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We present a piezoelectric transducer in thin-film lithium niobate that converts a 1.7-GHz microwave
signal to a mechanical wave in a single mode of a 1-um-wide waveguide. We measure a —12-dB con-
version efficiency that is limited by material loss. The design method we employ is widely applicable
to transduction in wavelength-scale structures in emerging phononic circuits such as those needed for

efficient piezo-optomechanical converters and spin-phonon transducers.
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I. INTRODUCTION

Phonons interact strongly and coherently with many
kinds of degrees of freedom and so can glue together
hybrid classical and quantum systems. With efficient elec-
tromechanical transducers, we can leverage microwave
electronics to read out and control quantum dots [1,2],
color centers [3,4], magnons [5], and optical photons
[6-16]. Furthermore, the phonons themselves are use-
ful for manipulating classical and quantum information.
Ultrahigh-Q nanomechanical resonators [17] have precip-
itated a number of new approaches to hardware-efficient
quantum information processing [18,19]. Since mechan-
ical waves are highly confined and slow compared with
light, they are apt for low-loss compact microwave compo-
nents for storing [20-22], routing [23], delaying [24-26],
and filtering [27-29] classical and quantum information.

Many of these applications rely on or benefit from
going to smaller mechanical waveguides and resonators.
Per phonon, the strain and displacement in a cavity and
in a waveguide scale as the reciprocal of the square
root of the volume and of the area, respectively. As
a result, size plays a central role in improving phonon
coupling rates in optomechanics [30-34] and strain-
coupled two-level systems [35]. Moreover, wavelength-
scale structures have fewer modes, giving more control
over loss and coupling. The smaller the waveguide or res-
onator the better, placing new demands on the design of
efficient and mode-selective electromechanical transduc-
ers [36-38]. While piezoelectric driving of wavelength-
scale structures—both nanobeam resonators [11,13—15,39]
and waveguides [7,40]—has been demonstrated, many
devices, such as nanophotonic acousto-optic modulators
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[7] and microwave-to-optical quantum converters [14,15],
are still primarily limited by the efficiency of their trans-
ducer. An important challenge remains in systematically
designing and characterizing wavelength-scale single-
mode transducers as standalone phononic components that
can be widely incorporated into phononic networks.

Here we present a piezoelectric transducer operat-
ing at 1.7 GHz that excites the fundamental horizontal
shear (SHO) mode of a 1-um-wide waveguide in thin-
film lithium niobate (LN). We have recently used such
transducers to drive the breathing mode of a nanobeam,
increasing our previously demonstrated electromechanical
efficiency by five orders of magnitude [41].

Our work focuses on a single transducer design for our
platform, but many of the methods we employ are general.
In Sec. II, we show how the area of a transducer can be
estimated from the piezoelectric coupling coefficient kgﬁ
and the target bandwidth. With a large kgm a small trans-
ducer can be matched to 50 €2, making it easier to couple
it to a wavelength-scale waveguide. In Sec. 1II, we show
that, for shear waves, adiabatic elastic horns cannot be
used to generate wide beams. This motivates our narrow
designs. In Sec. 1V, we formulate the design problem in
terms of the electromechanical scattering matrix and show
how the elements of the matrix (in particular, the transmis-
sion f5,) can be computed by the finite-element method
(FEM) with a normal mode decomposition. This S-matrix
approach makes it possible to incorporate the transducer
into a more general network of microwave electromag-
netic and phononic components. In our analysis, we find
that the best-matched transducer is not the most efficient;
microwave reflections |S);| cannot be used as a proxy for
|tg,# | For this reason, our measurements presented in Sec.
V focus on deembedding the transducer from a cascaded
transducer-waveguide-transducer network, giving us a

. . 2
conversion efficiency |tg,#| = 7.0%.
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II. PIEZOELECTRIC-COUPLING CONSTRAINTS
ON TRANSDUCER AREA

We begin by considering the area 4 on the surface of
a chip needed to impedance match a transducer to a 50 €2
transmission line. The smaller we can make our transducer,
the easier it will be to couple it to a wavelength-scale
waveguide, but the area of the transducer is constrained by
the impedance of the transmission line, the desired band-
width, and the piezoelectric coupling coeflicient kze&* We
show in Appendix A that for a few different models of
piezoelectric transducers, these important parameters are
related by the equation

/1 1
A:E%Tskgﬂ-fdw(;(a}) (1}
T2 50 Y for Lorentzian G 2
=3 e, kzﬁ [for Lorentzian G(w)]. (2)

Here, G is the conductance (the real part of the
admittance Y) of the interdigitated transducer (IDT); ¢; is
the capacitance per unit area; s is the series resonance
frequency; Gy and y are the maximum and full width
half maximum, respectively, of G (w); and the integral is
evaluated over an interval around wy.

Equation (1) gives us a quick way to estimate device
parameters. We see that matching to 50 €2 over a large
bandwidth comes at the cost of area. Materials such as
LN with a high ekfw where ¢ is the dielectric permit-
tivity, enable small transducers with a large bandwidth.
If we only need a small bandwidth, we can make a
small resonant transducer that is easier to couple to a
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FIG. 1.

wavelength-scale waveguide. In principle, there is no
lower bound on the area of a 50-Q2-matched transducer; in
practice, material and clamping losses set a minimum on y'.

Horizontal shear (SH) waves in a LN slab are strongly
piezoelectric, enabling small transducers. SH waves trav-
eling along the Y crystal axis in X-cut LN couple to an
IDT’s electrodes mainly via the dyzy = 68 pC/N compo-
nent of the piezoelectric tensor [42,43], leading to a large
kzeﬁ of up to 35%. The coupling coefficient can be com-
puted for an arbitrary mode of a unit cell of an arbitrary
IDT as shown in Appendix B; values for various modes of
a LN slab without electrodes were reported by Kuznetsova
et al. [44].

