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Abstract—With massive data being generated daily and the
ever-increasing interconnectivity of the world’s Internet infras-
tructures, a machine learning based intrusion detection system
(IDS) has become a vital component to protect our economic and
national security. In this paper, we perform a comprehensive
study on NSL-KDD, a network traffic dataset, by visualizing
patterns and employing different learning-based models to detect
cyber attacks. Unlike previous shallow learning and deep learning
models that use the single learning model approach for intrusion
detection, we adopt a hierarchy strategy, in which the intrusion
and normal behavior are classified firstly, and then the specific
types of attacks are classified. We demonstrate the advantage
of the unsupervised representation learning model in binary
intrusion detection tasks. Besides, we alleviate the data imbalance
problem with SVM-SMOTE oversampling technique in 4-class
classification and further demonstrate the effectiveness and the
drawback of the oversampling mechanism with a deep neural
network as a base model.

Index Terms—Intrusion Detection System, Machine Learning,
Data Analytics, Computer Networks, NSL-KDD

I. INTRODUCTION

Global communication and networking are commonplace in
the current era. Everything from cell phones to thermostats
is connected to the internet. A large number of users and
devices connected to the internet makes the security risk to
these networks only that much greater [1]. The ability to
detect and prevent network attacks is vital to maintain the
confidentiality, integrity, and availability of our information
and communication systems [2]. Network intrusion detection
and prevention systems (IDS/IPS) are a critical part of any
network or system architecture designed to record and analyze
connection behavior to identify possible attacks and report
such information to an administrator or prevent the attack
entirely [3].

IDPS technologies vary in their methodologies for detect-
ing intrusions but tend to fall into two specific categories,
signature-based and anomaly-based detection. Signature-based
IDS systems, also known as misuse IDS, have been the most
widely used due to their simplicity and reliability. These types
of systems utilize pattern recognition to compare signatures of
well-known attacks to current connections [4]. Anomaly-based
IDS technology analyzes normal network traffic to develop
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models of normal behavior. Any connections that then deviate
from these models are flagged as an intrusion. Anomaly-based
IDS often produce a high volume of false positives as any
activity that deviates from the normal is flagged. So while
signature-based IDS is more often used, anomaly-based IDS
has greater potential power, especially as machine learning and
AI models continue to develop and become a greater focus in
cybersecurity [5].

With the development of capable AI-driven IDS/IPS tech-
nologies, there have been various studies investigating and
developing data-driven methods. Besides the data analytics and
pattern presentations using traditional visualization techniques
[6] and unsupervised K-means clustering [7] , the method
toward detecting attacks can be mainly divided into two parts,
the classical machine learning classifiers and deep learning
models. In classical learning methods, several classifiers are
utilized and modified for binary and multi-class intrusion
detection tasks [8]–[11], including basic tree methods, Multi-
layer Perceptron, and Support Vector Machine, Naive Bayes,
Random Forest, and a sophisticated variant of boost-based
classifiers. Besides, feature selection is leveraged to choose
the informative subset of features to facilitate the performance
of classifiers, which is based on different techniques including
Flexible Neural Tree [12], visualization techniques of distri-
bution histograms, scatter plots, and information gain [13].
In deep learning methods, besides the deep neural networks
[14], Convolutional Neural Networks [15], Recurrent Neural
Networks [16], and their integration [17] are applied to capture
certain spatial characteristics and temporal dependencies in an
individual or joint manner, for downstream intrusion classi-
fication task. Moreover, to tickle the data insufficient issues
in some datasets, transfer learning [18] and Variational Au-
toencoder [19] are also considered in terms of representation
transferring and learning, which generalizes the learning-based
methods to a wider range of applications.

