uCache: a mutable cache for SMR translation layer

Mohammad Hossein Hajkazemi*, Mania Abdif, Peter DesnoyersJr
Department of Electrical and Computer Engineering*, Khoury College of Computer Sciences'
Northeastern University
hajkazemi@ece.neu.edu,abdi.ma@husky.neu.edu,pjd @ccs.neu.edu

Abstract—Shingled Magnetic Recording (SMR) may be com-
bined with conventional (re-writable) recording on the same
drive; in host-managed drives shipping today this capability is
used to provide a small number of re-writable zones, typically
totaling a few tens of GB. Although these re-writable zones are
widely used by SMR-aware applications, the literature to date
has ignored them and focused on fully-shingled devices.

We describe uCache, an SMR translation layer (STL) using
re-writable (mutable) zones to take advantage of both workload
spatial and temporal locality to reduce the garbage collection
overhead resulted from out-of-place writes. In yCache the volume
LBA space is divided into fixed-sized buckets and, on write access,
the corresponding bucket is copied (promoted) to the re-writable
zones, allowing subsequent writes to the same bucket be served
in-place resulting in fewer garbage collection cycles.

We evaluate yCache in simulation against real-world traces
and show that with appropriate parameters it is able to hold
the entire write working set of most workloads in re-writable
storage, virtually eliminating garbage collection overhead. We
also emulate yCache by replaying its translated traces against
actual drive and show that 1) it outperforms its examined
counterpart, an E-region based translation approach on average
by 2x and up to 5.1x, and 2) it incurs additional latency only for
a small fraction of write operations, (up to 10%) when compared
with conventional non-shingled disks.

Index Terms—shingled magnetic recording, translation layer

I. INTRODUCTION

Shingled Magnetic Recording (SMR) is a modern technol-
ogy that offers higher storage density compared to conven-
tional magnetic recording (CMR) with the same head and
platter technology. It achieves this by overlapping tracks as
they are written, for an effective track width narrower than
the write head. However, this density improvement comes at a
cost: individual disk sectors cannot be over-written, as adjacent
downstream tracks will be corrupted [1].

If all tracks on an SMR disk were shingled it would
be a purely “write-once” media: once the last track was
written, no re-use would be possible without damage to non-
overwritten sectors. Instead, the disk is divided into zones,
separated by “guard tracks” wide enough to prevent adjacent
track corruption; each zone may be sequentially written (and
rewritten) from the beginning without damage to data in other
zones. This approach has been formalized in the SATA and
SCSI extensions [2], [3] for zoned block devices, a storage
model much like NAND flash: large regions (256 MiB for
SMR) must be written sequentially, and the operation to allow
a region to be rewritten—*reset zone pointer” for SMR, erase
for flash—discards all data in that region.

The SMR restrictions may be addressed in the application
or file system [4], using host-managed devices which expose

SMR write restrictions and provide commands to clear zones
for re-write. Alternately, existing file systems may be used
over a block translation layer [5], implemented either in the
host of a host-managed or in the firmware of a drive-managed
SMR device. (a third standardized device type, host-aware [6],
is a hybrid with features of both host-managed and drive-
managed.) We focus on block translation layers in this work,
exploring algorithms which may be implemented in either the
host, via host-managed extensions, or the firmware of drive-
managed devices.

Most SMR translation layers (STLs) [1], [7], [8]) are “E-
Region-based” [9] translation layers, using a 1:1 mapping from
logical block addresses to “data zone” locations, and a small
region (the E-region or “on-media cache”) to cache exceptions
caused by writes, which are written in log-structured fashion
to the cache “write frontier”. If this cache is shingled the
resulting algorithm is similar to the FAST flash translation
layer (FTL) [10], with fixed locations for data zones as no
wear-leveling is needed. As in the FAST FTL, when the
on-media cache fills, the expensive garbage collection (GC)
operation is performed to make room; space must be reclaimed
a zone at a time, merging valid pages from that zone with
unmodified pages from the corresponding data zone, and then
writing the result back to a data zone.

A fully-shingled host-managed drive presents practical com-
plications. For example, the first sectors of a disk (i.e. LBA
0) are typically used to store partition and file system meta-
data [11], [12], however, they cannot be updated safely if they
are in a shingled zone, but must be “erased” and then re-
written. Yet tracks on an SMR drive do not all necessarily need
to be shingled, as modern drives are able to vary the track pitch
at formatting time [13], and it is possible to format a drive
with a combination of shingled tracks and wider re-writable
tracks.Thus host-managed drives available today provide a
number of re-writable (mutable) zones, starting at LBA zero
and totaling 16 to 30 GiB in the drives we have examined.

These data zones are used for hot data storage in both
open-source translation layers (i.e. dm—zoned [14]) for host-
managed SMR and (according to anecdotal statements) in
proprietary translation layers in recent drive-managed devices.
Yet to date SMR translation layers reported in the literature
have either assumed a single fully-shingled disk [1], [5], [7],
[15]-[17], or a costly hybrid system comprising e.g. SSD and
SMR [8], [18] with no seek overhead for accessing re-writable
storage.

