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Abstract
Understanding subfield crop yields and temporal stability is critical to better manage 
crops. Several algorithms have proposed to study within-field temporal variability but 
they were mostly limited to few fields. In this study, a large dataset composed of 5520 
yield maps from 768 fields provided by farmers was used to investigate the influence of 
subfield yield distribution skewness on temporal variability. The data are used to test two 
intuitive algorithms for mapping stability: one based on standard deviation and the second 
based on pixel ranking and percentiles. The analysis of yield monitor data indicates that 
yield distribution is asymmetric, and it tends to be negatively skewed (p < 0.05) for all of 
the four crops analyzed, meaning that low yielding areas are lower in frequency but cover 
a larger range of low values. The mean yield difference between the pixels classified as 
high-and-stable and the pixels classified as low-and-stable was 1.04 Mg  ha−1 for maize, 
0.39 Mg ha−1 for cotton, 0.34 Mg ha−1 for soybean, and 0.59 Mg ha−1 for wheat. The yield 
of the unstable zones was similar to the pixels classified as low-and-stable by the standard 
deviation algorithm, whereas the two-way outlier algorithm did not exhibit this bias. Fur-
thermore, the increase in the number years of yield maps available induced a modest but 
significant increase in the certainty of stability classifications, and the proportion of unsta-
ble pixels increased with the precipitation heterogeneity between the years comprising the 
yield maps.

Keywords  Yield stability · Standard deviation · Two-way outlier · Big-data · Yield maps

Introduction

Precision agriculture aims to maximize the efficiency of the inputs supplied to a crop 
(e.g. fertilizer, herbicide, irrigation, etc.) by defining zones to be managed homogenously 
within a field. The delineation of the homogeneous zones can be achieved either through 
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the farming-by-soil approach, the farming-by-yield approach, or, more frequently, a com-
bination of the two (e.g. Guastaferro et  al., 2010; Taylor et  al., 2007). The farming-by-
soil approach uses mapped soil properties and farmers’ observations (Fraisse et al., 2001; 
Mzuku et  al., 2005) to delineate zones in which crops respond homogenously to inputs. 
This approach has often been criticized because it does not consider soil-climate interaction 
(Basso et al., 2007; Basso & Antle, 2020). The farming-by-yield approach (Basso et al., 
2007; Basso et al., 2016; Blackmore, 2000; Lark, 1998) instead uses yield as a proxy for 
soil variables, and historical yield maps to define management zones. The farming-by-yield 
approach allows for the consideration of temporal stability in management; for example, by 
dividing the field into zones that have high mean productivity (high-and-stable), zones that 
have low mean productivity (low-and-stable), and zones that are temporally unstable, such 
as zones that have high year-to-year yield variability (Basso et al., 2007, 2019; Blackmore, 
2000; Maestrini & Basso, 2018; Martinez-Feria & Basso, 2020).

One of the main shortcomings in the current literature on management zone delinea-
tion is that studies tend to be focused on relatively few fields (e.g. Blackmore, 2000; Diac-
ono et al., 2012; Gavioli et al., 2016; Taylor et al., 2007). There are exceptions, though, 
such as Stafford et al. (1999) who delineated the management zones of more than 60 fields 
in the United Kingdom using a fuzzy clustering approach. Also, field size, ranging typi-
cally between 4 and 12 ha, and the number of years of data available greatly limit the cur-
rent possibilities for evaluating the effect of precision methods of a given set of deline-
ated zones. Castrignanò et al. (2008) suggested that a minimum of thirty years of harvest 
data would be necessary to estimate temporal stability. However, a review of the litera-
ture shows that no study has investigated this claim, besides modeling studies. To evaluate 
weather larger datasets have the the potential to improve zone delineation, yield data were 
gathered from 768 fields located in eight states in the U.S., with up to 12 years of harvest 
data, covering a large diversity of topographies, soil types and climates. The crops present 
in this dataset are maize (Zea Mays L.), soybean (Glycine max Merr.), wheat (Triticum 
spp.), and cotton (Gossypium spp.).

Irrespective of the approach used to delineate zones, defining an algorithm that will 
effectively partition a field remains one of the main challenges for precision agriculture 
(Koshla et al., 2010). Creating an algorithm first requires the discretizating and clustering 
of one or more continuous mapped variables that may influence yield in various, possibly 
non-linear ways. Several approaches have been proposed in the literature, such as k-cluster-
ing (Fridgen et al., 2004), multivariate geo-statistical methods (Aggelopooulou et al., 2013; 
Castrignanò et al., 2000, 2008), and GIS layering (Kitchen et al., 1998). These approaches 
are powerful in their capacity to cluster high-dimensional datasets (i.e., including multiple 
variables), but they may not be easy to use because they do not offer a direct association of 
the classes to yield productivity or variability.

