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Abstract—The Internet of Things (IoT) is reshaping modern
society by allowing a decent number of RF devices to connect
and share information through RF channels. However, such an
open nature also brings obstacles to surveillance. For alleviation,
a surveillance oracle, or a cognitive communication entity needs
to identify and confirm the appearance of known or unknown
signal sources in real-time. In this paper, we provide a deep
learning framework for RF signal surveillance. Specifically,
we jointly integrate the Deep Neural Networks (DNNs) and
Quickest Detection (QD) to form a sequential signal surveillance
scheme. We first analyze the latent space characteristic of neural
network classification models, and then we leverage the response
characteristics of DNN classifiers and propose a novel method
to transform existing DNN classifiers into performance-assured
binary abnormality detectors. In this way, we seamless integrate
the DNNs with parametric quickest detection. Finally, we propose
an enhanced Elastic Weight Consolidation (EWC) algorithm
with better numerical stability for DNNs in signal surveillance
system to evolve incrementally, we demonstrate that the zero-
bias DNN is superior than regular DNN models considering
incremental learning and decision fairness. We evaluated the
proposed framework using real signal datasets and we believe this
framework is helpful in developing a trustworthy IoT ecosystem.

I. INTRODUCTION

The Internet of Things (IoT) is providing applications
and services that would otherwise not be possible [1], [2].
Intelligent decision making is of great significance in IoT [3].
A typical way to implement smart decision functionality in IoT
is by integrating learning-enabled components through Deep
Learning (DL) and Deep Neural Networks (DNNs). One typ-
ical application of DNNs in IoT is the RF signal surveillance
to either identify device type or modulation schemes [4]–[6].

Although DL and DNNs have been applied in the recog-
nition of RF signals for device identification [7] and event
surveillance [8], applying DNNs in safety-critical systems
requiring assured performance is still controversial. Firstly,
DNNs perform well on specifying known subjects but cannot
distinguish abnormalities. Abnormal signals, such as those
from unauthorized signal sources, are required to be identified
accurately rather than being erroneously classified into the
most likely known ones [9]. Secondly, DNN related systems
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lack the characteristics of timeliness assurability, while ap-
plications in safety-critical systems require making accurate
decisions with both theoretical assured minimum latency and
pre-defined false alarm constraints. The two obstacles impede
the deployment of DL and DNNs in IoT of safety-critical
systems.

For unknown event detection, the most intuitive way is
to use statistical models to generate likelihood metrics and
then use thresholds to distinguish whether an input is within
the learned knowledge domain. However, selecting features
from data and specifying statistical metrics can also be time-
consuming. Existing works use deep autoencoders or Gener-
ative Adversarial Networks (GANs) as well as reconstruction
loss to measure whether an input is from some known domain.
However, training deep autoencoders or GAN models is more
computationally expensive. Moreover, autoencoders or GAN
models do not guarantee to respond with constrained false
alarms or predictable behaviors [10].

The problem of timeliness assurability has been widely dis-
cussed in Quickest Detection (QD) algorithms. QD algorithms
are widely applied for detecting the abrupt change of statistical
parameters with the lowest latency under given false alarm
constraints. Existing Quickest Detection (QD) algorithms can
detect changes with minimum latency under constrained false
alarms, they are neither sufficient in handling high dimension
inputs nor can provide mathematically assured performance.
Even though there are some methods to integrate quickest
detection with DNNs, the performances of the connected
systems are only measurable but not strictly assurable. We
have to claim that there is a gap between machine learning
and QD.

In this paper, we utilize the enhanced deep learning frame-
work based on our previous work [11], the zero-bias DNN
model, and significantly enhance it for quickest and reliable
classification of wireless signals. In this DL framework, we
facilitate DNNs with both explainable behaviors in distinguish-
ing known or abnormal inputs. Besides with minimum latency
under certain false alarm constraints. Furthermore, our solution
efficiently transforms existing DNNs into abnormality detec-
tors with predictable performance. The effectiveness of the



proposed framework in handling massive signal recognition
has been demonstrated. Our contributions are as follows:
• We explore the latent space characteristics of DNNs and

discovered a novel method to efficiently transfer existing
DNN classifiers into DNN abnormality detectors with
adaptive decision boundaries.