In this paper, we aim at developing a data-driven intrusion
detection framework to analyze and classify the patterns of
normal network status and various malicious attacks. To be
specific, we perform exploration on the NSL-KDD dataset
representing real-world network traffic, by visualizing and an-
alyzing potential patterns so that preliminary decision making
and manipulation can be taken. Moreover, we adopt a two-



TABLE I
ATTACK CATEGORY AND ITS STATISTICS IN NSL-KDD DATASET

Attack Category Description Attack Type & Count

Probe A process of probing target computer network to find weak-
nesses in its defense

satan (3633), portsweep (2931), nmap (1493), jpsweep (3599)

R2L Unauthorized access from a remote machine to a local
machine

spy (2), phf (4), multihop (7), imap (11), guess passwd (53),
ftp write (8), warezmaster (20), warezclient (890)

U2R Unauthorized access to local superuser privileges by a local
unprivileged user

rootkit (10), perl (3), loadmodule (9), buffer overflow (30),

DoS Oversaturating connection bandwidth or depleting the target’s
system resources

teardrop (892), smurf (2646), pod (201), neptune (41214),
land (18), back (956)
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Fig. 1. Distribution histograms of specified features in the NSL-KDD data set.

stage hierarchy strategy based on machine learning models
for intrusion detection tasks, where the attacks with abnormal
patterns are first detected from normal samples, then further
classified into different types. At the first stage, we adopt
supervised classifiers and a representation learning model
to detect anomalies. As the intrusion data suffers from a
severe imbalance problem, we first leverage an oversampling
technique at the second stage, then utilize a deep neural
network to classify the attack type in a supervised manner.

II. DATA EXPLORATION

In this section, we present the exploration of the NSL-KDD
dataset, which includes the description, pattern visualization,
and analytic.

A. Dataset Description

NSL-KDD is the refined version of the KDD’99 [20] data
set to solve its inherent problems. For example, it does not
contain redundant records so that the model training and
evaluation is not biased by high-frequently duplicated records.
Moreover, the number of selected records from each difficulty
level group is inversely proportional to the percentage of
records in the KDD’99 data set, which results in varying clas-
sification rates of different machine learning and it facilitates
the analysis of distinct learning techniques.

1) Labels: The label of each instance in the NSL-KDD
is assigned as either normal or an attack, with exactly one
specific attack type. The attacks fall in one of following cate-
gories in Table I with the statistics summary of specific attack
types, where R2L represents the Remote-To-Local Attack, U2R
represents the User-To-Root Attack, and DoS represents the
Denial-of-Service Attack.

2) Features: There are 41 features in the NSL-KDD data
set that describe the characteristics of the cyber network,
which can be further divided into three groups, consisting of
9 basic features, 19 traffic features, and 13 content features.
The basic features involve all attributes that can be captured
from a TCP/IP connection; the traffic features contain ”same
host” and ”same service” features based on a connection
window of 100 connections; the content features are related
to suspicious behavior in the data portion like the number of
failed login attempts. Generally speaking, traffic features are
useful patterns to identify the DoS and probing attacks since
they need to scan the hosts or send packets (many connections
to some hosts) within a very short period of time. On the
contrary, R2L and U2R attacks do not have any intrusion-
frequent sequential patterns but are embedded in the data
portions of the packets in a single connection. Hence, the
content features are better patterns that can be used to detect
these two attacks. A detailed explanation of each attribute is
described in [21].

B. Data Visualization

To further understand and explore the NSL-KDD data set
we used visualization techniques. Data visualization is the
practice of graphically representing data. Using such methods
we can gain insight and make better sense of large data
sets By visualizing the NSL-KDD data set we gain a greater
understanding of the features with relation to each other and
attack type classification. For this investigation, we visualized
the training data set to split up by attack type.

Our First steps in visualization are distribution histograms
of the features in the data set, shown in Fig. 1. Distribution



histograms plot the value of a feature against its occurrence
in the data. From these graphs, we gain valuable information
on issues within the data set, redundant features, and how
features relate to different attack types. One of the first things
we noticed during our initial investigation was the lack of
instances of U2R and R2L attack types within distribution
graphs. This is due to the small number of examples of
these attacks within the data set. Further, we were able to
discover some redundant features within the data set. Features
20 and 21 always have a value of zero, feature 20, the
number of outbound commands. With a closer investigation of
individual features, we can gain some insight into how specific
features correlate to specific attack types. Fig. 1 shows some
examples as to how these features correlate to specific attack
types. We can see that most attacks use TCP. TCP has many
vulnerabilities often exploited by attackers. DOS attacks often
take advantage of the TCP handshake protocol by flooding a
target host with incomplete connection and service requests
in the hopes to waste server resources. As the server or host
is attempting to handle a large number of connections from
the attacker, it is not able to handle the requests of legitimate
users thus rending the host inaccessible. This is reflected in
the distribution graphs of connection count, which shows a
large number of connections, and Serror Rate, which shows
if those connection attempts had no further replies. Another
example shown in Fig. 1 is with the Dst Host Srv Diff Host
Rate histogram, which shows a correlation to the probe attack
type. This graph shows the percent of connections to different
destination machines from the same port number. Probe attacks
will provide information on what each port is doing and what
is using that port by sending information and waiting for a
response. This nature is reflected in this graph as Probe attacks
show up in greater numbers as this feature increases.