A 1.9-pm-pitch IDT with ¢, = 155 uF/m? and w, =
2w x 1.7 GHz (computed by the FEM) requires an area of
roughly 250 um? to match it to 50 Q over 10 MHz. This
bandwidth is consistent with our previous measurements
of loss, which place a lower bound on the bandwidth for
the platform [45]. With this area constraint in hand and the
intuition that comes with it, we turn our attention to the
modes of LN waveguides and the physics of elastic horns.

III. MODES OF A LN WAVEGUIDE AND
ELASTIC-HORN DESIGN

A piezoelectric waveguide with continuous translational
symmetry, such as the rectangular waveguide shown in
Fig. 1(d), supports a power-orthogonal basis of modes at
each frequency @. These modes solve an eigenvalue prob-
lem on a two-dimensional cross section of the waveguide
in which the stress field o and the velocity field v of
the theory of elasticity and the electrostatic potential &

(d) 3; .
/ /
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Suspended transducers patterned in 300-nm-thick X-cut LN on silicon, designed to excite the SHO mode of a 1-um-wide

waveguide at 1.7 GHz. They comprise an aluminum IDT 3.4 yum wide and 100 nm thick, and a 10-pum-long linear horn. In the false-
color SEM image (c), LN is blue, aluminum is yellow, and the XeF, release etch front is burgundy. FEM analysis (b) shows that the
horn scatters the SHO mode of the IDT efficiently into the SHO mode of the 1-um-wide waveguide. The bands and Bloch functions of
the IDT and waveguide which constitute the asymptotic state of the horn are plotted on the left (a) and right (d), respectively. Waves

propagate along y, and the colors indicate the displacement along z.
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of electrostatics are coupled by the piezoelectric tensor d.
The modes |¥,,) = (0w, Vi, Pm), indexed by m, vary along
the waveguide as ¢’ with a complex eigenvalue K,,. If
K; # K", modes i and j are power-orthogonal and satisfy

(Wil ) = fds'(—ﬂi""f —0,V} + ioD} ®; — iwD; ®})
=9 3)

forming an inner-product space in which band structures
can be computed and scattering can be studied [46].
Here D = —eV® + do is the electric displacement field,
and we normalize our basis such that (] wj) = §;;. For
more detail on our choice of Fourier conventions and the
relationship between the inner product and power, see
Appendix C.

The wavelength-scale LN waveguide we are trying to
excite is 1 um wide and 300 nm thick. It supports four
modes between 0 and 1.6 GHz: the Lamb mode (A0),
the horizontal shear mode (SHO0), the first excited Lamb
mode (A1), and the longitudinal mode (S0) [47]. The band
structure is plotted in Fig. 1(d).

From Sec. II, we know we need a 250-pm? IDT and
a way to couple it efficiently to the waveguide. A wider
IDT provides room for the wires and reduces the impact
of material loss (see Sec. IV). A natural choice is then
to expand the mode of the narrow waveguide using a
horn structure to couple it to a wider IDT. In microwave
and acoustic design, adiabatic horns are commonly used
to expand a beam, but elastic media have an added phe-
nomenon that spoils this approach: they support surface
waves.

If we increase the width of the waveguide adiabatically,
the SHO mode splits and becomes localized at the edges.
This is analogous to how Rayleigh waves are localized at
a surface. In Fig. 2(a), we vary the width of the waveg-
uide and compute the wave vectors of the SH modes.
The SHO and SHI1 modes of the 1-um-wide waveguide
(left) continuously transition to degenerate antisymmet-
ric and symmetric edge modes, respectively (right). For
shear waves, adiabatic horns cannot produce wide uniform
beams and therefore cannot efficiently convert these waves
from waves in a wide IDT to waves in a narrow waveguide.

We choose 3.4 um for the width of the IDT so that an
adiabatically tapered horn can efficiently scatter the trans-
duced mode into the 1 wm waveguide. The narrow IDT
allows us to simplify the design, make full use of the
width of the transducer, spectrally resolve the SHO and
SH1 modes, and keep spurious shear modes in cutoff.

IV. FEM MODELS OF THE TRANSDUCER: LOSS
LIMITS THE TRANSMISSION #;,

A transducer is often sufficiently characterized by its
admittance Y (w), and the design objective may be to
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FIG. 2. (a) Adiabatic elastic horns do not generate wide
mechanical beams. The SHO and SH1 modes (u, plotted at
left) transition to degenerate antisymmetric and symmetric edge
supermodes, respectively (right). Below 5 pum, the SH waves
(red) are well resolved. The Lamb waves are plotted in light blue.
(b) A linear horn scatters the SHO mode of the 3.4-pum-wide IDT
efficiently into SHO of the 1-pum-wide output waveguide. (c) By
decomposing the power in the waveguide, we find that transduc-
tion of spurious modes, i.e., the isolation, is better than —10 dB
away from the nodes in the conductance over a 200-MHz band-
width. The largest spurious component is the SH1 mode, plotted
in red.

minimize microwave reflections, i.e., to match it to a
transmission line. This is true, for example, when loss
channels such as scattering into the bulk can be ignored
and the mode structure of the radiation is well understood.
But the admittance does not fully characterize the linear
response; minimizing microwave reflections does not nec-
essarily maximize the electromechanical transmission. Our
numerical analysis presented in this section and the mea-
surements presented in Sec. V are tailored to maximize and
characterize the transmission into the SHO mode, .

