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Soil microorganisms control critical ecosystem processes, from 
agricultural productivity and animal disease transmission to 
greenhouse gas emissions1. It is increasingly clear that the iden-

tity of microorganisms within the soil environment determines the 
type and rate of these environmental processes2–4. Understanding 
microbial biogeography—the spatial distribution of microbial taxa 
across the planet—is therefore critical to understanding ecosystems 
and the processes that they regulate, yet tremendous fine-scale 
spatial heterogeneity in soil microbial communities5 has led to 
scepticism about our ability to predict the presence or abundance 
of key types of microorganisms in soil6. Rapid advancement in 
DNA-sequencing technology has revolutionized our understanding 
of how the soil microbiome is shaped by environmental factors such 
as resource availability, host preference and climate6–8. Furthermore, 
the microbiology of some of the most economically and societally 
influential soil microorganisms (for example, human pathogens 
and moulds) has been studied for nearly 150 years9. Nevertheless, 
it remains unclear whether or not this information can help us to 
confidently predict the composition of different microbial groups 
in locations that have never been observed. To incorporate micro-
bial biodiversity into regional and global scale analyses of ecological 
community and ecosystem properties, we need to be able to predict 
the presence and abundance of soil microbial community members 
and quantify our confidence that these predictions are accurate.

It is probable that our ability to predict the soil microbiome is 
scale dependent, yet it is unclear whether this scale dependence 
is similar to, or fundamentally different from, scale dependence 
observed in macrobiological communities. For example, the rela-
tive importance of deterministic versus stochastic ecological pro-
cesses and, therefore, predictability exhibits remarkable spatial and 
taxonomic scale dependence in plant and animal communities10–13. 
Signatures of deterministic, environmental filtering processes in 

macrobiological communities become more apparent at larger spa-
tial and higher taxonomic scales. For example, it can be difficult to 
predict the identity of any particular tree in a forest, analogous to 
trying to predict the outcome of a single coin flip. However, pre-
dicting the relative abundance of a tree species among thousands 
of trees across the landscape, analogous to trying to predict the 
outcome of thousands of coin flips, is possible. Whether these rela-
tionships function as general rules of life that extend across biol-
ogy remains an open question14, as multiple features of microbial 
biology may generate fundamentally different ecological scaling 
relationships. Microbial habitat preferences can evolve and change 
frequently15, which may rapidly erode taxonomic signal, leading to 
greater predictability at lower, rather than higher, taxonomic scales 
(Fig. 1b compared with 1a). Furthermore, there is tremendous 
diversity even within soil cores—our smallest scale of soil microbial 
observation7,8. This spatial scale is still enormous for most microor-
ganisms, such that comparing even larger scales may be analogous 
to aggregating distinct biogeographical regions of plant and animal 
communities, which could erode environmental signal with spatial 
scale (Fig. 2).

Furthermore, functional-trait-based frameworks in ecology have 
repeatedly been put forward as more predictive than strictly taxo-
nomic ones16,17. Microbial functional groups (such as nitrogen fix-
ers and mycorrhizal fungi) capture convergent patterns in habitat 
preferences and ecological function across disparate lineages16,18,19, 
such that functional trait groupings may better describe the varia-
tion in community composition linked to environmental conditions 
compared with taxonomy alone20,21 (Fig. 1c). However, microbial 
diversity within functional groups is vast, and microbial functional 
groups that have been defined to date may be overly broad or too 
simplistic22. Functional trait frameworks require a priori knowl-
edge of which functional traits are most important for determining 
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microbial fitness and its environmental sensitivity17. It is therefore 
unclear whether our current functional groupings of microorgan-
isms are more or less predictable than taxonomic ones.

If environmental controls of microbial relative abundances and 
the associated scale dependence are truly general, then we should 
be able to predict the abundance of microbial taxa in locations 
before observing them. Prediction has been challenging in soil 
microbiome science, as only very recently have multiple indepen-
dent large-scale community surveys become available that enable 
the validation of predictive community models. In this Article, we 
combine recently generated independent, large-scale datasets on 
soil microbial community composition with an ecological forecast-
ing framework23 to generate out-of-sample predictive models of soil 
microbial communities. We calibrate Bayesian statistical models 
to global surveys of 134 soil fungal and bacterial taxonomic and 
functional groups, then validate spatial predictions in a separate, 
independent continental-scale microbial community composition 
survey (that is, an out-of-sample prediction) from the US National 
Ecological Observatory Network (NEON). We built forecasts for all 
of the fungal and bacterial groups present in at least 50% of cali-
bration samples. Models included commonly measured climate, 

soil and ecological covariates that have been linked to microbial 
diversity and composition and are available at large spatial scales 
(mean annual temperature and mean annual precipitation, remotely 
sensed net primary productivity, the presence or absence of forest 
vegetation, soil pH, soil percentage of carbon, soil ratio of carbon 
to nitrogen and the relative abundance of ectomycorrhizal trees)7,8. 
Separate models were constructed for different functional and tax-
onomic scales (from the phylum to genus levels) and validated at 
multiple spatial scales (core, plot and site level). Importantly, model 
development was conducted without ever ‘seeing’ the validation 
data and validation data were examined only once predictions were 
made. In contrast to hold-out and cross-validation approaches, for 
which sampling and measurement biases are shared between the 
model training and validation data, the NEON validation data pro-
vide a test dataset that is truly independent from the development 
of our predictive statistical model. With this approach, we tested our 
ability to predict, rather than describe, soil microbial communities 
and their associated scale dependence.