We further investigated the data set by calculating the
correlation coefficient of the features compared to each other
which can be seen in Fig. 2. This provides us insight into
the strength of the relationship between the two figures. The
greater the correlation the closer the value is to -1, or 1. Fig. 2
shows a strong correlation between higher-level figures which
shows that these higher-level figures have a higher potential to
provide information. These higher-level figures are often based
on each other which can also explain why they have such high
significance. Examples of these relationships are shown in the
scatter plots of Fig. 3. Here we can see correlation between
higher level features which provide information on he probe
attack type. We can see that the probe attack type often threw
the REJ flag, but this percentage was often affected by the
number of services the probe reached out to. The further a
probe attacked reached the greater its connection attempt was
rejected. By observing these relations more directly we can
determine the importance of some feature pairings towards
anomaly detection and attack type classification.

III. METHODOLOGY

In this section, we present the pipeline of our detection
mechanism. Firstly, we present the preprocessing details and
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Fig. 2. Correlation heat map of features in the NSL-KDD data set.

Fig. 3. Scatter plots of specific features in the NSL-KDD data set.

imbalanced nature of the explored dataset. After that, we also
present a detection strategy and briefly describe the utilized
machine learning algorithms. We adopt a hierarchy two-stage
detection method: a binary classification followed by a 4-class
classification. In the first stage, each input is classified into
two normal samples and anomalies. We will explore different
learning algorithms, including supervised learning classifiers
and an unsupervised learning model, autoencoder. In the
second stage, anomalies are further classified into four main
attack categories (DoS, Probe, R2L, U2R), where supervised
learning models are leveraged.

A. Preprocessing

Although the NSL-KDD data set is a cleansed data set, we
still need preliminary preprocessing feature engineering before
the data is fed into the model. To be specific, the categorical
features should be converted into the numerical form so that
they can be thought of as a vector in the Euclidean space:
Three attributes (’protocol type’,’service’,and ’flag’) are cat-
egorical, we encode them by using a LabelCount encoder
which sorts the categories by the frequency of each category
within the feature. LabelCount has specific advantages at the
outlier-insensitive nature and a reduction of dimensionality
when certain features have very large numbers of categories.

After assigning numerical values to each categorical feature,
the next step is to normalize each feature, as features that
are measured at different scales do not contribute equally to
the analysis and can create a bias for models. Therefore, the



standardization as shown in Equation 1 is applied to transform
the data to comparable scales (around the center 0 with a
standard deviation of 1).

Z =
x− µ
σ

(1)

where Z denotes the standardized feature, x denotes each
value within the feature, µ, σ denotes the mean and standard
deviation of all values, respectively.

In this dataset, the number of examples across the classes
for the binary classification (normal vs. others) is roughly
close. However, the 4-class intrusion data suffers from a
severe imbalance, as the ratio of each class is approximately
920 : 220 : 20 : 1. Most machine learning algorithms
assume or expect a balanced class distribution for pattern
learning and downstream classification tasks. When such data
skewness exists, these algorithms fail to properly represent the
distributive characteristics of the data whose results provide
invalid accuracy across the classes of the data [22]. To alle-
viate the negative effect of imbalanced data set, we employ
SVM-SMOTE [23], a sophisticated oversampling technique
leveraging a Support Vector Machine algorithm to detect
sample to use for generating new synthetic samples under
the framework of Synthetic Minority Oversampling Technique
(SMOTE) class [24].

Fig. 4. Learning-based on hierarchy intrusion detection strategy.