A three-dimensional FEM analysis of the transducer, as
shown in Fig. 1(b), is used to solve the inhomogeneous
piezoelectric equations at each frequency. The domain is
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bordered by a perfectly matched layer. As discussed in
Sec. 11, the modes of the output waveguide form an inner-
product space (see Appendix D) in which we decompose
the power radiated by the IDT and check that the trans-
ducer excites a single mode. Given a solution |y), the
coefficients a,, are computed using Eq. (3):

am = (wm| 1/1) B (4)

such that

V) =) anl¥m), 5)

where Iaml2 is the power in mode m. For each mode m,
there is an associated backwards-propagating mode —m,
and this pair forms a piezoelectric port. In order to compute
tpu, We set the voltage across the IDT at each frequency
w, compute ¥ (@) and a,,, and relate them to a column of
the S-matrix, one component of which is #p,. Details of
piezoelectric ports and expressions for the S-matrix can be
found in Appendix E.

Our transducer is a 1.92-pm-pitch 100-nm-thick alu-
minum IDT with a duty cycle of 50%. The IDT’s fingers
end 300 nm away from the 400-nm-wide bus wires that
run along the edges of the waveguide. Based on previous
measurements on our platform [45], we incorporate a uni-
form material loss tangent corresponding to Q; = 300 and
scale the piezoelectric tensor from its bulk values by 0.67.
The SHO and SH2 I'-point modes of the IDT [Fig. 1(a)]
are efficiently transduced and scattered into the SHO and
SH1 modes of the waveguide [Fig. 1(d)]. In what follows,
we focus on the SHO mode of the IDT but have recently
used the SH2 response to drive the breathing mode of a
nanobeam [41].

Our analysis in Sec. III suggests that the 10-um-long
linear horn shown in Fig. 2(b) will function approximately
adiabatically. Over a large bandwidth, over 90% of the
power transmitted into the waveguide is transmitted into
the SHO mode. Less than — 10 dB goes into spurious modes
[labeled “Isolation” in Fig. 2(c)]. Excluding the nodes in
the conductance, the power in the largest spurious mode
(SH1) remains below —15 dB over 200 MHz.

In Fig. 3, we analyze how impedance matching and
damping contribute to 7, for transducers of different
lengths. At first, as N increases, the microwave reflec-
tions drop and the transmission improves as expected. But
improvements in matching to the transmission line com-
pete with damping in the IDT. This is seen in the fraction
of the dissipated energy which is lost due to intrinsic damp-
ing [Fig. 3(b)]. Above an optimal N, the transmission fz,
decreases even as microwave reflections continue to drop.
These competing effects lead to a maximum in [t5,|? for
an optimal N [Fig. 3(c)]: 12% for 29 finger pairs with

= 0.3k
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= 10k
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(| =admnd !
10 20 30 40

FIG. 3. By computing the linear response Y (@) and decompo-
sition {a,,}, we study the N-dependence of the transmission #p,,
from a 50 Q transmission line to the SHO mode. (a) Microwave
reflections S1; decrease with N. Lower-loss devices are matched
with smaller N. (b) As the reflections drop, the fraction of the
total power lost increases, diminishing transmission into the SHO
mode. (c) These competing effects lead to an optimal N for

maximizing |tgm 2, which increases with (J;. Numerical results
(points) are smoothed with a moving-window average (curve)
for clarity.

O; = 300. In short, minimizing S1; does not always max-
imize f,. Also, t3, is larger in transducers with lower
dissipation (larger Q;).

For O; = 300, intrinsic damping in the transducer is
the dominant loss channel, with only a small fraction
of the energy lost to the tethers. Of the total power
2G (w) |V(w)|2 dissipated by an N = 40 transducer such
as those measured in Sec. V, 11% is emitted into the
waveguide, 96% of which is in the SHO mode. Only 5% is
lost to clamping by the tethers along the back edge, while
the other 84% is lost to intrinsic damping.

There are a few approaches that can be used to improve

|tbﬁ |2 beyond 12%. The most obvious is to improve the

material parameters k2 and Q; [Fig. 3(c)]. For applications
in quantum science, operating at cryogenic temperatures
will likely increase Q; by suppressing thermally induced
mechanical loss and ohmic dissipation in the electrodes.
Another strategy is to reduce the reflection coefficient at
the IDT-waveguide interface, reducing the influence of
resonance and allowing us to make longer transducers
before reaching loss limits. Lastly, we could diverge from
the low-width low-density-of-states design and employ
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wider waveguides, embracing the challenges of multimode
design [39,40].

V. MEASUREMENTS

Starting with a 500-nm-thick film of LN on a 500-pum-
thick silicon substrate, the film is thinned to 300 nm by
argon milling before patterning an hydrogen silsesquiox-
ane mask with e-beam lithography to define the waveg-
uides. The mask is transferred to the LN by angled
argon milling [15]. We then perform an acid clean to
remove resputtered amorphous LN. We pattern the 100-
nm-thick electrodes and 200-nm-thick contact pads by
e-beam lithography and photolithography, respectively,
followed by Al evaporation and liftoff. Finally, we release
the structures with a masked XeF; dry etch.