In this paper, we introduce and analyze pCache, a translation
layer for SMR disk that relies on both shingled and re-writable

Authorized licensed use limited to: Northeastern University. Downloaded on January 20,2022 at 18:56:27 UTC from IEEE Xplore. Restrictions apply.

zones to operate. Similar to E-region based approaches offered
in [5], [16], [17], uCache divides the disk into a large data
zone and a small on-media cache to address random writes.
However, the on-media cache is formed by re-writable zones.
Relying on workload spatial and temporal locality, uCache
accommodates the largest possible write working set in the on-
media cache. This results in improved performance compared
to translation layers using only shingled zones as the cached
data may be overwritten. To achieve this, on write access,
uCache copies a chunk of data (typically larger than the
original I/O size) to the on-media cache (if it is already not
residing in the cache). Therefore, subsequent write accesses
to the same chunk will overwrite this location in cache, rather
than consuming new on-media cache space, and thus resulting
in fewer multi-second garbage collection cycles.

In summary, the main contributions of this work are as

follows:

¢ We describe uCache, an SMR translation layer using re-
writable zones for the on-media cache;

« We show that by exploiting both temporal and spatial
locality, uCache is capable of accommodating large write
working sets in re-writable cache and therefore minimizes
the garbage collection overhead;

« We simulate uCache with real-world traces [19], demon-
strating the reduction in garbage collection overhead;

e« We emulate yCache by replaying its translated traces
against actual drive and show that for many of the
workloads it makes an SMR drive nearly as performant
as a conventional drive, imposing a modest burden of
additional seeks and copies. We further show an average
2x performance improvement of yCache compared to its
counterpart E-region based translation layer.

II. MOTIVATION

In both E-region-based translation layers and their alterna-
tive (dm-zoned), as soon as the cache fills, data is evicted
from cache region via expensive garbage collection (GC)
cycles. Thus, the performance of these translation layers are
strongly affected by the size of the write working set—i.e. the
number of unique locations written during some prior window
—and whether it fits in that cache. If the write working
set is larger than the cache, a large fraction of writes will
result in evictions, each incurring multi-second penalties due
to the need for multiple reads and writes of 256 MiB zones.
Conversely, if the working set is significantly smaller than
the effective cache capacity, the cache would be utilized more
highly and thus few or no GC cycles will be needed.

With a shingled on-media cache, however, the effective
cache capacity may be significantly smaller than the space
it occupies, with space used by outdated (invalid) data. In
Figure 1 we see effective cache utilization for several work-
loads' running on a simulation of an E-region STL from [9]
with a 16 GiB shingled on-media cache, equivalent to that of
a Seagate ST8000AS022 8TB 5900 RPM host-aware drive.

IThe three shown traces are representative of the range of behaviors seen
in the entire 106-trace corpus.

100%

80%

60% -

40%

20%

Shingled cache live data

0%

0 50 100 150 200 250 300 350 400
Write operation (x10000)

Fig. 1: Fraction of live data in shingled on-media cache vs.
time for three representative traces.

1.0

0.6 4

CDF

w87
w78

i w37
0.4 4

0 2‘0 4‘0 6‘0 BIO 160 12‘0 1210
Stack distance

Fig. 2: CDF of 4 MiB-granularity stack distance (number of
unique 4 MiB buckets between accesses to the same bucket)
[20] for w87, w78 and w37.

As seen, only a small fraction of the cache is used at any
time, greatly restricting the write working set which can be
held in cache. We see that the high effective cache capacity
reaches 50% (for w87), with a mean utilization of 37%, while
mean utilization is much lower for the other two: 9% (w78)
and 12% (w37). The traces are taken from the CloudPhysics
corpus [19] of virtual machine block traces, and are described
in more detail later in Section IV.

Workload temporal and spatial localities are two parameters
that determine the working set size and therefore caching
performance. Temporal locality refers to the tendency of
accesses to the same address to cluster in time. In other words,
immediately after seeing a reference to address A, the expected
time until the next reference to A is lower than the expected
time until the next reference to an arbitrarily address. We see
this behavior for write operations in Figure 2, showing CDFs
of 4 MiB-granularity stack distance [20], i.e. the number of
unique 4 MiB zones touched between accesses to the same
zone, for the same three workloads. As can be seen, among all
pair of 4 MiB consecutive write accesses, about 47%, 52% and
78% of the following accesses are to the same 4 MiB region
in workloads w37, w78, and w87 showing a high temporal
locality for write operations among these traces.

Spatial locality refers to the tendency of references to cluster
within the address space; i.e. address A+e is much more likely
to be accessed soon after A than some address far from A. Our
analysis shows high write spatial locality in most of the traces.
For example, for w87 and w78 more than 75% and 33% of
the second write accesses are within the range of less than 256
KiB of the preceding write, showing high spatial locality.

These two measures affect different aspects of cache design.
Temporal locality determines LRU cache performance, as

Authorized licensed use limited to: Northeastern University. Downloaded on January 20,2022 at 18:56:27 UTC from IEEE Xplore. Restrictions apply.

accesses of stack distance D or less will hit in a cache holding
D entries. Spatial locality motivates the use of cache lines
larger than a single access, on average satisfying requests to
more than a single location while needing only one operation
to backing storage. For cache line sizes small enough that
the fixed cost access dominates, increasing line sizes will (all
other things being equal) result in higher performance. Other
things are not always equal, however, a larger line sizes result
in lower effective cache utilization, with space being used for
data that is never accessed.

III. uCACHE

We describe puCache, an SMR translation layer relying on
re-writable zones to more efficiently utilize the on-media
cache and thus improve the performance. Taking advantage
of on-media cache re-write-ability, uCache exploits both high
temporal and spatial locality to perform writes in-place and
therefore minimize expensive GC cycles.