• We provide a more stable Elastic Weight Consolidation
(EWC) algorithm and show that zero-bias DNNs are more
reliable than regular DNNs during incremental learning.

• We combine our zero-bias DNN model with the paramet-
ric Quickest Change Detection theory, and our validation
on massive real signal detection demonstrates the effec-
tiveness of our integral solution.

Our research offers a solution to the accurate identification
of RF signals with assured performance, thus useful in pro-
moting trustworthy IoT and deepening the understanding of
deep neural networks. Besides, the successful integration of
the neural network and QD enables the move from IoT to
real-time control.

The remainder of this paper is organized as follows: A
literature review of related works is presented in Section II.
We present the methodology in Section IV. Performance
evaluation is presented in Section V with conclusions in
Section VI.

II. RELATED WORK

Real-time event detection is a critical function in safety-
critical IoT. From the perspective of input data, we may
categorize them into single-shot and sequential detection
paradigms. In single-shot detection [11], event detections are
performed per observation, and the past data will not be
retained for future use. In contrast, the sequential detection
paradigm allows accumulating information from past observa-
tions [10].

A. Single-shot unknown event detection in DNN

Event detection plays an increasingly important role in
safety-critical and latency-constrained IoT, e.g., the aviation
communication system. Detecting known events are straight-
forward, while detecting abnormal or unseen events are more
difficult.

A critical problem for DL enabled signal identification
systems is that classifiers only recognize pretrained data but
can not deal with abnormal or unknown data. From the
perspective of DL, this issue is categorized as the Open Set
Recognition [12], [13] problem. An intuitive solution is to
model the distribution in the latent space. In [14], the authors
first trained a CNN model with a Softmax output on known
data. They then remove the Softmax layer and turn the neural
network into a nonlinear feature extractor. Finally, they use
the DBSCAN algorithm to perform cluster analysis on the
remapped features and show that the method has the potential
of detecting a limited number of unknown classes. In [15],
the authors provide two methods to deal with abnormalities:
i) Reuse trained convolutional layers to transform inputs to
feature vectors, and then use Mahalanobis distance to judge

the outliers. ii) Reuse the pretrained convolutional layers to
transform signals to feature vectors, and then perform k-means
(k = 2) clustering to discover the groups of outliers. An-
other approach is to leverage the characteristics of generative
models. In [16], the authors use the Generative Adversarial
Network (GAN) to generate highly realistic fake data. Then
they exploit the discriminator network to distinguish whether
an input is from an abnormal source.

B. Sequential event detection

From the perspective of the stochastic process, a wireless
communication system in different states can be described
by distributions with measurable statistical properties [17].
Therefore, transitions within states cause the change of those
properties. The quickest detection aims to detect the change
as quickly as possible, subject to false alarm constraints [18].
Considering whether prior observations are independent of an
abnormal event’s appearance, the optimization scheme can be
defined in different forms as in [19]. We can also categorize the
quickest event detection methods into two branches: a) detect-
ing events with known post-change distributions. b) detecting
events with unknown post-change distributions. Generally,
detecting known events is faster with the Cumulative Sum
Control Chart (CUSUM) algorithm can be applied directly
[20], [21]. A postchange distribution may not be known in
some scenarios in advance, and nonparametric strategies have
to be used and bring higher latency.

Quickest detection provides a performance-assured solution
to detect change points (related to events) in sequential data.
However, the selection of statistic metrics still depends on
trial-and-error. We focus on real-time sequential detection of
events, especially on integrating the quickest detection theory
with deep learning to provide an automated and performance-
assured solution to latency-constrained CPS.

III. PROBLEM DEFINITION

Suppose that we have a sequence of signal vectors denoted
as:

YY = {Y1, . . . , Yk , . . . , Yn} (1)

Suppose that some known or unknown events will occur at
time : , our signal surveillance system is required to detect
the occurrence of the known or unknown event with minimal
delay.