Here two farming-by-yield algorithms are presented to delineate homogenous manage-
ment zones. These algorithms have the advantage of being relatively simple to implement 
and to interpret. The algorithm developed by Blackmore (2000) provided the bases of most 
algorithms available in the literature (e.g. Basso et al., 2007; Cox & Gerard, 2007). Black-
moore algorithm consists of two steps: first, the identification of the temporally unstable 
zones and second, the classification of the rest of the field based on their mean produc-
tivity. The two new proposed algorithms differ from Blackmore’s algorithm in the yield 
normalization and in the thresholds adopted. The first algorithm, the standard-deviation 
algorithm, uses the standard deviation of yield normalized across years as the measure of 
temporal stability. The second algorithm, the two-way-outlier algorithm, is non-parametric 
and is based on normalized yield ranks.
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One of the main challenges of using of a farming-by-yield algorithm is the lack of 
unique criteria to establish a temporal stability threshold—as can be deduced from Table 1, 
which reports a variety of study criteria for defining temporal stability. An optimization 
procedure was used to find the thresholds that maximize the similarity of stability clas-
sification maps across different sets of years. The reasoning behind this optimization pro-
cedure is that any one set of data years available to a farmer is considered to be a sample of 
all possible years of harvest; Therefore the aim is to create an algorithm that maximizes the 
probability of having a similar management zone map if a different set of data years was 
available to the farmer.

A rigorous study of the temporal variability of yield must consider the shape of yield 
distribution, because skewed distributions may generate a correlation between mean pro-
ductivity and temporal variability. Given its relevance for forecasting and insurance pur-
poses, the skewness of yield distribution has been the subject of an intense debate since 
the mid-1960s (Day, 1965). More recent studies have shown that the distribution of 
yield is usually negatively skewed (long left tail in a normal distribution). For example, 
Joernsgaard and Halmoe (2003) observed a negative distribution for a variety of cereals in 
northern Europe, and Ramirez et al. (2003) observed a negative distribution for maize and 
soybean in the US Corn Belt. Several factors may influence yield skewness including nitro-
gen fertilization (Day, 1965), irrigation (Hennessy, 2009; Tack et  al., 2012), and excess 
water or water deficit (Martinez-Feria & Basso, 2020). Maestrini & Basso, 2018 suggested 
that the unstable portions of the field are often characterized by a concave topography that 
facilitate stagnation in wet years and are wetter in dry years. Consequently, the hypothesis 
is that the proportion of unstable pixels is a function of site rainfall variability between 
seasons.

The overarching hypothesis of this study is that subfield yield distribution is skewed, 
which introduces a correlation between productivity and stability. The objectives of this 
research are to test this hypothesis and develop a new algorithm (the two-way-outlier) that 
is non-parametric (i.e., based on yield ranking) in order to disentangle unstable and low 
yield zones. The uncertainty of pixel classification and the influence of the number and 
variability of the data years available on the proportion of unstable pixels, is tested for the 
two algorithms.

Materials and methods

Data collection and processing

This study relies on yield data collected from 768 fields occupying a total area of 23,400 ha 
(Figure S2). The fields were located in eight states: Arkansas, Colorado, Illinois, Indiana, 
Iowa, Kansas, Michigan, and Missouri (Figure S1). The field sizes ranged from 0.85 ha 
to 212  ha and the mean field size was 30  ha. The crops investigated in this study were 
maize (1443 yield maps), soybean (724), cotton (261), and wheat (205). The details of 
the fields and yield maps by states and crops are reported in Table S1 and Table S2. The 
median number of years available per field was three, and the maximum was 12. Figure S2 
shows the distribution of the number of years available per field. The farmers provided the 
data in various formats, depending on the yield monitor and software each farmer used. 
The yield data offer a variety of information about the harvesting process—most essen-
tially, the dry yield volume of each crop. The raw files produced by the grain yield monitor 
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were converted into shapefiles using Field Operations Data Model Viewer (FODM Viewer 
Version 3.11.09) and Spatial Management Software (SMS). Boundary calculation and ras-
terization operations were performed on the shapefiles using ArcGIS 10.4.1 and Python 
2.7. The stability algorithms and the statistical analysis on the rasterized yield maps were 
implemented in R version 3.2, expanded by the package raster (Hijmans, 2016).