A. uCache algorithm

In Figure 3, we see the high-level uCache data layout: the
re-writable region is used for checkpoints and on-media cache,
while the shingled region holds a temporary zone and the
permanent data zones (checkpointing and temporary copies
are described more fully in Section III-B). The LBA space
of the volume is divided into fixed-sized buckets, and on
write access a bucket is promoted and copied to the on-media
cache, reading any necessary data (i.e. that not contained in
the triggering write operation) from the data zone. Subsequent
writes to that bucket will be performed in-place in the on-
media cache until it is evicted by GC. The GC process selects
a data zone, reads the data zone and corresponding cached
data, merges them, and writes them back.

Details of the yCache translation strategy are described as
below. Given a disk with N shingled and M re-writable zones
of size Z (M < N), and buckets of size b:

o we divide the LBA space into N - Z/b logical buckets

« we divide the NV shingled zones into the same number of

buckets, the home locations for each logical bucket

Given a write access to address A, we:

o determine its logical bucket number Lbn = L%J

o if Lbn is cached in some physical cache bucket Pcb,

perform the write to offset A mod b in bucket Pcb;
otherwise:

« allocate a physical cache bucket Pcbh, promote the bucket

to cache location Pcb, and again perform the write at the
appropriate offset.

Checkpoint Cache Temp Data

zone zones zone zones
—/r " 1

1
1
I

S

[N J

-
Re-writable region

-~
Shingled region

Fig. 3: uCache On-disk data structure: checkpoint zone, re-
writable cache zones, temporary zone and data zones.

There are two options for bucket promotion on new writes:
copying and mapping. Copying reads the contents of the
bucket from the data zone, merging it with the new write, and
writes the entire bucket in cache. Mapping allocates a bucket in
cache but does not read from the data zone; a bitmap is instead
used to track which portions of the logical bucket are in cache
and which in the data zone. Mapping eliminates a seek and
two bucket transfers during promotion, but incurs overhead to
persist mapping information for every write, as well as read
seeks due to fragmentation between cache and data regions.
We argue below that copying is the better approach, due to
its exploitation of spatial locality and potential to eliminate
map persistence overhead, and focus on this option in our
evaluation.

Given a read access, we:

o determine its Lbn

o if Lbn is cached in some physical cache bucket Pcb,

perform the read to offset A mod b in bucket Pcb;
otherwise:

« perform the read to address A from its home location

A garbage collection cycle is used to make room in cache
for new writes:

e select a data zone D and read its contents

« read all buckets from cache holding data from zone D

« merge contents of data zone and data from cache

e save a copy (to prevent data loss in next step)

« write back to the data zone

We note that pCache is in fact a generalization of several
existing translation approaches. With minimum-sized buckets,
only incoming writes are sent to cache and the two promotion
behaviors are equivalent; the behavior is that of an E-region
translation layer with re-writable on-media cache, allowing full
cache utilization and more efficient GC. At the other end of
the range, dm—zoned [14] is equivalent to puCache with a
bucket size of one zone and bucket promotion by mapping.

Can promotion-by-copy with a modest bucket size out-
perform both extremes, avoiding low utilization and wasted
cache space due to promoting entire zones, while taking
advantage of spatial locality? The answer is yes; with a modest
bucket size, almost the entire working set could fit in the on-
media cache resulting in high cache utilization (see Table III).
Support for this approach maybe seen in Figure 4, showing
the write footprint 2of several workloads when accesses are
rounded up to varying bucket sizes.

As seen, footprint increases with bucket size for all work-
loads; however the increase is gradual for some, and rapid for
others. Moreover, with a reasonable cache size (e.g. 32 GiB)
combined with a modest bucket size (e.g. 256 KiB) the entire
working set of many of the workloads fits in the cache.

B. Implementation factors

A number of implementation factors that are important
to the value of yCache are listed below, but some are not
addressed in our evaluation:

2Alternately this can be described as the cache size needed to hold the
entire workload without GC, when promoting buckets of the specified size.

Authorized licensed use limited to: Northeastern University. Downloaded on January 20,2022 at 18:56:27 UTC from IEEE Xplore. Restrictions apply.

Write footprint (GB)

Bucket size

Fig. 4: Write footprint of several workloads vs. bucket size.

Bucket allocation: pCache uses a simple arbitrary bucket
allocation policy: it keeps a pool of free physical cache buckets
(Pcbs), and assigns them arbitrarily to Lbn on promotion
operations.

Memory usage: Memory usage is a significant issue for
drive-resident translation layers, and even host-resident ones
are limited in the resources they may demand. (e.g. when
deployed on specialized storage servers housing as many as 60
or more drives) uCache only needs to map as many buckets as
are held in the on-media cache, keeping its memory demands
modest. (e.g. with a very small bucket size of 128 KiB, a
16 GiB on-media cache would require a map of 128 K entries,
taking less than 10 MiB of memory if implemented with one
of several sparse map data structures.)

Map persistence and checkpointing: Translation layers
using out-of-place writes must reliably record map updates,
as a write is not truly durable until the information needed
to locate the new data has been persisted safely in a way
which will survive e.g. power failure. In our evaluation we do
not implement map persistence; however we note that copy-
based promotion eliminates map updates for overwrites, and at
bucket promotion they may be logged (as is done in FSTL [5])
in a bucket header, eliminating additional seeks to persist them
at a fixed location. Figure 5 shows an example where uCache
performs logging when Pcb,, 12, Pcbyy4, Pcby, and Pcb, 43
are allocated to Lbn 1 to 4.

