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a b s t r a c t

The value of memory analysis during digital forensics, incident response, and malware investigations has
been realized for over a decade. The power of memory forensics is based on the fact that volatile memory
contains a substantial number of artifacts that are simply never recorded to disk or sent across the
network in plaintext form. Orderly recovery of this data, known as structured analysis, allows for re-
covery of the full system state at the time of acquisition. For structured analysis to be successful, a
memory analysis framework must have an accurate model of the data structures and algorithms of the
target operating system and applications. Unfortunately, acquiring this layout is often a difficult task for
even one version of an executable module, and the problem is only compounded when support for a
wide variety of versions is desired. This issue can be manifested in several ways, including forensics
frameworks being unable to process memory samples containing unsupported versions of executable
code or worse, generating erroneous or incomplete results. Given the vital role memory analysis plays in
modern investigations, these issues are unacceptable. In this paper, we present Seance, a system that
implements automated binary analysis to provide accurate data structure layout information for different
versions of targeted executed modules. The results of Seance can be consumed by analysis frameworks to
accurately support all versions of a target module.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The necessity of memory analysis during modern digital fo-
rensics and incident response investigations is well known and
documented. Through analysis of volatile memory, investigators
can recover the entire system state at the time of acquisition and
deeply examine historical activity. These capabilities go well
beyond the types of evidence made available by more traditional
forensic analysis techniques, such as disk image forensics or live
system analysis.

The importance of memory forensics has only been strength-
ened over time as malware and attack toolkits have evolved to use
completely memory-only payloads, or at a minimum, significant
memory-only portions (PowerShell Empire, 2016; hdm, 2020;
GhostPack, 2020; Mudge, 2020; FireEye, 2020; Arghire, 2019).

Beyond malware analysis, the now ubiquitous use of encrypted file
storage and network sessions has driven the need for memory
forensics.

To perform memory forensics beyond basic techniques, such as
examining strings or running Yara rules, investigators must rely on
memory forensic frameworks that are capable of automatically
reconstructing complete system state. Widely used frameworks,
such as Volatility (The Volatility Framework:, 2017) and, until
recently, Rekall (Google, 2016), provide dozens of plugins that
automatically reconstruct specific artifacts, such as the list of
running processes, memory ranges that contain injected code, or
kernel regions that have been maliciously altered.

Structured analysis is the automated recovery of data structures
and algorithms and its success depends on several factors. The first
is the ability to locate the address of global variables containing key
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information, such as the head of the process list or the base address
of the system call table array. As discussed later, gathering this
information is generally not an issue for modern frameworks and is
performed accurately.

The second piece of information required is the layout of the
data structures that hold desired artifacts, including the offset and
type of each member needed for complete analysis. Unfortunately,
recovery of this information is often not straightforward and cur-
rent workflows require intensive, manual methods to recover the
information for every version of an application or operating system
to be analyzed. Furthermore, there are currently no robust, auto-
mated methods to determine if the data at a given offset has the
same semantics as it did for other versions of the same module. As
showcased in Section 3, these issues have led to significant de-
ficiencies in real-world analysis, including both the inability of
memory forensics tools to analyze some versions of an executable
module and incomplete or incorrect results being reported.

In this paper, we document our effort, called Seance, to trans-
form this manual and error-prone process into an automated,
streamlined, and verifiable workflow. To accomplish this, we
developed a system capable of automatically assessing executable
modules needed for structured analysis. This assessment begins
with binary analysis to determine the layout of needed data
structures contained within an analyzed module. A second
component then allows comparing the assessment to other ver-
sions of the module to determine if the data structure layout
changed, or if the code accessing structure members has materially
changed. This output can then be used to determine if a memory
forensic framework is currently capable of analyzing a particular
module version.

The use of our system by memory forensic developers and
practitioners will significantly advance the state of the art by
providing for rapid development of their framework updates along
with verification that data structures are represented correctly. This
will greatly enhance the accuracy and reliability of frameworks
through replacement of manual, error-prone efforts with an auto-
mated workflow.

2. Related work

2.1. Data structure reconstruction

For the same reasons that motivated this paper, there has been
significant interest in the recovery of the data structure layout of
executable modules analyzed during memory analysis
investigations.

2.1.1. Linux kernel analysis
Previously (Case et al., 2010), described an effort that recovered

the offset of several data structure members needed for analysis of
Linux processes. This workwas groundbreaking, but the techniques
that were used are fragile. For instance, instead of performing full
binary analysis, patternmatching was used against the disassembly
of functions that access members of interest in a structure. As
described in the paper, this approach can only support a limited
range of kernel versions. A very closely related approach to
reconstruct a subset of Linux kernel data structure layouts is taken
in (Wang et al., 2016).