B. Learning to Detect Network Intrusion

In this paper, we adopt various learning models for binary
and 4-class intrusion detection. Fig. 4 depicts the overview
of our IDS based on a hierarchy machine learning strategy.
For binary detection, we utilize supervised learning models
including Decision Tree, Random Forest, Naive Bayes, Sup-
port Vector Machine (SVM), AdaBoost, Gradient Boosting,
Multi-layer Perceptron (MLP). Besides, we also consider
an unsupervised representation learning model, Autoencoder,
and treat the conventional binary classification problem as
an anomaly detection problem. It learns the representation
of normal samples and uses the reconstruction error as the
anomaly score. At the testing stage, samples with high recon-
struction (exceeding the threshold) are considered anomalies,

as it is assumed that anomalies are difficult to be reconstructed
[25]. The specific algorithm of Autoencoder-based detection is
shown in Algorithm 1. After anomalies are detected, we utilize
a deep neural network accompanied with the aforementioned
oversampling technique to classify the specific intrusion type
in a more robust manner.

Algorithm 1 Autoencoder-based attack detection algorithm
Parameters: Normal dataset X, Anomalous dataset xi, i =

1, ...N , threshold α defined by validation loss
Parameters: fθ : Encoder, gφ : Decoder
Output: reconstruction errors, anomaly indicator

1: gφ, fθ ← train a Autoencoder with normal dataset X.
LOOP Process

2: for i = 1 to N do
3: reconstruction error (i) =

∥∥x(i) − gθ (fφ (x(i)))∥∥2
4: if reconstruction error > α then
5: xi is an anomaly (attack)
6: else if reconstruction error <= α then
7: xi is not an anomaly (attack)
8: end if
9: end for

IV. EXPERIMENTS

In this section, we evaluate the performance of different
machine learning algorithms for two hierarchic stages of our
intrusion detection system. We also explore the effectiveness
of SVM-SMOTE oversampling technique toward a more valid
classification model.

A. Evaluation Metrics and Experiment Settings

In this paper, we adopt accuracy, precision, recall, and F1
score for a comprehensive evaluation in the binary classifi-
cation task. For 4-class classification, we use accuracy, F1
score of each intrusion type (one vs. all), with their macro-
average (arithmetic mean) and micro-average (weighted mean)
to demonstrate the classification performance of our model
with the existence of imbalance [26].

Accuracy =
Number of correct predictions

Total number of predictions
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 = 2× Precision × Recall
Precision + Recall

(5)

where TP = True Positives, TN = True Negatives, FP = False
Positives, and FN = False Negatives.

Next, we present the settings of the experiment for Au-
toencoder in binary classification and deep neural network in
multi-class classification. The Autoencoder has three layers
with 15 neurons in hidden space and 0.15 Gaussian Noise, and
0.05 Dropout rate in encoding layers for regularization. The
activation for both encoder and decoder is Scaled Exponential



TABLE II
PERFORMANCE EVALUATION OF BINARY CLASSIFICATION IN IDS

Model Accuracy Precision Recall F1 Score

Decision Tree 68.28% 68.16% 83.09% 0.7489
Random Forest 76.00% 87.34% 67.65% 0.7624
Naive Bayes 76.86% 96.21% 59.95% 0.7387
SVM 80.47% 97.56% 67.38% 0.7971
AdaBoost 79.40% 86.90% 75.14% 0.8059
Gradient Boosting 68.12% 65.04% 95.13% 0.7726
MLP 77.90% 95.82% 63.96% 0.7671

Autoencoder 87.52% 93.20% 84.22% 0.8848

Linear Unit (SeLU), and the loss function is Mean Squared
Error (MSE). In a deep neural network, three layers are used,
where there are 80 neurons in the hidden layer with Rectified
Linear Unit (ReLU) as activation function, four neurons in
the output layer with Softmax as activation function. The loss
function is cross-entropy. For both tasks, the batch size is 32;
0.15 of training data are used for validation; the optimizer is
Adam with a learning rate 0.001; early stopping is adopted
with the patience of 6 steps.