As shown, besides the Lbn to which a bucket is allocated,
a header contains a sequence number and a CRC to iden-
tify whether a particular bucket write completed before a
crash. It also comprises a pointer to the next available Pcb
header. Pointers are used to reconstruct the map in case of a
crash. Depending on where yCache is implemented (either
in the firmware or on the host side), a header size will
be a sector (512B) or 4KiB (to preserve 4 KB alignment)
adding a negligible 2.5-5us or 20-40us of transfer time to
each promotion (bucket write). The resulting space overhead

F’cEM1 PCEM | Pcbyz—| Pcb, .,
Lbn - N N

CRC gitbn“1” |31 tbn“a” |31 Lbn2”
Next Pcb - - -
[&= F F

Fig. 5: yCache logging mechanism: buckets may be written
in arbitrary order, but are linked through their headers in the
order they are written to allow log recovery on failure.

is also negligible: assuming a small bucket size of 256 KiB,
the header overhead will be around 0.2% or 0.8% which we
consider quite acceptable.

Techniques such as periodic checkpointing may also be used
to make the recovery process faster in case of any failure. To
do so, the most recent map along with a latest Pcb number is
stored at the checkpoint zone. On recovery, first, the most
recent map is retrieved. Second, by traversing the header
pointers starting at the latest checkpointed Pcb number, map
reconstruction is completed.

Compared to copy-based promotion, map-based promotion
requires map information to be persisted (at the cost of a seek)
for each write to the bucket after promotion. This overhead
may be mitigated by deferring writes until the receipt of a write
cache FLUSH operation, as is done in dm—-zoned; however
these are very frequent in some workloads.

Garbage collection: The garbage collection process itself
in yCache is almost identical to E-region translation layer
cleaning (GC) described in Skylight [1] requiring at least 3 full
zone transfers: select a data zone to clean, read all data from
that zone residing in cache, read the zone itself, merge them
and write a backup copy to the temporary zone, and overwrite
the original data zone. Selection of the zone to clean is more
complex, however, as e.g. maximizing the space freed might
in fact evict hot data. In this work we omit discussion of zone
selection for GC, and focus on sizing buckets to eliminate the
need for GC.

While the cleaning process could affect the throughput
significantly, it may not impact the I/O latency necessarily. A
garbage collection cycle takes roughly 5 seconds on average,
or even more at inner-track LBAs or if reading many extents
from cache. The worst-case I/O latency, in turn, depends
greatly on how well host I/Os can be interleaved with the
operations making up these cycles. We believe that this is
primarily an engineering issue, not an attribute of a particular
translation layer, and thus in our evaluation we focus on the
number of GC cycles incurred and resulting loss in throughput,
ignoring the effect on latency.

IV. TRACE-DRIVEN EVALUATION

We evaluate pyCache using real-world traces, using simu-
lators implementing the pCache algorithm and the E-region
approach, a comparison translation layer. We measure uCache
performance by replaying its translated trace (generated by
pCache simulator) against a physical drive and compare it with
that of the E-region approach as well as a conventional drive;
each experiment is run at least five times. This workflow is
seen in Figure 6.

Workloads: yCache was evaluated using the CloudPhysics
block trace corpus [19], 106 large block traces from a virtu-
alized environment running Windows and Linux with modern
file systems. As shown by Hajkazemi et al. [21] these traces
are more representative of modern workloads than older traces
such as the well-known MSR corpus [22]. A subset of the
106 traces were selected, choosing ones which (1) were long
enough to trigger garbage collection, and (2) represented

Authorized licensed use limited to: Northeastern University. Downloaded on January 20,2022 at 18:56:27 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Statistical summary of selected workloads.

workload | w09 wl0 wl4 w2l w26 w28 w29 w37 w46 w48 w69 w75 w78 w87 w9l
T/0 count (M) 49.62 4834 34381 29.41 26.53 19.73 19.08 18.84 11.54 1409 787 6.15 5.49 378 4.31
write ratio 0.55 0.39 0.68 0.1 0.58 0.33 0.14 0.21 0.62 0.42 0.3 0.79 0.55 0.8 0.27
write mean size (KB) 334 26.7 32 21.9 19.1 45.2 14.6 7.1 212 6 174 285 204 18.6 154
read mean size (KB) 154 153.7 203.1 99.7 26.6 15.6 10.1 6.1 121.1 153.8 23 20.6 30.3 56.4 17.7
peak TOPS (every 10 sec) 941 2002 681 1321 1063 4489 2327 1414 2560 4520 760 521 1841 3378 3223

& [Original traceII N
uCache E-region STL
simulator simulator
1

1

\ \
--------------------- 1
: pCache statistics E-region STL statistics 1
P

E-region translated I

trace

pCache translated Ii

trace

Fig. 6: Methodology overview.

different levels of read/write intensity. The selected workloads
vary in size from about 4 to 50 million I/Os, and range from
read-heavy (w21, 10% writes) to very write-heavy (w87, 80%
writes); details are shown in Table 1.

Trace-driven experiment: Trace-driven simulation and em-
ulation of both puCache and the E-region STL [9] were used
to measure behavioral statistics as well as performance such
as I/O amplification, on-media cache hit ratio, additional
seeks incurred, garbage collection cycles, promotion operation
latency and throughput.