In (Socała and Cohen, 2016), members of the Rekall develop-
ment team added support for automatic profile generation from
live Linux systems. Prior efforts required the installation of
compiler tools on target systems, along with other dependencies.
This has obvious negative forensic impacts, so removing that
requirement was desirable. Their approach involved pre-compiling
ASTs for mainline kernel versions followed by runtime refinement

based on the configuration of the kernel being analyzed. This
allowed the creation of Rekall profiles capable of analyzing live
systems without the need for compiler tools on the target system.

Additionally (Pagani, 2019), describes a system to automatically
build Volatility profiles for analysis of Linux memory samples. This
project uses a custom Clang plugin to generate kernel source code
information and then uses angr to perform symbolic execution
against functions in a memory sample. The analysis of these func-
tions reveals the offset of structure members. angr is the standard
open-source framework for binary analysis, and as discussed later,
is used in our project as well. This project differs from ours in key
ways though, including 1) it requires the source code of the target
module and 2) it is unable to internally detect when its view of a
data structure layout is incorrect. The authors also document
several instances where Volatility plugins do not produce correct
artifacts when using profiles built with their system.

2.1.2. Windows kernel analysis
The initial approaches to Windows memory analysis relied on

the debugging information of the kernel executable provided by
Microsoft (Petroni et al., 2006; Peterson and Okolica, 2010). This
debugging information is contained within per-executable-version
PDB files hosted on Microsoft's symbol server. For kernel execut-
ables, the PDB will contain the address of all global symbols as well
as the layout of each data structure. This satisfies the requirements
necessary for structured analysis. As noted in several places, how-
ever, there are critical memory artifacts that are not contained
within the base kernel module (Ligh et al., 2014; Cohen, 2015;
OMFW, 2012). Most notably are those of associated with the GUI
subsystem (win32 k*.sys), the network stack (tcpip.sys), and the
web server stack (HTTP.sys). For the network and web server stack,
the released PDB files have only ever contained the address of
global symbols. For the GUI subsystem, PDBs with data structures
included were released for a small number of Windows 7 versions,
while the rest have only included symbol addresses. These gaps
have led to the requirement for significant, manual reverse engi-
neering efforts on the part of memory analysis framework
developers.

An approach to solving this issue was documented in (Cohen,
2015). It aimed to add support for a wide range of win32 k.sys
versions within Rekall. The approach taken was to determine,
through manual analysis, which functions referenced members of
data structures needed for analysis to succeed. The result was the
creation of template files that encode the instructions used to ac-
cess a particular structure member (The Rekall Team, 2014). To
provide a degree of flexibility, the template format wildcards the
offsets of control flow redirecting instructions as well as the
particular general-purpose register used to store and manipulate
values. Unfortunately, this approach is limited in several key ways.
First, as noted in the paper, the templates are fragile when it comes
to changes in the compiled instruction flow. While more flexible
than work before it, the templates require the specific sequence of
instructions leading to a member access. This reduces usability
across versions of a module, as these frequently change. Second, as
discussed in Section 6, not all accesses to needed structure mem-
bers occur at the beginning of a function or within a relatively small
function. Since the templates require the specific ordering of in-
structions leading to an access (postebranch unrolling), they are
fragile relative to the template's size.

To alleviate the issues of instruction matching, Seance employs
advanced binary analysis that understands the semantics of
structure member accesses. This allows it to determine both if the
analyzed function has substantial changes between versions as well
as if the needed member offset(s) have changed.
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2.1.3. Virtual machine introspection
Virtual machine introspection (VMI) is a technique for memory

analysis of virtual machine guests from the host. To perform this
analysis, VMI software must meet the same requirements as
traditional structured memory analysis software. Popular VMI
methods to obtain data structure layouts, or to avoid the issue
completely, include graph-based analysis, machine learning, and
code-reuse (Inoue et al., 2011; Fu and Lin, 2012; Kumara and
Jaidhar, 2018; Saberi et al., 2014;: HYPERSHELL; Dolan-GavittTim
Leek et al., 2011). Unfortunately, none of these solves the current
problems of memory analysis frameworks as the approaches either
require source code access, or they simply borrow and/or re-
execute running code inside of a guest to extract information
from an API.

2.2. Program analysis in security

Program analysis, and specifically binary analysis, has long been
a focus of security research. Projects such as BitBlaze (Song et al.,
2008) and angr (; Yan et al., 2016; Stephens et al., 2016; Yan
et al., 2015) provide platforms for performing these types of anal-
ysis. Analysis of control flow graphs (CFGs) is also a common
technique in malware analysis and defensive security (Nguyen
et al., 2018; Bruschi et al., 2006; CesareYang, 2010; Cheng et al.,
2014; Yan et al., 2016). Symbolic execution has been used in
numerous research efforts to automatically discover vulnerabilities,
generate patches, refine fuzzing efforts, and direct coverage of bi-
nary code paths (Cadar et al., 2006; Davidson et al., 2013; WangTao
et al., 2009; Yang et al., 2006, 2013; MolnarXue and David, 2009;
Kolbitsch et al., 2012; Stephens et al., 2016; Chen et al., 2013; Wang
et al., 2010; Dolan-Gavitt et al., 2016). The power of symbolic
execution is based on its ability to automatically explore multiple
(or all) code paths of a program.