One yield map per field, year, and crop was derived and in any instance where two or 
more crops were farmed on one field in the same year, the map of that year was excluded 
from the dataset. Yield maps missing more than 25% of its data were also excluded. The 
analysis considered differences between cultivated crop species, but not crop variety.

The boundariess of each field were determined by merging all the point shapefiles and 
aggregating the points to polygons. From each crop dataset, the median was used to define 
a lower (0.1 × median) and higher (3 × median) boundary. All points below or above the 
boundary were treated as outliers and deleted. The points with the same longitude and lati-
tude were dissolved to avoid duplicates. A spherical kriging model was applied with a pixel 
size of 2 by 2 m, a fixed radius with a distance of 20 m, and a minimum of 12 points. A 
final resolution of 30 × 30 m was obtained by clipping the temporary output to the bound-
ary of the field and by smoothing it with a 10 × 10 pixel square by aggregating pixels. All 
the operations were performed on spatial objects (rasters, points, polygons) projected to the 
appropriate UTM zone and the meter was the unit of measure for the coordinates.

Yield skewness and influence on stability

Yield skewness for every field-year yield map was calculated as follows:

where n is the number of pixels present in the yield map and x is the vector of the pixel 
values of the field.

To investigate the influence of skewness on temporal variability, The correlation 
between mean and standard deviation (Fig.  2a) was tested and as well as correlation of 
yield to skewness observed in a field (Fig. 2b). The following steps were taken to test the 
correlation bewteen the mean and the standard deviation: (1) The fields with at least three 
years of data were selected to create a subset of the dataset, (2) Each field-year yield map 
was normalized (values were transformed to have µ = 0 and σ = 1), (3) For each pixel, the 
mean and the standard deviation of the values observed across the years were calculated, 
(4) The standard deviation was regressed against the mean using the following model 

where εfield is a random effect of the intercept having as levels the individual field, and the 
εres are the model residuals.

To provide further evidence for the theory that negative skewness causes a negative cor-
relation between the mean and the standard deviation, 10 independently and identically dis-
tributed variables (Figure S3 top panels) were tested, simulating negatively skewed, sym-
metrical (not skewed), and positively skewed variables. Each variable simulates the yield 
distribution observed in a field in a given year. A matrix of the type M[i, j] was generated 
where i represents the number of pixels in the simulated field and j represents the number 
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of years. The mean and the standard deviation across the rows (i.e., across the years in this 
study’s analogy) were calculated and verified such that if the numbers are drawn from a 
negatively skewed distribution, the correlation between the mean and the standard devia-
tion will be negative. Similarly, if the numbers are drawn from a positively skewed distri-
bution, the correlation will be positive, and if the distribution is symmetrical there will be 
no correlation (Figure S3).

Algorithms to define stability zones

Two algorithms to partition a field into three stability zones: unstable, low-and-stable, and 
high-and-stable are described and compared. The standard-deviation algorithm defines 
a pixel’s stability based on its standard deviation across years of normalized yield. The 
two-way-outlier algorithm defines stability based on variation in ranked yield values; this 
algorithm defines a pixel as unstable if at least one year’s yield was in the lowest 35% 
and another year was in the highest 35% of the yield distribution at field scale. The two 
algorithms employ two thresholds to divide high from low-and-stable from unstable, the 
values of these threshold have been defined so that they optimize the repeatibility of the 
management zones map. Further details on the definition of the threshold are given in the 
next section.

The standard deviation algorithm

The standard deviation algorithm partitions the pixel of a field into unstable, low-and-sta-
ble, and high-and-stable classes, based on normalized standard deviation and mean.

The algorithm is composed of the following steps:

(1)	 Normalize (µ = 0, σ = 1) the values of each field-year yield map to allow for the com-
parison of yield maps for different years and crops.

(2)	 For every pixel of the yield maps, calculate the mean and the standard deviation of the 
normalized yield across available years.

(3)	 Define as unstable the pixels with a standard deviation greater than 0.8 and then divide 
the remaining pixels between low-and-stable (mean < 0.2) and high-and-stable (mean  
≥ 0.2).

The two‑way outlier algorithm

The two-way outlier algorithm partitions the pixels of a field into the same three categories 
as the standard deviation algorithm, but defines unstable pixels as those pixels that jump 
from the bottom 35th to the top 35th percentile or viceversa. The steps of the algorithm 
are:

(1)	 Normalize (µ = 0, σ = 1) the values of each field-year yield map to allow for the com-
parison of yield maps for different years and crops.