As shown in Figure 6, uCache was emulated by replaying
its translated traces (generated by uCache simulator) against
the actual device to measure latency and throughput. These
traces combined remapped host I/Os, bucket promotion reads
and writes for pCache, and garbage collection operations for
both yCache and E-region STL. Promotion and GC I/Os were
split into 512 KiB operations, a common limit for SCSI reads
and writes. Trace replay was performed by fio, an I/O testing
tool [23], using 1ibaio I/O engine with iodepth of 31. A
summary of experimental parameters may be seen in Table II.

A. uCache performance

As described in section III, the uCache goal is to hold
the largest possible write working set in the on-media cache
to maximize the number of in-place writes, and thus reduce
garbage collection cycles. To measure its success, we report 1)

TABLE II: Experimental parameters and drive specification.

uCache and baseline E-region STL simulation parameters

16 GiB & 256 MiB
512 KiB, 4 KiB
LRU & FIFO

Physical drive specification

on-media cache size &zone size
max and min I/O size
nCache & E-region eviction policy

drive model ST4000DMO00- 1F2168
drive capacity & rpm 4 TB & 5900
Wecache & read-ahead & look-ahead off & on & on

the uCache throughput with bucket size of 256 KiB compared
to that of both E-region STL and a conventional drive (CMR)
in Figure 7 and, 2) the cache hit ratio for write accesses with
different bucket sizes ranging from 0.125MiB to 4 MiB in
Table III.

As seen in Figure 7, yCache performance is on average
twice as high as that of the E-region STL, and in the best
case (W75) uCache outperforms E-region STL by 5x. For two
of the workloads (i.e. w69 and w48) uCache performance is
marginally lower, however, we note that by selecting a slightly
larger bucket size, (e.g, 512 KiB for w69) uCache is able to
beat the E-region STL in these traces.

As seen, CMR performance is higher than that of yCache
for all workloads, however, this performance gap is marginal
for several workloads (e.g., w91, w87) indicating the low
overhead and high performance of uCache. Note that the large
performance gap between both translation approaches and the
CMR for w46 is due to the large footprint of this trace (see
Figure 4). This large footprint results in a working set larger
than the cache size, and therefore leads to more cache write
misses (see Table III), more GC cycles (see Table IV), and
consequently lower performance.

As seen in Table III, all but two traces (wl0 and w46)
show hit ratios over 85% at all bucket sizes, and nine out of
ten traces reach a hit ratio of 99% with the proper bucket
size. Even the cache-unfriendly w46 trace (54% hit ratio at
128 KiB) improves to 93% when the bucket size is increased
to 4 MiB.

We see three different patterns in hit ratio vs bucket size:

1) for the majority of traces (w21, w26, w28, w46, w48,

w69, w87, wIl) the hit ratio increases monotonically as
bucket size is increased;
for three of the traces, w09, w10, and w14 the hit ratio
first goes up and then starts decreasing at a certain bucket
size (2 MiB, 0.5 MiB, and 0.5 MiB for w09, w10 and w14
respectively);
for a single trace, w37, the hit ratio decreases with
increasing bucket size.
We note that by increasing the bucket size we exploit the
spatial locality of the traces more effectively resulting in a
higher on-media cache hit ratio for the traces in case 1.
However, if a workload has poor spatial locality, this increase
in bucket size reduces the effective cache capacity (by caching
unneeded data), in turn resulting in more capacity misses and
an overall lower on-media cache hit ratio in cases 2 and 3.

2)

3)

B. uCache garbage collection

Garbage collection (GC) is the primary factor reducing
throughput for shingled drives [7], as it is a multi-second

Authorized licensed use limited to: Northeastern University. Downloaded on January 20,2022 at 18:56:27 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Write access hit ratio in yCache with different bucket sizes captured in simulations.

workload
bucket size w09 w10 wl4 w2l w26 w28 w29 w37 w46 w48 w69 w75 w78 w87 w9l
128 KiB 088 074 086 095 098 09I 0.86 096 054 097 098 099 095 09 098
256 KiB 091 0.76 0.9 097 099 095 089 096 065 099 099 099 098 098 099
512 KiB 092 077 091 098 099 097 091 095 076 099 0.99 1 099 099 099
1 MiB 092 075 091 099 099 098 092 094 084 099 099 1 099 0.99 1
2 MiB 090 073 090 0.98 1 099 092 092 0.90 1 1 1 0.99 1 1
4 MiB 088 0.70 087 0.98 1 1 0.91 092 093 1 1 1 0.99 1 1

TABLE IV: GC cycles for uCache (bucket sizes 128 KiB to 4 MiB) and E-region shingled cache captured in simulations.

workload
bucket size w09 wl0 wl4 w2l w26 w28 w29 w37 w46 w48 w69 w75 w78 w87 w9l
128 KiB 30462 29753 30293 10 337 573 5238 46 16828 0 0 0 0 0 0
256 KiB 43942 51798 43531 96 377 570 8585 323 17592 41 0 0 0 0 0
512 KiB 76670 96607 71034 463 441 567 15517 1259 18813 102 0 0 0 1 0
1 MiB 144459 189933 137555 954 625 577 24335 3693 21059 261 0 0 57 53 0
2 MiB 328535 377267 300922 2412 843 592 37921 9206 25674 482 0 0 189 110 0
4MIB | 763952 74891 66479 6670 1483 _ 715 _ 59216 18466 32687 1035 0 _ 0 _ 401 224 0
E-region STL 94597 30183 78849 2310 3459 1917 6967 637 29596 724 208 760 630 538 44
00— ‘ T 600