3. Reconstructing data structure layouts

In this section, we document the current approaches to data
structure layout reconstruction used in memory analysis frame-
works, along with the limitations to these approaches. This topic
was partially discussed in the related work section, but given its
complexity and central role in motivating our research effort, we
also have included this section for completeness.

When a memory forensic developer wishes to learn the layout
of a data structure of interest, there are three possibilities (Ligh
et al., 2014). The first two, source code review and use of debug-
ging symbols, are generally easier than the third, binary analysis,
but as discussed, are not always accurate, complete, or even
feasible. In those situations, binary analysis is the only choice
available. Luckily, if an application accesses target members of a
data structure, those accesses will be encoded within instructions
in the executable module. This means binary analysis is not only
possible in virtually every context, but it is also guaranteed to
encode the correct offset.

3.1. Source code review

3.1.1. Approach
This method uses access to the source code of an application to

determine the name, layout, and purpose of data structures of in-
terest. By knowing the compiler rules for how data structures are
laid out in memory compared to their source code representation,
is it often possible to manually build out the data structure layout.

3.1.2. Limitations
The first limitation of this approach is that it is extremely time-

consuming and error-prone for large code bases. One miscalcula-
tion for a structure member will break the derived offset for all
remaining members. Considering dozens of data structures are
often needed for deep analysis, and that each data structure often
has dozens of members, the chance of such miscalculation occur-
ring is high. Furthermore, to support the 32-bit and 64-bit versions
of applications, this process must be repeated twice for each
module release. Also complicating matters is that the compiler and
linker optimizations can create significant changes in the data
structures and ultimately the final view of the binary. As discussed
in related works (Case et al., 2010; Pagani, 2019; Cohen, 2015),
compiler alignment of structure members have a drastic effect on
this layout, and the alignment choices are not always discernible
just from viewing the source code.

3.2. Use of debugging symbols

3.2.1. Approach
When debug files contain complete type and symbol informa-

tion then nothing else must be done except to convert that infor-
mation into a representation that the memory analysis framework
understands. The two main file formats for this information are
PDB files fromVisual Studio and DWARF files on Linux andMac. The
PDB file format has been reverse engineered to enable extracting all
information and the DWARF format is fully documented.

3.2.2. Limitations
Themain limitation of this approach is that complete debugging

information is not published for many of the modules needed for
memory analysis. As mentioned previously, some vendors publish
debug information of their production executable modules, and the
two most commonly used in memory forensics are the Microsoft
symbol server and the kernel build repositories maintained by
various Linux distributions. Unfortunately, those published by
Microsoft are usually only complete for the kernel executable itself.

In the situation where the source code of a target module is
available, but debug files weren't published by the vendor, re-
searchers will often compile the source code on their own with
debugging enabled to generate a local debug information file.
When the compiler version and settings of the target module are
known then this workflow is generally accurate, but accuracy de-
creases when the exact build environment configuration cannot be
replicated. Furthermore, there are platforms, such as macOS, that
mixed closed and open-source code, so compiling the open source
code is not always possible with the absence of code from closed
source components.

3.3. Binary analysis

3.3.1. Approach
Given the inability of the previous methods to work in many

situations, memory analysis capabilities are often built using binary
analysis. This approach requires an expert investigator to find the
functions within a module that reference needed structure
members.

3.3.2. Limitations
This is a time consuming approach that requires an expert to

manually reverse engineer many components of target modules.
The expert must then manually record all offsets and types
discovered into the target framework's format. This makes the
effort not only extremely time consuming, but also error-prone and
non-repeatable.
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3.4. Shared limitations

There is also a significant, shared limitation of all three ap-
proaches in that they only attempt to acquire the offsets of needed
members of a data structure. As demonstrated with Objective-C in
Section 5, when attempting to correctly support a wide variety of
versions, just having the offset is not enough. Instead, the semantics
of the operations performed on that offset must be understood, so
that frameworks can find and report valid artifacts. The combined
issues and limitations of current approaches all necessitate the
need for automated approaches to processing modules at the in-
struction level.