B. Binary Classification

The evaluation of different models for binary classification
is shown in Table II, where the best result for each metric
is indicated in bold while the corresponding second-best
result is underlined. Among these learning models, it can
be observed that SVM yields the highest precision score
and the second highest accuracy, while Gradient Boosting
classifier demonstrates its advantage on the highest recall score
with a clear margin to the second highest one. In terms of
the F1 score, AdaBoost and SVM achieve similarly good
performance among supervised learning models. The above
results illustrate that SVM and boosting methods gain more
favors at separating attacks from normal samples within the
scope of supervised learning.

On the other hand, the Autoencoder shows a huge advantage
in the binary classification task, as it yields the highest
accuracy, F1 score, and the second-highest recall score and.
Moreover, the increase of accuracy and F1 score from the
second-best result is 7.05% and 0.0789, respectively, demon-
strating the power of unsupervised representation learning. To
evaluate the classification performance with more details, the
confusion matrix of Autoencoder is also presented, as shown
in Fig.5. It is clear that Autoencoder performs slightly better
on identifying normal behaviors than malicious attacks.

In general, the implemented Autoencoder with Gaussian
noise and dropout as the regularization method is a good
alternative in binary classification and anomaly detection. It
is able to extract the feature information and generate salient
and generalized vector representations for the reconstruction of
normal samples only, where the anomalies usually do not share
the similar representation space and fail to be reconstructed
with a much higher loss during the model inference.
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Fig. 5. Confusion matrix of Autoencoder based binary classifier.

TABLE III
PERFORMANCE EVALUATION OF 4-CLASS CLASSIFICATION IN IDS

Evaluation Metrics w/o Oversampling w/ Oversampling

Accuracy 80.47% 80.36%

F1DoS 0.8790 0.8678
F1Probe 0.8703 0.8560
F1R2L 0.4789 0.5100
F1U2R 0.2075 0.5741

Macro F1 0.6089 0.7020
Micro F1 0.7839 0.7836

C. 4-Class Intrusion Type Classification

At this stage, the samples identified as intrusion are further
classified into different types. Table III shows the performance
evaluation using a deep neural network for 4-class classi-
fication, without or with the aforementioned SVM-SMOTE
oversampling method. It can be observed that the oversampling
method has a minor impact on accuracy and micro F1 score,
with the value around 80.4% and 0.783, respectively. However,
it is clear that the new synthetic samples generated by SVM-
SMOTE help the model to learn patterns and significantly
improves the F1 score of U2R and yields an increase of macro
F1 score by 0.1, with a slightly better F1 score of R2L and
little inferior scores for DoS and Probe.

From Fig. 6, the confusion matrix of a 4-class classifier,
we can conclude that despite the models are trained using
the balanced data oversampled by SVM-SMOTE, it can only
provide relatively accurate prediction on DoS (label 0) and
Probe attack (label 1). In addition, a large portion of mis-
classified samples in R2L (label 2) and U2R (label 3) fall in
the DoS attack, which suggests the inferior of our model at
identifying the different patterns between DoS and R2L/U2R.
Besides, a certain amount of misclassified samples in U2R
fall in R2L, indicating a similar problem. One of the possible
explanations is that, even with SVM-SMOTE to alleviate the
imbalance problem for R2L and U2R, the patterns of these
new synthetic samples appear to be insufficient to represent
the attack behaviors in the testing set.
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V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a data-driven intrusion de-
tection framework based on data analytics and hierarchical
learning-based detecting strategies. Firstly, we visualize po-
tential patterns and discuss the relationships between features
and underlying attack behaviors based on domain knowledge.
Then, we leverage the supervised and unsupervised learning
method to classify normal network behaviors and malicious
attacks, and demonstrate the advantage of the unsupervised
representation learning model in our task. Next, we focus on
the problem of imbalance and alleviate it with SVM-SMOTE
oversampling technique. We further demonstrate the effective-
ness and the drawback of the oversampling mechanism and
in 4-class classification with a deep neural network as a base
model. In general, our framework yields satisfactory results on
classifying normal samples and samples of the DoS and Probe
attacks. However, it still shows certain inferiority in terms
of minority class with an oversampling technique. For future
work, we consider using more sophisticated learning models
and techniques in terms of data imbalance, for example, cost-
sensitive learning.
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