(2)	 For each available year, divide the pixels into three categories: low (< 35% percentile), 
medium (points bounded in the interval between the 35th and the 65th percentile), and 
high yield (> 65th percentile).

(3)	 If a pixel had at least 1 year in both the low and high categories, then categorize it as 
unstable.
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(4)	 Divide the remaining pixels based on mean normalized yield: classify them as low-
and-stable if the mean is lower than 0.3, and high-and-stable if the mean is higher than 
0.3.

Choosing the algorithm threshold through an optimization procedure

The thresholds to partition between high/low and stable-unstable were optimized to maxi-
mize the repeatability of the stability maps, i.e., the threshold that created the maximum 
probability of observing similar stability maps using different sets of years for the same 
field as inputs. To reach this goal, the fields were divided into several sets of calibra-
tion–validation years using different combinations. For example, for a field for which data 
from the years 2013 through 2018 were available, the threshold was optimized to ensure 
maximum agreement between a stability map for combined years 2013, 2014, and 2018, 
and a map for years 2015, 2016, and 2017. The optimization procedure—a simplex search 
procedure (Nelder & Mead, 1965)—was repeated 600 times, each time randomly selecting 
30 fields (from the set of fields with at least 6 years of data). For each field, one combina-
tion of years was selected among all possible combinations. The 600 repetitions produced 
a bivariate distribution of 600 couples of optimum thresholds (one threshold for the stand-
ard deviation and one for the mean). For the standard deviation algorithm, the optimum 
threshold for normalized mean yield was 0.2, and the threshold for normalized yield stand-
ard deviation threshold was 0.75. The optimal thresholds for the two-way outlier algorithm 
were 0.3 (normalized mean yield) and 0.35 (i.e., a pixel must make a jump from being 
minor than the 35th percentile to be larger than the 65th percentile). The steps for the opti-
mization of the threshold are in the supplementary information.

Uncertainty in the categorization of pixel and influence of weather

The patterns of a stability map depend on which years are used to produced it, the follow-
ing is a procedure to identify pixels in the field with uncertain stability classification. The 
method is based on the partitioning of all yield maps (i.e., years of available data) for every 
field into two sets (set 1 and set 2) for every possible combination available for a field (i.e., 
all the possible ways to split the available years in calibration–validation sets). The goal 
of this analysis was to investigate the influence of the number of years of yield maps on 
the uncertainty of a stability map. The following steps were applied to each field having at 
least six years of data (129) to divide it into four categories, uncertain, unstable, low-and-
stable, and high-and-stable:

(1)	 For each combination of years, the stability maps were calculated using the two sets 
and for each pixel the categories obtained using the two sets were compared. A new 
map was created using the following rule to determine uncertainty: If a stability class 
defined using set A was equal to the stability class defined using set B, then the pixel 
was set as the stability class assigned by the sets. Otherwise, the pixel was set as uncer-
tain.

(2)	 After the exhaustion of all the possible combinations, the determination of the stability 
class of each pixel was done using a voting procedure, i.e., each pixel was assigned to 
the most frequent category (uncertain, unstable, low-and-stable, or high-and-stable) 
that occurred most frequently in that pixel across all the analyzed combinations.
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Proportion of unstable pixels as a function of site rainfall variability between seasons

The dataset derived from these transformations was used to test the hypothesis that 
fields with yield maps from years in which summer precipitation differed had a larger 
proportion of unstable pixels. To test this hypothesis the stability maps and the mete-
orological data from the Daymet dataset corresponding to the years available (Thornton 
et  al., 2017) were used. The proportion of pixels classified as unstable was modelled 
using the following linear mixed model:

The variable number of years available was introduced because it is correlated 
with the proportion of unstable pixels as defined by the two-way outlier algorithm 
(Fig.  3). That is, with more years of data, there are more opportunities for a pixel to 
“jump” from the lowest 35th percentile to the highest 35th percentile. The term 
(

rainwettest year − raindriest year
)

 represents the range of precipitation on a given field in the 
years with data available. The term �farmer is a random effect of the number of farmers in 
the dataset as levels (number of levels 31), and �res the residuals. The dataset comprised 
only the fields in rainfed states with at least six years of data.

Productivity, within‑class variability and temporal variability of the three stability 
classes

For each crop and stability category the mean productivity over the years was derived 
by calculating the mean yield of each class in each stability map and by calculating the 
average for each combination of crop, stability class and year. The within-class vari-
ability of each class was calculated as the standard deviation of the pixels having the 
same stability category in the same stability map. The mean of these standard deviations 
by crop, year and stability was calculated and plotted over time (results are reported in 
Fig. 4).