4. Automated analysis of data structures across program
versions

Seance leverages angr (Yan et al., 2016; Stephens et al., 2016; Yan
et al., 2015; http://angr.io/), a robust binary analysis platform, to
perform an automated analysis of the target module. angr provides
a wide array of features and modes, and the subset we utilized
includes:

C Loading binaries
C Scanning loaded binaries
C Locating supported symbols
C Performing symbolic execution of those symbols
C Instrumenting the symbolic execution to collect data
C Producing a control flow graph of the symbols

After the data is collected, we process it, identifying any relevant
features and condensing them into a fingerprint. Fingerprints
produced by Seance are then added to a database of fingerprints for
previously examined versions of the same code and also tested
against the database to check for differences. If any differences are
found between versions in the database, a short description of the
nature of the discrepancy is generated. The rest of this section
describes this workflow in detail.

4.1. Structure offset access specification

Previous efforts to automatically determine the structure layout
largely relied on small functions in target binaries that accessed
needed structure members. This was necessary as both static and
brittle nature of the signatures, or templates used in these systems
could not handle variability in instructions and/or the registers
used in member accesses. Unfortunately, as discussed in Section
6.5, target applications often only reference members in large and
complex functions. Furthermore, when binary analysis is required
to determine functions that make accesses, it is not always feasible
to find small, easy to parse functions, if they are present at all.

For these reasons, Seance provides several methods to generi-
cally specify which functions access data, and, optionally, how that
access occurs. Themost basicmethod is for functions that receive as
a parameter the data structure under analysis and that access one
or more needed members of that structure. Seance then only re-
quires the function name and parameter number of the data
structure to track offset-based accesses to it. This simple specifi-
cation allowed recovery of all required Objective-C members, as
discussed in Section 5.

For more fine-grained control over what operations require
human post-processing review, more detailed specifications can be
given. The first option is to specify that the offset(s) of interest are
used to store the return value of a function call made inside the
analyzed function. The second is to specify that the offset(s) of in-
terest are passed as specific parameters to a function called by the

function being analyzed. This precise specification allows Seance to
not only detect changes in the algorithms of the analyzed module
via CFG analysis but to also ensure that the precise operations used
to calculate artifacts remain constant. This provides a high level of
assurance that memory analysis frameworks are recovering ex-
pected data. Examples of using these precise specification methods
are shown in Section 6.5.

4.2. Data collection

Using angr's binary loader, generally referred to as the CLE, the
target binary is loaded into a virtual address space initialized by
angr. Before it can begin CFG generation, angr requires the starting
and ending address of the code to analyze. The starting address is
specified by the controlling script as either an offset from the target
module or as a symbol name. To find a reasonable value for the
ending address, Seance first scans the target module for a symbol
with a starting address closest to, but larger than, the target sym-
bol's starting address. Then, Seance scans backwards from that
address looking for either a ret or int3 instruction. These are the
most common markers of a function's end as the ret instruction is
used to return control flow to the previously executing function and
int3 instructions, which force a debug trap, are placed by the
compiler to catch programming errors. This scan is not perfect, as it
might not capture all the ways the function might exit, but it pro-
vides reasonable bounds.

To begin CFG generation, we feed the starting address and
calculated ending address to angr's CFGFast function (angr, 2021).
This function receives a starting and ending address tuple, performs
control flow graph generation, and then produces a list of termi-
nation addresses along with metadata for each graph node. As a
sanity check, we verify that our calculated ending address is
included in angr's produced list of termination addresses. The
ending addresses, along with the other metadata, including the
number of nodes and leaves that appear in the graph, as well as
howmany functions are called, are then stored in a JSON file. These
features are later used as a heuristic for comparing CFGs between
versions of analyzed modules.

Next, we perform symbolic execution passes with each of the
ending addresses as an execution's terminating address. By default,
each register and memory range is initialized as zero. To track ac-
cess to registers and memory, Seance leverages callbacks provided
by angr for monitoring reads and writes to both data sources.

For each access, the callbacks receive:

C The address (or register) being accessed
C The data being handled
C The length of the access, in bytes
C The condition under which the access occurs
C The address of the block in which the access occurred

These data are stored in one of two dictionaries (one for reads,
and one for writes), to be processed later.

For symbolic execution, we use angr's built-in explore explora-
tion technique, targeting each of the possible ending addresses we
discovered.

After execution terminates, we process the data collected during
execution, as described in the next section. Lastly, we generate
another CFG, constrained to only touch basic blocks which were
discovered during symbolic execution. This CFG is used as a sanity
check on our results.

4.3. Analysis results database

The results of Seance's automated analysis are stored in a JSON
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file containing the destination or source of each memory access,
along with a concretization of the value stored or read. This data is
recorded from each round of symbolic execution, which tells us
how memory was accessed over several different possible execu-
tion paths and affords us a much more complete idea of how the
function uses memory.

Once the processing of memory accesses is complete, we find
the initial value held by each register and record the offset of each
memory access from that value. If the register holds a pointer to a
data structure of interest, these offsets tell us the locations of each
member of the data structure accessed by the function.