Results
Here we show our ability to predict soil microbial abundances was 
greatest at the largest spatial scales, consistent with patterns found 
within plant and animal communities10,12. Predictability consistently 
increased with spatial scale across the nested NEON sampling design 
for the majority of microbial groups modelled (Fig. 3), although we 
emphasize that not all microbial groups were predictable. When 
examining the relative abundance of individual microbial groups, 
observations were overdispersed relative to predictions (fewer than 
95% of observations fell within the 95% predictive interval) at core 
and plot scales (Fig. 4) and the prediction error decreased as the 
spatial scale increased. We considered the possibility that the rela-
tionship between spatial scale and microbiome predictability may 
be an artefact of the models being trained on site-scale soil microbi-
ome observations (that is, our global calibration datasets). However, 
when we recalibrated core and plot-scale models to 70% of the 
NEON data and then used these models to predict the remaining 
30% of observations at the identical spatial scale, we found that 
predictability consistently increased and prediction error decreased 
with spatial scale within this dataset as well (Supplementary Fig. 1, 
Extended Data Fig. 1). Although this hold-out validation approach 
using the NEON data lacks the strengths of our independent vali-
dation set, it confirms that the spatial scale dependence observed 
within our larger analysis is not an artefact of sampling design. We 
suspect that considering many soil cores in aggregate—whether in 
the field or computationally—overwhelms the very high spatial het-
erogeneity in soil at small spatial scales5. Ecological theory predicts 
that stochastic processes are more likely to dominate community 
assembly at finer spatial scales10. However, our findings imply that 
extreme fine-scale heterogeneity in soil microbial communities 
at centimetre scales5 does not prevent prediction at larger spatial 
scales and that inclusion of microbiome information into ecosys-
tem and Earth-system models may be within reach. Furthermore, 
the increasing predictability of ecological communities with spatial 
scale across kingdoms of life seems to represent a general scaling 
relationship that may hold across biology.

We also found that our ability to predict soil fungi increases 
with taxonomic scale, where high-level fungal taxonomic groups 
(that is, classes and phyla) were, on average, more predictable and 
had lower prediction error than low-level taxonomic groups (that 
is, families and genera; Fig. 5a and Supplementary Fig. 2, Extended 
Data Fig. 2), a finding that held across spatial scales (Fig. 5c). 
This result parallels relationships found among macro-organisms, 
despite the extraordinary taxonomic diversity harboured by fun-
gal phyla, suggesting that there is a general taxonomic scaling pat-
tern in biology that crosses multiple kingdoms of life. To further 
examine this finding, we estimated Moran’s I, which is a metric of 
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Fig. 1 | How can predictability vary as a function of taxonomic scale? 
a, Species A1–A4 are all habitat A specialists. Ecological drift (stochastic 
processes) prevents the prediction of any particular species as a function of 
the environment—the presence of habitat A can result in any combination 
of these four species. However, predictability increases as a function of 
taxonomic scale, as habitat A specialists are monophyletic. b, Species 
A–D are all habitat specialists in habitats A–D, respectively. In this case, 
predictability is highest at the lowest taxonomic scale as no other species 
shares these habitat preferences, and considering higher taxonomic scales 
results in combining taxa with different habitat preferences. c, Species A1 
and A2 are both habitat A specialists, whereas species B1 and B2 are both 
habitat B specialists. In both cases, ecological drift prevents prediction at 
the species level. Furthermore, as taxonomic scale increases, these taxa 
remain unpredictable, as considering higher taxonomic scales results 
in combining taxa with different habitat preferences. Predicting these 
taxa requires a priori knowledge about which taxa are habitat A versus B 
specialists (that is, assigning these taxa to functional groups).

Nature Ecology & Evolution | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ArticlesNaTUrE Ecology & EvolUTion

spatial autocorrelation, for the relative abundances of all microbial 
groups. Fungal functional groups and high-level fungal taxonomic 
groups had a higher Moran’s I (greater spatial autocorrelation and 

lower patchiness) across the continent compared with lower-level 
taxonomic groups, consistent with patterns found in plant and 
animal communities (Fig. 5b). These patterns may emerge if trait 
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Fig. 2 | How can predictability vary as a function of spatial scale? a, If soil cores are subsamples of a larger scale community, then aggregating multiple 
soil cores to the plot scale will increase our ability to predict soil microbial communities as a function of the environment, as estimates of community 
composition and environment improve. b, If individual soil cores are capturing distinct microbial communities with different habitat preferences, then 
aggregating multiple cores to the plot scale will decrease our ability to predict soil microbial communities as a function of the environment, as mixing cores 
blurs community–environment relationships.
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Fig. 3 | Predictability and spatial scale. a,b, Mean validation R2 value relative to the 1:1 line at core, plot and site scales across all predicted fungal (a) and 
bacterial (b) groups. Data are mean ± 1 s.e.m. We emphasize that the mean values are low because they consider many groups that did not validate out of 
sample; however, many groups could be predicted substantially better (Fig. 2).
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conservatism is coupled with environmental filtering12,13; for exam-
ple, if habitat preferences evolve early in the evolutionary history 
of an organism and biotic interactions among individuals are less 
important to the establishment of taxa within a local community 
than historical environmental preferences24. However, traits linked 
to fundamental microbial habitat preferences can also evolve fre-
quently21 and this may account for the high predictability of some 
low-level taxonomic groups (Fig. 4).