The hypothesis that there were significant differences in temporal variability across 
stability classes (i.e., that the unstable pixels vary more between the years than the sta-
ble ones, Fig. 5) was tested using the following statistical model:

In the model, the j indices are the crops analyzed in this study (excluding cotton as 
explained below) and the i indices are the stability classes (low-and-stable, high-and-
stable, unstable). The factors �state,j and �farmer,j are random effects taking as levels the 
states and the farmers (58 levels). The distribution of random effects N(0, �) was differ-
ent for every crop.

Because the number of farmers growing cotton in the study dataset was limited the 
random effect �farmer,j was dropped and the following simpler model was fit to the cotton 
data:

For this model, the random effects were states and the number of fields (348 levels).

logit

(

Nunstable

Ncells

)

= Nyears available +
(

rainwettest year − raindriest year
)

+ �farmer + �res

temporalvariability = cropj + stabilityclassi,j + �state,j + �farmer,j + �residuals

temporal variability = stability classi,j + �state + �field + �res
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A Bonferroni-corrected posthoc test was applied to detect significant differences in the 
levels of the factor stability classi,j within each crop/algorithm between the temporal vari-
ability of the different stability classes.

The temporal variability models were fit on a dataset derived from the following steps 
which were followed using both stability algorithms separately:

(1)	 The stability map for each field was calculated
(2)	 For every crop planted at least twice, the standard deviation of the yield for every pixel 

across the years when the crop was cultivated was calculated.
(3)	 A dataset was created where every pixel represents a row and the temporal variability, 

field ID, the stability class, the crop, the state, and the farmer ID are the columns.

Statistical software

The skew of the distribution of each yield map was calculated using the R package 
moments (Komsta & Novomestky, 2015), and a skewed normal distribution was applied 
to each map using the package sn (Azzalini, 2017). The mixed linear models used to test a 
variety of null hypotheses were fit using the package lme4 (Bates et al., 2015). The maxi-
mum likelihood of the multinomial models (optimization procedure and measure of clas-
sification certainty) was estimated using the nnet package (Venables & Ripley, 2002).

Results

Yield skewness and productivity of the unstable areas

The majority of the yield distribution in the study was left-skewed (Fig. 1). The mean was 
negatively correlated with the standard deviation (both calculated across the years for nor-
malized yield, p < 0.05, Fig.  2a). The correlation between the mean-standard deviation 
Pearson correlation coefficient and the mean skewness of the yield distribution of each 
field was positive (p < 0.05, Fig. 2b).

In the synthetic dataset drawn from a left-skewed distribution, the correlation between 
mean and standard deviation was negative, whereas in the right-skewed distribution the 
correlation was positive, and it was null if the data were drawn from a symmetric distribu-
tion (Figure S3).

Stability classification and uncertainty in stability classification

The thresholds that maximized the repeatability of the standard deviation algorithm were 
0.75 for temporal stability—measured as the standard deviation of the normalized yield 
over time—and 0.2 for mean normalized yield (Figure S4a). For the two-way outlier algo-
rithm the repeatability was maximized by a threshold of 0.35 for temporal stability—mean-
ing that a pixel was declared unstable if it fell for at least one year into the 65-100th yield 
percentile and at least one year in the 0-35th percentile—and 0.4 for mean normalized 
yield (Figure S4b).

On average 32% (σ = 11, Table 2) of a field was classified as unstable according to 
the standard deviation algorithm, whereas the two-way algorithm classified 41% (σ = 22, 
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Table 2) of the pixels as unstable. The pixels that both algorithms classified as unstable 
represented 22% of the field. On average, 32% (9) of pixels were low-and-stable under 
the standard deviation algorithm, and 32% (12) under the two-way outlier approach. 
High-and-stable pixels represented 36% (11.6) of a field on average according to the 
standard deviation algorithm and 27% (11.3) on average according to the two-way-out-
lier algorithm (Table 2).

Using the standard deviation algorithm, the increment in the number of years of yield 
available increased the number of unstable pixels mostly at the expense of the uncertain 
pixels, which dropped from 55 to 50% of the total when the number of years increased 
from six to 12 (p < 0.05, Fig. 3a). Using the two-way-outlier algorithm the proportion of 
unstable pixels increased with the number of years at the expense of all other categories 
(uncertain, low-and-stable and high-and-stable, p < 0.05, Fig. 3b). In fact, with six years 
of harvest data available, 15% of pixels were unstable, compared to 50% with twelve 
years of harvest data.