We repeat this process separately for memory addresses which
were read from, instead of the initial values of registers. This gives
us a list of pointers accessed from memory, and offsets from that
pointer which were also accessed. This data is further cross-
referenced with the list of memory reads and the list of offsets to
trace the origins of the pointers in memory.

We treat this as a tuple whose first element is the source, and
whose second element is an offset-list, and store it as an entry in a
dictionary, which is then stored in a JSON file. Reading out this data
produces output as seen in Fig. 1. Once data has been collected for
all desired versions of some binary, it is consolidated into a data-
base for ease of analysis. Specifically, the database is a JSON file with
each entry a dictionary with the following information:

C File version
C List of source/offsetelist pairs
C Number of nodes, leaves, and functions in the CFG

This database can then serve as the point of comparison for all
future versions of the software we wish to analyse.

4.4. Comparing results

A powerful component of Seance allows comparing the results
of analyses across different versions of a target executable. This
comparison is then used to inform developers and investigators of
the suitability of an analysis framework to analyze a specific
module version.

The comparison across versions is driven by the analysis of the
CFG metadata as well as the offset-based accesses found during
symbolic execution. The CFG is compared to determine if it exactly
matches across versions, meaning if the number of nodes and
leaves are the same, as well as the number of external functions
called.

The offset-accesses are compared multiple ways to gauge levels
of similarity. First, for each entry in the database, we perform a
literal comparison, noting the software version on a match. If the
match is not identical, that is if each offset in the new version does
not have exactly the same associated list of offsets as in the old
version, then we perform a more fine-grained comparison. In this
case, we remove duplicate accesses in the old and new versions and
perform another literal comparison, adding the old version to a
separate list if it matches.

If this more focused comparison does not match, we then
compare the stripped offset lists on an access-by-access basis,
checking if any of the accesses had the same offsets referenced
between versions. If any of the accesses match here, the list of
matching accesses is added to a new list along with those from the
old version.

The direct comparison of CFG data, along with three levels of
access checks, leave us with five outcomes:

Fig. 1. Reading memory accesses back out of JSON files generated from analysis of a function in Windows' tcpip.sys.
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1. Full fingerprint match, meaning the CFG and offset accesses
were the same

2. Offset match with CFG change, meaning the offsets were the
same but the code changed

3. Raw offset match, meaning the offsets were the same but their
ordering and/or number of accesses changed

4. Specific access match, meaning only a subset of accesses in the
list matched

5. No matches, meaning the CFG changed and no previously found
offsets were matched

This presentation of results quickly tells investigators if their
tools will work as intended or if a change is needed. It also informs
developers as to which action(s) must be taken to support the new
version.

Outcome 1) requires no changes to the framework, 2) and 5)
indicate that the targeted function should be re-analyzed to ensure
consistency of extracted artifacts, 3) generally occurs as a result of
compiler code re-ordering between versions and does not require
re-analyzing the function, and 4) requires re-analysis only if offsets
relevant to the framework have changed.

4.5. Advantages of seance

As documented in this section, the automatic binary analysis
capabilities of Seance allow investigators to rapidly determine if a
memory analysis framework supports a specific version of a target
module. Seance also provides a capability for generic specifications
that describe access to a particular offset or set of offsets. These
specifications are not brittle to instruction changes, register
changes, or even substantial compiler code re-ordering as Seance's
semantic analysis is driven at a higher level through symbolic
execution. Overall, these features will allow for a significant shift in
the reliability and speed inwhichmemory analysis frameworks can
support a wide range of operating system and application versions.
The following two sections showcase these capabilities against the
macOS userland runtime, Objective-C, as well as the Windows
networking stack.

5. Evaluation - Objective C runtime

5.1. Motivation and history

Our first full evaluation of Seance was conducted against the
Objective-C runtime. We chose this as our target for several rea-
sons, including that is commonly abused by malware on macOS
systems, its sole previous research effort is largely outdated, and
that it is open source.

In 2016, a paper was published at DFRWS that documented
memory forensic algorithms for detecting the Crisis malware and
its abuse of the Objective-C runtime (Case and Richard, 2016). This
was accomplished through enumeration of Objective-C classes and
data loaded into a process followed by checking for signs of mali-
cious activity. This work only targeted macOS version 10.9, how-
ever, which stopped being supported in 2016 by Apple and is now
six major OS versions of out date. When our team attempted to re-
use the algorithms described in this paper against modern
Objective-C runtimes, many parts of our plugin completely broke
down.

The realization that many newer versions would need to be
supported, all requiring manual verification and testing, was
daunting. We also knew that the memory forensics community as a
whole was facing similar issues with applications and modules
across a number of other operating systems. We then decided that
an automated system for determining version compatibility of

memory forensic algorithms was needed, and, hence, Seance was
born.