The S-parameters of the transducers are measured with
a vector network analyzer (Rhode & Schwarz ZNB20) on
a probe station calibrated to move the reference plane to
the tips of the probes (GGB nickel 40A). Several modes
below 10 GHz are strongly transduced, as seen in Sy plot-
ted in Fig. 4. The conductance G = Re Y and susceptance
x = —ImY for the SHO mode plotted in Fig. 4(c) match
well with the overlaid simulated curve and I'-point fre-
quency of the IDT unit-cell bands shown in Fig. 1(a). The
peak conductance and full width half maximum for the
SHO mode, 6.5 mS and 9.7 MHz, respectively, inferred
from a Lorentzian fit, agree with the results from our mod-
els, 6.9 mS and 7.3 MHz. We infer a static capacitance of
31 fF from a fit to the dc response of x, and use it along
with the conductance fitted and Eq. (2) to calculate a kgﬁ of
15%. (A value of 17% is computed in Appendix B). From
the exact expression in Appendix A, we find kg =12%
(14.6% simulated). This is decreased by the feedthrough
capacitance of the contact pads.

In order to characterize the transducer, we need to
extract fp, from measurements of Sy;. To this end, we
deembed the transducer from the transducer-waveguide-
transducer two-port network by analyzing its response in
the time domain. Consider a device with an L = 200 pm-
long waveguide. If we were to infer #, directly from
the |S21| shown in Fig. 4(d) by halving the —15.7-dB
peak, we would come to the unlikely conclusion that our
transducer in practice is more efficient than in the sim-
ulation. This is because at 1.7 GHz, reflections at the
IDT-waveguide interface resonantly enhance transmission
through the waveguide. The transmission coefficient #5,
cannot be deduced directly from the |S71| of a short device
with large reflections at the IDT interface.

Instead, we isolate the propagation loss @ and #, by
analyzing the time-domain impulse response # (f), which
is the inverse Fourier transform of S7;(w), plotted for
a device with L = 800 pum in Fig. 4(e). The first pulse
takes the shortest path through the device and is attenuated
by |tp.[>e~*L/2. Each subsequent echo takes an additional
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FIG.4. (a)|Sy1| ofan N = 40 transducer; (b) |S1;| restricted to

the SHO and SH2 responses. (¢) Conductance G and susceptance
x of the SHO mode, overlaid on FEM results [labeled N.G(w)
and N.x(w)]. (d) |S21]: for an ideal delay line with no inser-
tion loss, this would equal the two-port mismatch 1 — [S;|2/2 —
[S2212/2, shown in red (see Appendix G). (e) For L = 800 um,
the heights of the echoes in the impulse response are fitted
(inset) to extract the round-trip loss. We filter the echoes (inter-
vals shaded blue, red, and green) to compute the single-, triple-,
and quintuple-transit Sy;, plotted in corresponding colors (inset),
used to extract |f5,| as described in Sec. V.

round trip, is attenuated by |r|?e=®L, and is delayed by
2L/v, = 4.0 x 10? ns. We fit |r|?¢~*L = —11.6 dB from
the peaks in Fig. 4(e) and transform the first pulse (blue)
back to the frequency domain (inset) to find |t [2e~*L/? =
—28.6 dB. More detail is provided in Appendix F.

The single-transit and round-trip loss are two constraints
on three unknown quantities: |tb#|2, |7]?, and a. By sweep-
ing the length of the device, all three parameters can be
determined independently. In lieu of a length sweep, we
ignore scattering into other modes and assume |fp,|> +
|72 =1 at the IDT-waveguide interface to find a |fb#|2
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of 7.0% (comparable to the simulated value of 8.9% for
N = 40), an |r]? of 93%, and an « of 6.8 dB/mm.

Given the measured group velocity of v, =4.0 x
10° m/s, this & corresponds to a quality factor Q = wp/av,
of 1700 in the waveguide and an f5Q of 2.9 x 10'2, which
is comparable to the results of our previous work on multi-
mode high-frequency delay lines, with an f5Q of 4.6 x 10'2
[45]. We see an order-of-magnitude improvement over
delay lines in suspended LN employing the SO mode at 350
MHz, where fQ = 0.45 x 10! [48]. Resonators using
antisymmetric thickness modes exhibit foQ products over
twice as large (9.15 x 10'2) [49].

VI. CONCLUSIONS

In suspended LN films, large reflections at the IDT-
waveguide interface lead to resonance. These reflections
distort signals in a filter or delay line and reduce band-
width; here, resonance allows us to make small transducers
and use simple horns to couple them to a waveguide.
This reduced bandwidth can be tolerated in microwave-to-
optical conversion and two-level system control and read-
out if it facilitates high conversion efficiency. At cryogenic
temperatures, the intrinsic loss will likely drop, increas-
ing the conversion efficiency of our design and enabling
smaller bandwidths and therefore smaller transducers. At
room temperature, the route to more efficient designs calls
for wider transducers and efficient horns.

The design of a horn depends on the details of the
given platform. For example, coupling surface acoustic
waves to suspended waveguides and beams [39] introduces
new features into the design such as mitigating reflections
at the slab interface. The S-matrix formulation described
here can be applied generally to design and character-
ize phononic components, such as horns, on a variety of
platforms.

Our hope is that insights from our design of a phononic
waveguide transducer in suspended LN can be generally
applied to selectively exciting modes of wavelength-scale
mechanical devices and that the methods we employ can
inform approaches to the design and characterization of
phononic components and systems.
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APPENDIX A: RELATING THE PIEZOELECTRIC
COUPLING COEFFICIENT TO THE NET
CONDUCTANCE

In Sec. I, we relate the area of a transducer to the piezo-
electric coupling coefficient kzem the static capacitance per
unit area ¢y, and the net conductance

T 1
A=———— [ doG ,
4w%cskgﬁf G @)

where the conductance is G = Re ¥(w). In this appendix,
we show how this expression holds for two very different
models of piezoelectric transducers: the Butterworth—Van
Dyke circuit model and the impulse response model of a
surface-acoustic-wave (SAW) transducer [50]. We conse-
quently take this expression as our device-independent and
easily computable definition of kiﬁ

(A1)

1. Review of the Butterworth—Van Dyke model

The Butterworth—Van Dyke (BVD) circuit model is a
simple and widely used model of a piezoelectric resonator.
The circuit comprises a static capacitance Cp in parallel
with a motional series LC circuit, with motional inductance
L,, and capacitance C,. It is equivalent to the circuit in
Fig. 5 with R, = 0.