The proportion of unstable pixels increased with greater precipitation heterogene-
ity among the years available in the dataset. This observation held irrespective of the 
algorithm in use (Figure S5, p < 0.05). The analysis included only the fields located in 
traditionally rainfed states (Iowa, Michigan, Indiana, and Illinois) and with at least six 
years of data. Using the standard deviation algorithm, the fields with the largest hetero-
geneity in summer rain (300 mm of variation between available years of data) had on 
average (model prediction) 50% of pixels classified as unstable. The more uniform fields 
(100 mm) had 20% of pixels classified as unstable. Using the two-way outlier algorithm, 

Fig. 1   Distribution of yield skewness of different crops
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Fig. 2   a Correlation between the mean and the standard deviation of the normalized annual yield. The anal-
ysis included only fields with at least three years of data. The barplots in this figure represent each pixel of 
each field binned by percentiles of 5% to facilitate visualization. The bold middle line represents the median 
of the bin, the bottom and top of the box the first and third quartiles and the two hinges are the 1.5 times 
the interquartile range of the data. The red line represents the regression line between the two variables. b 
Correlation between the mean skewness of within-field yield distribution and the negative mean-standard 
deviation correlation, for each field with more than three years of data

Fig. 3   Influence of the number of years of data available for a field on the proportion of the field identified 
as low-and-stable (brown), high-and-stable (blue), uncertain (red), and on the portion of the field identified 
as unstable (orange). In the left panel, the standard deviation algorithm was used, whereas in the right panel 
the two-wayoutlier algorithm was used
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Fig. 4   Yield (solid lines) and within-class variability (dotted lines) of the data aggregated by crop and year. 
The left panels represent the standard deviation algorithm, and the right panels represent the two-way out-
lier algorithm
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the number of unstable pixels in fields with higher heterogeneity went up to 80%; in 
fields with more uniform precipitation, around 40% of pixels were unstable.

Yield productivity, temporal variability, and within‑class variability across stability 
classes

For each crop, the yield averages of the low-and-stable and high-and-stable classes are 
reported in Fig. 4 (solid lines). Using the standard deviation algorithm, mean difference aggre-
gated across the observed period between the high-and-stable and low-and-stable classes was 
1.04 (σ = 0.18) Mg ha−1 for maize, 0.39 (σ = 0.02) Mg ha−1 for cotton, 0.34 (σ = 0.04) Mg ha−1 
for soybean, and 0.59 (σ = 0.15) Mg  ha−1 for wheat. Using the two-way-outlier algorithm, 

Fig. 4   (continued)

Fig. 5   Mean temporal variability by crop (expressed as standard deviation of year-to-year yield). In the left 
panel, the standard deviation algorithm was used, whereas in the right panel the two-way outlier algorithm 
was used. The letter indicates significant differences between stability classes within the same crop
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the mean difference between low-and-stable and high-and-stable classes was 1.62 (σ = 0.29) 
Mg ha−1 for maize, 0.53 (σ = 0.04) Mg ha−1 for cotton, 0.53 (σ = 0.05) Mg ha−1 for soybean, 
and 0.88 (σ = 0.16) Mg ha−1 for wheat.

The mean yield of the pixels classified as unstable by the standard deviation algorithm 
was similar to that of the low-and-stable pixels. In fact the differences—meand across the 
years—between low-and-stable and unstable were −  0.06 (σ = 0.12) Mg  ha−1 for maize, 
0.04 (σ = 0.07) Mg ha−1 for cotton, 0.05 (σ = 0.07) Mg ha−1 for soybean, and 0.03 (σ = 0.09) 
Mg ha−1 for wheat. In contrast, the two-way-outlier algorithm produced unstable pixels with 
an mean yield that was equally different from the low-and-stable and high-and-stable pixels 
(Fig. 4, continuous line). According to the two-way outlier approach, mean difference between 
the unstable and low-and-stable pixels was 0.90 (σ = 0.23) Mg ha−1 for maize, 0.27 (σ = 0.07) 
Mg  ha−1 for cotton, 0.30 (σ = 0.04) Mg  ha−1 for soybean, and 0.51 (σ = 0.51) Mg  ha−1 for 
wheat.

Unstable pixels had the highest within-class variability—i.e., the standard deviation of the 
yield of pixels with the same stability class in each stability map—followed by low-and-stable 
pixels and then high-and-stable (Fig. 4, dashed lines).