The evidence for taxonomic scaling among bacterial groups  
was mixed and inconclusive. Although in-sample fits did exhibit  

taxonomic scale dependence, this failed to hold once we attempted to 
validate models out of sample using the NEON dataset (Fig. 5d). This 
occurred despite the fact that bacterial spatial autocorrelation exhib-
ited similar taxonomic scale dependence to fungi within the NEON 
dataset (Fig. 5e). However, although out-of-sample fits for bacteria 
were generally correlated with predictions, they were substantially 
biased, resulting in low predictive accuracy (Fig. 4, bottom row). 
We suspect that future efforts will overcome these biases by better 
accounting for differences in molecular methods computationally and 
by using molecular standards in routine microbiome data collection.
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Fig. 4 | Predictability and taxonomic scale. Predicted versus observed relative abundance in the NEON out-of-sample validation data across core, plot 
and site scales for three representative groups—the fungal genus Russula, the fungal phylum Ascomycota and oligotrophic bacteria, a bacterial functional 
group. The 1:1 relationship is shown in black and the best fit is shown in purple. The shaded blue region represents the 95% credible interval of the 
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We found that fungal functional groups were as predictable as 
high-level taxonomic groups (that is, fungal phyla) and that this 
pattern held across spatial scales (Fig. 5a). This pattern suggests 
that the functional groups of fungi assessed here may be of use to 
those seeking to incorporate features of soil fungal communities 
into models of ecosystem functions at large spatial scales. Bacterial 
functional groups, although generally more predictable than taxo-
nomic groups in our calibration dataset, were not as predictable as 
fungal functional groups using the independent NEON survey vali-
dation data (Fig. 5d). However, raw correlations between predicted 
bacterial functional group relative abundances and out-of-sample 
observations, although biased, were higher for bacterial compared 
with fungal functional groups at the site level (Figs. 4 (bottom row) 
and 5a,d and Supplementary Data 1). This finding implies that, if 
study-to-study-level methodological variation can be overcome, 
prediction of bacterial groups in completely independent datasets 
might be possible.

We discovered large heterogeneity in predictability across micro-
bial groups, yet reasonable accuracy (R2

1:1 values of 50% and 55%) 
for the most predictable fungal and bacterial groups, respectively. 
We emphasize predictive accuracy is measured relative to the 1:1 
observed–predicted line (rather than a best-fit line), so accuracy 
assessments are both qualitative and quantitative. For example, 
oligotrophic bacteria, although well correlated with model pre-
dictions, are underpredicted by our models and therefore have a 

low R2
1:1 value (Fig. 4, bottom row). The most highly predictable 

microbial groups included the bacterial phylum Proteobacteria, 
the fungal order Pleosporales and the fungal phylum Ascomycota 
(Supplementary Data 1). We found some evidence that the most 
predictable fungal groups were the most sensitive to environmental 
parameters included in the prediction models. Looking at the vari-
ability in model parameters across taxa, there was wide variation 
in which features of the environment particular microorganisms 
were sensitive to, indicating that different environmental factors 
probably select for different soil microbial community members 
(Supplementary Fig. 3a,d, Extended Data Fig. 3). However, the 
more a fungal group was sensitive to soil pH, the relative abundance 
of ectomycorrhizal trees and, to a lesser extent, climate, the better 
we could model a particular fungal group within the calibration 
dataset (Supplementary Fig. 5b,c). This is consistent with previous 
studies in which these factors had strong correlations with overall 
fungal community structure7. Among bacteria, there was no single 
environmental sensitivity that was strongly linked to predictability 
in-sample and, if anything, larger environmental sensitivities were 
associated with lower accuracy (Supplementary Fig. 3e,f; Extended 
Data Fig. 3).

Many microbial groups that correlated well with environmental 
covariates within the calibration dataset (that is, in-sample valida-
tion using our global dataset) could not be predicted out-of-sample 
in the NEON dataset. Whereas 61% of fungal groups and 81% of 
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bacterial groups had at least 10% of variation explained in calibra-
tion datasets, only 18% of fungal groups and 4% of bacterial groups 
retained this accuracy once compared with independent valida-
tion data, relative to the 1:1 line. When we considered raw correla-
tions between predictions and validation data, we found that 50% 
of fungal groups and 67% of bacterial groups became predictable 
at this threshold, indicating that, for many microbial groups, fore-
casts were qualitatively accurate (predictions and observations were 
correlated) but quantitatively biased (forecasts consistently under- 
or overpredicted relative abundances). For example, we observed 
a negative relationship between Acidobacteria relative abundance 
and pH in both calibration and validation datasets, yet, for the same 
pH, Acidobacteria are more abundant within the NEON dataset 
(Supplementary Fig. 4a, Extended Data Fig. 4). Thus, our model 
calibrated without the NEON data consistently underpredicts the 
relative abundance of this group, even though our model does cap-
ture the negative relationship between pH and Acidobacteria abun-
dance. Most individual studies also observed qualitatively similar, 
but quantitatively different, relationships between Acidobacteria 
relative abundance and soil pH (Supplementary Fig. 4b). Thus, 
although qualitative predictions of many microbial taxa can be made 
(that is, there should be more or less of a particular lineage in a given 
location), quantitative predictions remain elusive. More-accurate 
qualitative versus quantitative predictions were more common 
among bacterial taxa and functional groups compared with among 
fungal taxa (Supplementary Data 1). This finding is consistent with 
previous research showing that the composition of bacterial com-
munities can vary strongly by study25, suggesting that bacteria have 
a higher sensitivity to differences in sample preparation or sequenc-
ing, an issue that could be overcome through the addition of posi-
tive controls and standards as part of routine microbiome analysis26. 
Poor out-of-sample predictability for many microorganisms raises 
concerns about the large-scale mapping efforts of individual taxa, 
operational taxonomic units or sequence variants based solely on 
in-sample statistical calibrations. Important methodological differ-
ences between our calibration and validation datasets, such as dif-
ferences in sampling methodology and sequencing platforms, may 
explain some of the discrepancies that we observed between cali-
bration and validation model fits. However, many microbial groups 
were predictable in the NEON dataset, implying that poor predic-
tions for some groups are probably due to more than methodologi-
cal differences.