5.2. Targeted data structures

Our goal for revamping Objective-C analysis was to be able to
gather all loaded classes in a process address space followed by the
enumeration of instance variables and methods for each class. This
information allows us to enumerate active instances of each class
and decode the values of variables. Table 1 lists the structures and
members needed to accomplish this, along with the functions that
reference each member.

5.3. Versions tested

We conducted our tests using versions of the Objective-C run-
time corresponding to macOS versions 10.11.0 through 10.15.6. To
gather the versions needed for testing, we first extracted the
libobjc.dylib from each of these macOS versions. We then de-
duplicated based on the SHA1 hash of the library and stored
which Objective-C versions mapped to each hash. In total, this set
was comprised of 21 different files.

5.4. Methodology

We attempted to simulate a realistic investigative scenario in
our testing. To accomplish this, we constructed a Seance database
from a selection of fourteen of the files, as described in Section 4.3.
We wanted a database that might reflect the experiences of a
seasoned investigator, and so opted to include more files in the
database than not, and since investigators do not typically get to
choose which machines they analyze, random chance was used to
select the files included in the database. Once the database was
constructed, each of the files left out of the database, our experi-
mental group, were compared against the database as described in
Section 4.4 for each of our target functions.

5.5. Analysis results

To analyze the results, we first looked at the differences detected
as compared to the chronology of the files. As expected, files which
Seance registered as identical matches or identical matches with a
CFG change for a given function, formed contiguous groups across
Objective-C versions.

For example, NXFreeHashTable generated exact matches on
three distinct groups of files, 10.13.0e10.14.3, 10.14.4e10.14.6, and
10.15.0e10.15.6, whereas NXEmptyHashTable generated matches
for only one large grouping, 10.14.0e10.15.6. In contrast, in the
relaxed mode where only the parameter of interest is matched,
then NXEmptyHashTable matches on every file tested.

Table 1
Obj-Cmembers targeted, their containing structures, and the functions which access
that member.

Member Structure Function

Name i_var getName
Offset i_var getOffset
Type i_var getTypeEncoding
Imp method_t getImplementation
Name method_t getName
Count NXHashTable NXEmptyHashTable
buckets NXHashTable NXFreeHashTable
nbBuckets NXHashTable NXInitHashState
Count NXHashTable NXResetHashTable
Isa objc_object object_getClass
Bits objc_class removeSubclass
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Similarly, NXResetHashTable matches usage of the first param-
eter for all versions except 10.13.0e10.13.3, which corresponds to
exactly one of our test files. method_getName does not generate
any additional matches under these relaxed conditions, but even
with exact match enabled, only has two variants. The first covers
10.11.0e10.15.3 and the second 10.15.4e10.15.6. Interestingly, we
found that only the object_getClass function actually changes its
CFG without using the parameters differently. This highlights the
importance of CFG matching, since an investigator must check that
the data structure is still used in the same way under the new
algorithm.

One particular function, removeSubclass, did not produce any
exact matches, only parameter matches, but these, too, coincided
with temporal boundaries. However, in this case, a pattern was not
readily apparent just by looking at the results file, and required
source code analysis to make sense of the differences.

This brings us to the second stage of our analysis, where we
looked at the source code corresponding to each file along the
temporal boundaries to verify the changes reported by Seance. At
this stage, we discovered that in most cases when we detect
changes in offset or CFG, there was no corresponding change to the
source code. The exceptions to this were the functions object_-
getClass and removeSubclass. In the source file objc-object.h, we
found the inlined function getIsa, which object_getClass uses, was
majorly changed between OSX versions 10.11.6 and 10.12.0, and
again between 10.14.6 and 10.15.0. Similarly, in the source file objc-
runtime-new.mm, we found the function removeSubclass under-
went major revisions between OSX versions 10.14.3 and 10.14.4,
and again between 10.14.6 and 10.15.0. Finally, to verify the tem-
poral boundaries where there was no source code change, we
examined the disassembly of the functions NXEmptyHashTable,
NXFreeHashTable, and NXResetHashTable, where Seance detected
changes, but source code analysis revealed nothing. In each of these
cases, we found semantically meaningful differences in the as-
sembly instructions.

While studying the source code corresponding to material
changes reported by Seance, we learned that the algorithm to
recover the variables and methods belonging to a class had sub-
stantially changed in Objective-C for macOS 10.15.0. In particular,
the bits member, which previously pointed to a class_rw_t struc-
ture, could now point to either a class_rw_t or a class_ro_t
depending on the class’ state. Furthermore, the class_rw_t structure
itself had been broken into two separate structures. This discovery
illustrates the need for data structure layout extraction processes to
not only find the correct offset, but also to verify the operations
performed on the offset. In this situation, the bits member is used
across versions, but the type it references has changed in such a
drastic manner that just knowing its offset is not enough to
correctly recover artifacts. We were directly pointed to this
discrepancy by Seance.