— E-region STL g 1 —— 0.25MB

2 250 (| cache $ § 0.50MB

S CMR N

:z: 200 § E 400 1 1MB

2 150} § £ 2MB

- N N ‘s — 4MB

5 100} \ \ 2 200

° N N N N 3

= R N N g A N

ANE N el g N o AN 2 o = e
w48 w87
Workload

Workload

Fig. 7: Throughput of yCache (with bucket size of 256 KiB)
compared to E-region STL and CMR captured in emulations.

operation (roughly 5 seconds at 160 MB/s). Thus we use the
number of GC cycles as a proxy to show the impact on
throughput.

In table IV we report the number of GC cycles for trace
execution with two translation layers: uCache with bucket
sizes from 0.25 MiB to 4 MiB, and the E-region STL [9]. These
experiments use a 16 GiB (64-zone) cache, equal to size of re-
writable zones in the Seagate STS8000AS022 8TB 5900 RPM
host-aware drive®.

In a few cases, no GC cycles were seen for all or many
bucket sizes (e.g., w9l, w75 and w69); in all other cases
smaller bucket sizes resulted in fewer GC cycles. In 10 and
11 out of 15 cases, uCache with 1 MiB and 256 KiB bucket
sizes outperformed E-region cache. Based on the trend we
observe for w09, w10, and w14 where baseline E-region STL
outperforms pCache, we expect decreasing the bucket size will
result in fewer GC cycles in puCache over baseline E-region
STL.

To examine the impact of cache size on performance, we
repeated the simulation with 32 GiB of cache size for both
E-region and uCache (with bucket size of 256 KiB). Our
experiments show an average reduction of 2x in number of
GC cycles in both approaches if not eliminated completely.

3More recent drives have been observed to have slightly larger conventional
regions, e.g. 31 GiB in devices available to the authors, and 1% of total
capacity in other drives.

Fig. 8: Buckets gathered per GC cycle vs. bucket size. (no GC
cycles observed for 0.25MiB and 0.5 MiB in w87)

wO1 is the only new case with zero GC cycles for E-region
STL, whereas w37, w28, and w21 are the ones for uCache.
The actual duration of a GC cycle includes time to read
data from the cache, which can be high if gathering large
numbers of small fragments. To quantify this possible increase
in GC cycle, we measure the number of buckets retrieved from
cache in each cycle; results for two representative workloads
are seen in Figure 8. In the worst case (w48, 256 KiB bucket
size) the mean number of buckets evicted per GC cycle was
roughly 200; assuming 5 ms each this would add an additional
1's to the average GC cycle. We note that the use of buckets
bounds this overhead, as well, as the maximum number of
256 KiB fragments in a 256 MiB zone is 1024; under worst-
case workloads, simple E-region STL may gather far greater
numbers of independent extents in a single GC cycle.

C. uCache bucket promotion

Copying an entire bucket for promotion results in an addi-
tional seek and bucket transfer, amplifying both I/O operations
and bytes transferred*. This may be seen in Figures 9a and
9b, which show I/O amplification in operations and bytes,
respectively.

We note that although the I/O amplification in bytes is
considerable, reaching a factor of 2 and 9 in two (w46 and

4Unlike flash, disk has symmetric read and write performance, thus perfor-
mance impact is better quantified by I/O amplification than write amplification.

Authorized licensed use limited to: Northeastern University. Downloaded on January 20,2022 at 18:56:27 UTC from IEEE Xplore. Restrictions apply.

10%

8%
6%

4%
2%

1/0 count amplification

0%

%! % i@ 1
w9l w87 w78 w75 w69 w48 w46 w29 w28 w26 w2l
Workload

(a) I/O operations

'/ cif] / /
w9l w87 w7 w75 w69 w48 w46 w2 w28 w26 w2l
Workload

(b) bytes

Fig. 9: Background promotion I/O amplification in: a) I/O operations and, b) bytes, captured in simulations.

512KB
E=1 1MB

B 128KB
3 256KB

N 2MB

Mean latency

50

Workload

Fig. 10: Promotion mean latency captured in emulations.

w29, 4 MiB bucket size), the total increase in I/O count is
modest in almost all cases. The average byte amplification of
all cases with the smallest bucket size is 30%. For capacity
drives the overhead of a single seek is roughly the same as for a
2 MB transfer, so the overall impact on performance should be
modest, especially for bucket sizes of 1 MiB or less. Although
I/O volume amplification increases strictly with bucket size,
I/O operation amplification varies by trace; in large part due to
increased GC (and thus promotion) with larger bucket sizes.

In addition to transfer time, promotion-by-copy results in
an additional disk seek to read the associated bucket from
data zones for each promotion. Promotion-by-mapping incurs
no promotion seeks, but fragments the bucket between the
data zone and the cache, causing extra read seeks. Table V
compares the read seek overhead of these two approaches, for
bucket sizes of 0.5 MiB and 4 MiB. When promotion-by-copy
is used, for a majority of the traces the read seek overhead is
seen to be lower than that of promotion-by-mapping for both
examined bucket sizes.