To understand what may be driving prediction uncertainty, 
we decomposed calibration model uncertainty into process, sam-
pling and observation sources, as these same calibration models 
were used to make predictions at all spatial and taxonomic scales. 
Uncertainty in predictions of all microbial groups was dominated 
by uncertainty in the ecological processes governing community 
structure; other sources of uncertainty (observation precision and 
sampling effort) had a small role (Supplementary Fig. 5, Extended 
Data Fig. 5). However, we emphasize that sufficient technical infor-
mation was available only for climate covariates, and so uncertainty 
in observing other covariates, and uncertainty in sequencing micro-
bial communities themselves, will be lumped into residual process 
uncertainty. Furthermore, within process uncertainty, we cannot yet 
distinguish model inadequacy from fundamentally stochastic eco-
logical and evolutionary processes, which are more likely to have 
a role at finer spatial and taxonomic scales27,28. Yet, the increasing 
predictability of microbial groups with taxonomic and spatial scale 
implies a decreasing importance of stochastic processes at larger 
scales. Future studies focused on directly quantifying the relative 
importance of deterministic versus stochastic ecological processes 
for microbial community composition would be extremely valu-
able, as they could help to place an upper limit on the deterministic 
predictability of soil microbial community members, as well as how 
this limit varies across scales. Inclusion of additional covariates that 

capture features of ecological networks and interactions, as well as 
more dimensions of environmental filtering and species interac-
tions, will probably improve prediction accuracy.

Discussion
Prediction in ecology is still rare, but increasingly urgent if eco-
logical information is to inform future decision making29. This 
is especially true for soils, which are essential to global food and 
timber production, regulate the world’s biogeochemical cycles and 
are perhaps the most biologically diverse environments on Earth30, 
yet represent one of the greatest uncertainties in predicting Earth 
function31,32. Validation of our models with independent data (that 
is, out-of-sample validation) was critical for assessing the predict-
ability of individual microbial groups. Although our current fore-
casts show that environmental relationships are predictive of spatial 
variation in many microbial groups, it remains to be determined 
whether spatial relationships can be used to forecast how the soil 
microbiome may change in time. Ongoing temporal monitoring of 
the microbiome across the NEON network, coupled with a predic-
tive temporal forecasting framework, will enable us to test the valid-
ity of space-for-time substitutions in soil microbiome science. More 
broadly, forecasts developed to make predictions in time enable 
environmental monitoring data to play a role in hypothesis test-
ing and hold the potential to further advance microbiome science 
beyond a basic natural history understanding of microbial biogeog-
raphy. By demonstrating how the predictability of the microbiome 
varies across scales, this research will help to transition microbial 
ecology from a descriptive science to a predictive science that can be 
leveraged to better understand and predict Earth system processes.

Methods
Summary of the methods. To test the predictability of the soil microbiome, we 
focused our analysis on a subset of cosmopolitan fungal and bacterial taxonomic 
and functional groups. For fungal taxa, we used all of the microbial groups present 
in at least 50% of the samples within our global calibration datasets at each level of 
taxonomy (phylum to genus, sensu Delgado-Baquerizo et al.6). Bacterial datasets 
had many more taxa than could be reasonably analysed using this criterion, so we 
instead used the ten most frequently observed bacterial groups at each taxonomic 
level (phylum to genus). Furthermore, we binned fungal and bacterial taxa into 
functional groups of particular interest to the soil microbial ecology community. 
For fungi, we modelled the abundances of ectomycorrhizal, saprotrophic, wood 
saprotrophic, plant pathogenic and animal pathogenic fungi. These fungi have key 
roles in plant nutrient acquisition, decomposition, and plant and animal health19. 
We intended to model arbuscular mycorrhizal fungi as well; however, due to 
known biases against arbuscular mycorrhizal fungi in the internal transcribed 
spacer (ITS) primers we used for assessing fungi33, these fungi were not sufficiently 
represented within our datasets. For bacteria, we binned taxa into the following 
functional groups: N-cyclers (nitrification, dissimilatory nitrate reduction, 
denitrification, dissimilatory nitrite reduction, assimilatory nitrate reduction, 
assimilatory nitrite reduction and nitrogen fixation), C-cyclers (cellulolytic, 
ligninolytic, chitinolytic and methanotroph), copiotrophs and oligotrophs. Each 
bacterial taxon could belong to multiple functional groups, except for copiotrophs 
and oligotrophs, which were mutually exclusive.

Models were fit as a function of environmental covariates that are commonly 
measured at large spatial scales, and which have been shown to be associated with 
the composition of soil fungal and bacterial communities at the global scale7,8. 
Soil covariates included pH, which was associated with every soil sample, and 
percentage of carbon (%C) and the carbon to nitrogen ratio (C:N), which were 
available only for fungal soil samples. At the plot and site scale, we focused on 
the relative abundance of ectomycorrhizal-associated trees, as trees that form 
ectomycorrhizal symbioses harbour radically different soil fungal communities 
and potentially bacterial communities compared with trees that do not7. In fungal 
models, additional vegetation characteristics included whether or not a site was 
a forest and whether or not conifers were present at a site as binary predictors, 
as forests generally harbour different soil microbial communities compared with 
non-forests, and coniferous forests are known to harbour their own suite of root 
associated fungi7. Finally, bacterial and fungal models included observations of 
mean annual temperature (MAT), mean annual precipitation (MAP) and net 
primary productivity (NPP), as these predictors have been shown to be important 
in previous analyses of global-scale soil microbial community composition6,8. 
All variables were used in the final analyses and, given their inclusion was based 
on a priori hypotheses, no variable selection was performed. Ideally, we would 
have incorporated more covariates, including but not limited to micronutrient 
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concentrations, fine root biomass and soil porosity. All of these covariates 
probably influence soil microbial communities at both small and large spatial 
scales7. However, we are limited by the covariates that have been observed within 
both our calibration and validation datasets. Furthermore, we considered testing 
for interactions among variables; however, while our calibration set includes 
hundreds of observations, our models already include a high number of covariates 
compared with observations. As global microbiome datasets grow and become 
more accessible, we will be able to test for more-complex relationships between the 
environment and soil microbiome composition.