5.6. Analysis conclusions

Our evaluation of Objective-C has demonstrated that Seance is
capable of analyzing a wide variety of versions of a real-world li-
brary. We initially used source code analysis to derive the function
list for Seance to analyze to find members and the rest of the
process was automated. The results of this automated processing
alerted us to new structure offsets across versions as well as where
just updating a structure's offset would not be enough to accurately
support analysis. This evaluation also highlighted the pitfalls of
source code-only review, including that substantial changes can
happen in the compiled form, as well as the downsides of data
structure layout extractionworkflows that only examine changes in
offsets.

6. Evaluation - Windows networking stack

6.1. Motivation and history

Analysis of the data structures of theWindows networking stack
provides extremely valuable artifacts during an investigation.
Through this analysis, an investigator can uncover all listening
sockets and connections, network interfaces in promiscuous mode,
and can map network activity to the process responsible for it.
These data structures also contain timestamps that denote when
specific activities started and/or ended.

As incident response investigations often start as a result of a
network indicator, such as a system contacting a known-bad IP
address or resolving a known-bad hostname, it is a significant
advantage if the investigator can quickly determine which pro-
cesses were responsible for the malicious behaviour. Importantly,
uncovering the connection creation time allows including recov-
ered connections into investigative timelines.

Unfortunately, history has shown that key parts of these data
structures vary greatly between tcpip.sys versions and that
frameworks have not kept up with the changes. Browsing the
Volatility 2 and Rekall issue trackers finds over twenty tickets
related to connections not being reported or key metadata,
particularly a connection's create time and owning process, not
being reported correctly. We have also experienced these issues
during our own investigations.

Knowing the importance of recovering network activity from
memory samples, we sought to use Seance to widen the support of
tcpip.sys versions in Volatility.

6.2. Targeted data structures

For our evaluation, we chose to target the TCP_ENDPOINT data
structure. This structure holds the creation time, owning process,
state, address family, and local and remote IP address and port for
each connection. Fig. 2 displays this structure and its related-
structures as defined by Volatility for the base version of Win-
dows 10. As illustrated in the figure, TCP_ENDPOINT holds the state,
port information, owner, and create time information directly in
the structure. Recovery of the address family and remote and local
IP addresses requires use of the related structures.

To support analysis with Seance, we needed to determine
functions inside of tcpip.sys that accessed needed members. To
start this process, we generated ground-truth information of the
TCP_ENDPOINT structure layout for particular versions. To accom-
plish this, we took a two-step approach. First, we examined the
source code of Volatility 2 and, later, Volatility 3 to determine the
versions for which they had TCP_ENDPOINT defined. For Volatility
2, our analysis showed that the entire structure was defined for the
base versions of Windows 10 and that the Owner field was updated
for version 15063. No other version had updated offsets for any
members.

When analyzing Volatility 3, it initially had no support. We later
found a very recent effort, beginning in December 2020, to bring
support to Volatility 3. From our review of this effort, the structures
appear accurate from version 15063 through version 19041, but
there is no support for 20H2 or for the pre-2017 Windows 10 ver-
sions. We also noted that the JSON files containing the structure
layouts include a comment that they were created by hand.
Furthermore, we found a few related commits indicating the
structure layouts were incorrect. This is not surprising, as since
manual creation of complicated structure layouts is currently a very
difficult, manual task. Eliminating this manual, error-prone process
was a key motivating factor for our research.

Once we observed the offsets used by Volatility 2 and 3, we then
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began an intensive binary analysis effort against tcpip.sys to
discover functions that reference the needed structure offsets.
Given the complexity of tcpip.sys, this was a non-trival task. Our
analysis initially revealed that the State member is referenced in
TcpCanTcbSend, but later testing with Seance revealed that we
needed to use a different function to support Windows 10 version
20H2. This is discussed further in Section 6.5. We also determined
that the Owner and CreateTime fields are accessed in TcpCrea-
teAndConnectTcb, and that all remaining fields are accessed in
TcpConnectTimeout.

We also determined that we could strengthen the checks for all
members except State and CreateTime by using the advanced
specification features of Seance. For the Owner member, we
discovered that it was populated through a call to InetGetClient-
Process. This function returns a pointer to the _EPROCESS structure
of the process responsible for creating the connection. The disas-
sembly of this flow is shown in Fig. 3. Note that the RAX register is
used as the return address of 64-bit function calls. To ensure that
the time value is always populated by InetGetClientProcess, we

specified it as a return value check in our specification for
TcpCreateandConnectTcb.

For the members that track the address family and local and
remote IP addresses and ports, we created a calling function
specification. In particular, we noticed in our examination of
TcpConnectTimeout that these members are passed as parameters
to InetFormatSockAddrAtDispathLevel and InetFormatLocalSock-
AddrAtDispatchLevel. These functions are responsible for creating
sockaddr_in structures based on the parameters sent. Fig. 4 shows
our commented disassembly of how each member is prepared
before both function calls. This allowed us to specify a function
parameter check for TcpConnectTimeout.