The BVD circuit, with admittance [51]

Y (0) = —iwCy — iwCp, (A2)

1
- w?/a?

exhibits a pole at the series resonance frequency w; =
1/o/LyCpy. Similarly, the impedance diverges at the par-
allel resonance frequency w,, where Y(w,) = 0. Setting
Eq. (A2) to zero and solving for w,, we find

(A3)

FIG. 5. Butterworth—Van Dyke circuit modified to include
mechanical loss.
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The splitting between the series and parallel resonance fre-
quencies increases with the ratio of motional and static
capacitance.

For a resonator, the effective piezoelectric coupling
coefficient is defined in terms of the ratio of w, and w,
[52,53]:

(A4)

18

R | AS
eff — 4 wp wp ¥ ( }
as in Ref. [54], and to first order it is
2
o= (1-2), A6
=715 (A6)

In the next section, we show that the motional capacitance
Cy 1s proportional to the net conductance. Ultimately, we
want to relate the net conductance, which is a convenient
form for expressing design specifications, to the area of
the transducer using intensive quantities such as @, wp,
and kze&* To do this, it is helpful to note that the capacitance
ratio in Eq. (A3),

Cu _ 1 A7
can be reexpressed to first order in (@, — wy) /) as
w? wf, 1
of = g w—s -
7% Cp
= —— AR
g Co (A8)

as in Ref. [55].

2. The modified Butterworth—Van Dyke circuit model

In order to relate the net conductance to C,,, we begin
with the lossy resonator with motional resistance R,
shown diagrammatically in Fig. 5.

The admittance of this circuit,

1
1/ —iwC,, —iwL,, + Ry,
®
@? + iww/Q — w?

Y(w) = —iwCy +

= —iwCy + iw?C,, . (A9)

is conveniently expressed in terms of the series resonance
frequency w; = 1/4/L,C,, and the quality factor 0~! =

@Ry Cy. From Eq. (A9), we directly compute G(w) and
the net conductance relating it to kgﬁ to derive Eq. (Al).

We can simplify the calculation by expanding the
motional term as a sum of first-order poles

Y()=—-ioCy+ Y, (0)+7Y_(v). (A10)
The admittance of the pole at the frequency
w: = 2o,/1—1/407 —i0/20  (All)
is
Yy (@) = 1105 Co @ (A12)

200 © F wy + iw,/2Q°

For compactness, we introduce a modified series resonance

frequency wy = ws4/1 — 1/402.

Taking the real part of ¥, we find the conductance

G(w) =G4 (@) +G_ (o), (A13)

where

@3 Cy, ()
40wy (0 F wo)? + w2 /402

The conductance is positive and even, i.e., G(—w) =
G(w).

Focusing on the positive pole, we recognize the net
conductance as the mean of a Lorentzian by changing
variables according to @ = wx/20:

Gy (w) =+ (A14)

o5 3
Cm
f dw G, (w) = =2
_oo 40wy
1 o0
X [—f dx al 5 ]
TJoow (x—20w0/ws)" + 1
nw?C,,
= # (A15)

Despite being an integral of the dissipation in the circuit,
the net conductance is completely independent of R,,.

Each pole contributes 7 @?C,,/2 to the net conductance.
Since the conductance is even,

0 00
f da)G(a)):f dw G (w) (A16)

—00 0

Tw*Cy
== " Al7
. (A17)

By Eq. (A8), the coupling coefficient is

2=l fmd G () Al8
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to first order in (w, — ®,) /w,. Devices are usually multi-

mode. To exclude contributions to k% from other modes,
we integrate G (w) over a narrow band around wy.

In Eq. (A18), ( is the product of the static capacitance
per unit area ¢ defined in the text and the area of the
transducer 4. A simple rearrangement gives Eq. (1):

A= fde(a))

Al9
4w (,3T ( )

where the integral is evaluated over an interval around ;.
Equations (A18) and (A19) use an approximate form for
k%;. We can write these expressions exactly using Eq. (A7):

fde(w) (wg—w)co

1
(wg - wf) Cs
Without making any approximations, Eq. (A21) gives the
area in terms of the net conductance and intensive quan-
tities that can be easily calculated for a unit cell of a
transducer (Appendix B).

Before moving on to the impulse response model, we
consider the traditional BVD circuit discussed in Sec. A 1,
which we encounter in Appendix B. In Eq. (A2), the
conductance—and therefore the net conductance—is zero.
This seems like a problem for Eq. (A18). On the other
hand, the net conductance derived above [Eq. (A15)] is

independent of R,,, and in the limit R,, — 0, the circuits

are equivalent.
Taking the limit of Eq. (A14), we find

(A20)
and

A:% fda)G(a)). (A21)

2
G
lim Gy (@) = ———8 (0 F wyp) . (A22)
O—o0
In this limit, the admittance in Eq. (A9) becomes
0lCu [ 1 1
Y Co+i—=
(@) = —iwCo +i 2 |:w—w3+w—|—a),j|
erZC

+ [0 (@ — @) + 8 (0 + )], (A23)

from which Eq. (A18) follows.

In contrast to Eq. (A2), the expression above satisfies
the Kramers-Kronig relations. For any causal circuit, the
susceptance x (w) = —Im ¥(w) is related to G(w) by [56]

o0 Gl
—Pf g 8@
—0 o —o

which the delta-function-pole pairs in Eq. (A23) satisty.