Once models were trained on the calibration dataset, we validated models 
using data collected across the NEON. NEON hierarchically samples soil microbial 
communities. Three soil cores are collected and analysed within 10 plots across 
12 observatory sites for which there was sufficient data at the time of this analysis. 
This enabled us to validate forecasts at core, plot and site scales. Importantly, all 
model validation was performed without the model ever ‘seeing’ the validation 
dataset. The validation dataset was used only to quantify model accuracy, 
and never used in the model calibration process. The spatial distribution of 
observations used for calibration and validation is presented in Supplementary  
Fig. 6 and Extended Data Fig. 6.

There are important methodological differences within and between calibration 
and validation datasets. How soils were collected (aggregated versus separated soil 
horizons), how communities were amplified (differences in fungal primers) and 
differences in sequencing technology (Roche 454 versus Illumina HiSeq versus 
Illumina MiSeq platforms) may drive substantial mismatch between calibration 
and validation datasets. We describe the study methodology in detail below. 
Ideally, all soils would be sampled in the same way, and measurements made using 
the same analytical methods. This is almost never the case in soil microbiome 
science or ecology in general. However, other scientists have successfully merged 
independent studies collected using very different methods25. Furthermore, 
discrepancies between calibration and validation datasets are also a feature of our 
analysis. We aimed to evaluate the general predictability of the soil microbiome in 
a way that has the potential to extend to future observations at NEON, as well as 
other completely independent studies. Thus, we chose not to divide a single dataset 
collected for a single study into calibration and validation subsets. Validating our 
models with completely independent data, collected by a different team with a 
different set of objectives, is a strong test of model performance, as well as our basic 
understanding of microbiome science. Models were calibrated without ever seeing 
validation data, and we did not validate forecasts until all model calibration was 
complete. Predictions were made before looking at the validation data.

Calibration data. Global soil fungal observations. We calibrated soil fungal forecast 
models using data from a global sampling of soil microbial communities7. We 
focused on observations within Northern Temperate latitudes in an effort to 
increase the similarity between our calibration and validation (that is, NEON) 
datasets (Supplementary Fig. 4, Extended Data Fig. 4). In this calibration dataset, 
40 soil cores (diameter, 5 cm) were taken to 5 cm depth within a ~2,500 m2 circular 
plot at each sampling site. All soil cores were then homogenized, air-dried and 
stored on silica before grinding and DNA extraction. Around 2.0 g of ground 
soil was extracted using the PowerMax Soil DNA Isolation kit (MoBio). Soil 
fungi were PCR-amplified using forward and degenerate reverse primers 
targeting the ITS2 region were designed to match >99.5% of all fungi. Fungal 
amplicons were sequenced on the 454-pyrosequencing platform using GS-FLX+ 
technology and Titanium chemistry as implemented by Beckman Coulter. Soil C 
and N concentrations were quantified using an elemental analyser. Soil pH was 
measured in a 1 N HCl solution. The authors reported the relative abundance 
of Ectomycorrhizal plants at each site. Site MAT and MAP were taken from the 
Wordclim2 global dataset34. NPP was taken from the MODIS global dataset35. 
Sequencing data were obtained from the Sequence Read Archive (SRA) database 
and information necessary to link sequence data to environmental covariates 
was provided in the supplementary data files of the original publications or by 
contacting the study authors directly. Extensive field sampling and chemical 
analysis details can be found in the original publication7. Raw fungal sequencing 
data were processed using the dada2 bioinformatic pipeline and dereplicated 
into exact sequence variants (ESVs)36. ESVs were then assigned to taxonomic 
and functional groups. Taxonomy was assigned using the RDP classifier37, paired 
with the UNITE database for fungi38. Fungi were assigned to ectomycorrhizal, 
saprotrophic, wood saprotrophic, plant pathogenic or animal pathogenic 
functional groups using the FUNGuild database, which links taxonomy to 
function19. Fungal observations were rarefied to 1,000 reads per sample, and 
samples with fewer than 1,000 reads were removed from the analysis. The final 
fungal calibration dataset included 128 unique observations.

Global soil bacterial observations. We calibrated bacterial forecast models using 
a dataset compiled from a global sampling study6 as well as a previous synthesis 
of 30 studies25. We subsetted data to northern temperate latitudes in an effort to 
better match the sampling extent of the NEON sampling, our validation dataset 
(Supplementary Fig. 6, Extended Data Fig. 6). Samples were collected between 
2003 and 2015 at a variety of soil depths (median depth = 10 cm). Location and 
pH measurements were available for all of the samples. Site MAT and MAP were 