Using the standard deviation algorithm, the unstable pixels were between 14 (cotton) and 
20% (soybean) more variable that the high-and-stable pixels, whereas the two-way outlier 
algorithm found differences ranging from 11 (cotton) to 21% (soybean). The temporal vari-
ability of the unstable pixels differed less sharply from the low-and-stable pixels. The differ-
ences between the temporal variability of the unstable pixels and the low-and-stable pixels 
ranged between 7 (cotton) and 13% (maize) for the standard deviation algorithm and between 
1.3 (cotton) and 9% (maize) for the two-way outlier algorithm. Using the standard deviation 
algorithm, the temporal variability of wheat was higher in high-and-stable pixels than unstable 
pixels (p < 0.05 using posthoc test, Fig. 5), and no significant difference was observed under 
the two-way outlier algorithm.

Table 2   Contingency table of the classification according to the two-way-outlier algorithm and the standard 
-deviation algorithm expressed as percent of the number of pixels

A contingency was calculated for each field. For each pixel of the contingency table, the mean and the 
standard deviation (n = 428) was calculated across the contingency table of all the fields. The number in 
parenthesis is the standard deviation

Low-and-stable 
Two-way outlier

High-and-stable 
Two-way outlier

Unstable 
Two-way 
outlier

Sum

Low-and-stable Standard deviation 
algorithm

22.2 (11) 0 (0) 10.2 (6.3) 32.4 (8.5)

High-and-stable Standard deviation 
algorithm

1.8 (1.5) 26.1 (11.9) 8.1 (6.2) 36 (11.6)

Unstable Standard deviation algorithm 7.5 (3.8) 1.8 (2.4) 22.3 (15.5) 31.6 (16.5)
Sum 31.5 (12) 27.9 (11.3) 40.5 (22.2) 100 (0)
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Discussion

Asymmetric yield distribution causes a positive correlation between productivity 
and temporal stability

The analysis of the yield distribution of 5520 field yield maps revealed that within-field 
yield distribution was negatively skewed, as indicated also by a growing body of literature 
(see the review by Hennessy, 2009 and Ramirez et al., 2003 in contrast to Day, 1965).

The analysis of the data confirmed the hypothesis that negatively skewed yield distri-
bution causes a negative correlation between the mean and the standard deviation of nor-
malized yield measured across the available years of data. Two independent analyses sup-
porting the hypothesis are provided, one from analysis of the study dataset, and one from 
synthetic data. The negative correlation between productivity and variability imply that the 
less productive areas are also more unstable, and therefore even more critical for the finan-
cial sustainability of a farm operation.

The standard deviation algorithm and the two‑way outlier algorithm

The negative correlation between mean productivity and temporal variability brought us 
to two possible interpretations of yield stability, implemented through two different algo-
rithms. The standard deviation algorithm uses the standard deviation of the normalized 
yield to identify unstable pixels, and the two-way outlier algorithm identifies as unstable 
the pixels that oscillate between high and low yield. The first interpretation has important 
practical implications for management because it helps to identify the areas that show the 
highest variation and therefore contribute most to the volatility of farm profits. However, 
because of the negative correlation between productivity and temporal variability, some of 
the pixels classified as unstable by the standard deviation algorithm are unstable because 
of the inherent highly random variability typical of the low-yielding pixels. Approximately 
two-thirds of pixels unstable based on the standard deviation algorithm were also cate-
gorized as unstable according to the two-way-outlier algorithm (Table 2). The two-way-
outlier method identifies as unstable the points that “jump” between relatively low and 
relatively high production. The erratic behavior of this type of unstable pixel is more likely 
dependent on climate-soil interaction. For example, it is possible that the pixels classified 
as unstable suffer from heavy rainfall events during crop establishment and perform rela-
tively better in dry summers (Maestrini & Basso, 2018). These causes of instability may 
be addressed for example by choosing ad-hoc sowing rates, ensuring adequate drainage or 
using flood resistant genotypes (Martinez-Feria & Basso, 2020).

More data years moderately decreases the uncertainty of a stability map

Areas characterized as uncertain have a substantial lack of confidence about their clas-
sification; i.e., their classification cannot be consistently repeated if a map for the same 
field was produced using yield data from different years. Uncertainty in pixel classification, 
which is measured as repeatability of a map using a calibration–validation dataset split 
approach, decreased with the number of years of data available (Fig. 3), in accordance with 
the principle that the uncertainty of an estimate decreases with more replicates available. 
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Nonetheless, the improvements in map repeatability derived from having more years avail-
able were relatively modest. In fact using the standard deviation approach passing from 
6 to 11 years of data decreased the share of uncertain pixels from 55 to 50% on average 
(p < 0.05, Fig. 3). Increasing the number of available years decreased the number of uncer-
tain pixels but sharply increased the number of unstable pixels, suggesting that estimates of 
temporal stability are more uncertain than estimates of mean production.