In addition to the read seek incurred to promote a bucket,
promotion-by-copy introduces fragmentation at bucket bound-
aries as well; however the number of additional seeks incurred
varies depending on the bucket size. Among the traces, w87
and w21 shows the highest and the lowest fragmentation
at boundaries (20% and 1% respectively) with the smallest
examined bucket size (0.125MiB) . However, increasing the
bucket size to 4 MiB reduces the fragmentation ratios to 0.8%
and 0.1% for the two workloads.

Bucket promotion is a synchronous operation, i.e. the write
operation causing the promotion is not completed till the end
of promotion process; this latency varies with bucket size.
Figure 10 shows mean latency measured by replaying the
uCache translated trace on actual device) incurred by bucket

promotion for varying bucket sizes for three representative
traces. Not surprisingly, interruption time goes up with bucket
size; however the interruptions are modest and of bounded
duration; mean interruption time ranges from 30ms (w75
with bucket size of 128 KiB) to 240 ms (w48, bucket size
of 2MiB). However, these interruptions occur only for cache
misses, which as we saw in Table III represent between 1
and 10% of writes in almost all cases. This overhead will be
small in comparison to the latency already incurred by writes;
Our trace analysis results show that depending on workload
between 25% and 70% of writes involve seeks of greater than
256 MiB, incurring significant seek and rotational delays.

V. RELATED WORK

Host-managed SMR drives have shipped with both shingled
and re-writable regions for several product generations [6],
with a fixed number of re-writable zones starting at LBA zero.
Recently announced plans extend this by allowing the size
of these regions to be adjusted dynamically [24]; however no
guidance is given for use of these regions. ZoneAlloy is among
the very first research that proposes approaches to manage
such a technology [25].

Re-writable regions for caching are proposed in recent work
on track translation layers for interlaced magnetic recording
(IMR) [26], where writes to “bottom” tracks may damage ad-
jacent “top” tracks, while top tracks may be modified without
such risk. In that work, however, the re-writable zone is used
very differently than in our work: only writes to selected hot
bottom tracks are forwarded to the cache. Furthermore, in
uCache read-modify-write (RMW) operations are performed
infrequently, at a zone granularity, whereas in the IMR work
[26] RMW operations are performed at a track granularity and
more frequently.

In publicly-disclosed SMR algorithms to date, only
dm-zoned [14] makes use of re-writable zones; other work
either assumes a fully-shingled drive [5], [15]-[17], [27], [28]
or a costly hybrid system including SSD [8], [18]. Although
dm-zoned represents a step in the direction of this work, we
demonstrate the clear advantage offered by (a) smaller bucket
sizes, allowing more effective use of the re-writable cache,
and (b) promotion by copying, reducing fragmentation and
additional read seeks incurred.

Cassuto et. al propose a translation layer using a set-
associative cache as well as an additional circular buffer cache.
FSTL [5] introduces a framework to design new translation

Authorized licensed use limited to: Northeastern University. Downloaded on January 20,2022 at 18:56:27 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Additional seeks due to promotion (promotion-by-copy) and fragmentation (promotion-by-map).

workload
bkt size seek ovrhd w09 w10 wl4 w2l w26 w28 w29 w37 w46 w48 w69 w75 w78 w87 w9l
copy (x10°) | 2.02 413 202 0.05 0.1 0.2 022 0.17 224 0.05 002 0.02 003 003 001
0.5MB map (x10%) 1.89 632 1.2 0.71 072 0.15 405 024 0.06 10.41 0.98 0 0.06 0.02 0
copy (x10°%) | 3.02 5.15 2.7 006 0.04 003 0.21 0.31 0.5 0.02 0 0 0.02 0.01 0
4MB map (x10%) 0.3 0.83 018 026 043 0.12 387 0.14 003 4.88 0.9 0 0.04 0.02 0

layers, and use it to explores different garbage collection
algorithms for SMR translation layer. Both VGuard [16] and
SMaRT [17] propose track-based STL solutions. Tancheff et.
al [28] introduce ZDM, a fully page-mapped translation layer
implemented as a host-side device mapper for SMR disks,
similar to DFTL [29] for NAND flash. In each case uCache
differs by taking advantage of conventional regions on the
disk, allowing many (and often nearly all) writes to be handled
without the overhead of out-of-place writes. Furthermore, with
the exception of the track-based SMaRT [17] none of these
cases exploit the spatial and temporal locality of workloads,
while SMaRT differs in that its caching granularity is fixed to
the (location-varying) track size.

Both FC [8] and SMRC [18] use NAND flash for the on-
media cache, and thus may outperform yCache, at the cost of
adding higher-priced storage to the device or system. uCache
relies only on a single magnetic recording device, and thus is
simpler and lower-cost.

VI. CONCLUSION

Although a combination of shingled and conventional mag-
netic recording has been already implemented in host-managed
SMR drives, its characteristics when used by a translation layer
have not been addressed in the literature yet.

In this work, we introduce yCache, a translation layer that
takes advantage of both shingled and re-writable zones on the
same device, exploiting both spatial and temporal locality of
workloads to reduce the overhead of out-of-place writes.

Simulating uCache against real-world traces, we find that
with appropriate bucket sizes the entire write working set of
many of workloads can fit in the re-writable cache, resulting
in the total elimination of garbage collection overhead. We
further, emulate pyCache and evaluate its performance by
replaying translated traces against actual device and show that
it outperforms its counterpart E-region translation layer on
average by 2x and up to 5.1x.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1910327 and by a
NetApp Faculty Fellowship.