taken from the Wordclim2 global dataset34. NPP was taken from the MODIS 
global dataset35. The relative basal area of ectomycorrhizal trees was derived from 
a spatial product39. Samples from murine stool, desert or arctic environments were 
excluded, as well as samples sequenced using Roche 454 technology (which is 
known to present strong biases against common bacterial phyla25). Our resulting 
calibration dataset included 1,638 samples from 22 studies. Global sampling data 
from Delgado et al.6 were processed using the dada2 bioinformatics pipeline 
and dereplicated into ESVs36. ESVs were rarefied to 10,000 reads as described 
previously6 and samples with fewer than 10,000 reads were removed from the 
analysis. Taxonomy was assigned using the Greengenes database40. The synthesis 
dataset retrieved from Ramirez et al.25 included merged and standardized 
taxonomy files from all studies. The authors reported that their ‘name-matched’ 
relative-abundance dataset performed similarly to a dataset created by reprocessing 
raw sequences, so we used the former, which had a larger sample size. Taxonomic 
assignments were then used to assign functional groups using the following 
sources: the presence of complete genomic N-cycling pathways (nitrification, 
dissimilatory nitrate reduction, denitrification, dissimilatory nitrite reduction, 
assimilatory nitrate reduction, assimilatory nitrite reduction and nitrogen 
fixation)41; genera were assigned to an N-cycling functional group if any species 
within the genera had complete pathways for any step of these processes (that 
is, the first or second step of denitrification). Cellulolytic taxa were similarly 
assigned at the genus level using a dataset42; the presence of any glycoside 
hydrolases genes for cellulose deconstruction was used to assign a genus to the 
‘cellulolytic’ functional group. Other C-cycling groups (ligninolytic, chitinolytic 
and methanotroph) were assigned using a literature review. Copiotroph and 
oligotroph functional groups were assigned using a literature review43, with 
finer-scale taxonomic classifications superseding broader-scale classifications; 
only assignments for copiotrophs and oligotrophs were mutually exclusive, but 
taxa could be assigned to any number of N-cycling and C-cycling functional 
groups. Finally, we emphasize that there are more bacterial functional groups that 
are important for understanding ecological and biogeochemical processes than 
considered here, yet we are constrained by a lack of information in the literature 
on the taxa that constitute functional groups other than those that we considered 
here. Many important functional traits, such as glycogenesis (which can be a proxy 
for stress tolerance44), may vary considerably across taxa and define additional 
functional groups that critically regulate ecosystem processes. Moreover, our 
approach requires taxonomic groups to map to discrete functional groups, which 
omits potential quantitative variation in microbial genomic investment in these 
strategies. We see quantitative functional traits as a next frontier in applying 
forecasting approaches to soil microbial communities, particularly through the 
integration of shotgun metagenomic datasets.

Validation data: NEON observations. To validate our forecasts, we collected 
soil microbiome observations and environmental covariates from NEON45. For 
this analysis, we used only the most currently available NEON data at the time of 
data acquisition, sampled in 2014 or 2016, during the peak greenness sampling 
(rather than during seasonal transition periods). The NEON sampling design is 
hierarchical. During each sampling, three soil cores are sampled per plot from ten 
plots nested within a site. Soils are sampled to a depth of 30 cm where possible. 
If a soil organic horizon is present, it is sampled using a square frame. Mineral 
soils are sampled using a circular soil corer (diameter, ≥2 cm) to a depth such 
that the total soil depth sampled (organic plus mineral) equals 30 ± 1 cm. Soils 
for molecular analysis are frozen at −80 °C. Around 2.0 g DNA was extracted 
per soil subsample for microbial community characterization using a MoBio 
PowerSoil Kit (MoBio). Soil fungi were characterized by PCR-amplifying the 
ITS1 region using the ITS1f–ITS2 primer pair. Soil bacteria were characterized 
by PCR-amplifying the 16S region using the 515FB–806R primer pair. Fungal 
and bacterial amplicons were sequenced using an Illumina MiSeq sequencer and 
v2 2 × 250 base-pair paired-end chemistry. Soil C and N concentrations were 
measured using an elemental analyser. Soil pH was measured in water as a 1:2 
or 1:4 weight:weight ratio for mineral and organic horizon soils, respectively. We 
determined the relative basal area of ectomycorrhizal trees at each site (if present) 
using basal area measurements, species identities and a key that links tree species 
identities to mycorrhizal associations46. Full NEON soil sampling methods are 
described in NEON documents—‘NEON TOS Protocol and Procedure: Soil 
Biogeochemical and Microbial Sampling’ as well as ‘NEON TOS Science Design for 
Terrestrial Microbial Diversity’45. Sequencing data were processed using the dada2 
bioinformatics pipeline and dereplicated into ESVs36. ESVs were then assigned 
to taxonomic and functional groups. Taxonomy was assigned using the RDP 
classifier37, paired with the UNITE database for fungi38 or the Greengenes database 
for bacteria40. Functional groups were assigned using taxonomy as performed for 
calibration datasets.

After all filtering criteria, the final fungal validation set included 317 unique 
observations at the core level, nested within 100 unique study plots, in turn nested 
within 12 NEON sites. For bacteria, the final validation set included 288 unique 
soil cores, nested within 83 plots, in turn nested within 11 NEON sites.

Statistical modelling in-sample. We modelled either taxonomic or functional 
groups of bacteria or fungi using a Dirichlet multivariate regression model47. The 
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Dirichlet distribution is the multivariate generalization of the beta distribution, 
and enabled us to model multiple functional or taxonomic groups simultaneously 
while accounting for covariance among group abundances due to the ‘sum to 1’ 
constraint of compositional data (all relative abundances of taxa within a sample 
must sum to 1). The Dirichlet model cannot handle relative abundance values of 
zero, so we transformed values to be on the open interval (0,1) and then rescaled 
values such that the sum of taxa relative abundances within a sample summed 
to one48,49. We attempted to avoid rarefaction and transformation by fitting a 
multinomial Dirichlet distribution, which accounts for variation in sequence depth 
across samples and allowed zeros to be present in our dataset50. However, when 
these models were fit, they performed poorly compared with Dirichlet-only fits 
to transformed data. Rarefying samples to a common sequence depth improved 
multinomial-Dirichlet model fits; however, parameters for low-abundance groups 
still failed to converge.