X (w) = (A24)

3. Impulse response model of SAW transducer

The impulse response model (IRM) is a simple model
of the piezoelectric transduction of a manifold of propa-
gating modes—a band—rather than the resonant degrees
of freedom described by the BVD circuit. The conduc-
tance of a transducer obtained from the IRM is G(w) =
Gi(w) + G_(w), where [50]

-2
sin“ X .
G (@) = 8kig fiCoN —7— (A25)
X =nN (0w — w;) /o, and @, = 2nf,. A similar expres-
sion follows for the negative-frequency response G_ cen-
tered at —w,. Since

fm X sinZX _
> X

we can integrate G (w) around @y, changing variables from
w to X, to find

(A26)

f dw G (0) = 16712 Cok. (A27)
Again the static capacitance can be related to quantities in
the main text, namely Cy = Ac;,, from which it follows that

f dw G (w) . (A28)
4 w cs

This is Eq. (1).

4. Using the net conductance to evaluate the
piezoelectric coupling coefficient

Equation (A18) expresses the piezoelectric coupling
coefficient kgﬁ in terms of quantities that can be directly
measured—G (@), ws, and Cp—without any appeals to a
model. This expression comes with a couple of caveats.
The first is that it does not discriminate between dissipation
from mechanisms such as ohmic loss and dissipation from
radiation into mechanical waves. If Eq. (A18) is used to
calculate kgﬁ\, care has to be taken to exclude nonmechani-
cal loss mechanisms. Second, the interval of integration for
the net conductance f dw G (w) has to be chosen carefully.
All modes of a resonator or bands of a SAW transducer
in the interval will contribute to the piezoelectric coupling
in Eq. (A18). Finally, Eq. (A1R8) is correct only to first
order in (w, — ;) /w,. For large coupling, it is better to
use Eq. (A20) to compute the resonance-frequency ratio
s /w,, which can then be plugged into Eq. (A4).

APPENDIX B: EVALUATING kfﬁ FOR A UNIT
CELL OF A WAVEGUIDE

In Sec. 1I, we begin our design process by using the
piezoelectric coupling coefficient kzeﬁ and the expression
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described in Appendix A to estimate the area needed
to match the transducer to 50 €. It is well known that
SH waves in X-cut lithium niobate exhibit a large kgm
and there are numbers for suspended films available [44].
For an arbitrary material stack and waveguide geometry,
transducer design begins with a study of kng Here we
show how we calculate kgﬁ for a mode of a wavelength-
scale transducer. These methods can be used to study the
angle dependence of kzeﬁ in anisotropic media, the cou-
pling of different modes of a waveguide, or the influence
of geometry such as waveguide dimensions and electrode
thickness.

The unit cell of the transducer is shown in Fig. 6(a). Flo-
quet boundary conditions are imposed on the faces normal
to the direction of propagation y. Here we study the I'-
point solution, and so the wave vector K along yp is set
to 0. The frequencies of the modes supported in the unit
cell under this constraint are plotted in the bands shown in
Fig. 1. We compute the admittance Y (@) for this domain,
setting the voltage across the IDT to 1 V and solving the
inhomogeneous piezoelectric equations by the FEM.

Each mode gives rise to a pole in the susceptance, which
can be fitted to extract the residue Gy /m and therefore
kgﬂ" Here Gy is the contribution to the net conductance
from the pole. Ignoring contributions from other modes,
the susceptance takes the form

G 1
X (@) = 0Cy + —
T Wy — @

(B1)

We can independently compute the static capacitance Cp
and the series resonance frequency w, and put the problem
of finding Gy into the form of a linear regression.

The series resonance frequency w; for each mode can
be computed by solving the same eigenvalue problem as
that solved to compute the bands in Fig. 1. Here f; =
1.683 GHz. The static capacitance Cp can be extracted
from x (@) by fitting a line to the low-frequency response.
The capacitance per unit cell is 1.339 {F. Then we rewrite

(a) (c) ),
Y, -15 @ ]
2 L = ]
) =17
e S 1
@ x107* 0.5 N e
£5 £ = -
: (b) | 04 ff"“ HE—IE L
=) 0 —0.54 ; ; ! ; | 1 1 ! ! 1
T 0 50 1.66 1.7 1.74 1.78 1.82
w/27 (MHz) w/27 (GHz) w/2m (GHz)

FIG. 6. (a) SH mode of a unit cell of the transducer. (b)
Response near dc fitted for the static capacitance Cy. (c) The pole
in the susceptance centered at the series resonance frequency f;
is fitted for the net conductance and used with Cp to compute kfﬁ.
(d) In addition to the pole in the admittance, there is a pole in the
reactance centered at the parallel resonance frequency f;.

Eq. (B1) as a linear regression

% e (B2)
b4

with y = x —@Cp and x = (@, — w)~'. This regression
can be generalized to multiple modes by replacing x with a
matrix X, where each column (a),,,‘ — w)_
the ith pole, with frequency ws;.

From the fit in Fig. 6(c), we find Gy = 32.91 x 10
S - Hz per unit cell. We can use Gy, directly to compute the
area needed to match the transducer to 50 Q2. By Eq. (A18),
we find a kzﬁ of 17.26%. This approximate value for kgﬁ
holds only to first order in (w, — @) /w,. If we want to
use Gy to compute kgﬁ exactly, we can use the form in
Eq. (A20) to find the resonance-frequency ratio @, /ws,
which we plug into Eq. (A4) to find &2, = 14.70%.