6.3. Versions tested

To ensure that our effort covered a substantial variety of modern
Windows versions, we tested every major 64-bit Windows 10
version released to date. The following list provides the OS version
and corresponding build numbers covered in our testing. We note
that this data set covers versions going back to the year 2016
through the latest release at the time this paper is being written.

C 1604 - 10586
C 1607 - 14393
C 1704 - 15063
C 1709 - 16299
C 1803 - 17134
C 1810 - 17763

Fig. 2. Data structures for recovering network connections.

Fig. 3. Owner being assigned from InetGetClientProcess

R.D. Maggio, A. Case, A. Ali-Gombe et al. Forensic Science International: Digital Investigation 37 (2021) 301189

8



C 1903 - 18362
C 1909 - 18363
C 20H2 - 19042

6.4. Methodology

To begin our testing process, we generated a Seance database for
Windows 10 version 17134. We then compared the generated
database to the information within Volatility 3. We also ran the
Volatility 3 plugin to ensure connection structures were recovered,
along with their complete metadata. Once confirmed as accurate
between the data found during our binary analysis efforts, Volatility
source code review, and Volatility plugin testing, we then used this
as a comparison point for databases generated against all over
tcpip.sys versions.

Creating the databases for tcpip.sys required a few extra steps,
compared to our work with Objective-C. First, we needed the PDB

files for each version under analysis and we also needed the symbol
address and names in a parseable format. To accomplish this we
relied on pdbparse, which is an open-source tool that can both
download and export symbol information. Once the symbol infor-
mation was available, we could then provide angr with the offsets
of symbols needed for analysis.

6.5. Analysis results

The results of our analysis revealed several interesting insights.
Initially, we observed two issues with version 19042. First, it re-
ported that the symbol we had configured for recovering the TCP
state, TcpCanTcbSend, did not exist in the PDB. Manual examination
of the pdbparse output confirmed this. This required us to re-
analyze tcpip.sys to find a function present in 19042 that
accessed the offset. Our subsequent binary analysis found this ac-
cess in TcpComputeRtoTcb.

The second issue reported was a material CFG change when

Fig. 4. Several members being accessed from TcpConnectTimeout
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attempting to recover the CreateTime member. This occurred as all
previous versions acquired the time by dereferencing the value at
the hardcoded address 0xFFFFF78000000014. This address is not
documented byMicrosoft, but analyzing cross-references to it gives
a strong indication that it is the current system time. Starting with
19042, we found that the creation time of connections is instead
calculated by calling the KeQuerySystemTimePrecise function. This
significant change is what triggered the Seance report.

Looking at our results as a whole, we found that the offsets of
members for tracking the connection state, family, and remote and
local IP addresses and ports did not change in any version. We also
noted that these members are near the beginning of the structure.
We also found that the CreateTime and Owner offsets changed for
every version analyzed, but that the offset between the two was
always 16 bytes.

6.6. Analysis conclusions

Our analysis of tcpip.sys showed that even though the driver is
extremely complex, Seance is able to automatically calculate and
report both the offsets used to access particular members as well as
detectmaterial changes that requiremanual review. In total, Seance
only required two changes to how particular offsets are calculated
compared to our initially generated database - the State and Owner
members in version 20H2, as previously described. Furthermore,
the necessity for these two changes was automatically detected and
reported by Seance.

7. Conclusions and future work

As showcased in our evaluations against Objective-C and the
Windows networking stack, Seance is capable of replacing what is
currently a manual and error-prone process with one that is
automated. This automated process only requires human inter-
vention when the code relied on for member offset extraction
significantly changes. This is by design as memory analysis de-
velopers need to know when key algorithms change to ensure that
their framework can produce relevant and correct data.

By relying on Seance, developers can be assured that their
frameworks have the correct data structure layout and that they
can rapidly support varying versions of an executable with confi-
dence. Memory forensic investigators also benefit as they will be
presented with more robust, accurate, and complete sets of results
when analyzing a sample. Furthermore, the creation and integra-
tion of tools such as Seance will provide a significant example of
how verifiable and repeatable procedures can be used to drive tool
design in the digital forensics field. This will in turn increase the
reliability and robustness of algorithms that power digital forensic
analysis.

Going forward, we will more closely integrate Seance with
Volatility, as it is the most widely usedmemory analysis framework
in the field. This includes producing the vtype data needed for
Volatility 2 to support all Windows 10 versions as well as automatic
generation of the JSON format needed for Volatility 3. We also plan
to analyze the win32 k*.sys files, with a goal of bringing GUI
analysis to all versions of Windows 7 along with fresh support for
Windows 8 and 10.
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