aseptic and septic loosening, causing chronic 
inflammation and greater osteolytic resorption. Even in the absence of 
subclinical biofilms resulting from surgery, the impact of wear debris on 
the immune response makes periprosthetic tissue more susceptible to 
infection from bacteremia. Continued biomaterials research on reduc
tion of wear debris is important, but does not address the need to pro
actively prevent biofilm formation and resulting osteolysis. 
Modifications of implant biomaterials through the release of antibiotic 
drugs, antimicrobial ions, and antioxidants are potential strategies to 
reduce risk of infection. These infection resistance approaches offer 
great opportunities to enhance implant stability and lifespan. However, 
further research is needed to understand the long term consequences of 
wear particle invasion into the periprosthetic tissue and the secondary 
lymphatic organs. 
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