There is an easier way to calculate kfﬁ for a unit cell
directly in terms of w, and w,. In the absence of mate-
rial loss, the admittance and reactance diverge at the series
and parallel resonance frequencies, as seen in Figs. 6(c)
and 6(d), respectively. A divergent admittance means that
the voltage drop across the electrodes is zero. This is
consistent with boundary conditions that short the IDT.
By imposing these boundary conditions and solving for
the eigenmodes of the unit cell at the I'-point, we find
Jfs = 1683 MHz for the SH mode. This is the same fre-
quency as that in the bands in Fig. 1(a). Similarly, the
divergent impedance is consistent with an open termi-
nal—floating boundary conditions for the electrodes—and,
by solving for the eigenfrequency of the SH mode, we find
J» = 1795 MHz.

To first order in (@, — wy) /w,, by Eq. (A8), we find

w? wf,

corresponds to

(B3)

5

= 16.97%, (B4)
which can be used in Eq. (A1). This agrees well with the fit
of the pole. Using w;/w), to compute kfﬁ from the definition
[Eq. (A4)], we find k% = 14.48%.

If material loss is added to the domain, the admittance
and impedance no longer diverge, and the series and par-
allel resonances no longer correspond to shorted and open
terminal boundary conditions on the electrodes. In such a
case, the net conductance can be computed directly rather
than by fitting the susceptance as described above.

We note that in a finite transducer, the wave excited by
the transducer is only approximated by the I'-point mode.
The wave in a transducer exhibits a spatially varying enve-
lope [45], in contrast to the I'-point mode, which describes
a uniform wave in an infinite transducer. The coupling
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coefficient kgﬂ' decreases away from the I'-point because of
mismatch between the wave vector K and the period of the
electrodes a, and so this method gives us an upper bound
on kgﬁ.

APPENDIX C: POWER DISSIPATION IN THE
FOURIER DOMAIN

The voltage V(f) can be expressed in the frequency
domain as

Viw) = % f dtV(t)e™, (C1)

and similarly for the current / and admittance ¥. With our
choice of Fourier convention, the power dissipated by an
electrical element, P(f) = V()I(f), is the convolution of
V(w) and I(w) in the frequency domain. Averaging this
quantity in time extracts the dc component of the spectrum,
thus reducing the convolution to

(P) = fm do V(w) (—w).

oo

(€2)

Since the voltage is a real-valued quantity, /*(w) is equal
to V(—w). (The same argument holds for /(w) and ¥(w)).
Changing our limits of integration and using Ohm’s law,
I(w) = Y(w)V(w), we find

(P) = ﬁ do[V'(@) + YOIV @P.  (C3)

Since 2ReY(w) = 2G(w) = Y(w) + Y*(w), the time-
averaged power dissipated by the electrodes is
oo
Po = 2[ do G(w) |V(w)|*. (C4)
0
To determine the time-averaged power for a piezoelectric

wave, we repeat the previous analysis starting from the
instantaneous piezoelectric Poynting vector

Priczo(t) = —o (O)v (1) + ()3 D(2), (C5)

and find the time-averaged piezoelectric power

o0
Priczo :f dwde (—o*v —ov* +iwD*® — iwD®*).
0
(Co)

We compare this expression with the inner product in
Eq. (3) to confirm that |am|* is the time-averaged power
in mode m. We note that our time-averaged power differs
from that of Auld [46] by a factor of 1/4, resulting from
differences in Fourier conventions. All values reported
are power ratios, and thus factors of 2 from choices of
convention drop out.

2 Uy
maE il
(+,-)

(+,-) (—,-)
SHO U, L0 u
L.
(= +) (+,+)

FIG. 7. Modes of a LN waveguide at 1.7 GHz. The colors in
these plots visualize the dominant displacement field. Light blue
arrows show the direction of displacement.

APPENDIX D: BASIS

Decomposition of the mechanical energy radiated into
a waveguide is necessary for calculating the transmission
coefficients such as 7, needed to characterize a phononic
component. For completeness, we briefly describe the
basis of propagating modes in a 300-nm-thick 1-pum-wide
X-cut LN rectangular waveguide. We categorize the five
1.7-GHz modes as Lamb (A), horizontal shear (SH), and
longitudinal (S) modes, which differ in their principal
strains Sz, Sz, and S, respectively. These modes are plot-
ted in Fig. 7 along with their reflection symmetries (o, 0y),
where (4, —), for example, means symmetric and antisym-
metric with respect to reflection across the x-y and y-z
planes, respectively.

APPENDIX E: COMPUTING THE S-MATRIX

In our FEM analysis, we solve a set of inhomoge-
neous equations describing the behavior of our piezo-
electric device. The drive term of these equations is a
vector (V, a_)T, where V is the voltage across the leads
of our transducer, and a_ is a vector of coeflicients for the
piezoelectric waves incident on the domain as defined by
Eq. (4).

The solutions of these equations can be represented in

matrix form,
I\ (Y x{\(V
a, )] \xp X a_J’

The scalar Y is the admittance of the transducer. For M
modes, X; and x; are vectors with M components, and X
is an M x M matrix. For the simulations reported here,
the coefficients of a_ are set to 0, and we solve for the
first column of the matrix in Eq. (E1) in terms of the input
voltage V.