Taxonomic or functional group abundances were modelled as a linear 
combination of predictors and parameters, mapped to the Dirichlet distribution 
using a log-link function.

log [α] = Xβ (1)

where α is a N-by-k matrix of Dirichlet parameters for k taxonomic or functional 
groups, N is the total number of observations, X is a N-by-j matrix of predictor 
values and β is a j-by-k matrix of parameters. For bacterial models, we also included 
a random effect of study to capture technical biases introduced by sequencing 
platform, primer choice and amplicon region25. This was not necessary for fungal 
models, as all data came from a single study. Thus, a given taxonomic or functional 
group would be modelled as:

log [αk] = βk1 × %C + βk2 × C:N + βk3 × pH + βk4 × relEM + βk5 × forest

+βk6 × conifer + βk7 × MAT + βk8 × MAP + βk9 × NPP
(2)

where βk1−9 are parameters that are linked to taxonomic or function group k. 
%C is the percentage of soil carbon by mass, C:N is the mass ratio of soil carbon 
to nitrogen, relEM is the relative abundance of ectomycorrhizal associated trees 
within a plot, forest is a binary predictor of whether or not the plot is classified as 
a forest, conifer is a binary predictor of whether or not coniferous vegetation is 
present, MAT is mean annual temperature, MAP is mean annual precipitation and 
NPP is the MODIS-derived net primary production. We re-emphasize that the 
bacterial models did not include terms for soil %C or C:N.

In interpreting these Dirichlet α values, the vector of mean predicted relative 
abundances for the Nth observation is given by

μN =
αN,·

∑
αN,·

(3)

and the predictive variance decreases as 
∑

αN,· increases. The final Dirichlet 
models were then specified as

yN = Dir(αN,·) (4)

Where, yi is the vector of observed taxonomic or functional group relative 
abundances for the ith observation.

When possible, we included estimates of covariate uncertainty and sampled 
from covariate distributions when fitting models to account for covariate 
observation uncertainty. In practice, this resulted in our models incorporating 
only MAT and MAP uncertainty, as NPP, soil chemical observation uncertainties 
and tree basal area observation uncertainties were not reported. Statistical models 
were implemented in a Bayesian framework using JAGS, a Bayesian programming 
language51. JAGS models were fit using the runjags package for R statistical 
software52. Fungal models were fit using 3 Markov chains, each with 200 adaptive 
iterations, 2,000 burn-in iterations and 1,000 sample iterations. Bacterial models 
were also fit using 3 Markov chains, each with 60,001 adaptive iterations, 15,002 
burn-in iterations and 5,003 sample iterations. We confirmed appropriate chain 
convergence by checking that all Gelman–Rubin diagnostic statistics were below 
1.1. Bacterial models used substantially more MCMC iterations compared with 
fungal models because many more groups were modelled simultaneously at each 
level of taxonomy and function.

Bayesian statistical forecasting out-of-sample. NEON soil microbial observations 
are made at the individual core scale. As the calibration datasets are based on 
many pooled soil cores at the site scale, and because we were interested in how 
scale in and of itself affected the predictability of the soil microbiome, we made 
and validated NEON forecasts at the core, plot and site scales. Given the early 
stage of NEON sampling, as well as the fundamental challenge of orchestrating a 
continental scale observation network, there are missing covariate observations in 
our dataset. In an effort to account for missing data and retain as many microbial 
observations as possible, our statistical forecast included a missing data model53. 
When data were missing, they were estimated on the basis of a hierarchical model 
of each predictor. Therefore, if a core-level observation was missing, but it had 

been observed at the plot and site scale, this information was used to constrain the 
distribution of the missing observation. In the event that an observation was absent 
for an entire site, it was assigned a mean and uncertainty value on the basis of all 
observations across all sites. Plot and site-scale forecasts required hierarchically 
aggregating covariates observed at the core and plot scale, respectively. These 
aggregated covariates were also assigned uncertainties on the basis of on 
hierarchical models. Spatial scales vary from site to site but, in general, soil cores 
are 5.08 ± 1.27 cm diameter and 30 cm deep (or until bedrock). Microbial sampling 
plots are 20 m × 20 m and include 3 soil cores sampled per plot. NEON sites vary 
from 5 km2 to 50 km2 and each include 10 sampling plots.

Forecasts at the core, plot and site scale are based on 1,000 ensemble draws of 
parameter and covariate distributions. Parameter draws were made by sampling 
the rows of the MCMC output of our model to account for parameter covariance. 
Covariates were drawn from their respective distributions. In the event that we did 
not have an uncertainty for a given covariate (that is, soil chemical data at the core 
scale), we assigned a very low uncertainty (s.d. = 0.1% of median observation) to 
that observation to facilitate Monte Carlo sampling.

Forecast validation. Models of all taxonomic and functional groups were validated 
at the core, plot and site scales. To validate forecasts at the plot and site scales, we 
hierarchically aggregated microbiome observations of taxonomic or functional 
relative abundances to the plot and site scales using a simple hierarchical Dirichlet 
model that estimated mean abundances at each level47. For each microbiome 
prediction, we also plotted a 95% credible interval and 95% predictive interval. 
The 95% credible interval represents our uncertainty of the mean microbial 
relative abundance at a given core, plot or site location. The 95% predictive interval 
represents where we expect 95% of all observed values to fall within. By comparing 
how many forecasted observations fall within the 95% predictive interval, we can 
assess whether our estimated forecast uncertainty is over- or underconfident23.

Variance decomposition. To understand the dominant sources of uncertainty in 
our forecasts, we repeated forecasts, sequentially turning off process, covariate and 
parameter uncertainty. Parameter and covariate uncertainty represent uncertainty 
introduced by drawing from parameter and covariate distributions, respectively. 
Process uncertainty represents the uncertainty introduced into our forecast by 
passing our matrix of ai estimates through the Dirichlet distribution, and reflects 
residual error that cannot be attributed to parameter or covariate uncertainty. We 
re-ran forecasts at a mean set of covariates, and estimated variances sequentially 
turning off each source of uncertainty23. We plotted this variance decomposition 
by normalizing the variance estimated in each case, by an estimate of the total 
variance with all sources of variation (process, parameter, covariate) turned ‘on’ 
(Supplementary Fig. 3, Extended Data Fig. 3).