The number of years and their rainfall variability influence the proportion 
of unstable pixels

In the two-way outlier approach, there was a sharp increase in the proportion of unstable 
pixels when more years of data were available (Fig. 3), because the number of years clearly 
influences the chances that a pixel “jumps” from one tier of production to another (e.g. 
from low to high). Undeniably, some of the these “jumps” are the result of unexplained 
stochastic variability. However, an increase in the number of data years increases the pos-
sibility of encountering years with extreme climatic conditions (e.g. very dry) that will 
reveal the correct classification of some potentially unstable pixels. In fact, a peculiar trait 
of the unstable pixels is that their relative performance (i.e., their yield relative to the rest 
of the field) is strongly driven by climate-soil interaction, whereas the relative performance 
of the stable pixels does not depend on climate. From this assumption, it follows that if the 
weather was relatively uniform in the years with data available to build a stability map, 
the year-to-year behavior of unstable pixels will reflect that weather uniformity. Therefore, 
some of the pixels that are potentially unstable (i.e., those pixels whose relative perfor-
mance is determined by soil-climate interaction) may not be identified as unstable if the 
weather is uniform. This thesis is confirmed also by the positive correlation between the 
heterogeneity of cumulative rain in July and August (a proxy for climate) and the propor-
tion of unstable pixels (Figure S5). This suggests that a stability map can only reflect the 
weather variability of the years that build the map, and that having years that exhibit large 
differences in weather will help to reveal the true temporal stability of pixels.

Mean, temporal variability, and within‑class variability of yield across stability 
zones

The mean difference between the yield in high-and-stable zones and in low-and-stable 
zones was approximately 1 t ha−1 for maize and wheat and 0.5 t ha−1 for soybean and cot-
ton (Fig. 4). According to the standard deviation algorithm, the production from unstable 
field pixels was similar to low-yield pixels because of the positive correlation between pro-
ductivity and temporal variability. On the contrary, the two-way outlier algorithm found 
that the mean yield of unstable zones was between the mean production of the high and 
low stable pixels (Fig.  4). This suggests that the two-way outlier algorithm corrects the 
standard deviation algorithm’s bias toward the low-and-stable mean yield.

The most distinctive characteristic of the unstable areas is their temporal variability. The 
unstable areas identified through the standard deviation algorithm have greater temporal 
variability than stable areas. This was true for all unstable areas, for all crops except wheat 
(Fig. 5). The difference could stem from the fact that the growth cycle of wheat differs sub-
stantially from the other crops and/or that wheat was less represented in the study dataset. 
In fact, only 10% of fields had at least two wheat maps. Therefore the estimate for wheat 
variability derives mostly from maps created for other crops. Unstable areas identified by 
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the two-way outlier algorithm show greater temporal variability only in the case of maize 
and soybean (Fig. 5). This suggests either that stability maps created using multiple crops 
have limited predictive power for a single crop, and/or that temporal variability estimated 
using percentiles differs substantially from variability evaluated with statistics based on 
distribution parameters such as standard deviation.

The within-class variability, measured as the standard deviation of the normalized 
yield of the pixels belonging to the same stability class and yield map, of unstable zones 
was higher than that (Fig. 4) of stable zones because stable pixels are by definition more 
homogenous than unstable pixels as their range is restricted, compared to unstable pixels 
that are not bounded to a mean (their normalized mean needs to be larger than 0.2).

Conclusion

The distribution of within-field yield is negatively skewed, which causes temporal insta-
bility in low-yield pixels. This needs to be considered when using the farming-by-yield 
approach. A rank-based classification algorithm (two-way-outlier) can be used to discern 
between low and unstable pixels, however, they suffer from a strong dependence on the 
number of years available, and the weather. This indicates that in order to capture the yield 
variability it is important to observe a field for many and different years. Therefore it is 
important to rely on a standard platform for the long-term storage of the data.

A method to define the thresholds and uncertainty in pixels classification was proposed 
in this study, however it is clear that there is a certain level of subjectivity in the creation of 
the stability maps. Therefore it is important that decision support systems show the uncer-
tainty in classification and the implications of choosing one algorithm over another one.
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