REFERENCES

[11 A. Aghayev, M. Shafaei, and P. Desnoyers, “Skylight—a window on
shingled disk operation,” ACM Transactions on Storage (TOS), vol. 11,
no. 4, p. 16, 2015.

[2] 1. T. T. Committee, “Information technology - Zoned Block Commands
(ZBC),” ANSI, Inc., Draft Standard T10/BSR INCITS 536, Sep. 2014.

[3] ——, “Information technology - Zoned-device ATA Command Set
(ZAC),” ANSI, Inc., Working Draft American National Standard
T13/BSR INCITS 537 Revision 04b, Sep. 2015.

[4] M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” in /3th SOSP, 1991, pp. 1-15.

[S] M. H. Hajkazemi, M. Abdi, M. Shafaei, and P. Desnoyers, “FSTL: A
framework to design and explore shingled magnetic recording translation
layers,” in MASCOTS ’18, Oct. 2018.

[6] T.Feldman and G. Gibson, “Shingled magnetic recording: Areal density
increase requires new data management,” USENIX; login: Magazine,
vol. 38, no. 3, pp. 22-30, 2013.

[7]1 M. Shafaei, M. H. Hajkazemi, P. Desnoyers, and A. Aghayev, “Modeling
drive-managed smr performance,” ACM Transactions on Storage (TOS),
vol. 13, no. 4, p. 38, 2017.

[8] C. Ma, Z. Shen, L. Han, R. Chen, and Z. Shao, “FC: Built-in flash
cache with fast cleaning for SMR storage systems,” Journal of Systems
Architecture, vol. 98, pp. 214-220, Sep. 2019.

[9] D. R. Hall, “Shingle-written magnetic recording (SMR) device with

hybrid e-region,” Apr. 1 2014, uS Patent 8,687,303.

S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,

“A log buffer-based flash translation layer using fully-associative sector

translation,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 3, Jul.

2007. [Online]. Available: http://doi.acm.org/10.1145/1275986.1275990

B. J. Nikkel, “Forensic analysis of GPT disks and GUID partition

tables,” Digital Investigation, vol. 6, no. 1-2, pp. 39-47, Sep. 2009.

P. Technologies, System BIOS for IBM PC/XT/AT computers and com-

patibles: The complete guide to ROM-based system software, 2nd ed.

Reading, Mass: Addison-Wesley Pub. Co, 1989.

E. Krevat, J. Tucek, and G. R. Ganger, “Disks are like snowflakes: No

two are alike,” in Proceedings of the 13th HotOS, 2011, pp. 14-14.

“dm-zoned,” https://www.kernel.org/doc/Documentation/device-mapper/

dm-zoned.txt.

Y. Cassuto, M. A. A. Sanvido, C. Guyot, D. R. Hall, and Z. Z. Bandic,

“Indirection systems for shingled-recording disk drives,” in Proceedings

of the 26th MSST, Washington, DC, USA, 2010, pp. 1-14.

M. Shafaei and P. Desnoyers, “Virtual guard: A track-based translation

layer for shingled disks,” in HotStorage 17, Santa Clara, CA, 2017.

W. He and D. H. Du, “SMaRT: An approach to shingled magnetic

recording translation.” in /5th FAST, 2017, pp. 121-134.

X. Xie, L. Xiao, X. Ge, and Q. Li, “SMRC: An endurable ssd cache for

host-aware shingled magnetic recording drives,” IEEE Access, vol. 6,

pp. 2091620928, 2018.

C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad, “Efficient

mrc construction with shards,” in /3th FAST, 2015, pp. 95-110.

R. Mattson, J. Gecsei, D. R. Slutz, and 1. L. Traiger, “Evaluation

techniques for storage hierarchies,” IBM Systems Journal, vol. 9, no. 2,

pp. 78-117, 1970.

M. H. Hajkazemi, M. Abdi, and P. Desnoyers, “Minimizing read seeks

for smr disk,” in Z/ISWC. IEEE, 2018, pp. 146-155.

D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:

practical power management for enterprise storage,” in Proceedings of

the 6th FAST, San Jose, California, 2008, pp. 1-15.

J. Axboe, “fio,” https://github.com/axboe/fio.

T. Feldman, “Flex dynamic recording,” ; login:, vol. 43, no. 1, 2018.

F. Wu, B. Li, zhichao Cao, B. Zhang, M.-H. Yang, H. Wen, and D. H.

Du, “Zonealloy: Elastic data and space management for hybrid SMR

drives,” in HotStorage 19, Renton, WA, Jul. 2019.

M. H. Hajkazemi, A. N. Kulkarni, P. Desnoyers, and T. R. Feldman,

“Track-based translation layers for interlaced magnetic recording,” in

USENIX ATC 19, Renton, WA, Jul. 2019, pp. 821-832.

W. He and D. H. Du, “Novel address mappings for shingled write disks,”

in HotStorage 14, 2014.

S. Tancheff, “Seagate zdm device mapper,” https://github.com/Seagate/

ZDM-Device-Mapper.

A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation

layer employing demand-based selective caching of page-level address

mappings,” Acm SIGPLAN Not., vol. 44, no. 3, pp. 229-240, 2009.

[10]

(11]
[12]

[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

(271

[28

[29]

Authorized licensed use limited to: Northeastern University. Downloaded on January 20,2022 at 18:56:27 UTC from IEEE Xplore. Restrictions apply.