Visualizing predictor importance. We modelled hundreds of fungal and bacterial 
taxa. To facilitate visualization of which predictors were important for predicting 
which phylogenetic and functional groups, we performed a principal components 
analysis on fitted model parameters. Parameter values for all functional or 
phylogenetic groups were collapsed into a single matrix. Principal components 
analysis was performed on this matrix using the prcomp function for R statistical 
software54. Parameter values were zero-centred and scaled proportional to their 
variance to facilitate comparison among variables. For the calibration datasets, 
we regressed the absolute magnitude of each prediction against each microbial 
group’s R2. We visualized the single predictor most tightly linked to in-sample 
predictability and also report the ability of each predictor in the model to predict 
calibration R2 (Fig. 3; see the main text).

Diagnosing spatial signal across functional and taxonomic scales. Once 
calibration models had been fit and validated out of sample, we estimated spatial 
signal in fungal and bacterial observations across the NEON network using 
Moran’s I, a statistic that estimates the degree of spatial autocorrelation in a 
response variable55, for all functional and phylogenetic groups modelled. Moran 
values were calculated using distance matrices of group-relative abundances and 
physical distances in metres using the Moran.I function within the ape package for 
R statistical software56. We then aggregated observed Moran’s I for each grouping of 
microorganisms (genus to phylum as well as functional groups) to understand the 
taxonomic and functional patterns in spatial autocorrelation.

Climate uncertainty estimates for the WorldClim2 dataset. We developed an 
uncertainty product for the WorldClim2 dataset, using the raw data provided by 
the original authors. To do so, we extracted observed MAT and MAP for each 
site used to develop the WorldClim2 tool. We then fit predicted versus observed 
models of MAT and MAP using linear regression, fit in a Bayesian framework 
using JAGS software51,52. We observed that variation in MAP observations 
increased with elevation, so we fit a model where MAP observation uncertainty 
scaled with elevation. This enabled us to quantify climate observation uncertainties 
and propagate these uncertainties through our analysis.

Cross-validating spatial patterns using NEON data. Models used to forecast to 
the NEON network are calibrated to observations made at the site scale. Therefore, 
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a failure to predict NEON microbial abundances at core and plot scales may be 
an artefact of the dataset our prior models were calibrated to. To assess this, we 
performed a cross-validation using only NEON network data. We refit models to 
either 50% of the core-level NEON observations or 70% of the plot-level NEON 
observations, and used these models to predict the remaining observations at the 
core or plot scale (Supplementary Fig. 1, Extended Data Fig. 1). This enabled us to 
understand whether predictability patterns across spatial scales based on models fit 
to site-level data were driven by the spatial scale of calibration data.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data used to train statistical models are either publicly available in associated 
studies or were provided on request to original study authors. All data used to 
validate models are publicly available through the National Ecological Observatory 
Network data portal (https://data.neonscience.org/). We will provide raw and 
processed data on request for purposes of replicating the findings of this study.

Code availability
All code needed to process raw data and to replicate these analyses is available at 
GitHub (https://www.github.com/colinaverill/NEFI_microbe).
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Extended Data Fig. 1 | Cross-validation within the NEON dataset. Mean cross-validated R2 relative to the 1:1 prediction across functional and taxonomic 
groups for (a) bacteria and (b) fungi. All models were trained on 70% of NEON core or plot level data, and the validated using the remaining 30% of the data.
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Extended Data Fig. 2 | Coefficient of variation across taxonomic and functional groupings. Coefficient of variation of model predictions vs. observations 
across functional and taxonomic groups, both in and out of sample for (a) bacteria and (b) fungi.
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Extended Data Fig. 3 | Principal component analysis of microbial environmental sensitivities. Principal component analysis of phylogenetic and 
functional group parameter values in the global calibration dataset for (a) fungi and (d) bacteria. Factor importance in principal component space is 
indicated by the direction and length of factor vectors. We visualize the strongest correlation between an individual factor effect size and predictability 
and the calibration dataset (b,e), as well as the correlations for all factors (c,f). Factors include net primary productivity (NPP), whether or not conifers are 
present (conifer), whether or not a site is a forest (forest), mean annual temperature (MAT), mean annual precipitation (MAP), soil pH (pH), soil percent 
carbon (%C), soil carbon to nitrogen ratio (C:N), and the relative abundance of ectomycorrhizal trees (relEM).
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Extended Data Fig. 4 | Qualitatively similar but quantitatively different relationships between Acidobacteria and soil pH. Relative abundance of 
bacterial phylum Acidobacteriaplotted as function of soil pH, highlighting differences in trends between independent sources. a, Values from combined 
calibration dataset and validation dataset, with points and loess curves colored by dataset. The relationship between Acidobacteria and pH within the 
validation data, sourced from the National Ecological Observatory Network, appears to have strong a systematic bias; however, due to the compositional 
nature of amplicon sequencing data, it is difficult to determine the source of biases for any given taxon. b, Values from a subset of 5 independent datasets 
used in calibration, with points and loess curves colored by dataset.
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Extended Data Fig. 5 | Variance decomposition. Density plot of variance decomposition for all (a) bacterial and (b) fungal groups modeled at the site level.
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Extended Data Fig. 6 | Distribution of samples used in this analysis. Distribution of sampling sites used in this analysis. Sites used for fungal model 
calibration are in pink, sites used for bacterial model calibration are in blue, and NEON sites used for validation are in yellow.
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further subsetted the data set to sites where >90% of basal area was associated with either AM or EM associated trees. Therefore, a 
plot with 50% EM basal area and 50% AM basal area would be included in this analysis, however any plot with >10% mixed 
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