In order to study how these transducers behave in
phononic networks—for example, the two-port transmis-
sion devices we use to measure f,,—we want to transform
the matrix in Eq. (E1) into a scattering matrix S. To do so,
we reexpress ¥ and I in terms of the microwave amplitudes

(E1)
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a+,, which we abbreviate to a+ in this section:

V= \@ (@, +a_), (E2)

1
V27,

Here Z, is the impedance of the transmission line. Like a,,,
the squares of the amplitudes ai and a* are the outward-
and inward-going time-averaged power in the transmission
line. This is easily checked by computing the power into
the microwave port,

I=

(a_ —ay). (E3)

VI + VI* = |a_|* — |as ). (E4)

By substituting Eqs. (E2) and (E3) into Eq. (El) and
collecting terms, we find the S-matrix

Yo—-Y V2Yo +
— X
ar\ _| Yot+Y Yo+ Y ! -\ (s
ay +2Y 1 1 \a-)’
X7 XX,
Yo+7Y Yo+7Y

8

where ¥y = ZO_]. From reciprocity, S = ST, we find x =
X; = —X; and therefore

(Tup  Tp By
fyy T I
by 1 ™

\ :

[ Yo—Y V2T, o
_ 3};%)’ Yo +1Y _ (E6)
0 x X+ xx !
\YQ +7Y Yo+7Y

The first component of S, connecting a_ and a,, is the
reflection S-parameter Sy in the absence of reflections in
the network (such as off a second transducer). The compo-
nent of § connecting a_ to the SHO coefficient a is #;,. Its
magnitude is conveniently expressed as

] = /1 |-5'11|2\|;%, E7)

where x;, is the SHO component of x and is the coefficient
ap for a 1 V drive. 2G |V]? is the total power dissipated by
the transducer.

APPENDIX F: DEEMBEDDING ¢, o, and ry
FROM $7;

When making a transducer, especially one embedded
in a network, e.g., a transducer coupled to a resonator, it
is tempting to be satisfied with a well-matched Si;. Sup-
pression of |S1], i.e., low microwave reflections, seems to
imply that microwaves are being converted to mechanical
waves and that the device is efficient. Under this prescrip-
tion, one would choose an IDT’s width and simply tune
its length until it was matched. This procedure does not
produce efficient devices.

A strong S, dip is a necessary but insufficient condition

for efficiency (|tg,#|2 — 1). In a microwave or phononic
network, reflections can strongly modify the response of
a component. Resonance can enhance the transmission
through the device. If network performance is the prime
and only concern, measuring a resonator’s intracavity
phonon number against the microwave input power, for
example, will suffice. But if the goal is to make a trans-
ducer which can serve as a general component, one that
can be embedded in an arbitrary network and the response
accurately predicted, we need to deembed the transducer’s
response from the larger network response.

In Appendix E, we describe how the full scattering
matrix § can be computed by the FEM. In Sec. IV, we
show that the transmission into the SHO mode exceeds
the total transmission into all other modes by 10 dB. This
allows us to reduce the § matrix of Eq. (E6) to that for two
ports,

_(Tur Ten
§= (fb,u P‘bb) ’ (F1)
The S-matrix for the waveguide is
—al/2—imt 0
e
Swg = ( 0 e—aL/E—imr) , (F2)

where T = L/v, is the transit time of the waveguide. The
devices measured in Sec. V consist of a transducer, waveg-
uide, and transducer. These components are cascaded in
the signal-flow graph in Fig. 8(a), which can be reduced
by standard methods [57] to find

tb.u Erbbe—aL—Eicur
S“ = Tun + 1 —7‘2 e—al-2iot (F3}
bb
and
ty Ze—a’LfZ—iwr
Sy = —= (F4)

— —al—2iwt’
1 rﬁ »€

where ports 1 and 2 are the electrical ports of the first
and the second transducer. The second term in our expres-
sion for S1; comes from reflections rp, and gives rise to
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— —i 2
e aLjQ T t.f"f“ as

L L L L

r T T r
- HH y bb bb FFJL

1 . 2
ay tbfr e—aL/E—twr tbfl a_
- - - -

" >

AT
i
a 20

FIG. 8. (a) Signal-flow graph for a two-port device. (b) Paths
for the single-, triple-, and quintuple-transit values (colored blue,
red, and green, respectively) corresponding to the S3; curves of
matching color in (c). (c) 7 filtered by path.

the Fabry-Perot peaks found on the blue side of w; in
Fig. 4(c).
The impulse response h(f) is computed by inverse

—i:rL—Zimr)—l .

Fourier transforming S7;. When (l — rﬁbe is

expanded to Y, rite "@L=2M0T " each term represents an
echo in the impulse response in Fig. 4(e). These echoes
and the paths they take are diagrammed in Fig. 8(b).

Since the L = 800 pum device is long enough to resolve
the echoes, the amplitudes of the echoes can be ana-
lyzed directly in the frequency domain by filtering out
each echo in Fig. 4(e) associated with a path in Fig. 8(b)
and taking the Fourier transform. The results of this
procedure are shown in the inset in Fig. 4(e) but are
reproduced larger here for clarity. The transmission fac-
tor |tbﬂ|2 exp (—aL/2) is extracted from the first transit,
plotted in blue.

APPENDIX G: INSERTION LOSS FROM
IMPEDANCE MISMATCH

In Sec. V, we attribute a fraction of the insertion loss
to an impedance mismatch between the transducers and
transmission lines. This mismatch is labeled the two-port
mismatch in Fig. 4(d). Derived below, this quantity is the
average of the ratios of the power dissipated by each trans-
ducer to the incident microwave power, 1 — IS11]%/2 —
1S2212/2.

For any lossy passive system,

IS1l? + 1S12)* < 1 (G1)

and
1S221* + 1S21* < 1. (G2)

Summing these conditions and assuming reciprocity, i.e.,
S>1 = 812, we have

11112 + IS * + 218n > < 2. (G3)
Rearranging the above equation, we get
1S012 < 1 —181112/2 — |Sl*/2. (G4)

The right-hand side, which sets an upper bound on Sy, is
the two-port mismatch.
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