One straightforward method is to use a DNN model � (·)
to process YY sequentially, the goal of � (·) is to provide a
score for each signal element to quantify whether it is from the
previous known knowledge domain. From the perspective of
domain adaption, feature extractors are specifically trained to
fit the characteristics only within their learned tasks [22], the
task-specific knowledge domain. However, the DNN model,
� (·), can be trivial to use, firstly, we do not have good
method to explain or adjust the decision threshold for � (·).
Secondly, � (·) can generate false alarms or encounter miss
detection, we need to find a sequential detection scheme that
can aggregate evidence sequentially and provide the minimal



Fig. 1. Data flow of zero-bias deep neural networks.

detection latency. Finally, if the signal surveillance system is

required to evolve incrementally, 𝐷 (·) needs to be retrained

frequently with large overhead as new data are emerging

incrementally. Therefore, we need to develop a new DL

paradigm that: a) enables the explainable and reliable event

detection. b) being able to learn incrementally and adapt to

operational variations.

IV. METHODOLOGY

A. The zero-bias neural network

We have discovered that the last dense layer of a DNN

classifier performs the nearest neighbor matching with biases

and preferabilities using cosine similarity, We also show that

a DNN classifier’s accuracy will not be impaired if we replace

its last dense layer with a zero-bias dense layer [11], in which

the decision biases and preferabilities are eliminated. We can

denote its mechanism as (also in Figure 1):

𝒀1 (𝑿) = 𝑾0𝑿 + 𝒃

𝒀2 (𝑿) = 𝑐𝑜𝑠𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒀1,𝑾1) (2)

where 𝑿 is the output of the prior convolution layers, a.k.a.,
feature vectors. 𝑿 is an 𝑁0-D vector, where 𝑁0 denotes the
number of features.𝑾0 is an 𝑁0 by 𝐶 matrix where 𝐶 denotes
the feature dimension in the latent space which equals to the

number of classes. 𝑾1 is a matrix to store fingerprints of
different classes, namely the similarity matching layer and it

is a 𝐶 by 𝐶 square matrix. Please be noted that in 𝑾1, each
row represents a fingerprint of corresponding class whilst in

𝒀1 each column represents a feature vector in the latent space.
In short, the last dense layer is spitted into two layers, 𝐿1 for
feature embedding and 𝐿2 for vector scaling and similarity
matching. We have the first remark:

Remark 1. Latent space of neural networks: The latent
space of a neural network for the final classification is a
unit hypersphere surface. We define it as the classification
hypersphere surface.

We have proved that the classification comparison in a reg-

ular neural network is the angular matching with class-specific

biases and weights, while in a zero-bias neural network, the

biases are eliminated and the weights are equalized to one.

We assure that decisions can not be made according to biases

in safety critical systems. Besides that, our previous work

has demonstrated that such a modification will not impair the

classification performance of DNNs [11].

Fig. 2. Associate region of classes on MNIST dataset. Data are mapped into
a 3D space using t-SNE. Colors represent different classes. Code available at
https://github.com/pcwhy/NeuralDBVis

To demonstrate this characteristic, we use a hand-written

digit classification model as in [23] and we convert it to

a zero-bias neural network and retrain it. Next, we then

generate random points that uniformly cover the classification

hypersphere surfaces of the two models and associate the

random points with their nearest class fingerprint. Finally, we

use the t-SNE [24] algorithm to remap the class fingerprints

into a 3D hypersphere and visualize the association region of

each class as in Figure 2.
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Fig. 3. Compare of classification hypersphere ratio of on MNIST dataset.

As depicted, in the zero-bias DNN, the classification hy-

persphere is uniformly divided into subregions for different

classes, the subregions are are not uniform when it is in the

regular DNN. A more explicit numerical comparison is given

in Figure 3. The DNN model in signal surveillance system

needs to treat the input signals without biases and preferences,

and thus the zero-bias neural networks can perform much

better than the regular neural networks in distinguishing abnor-

malities (identifying the unknown input data as summarized

in Table I). Despite that one-class SVM is slightly better, it

requires an optimal threshold case by case.

Therefore, we believe the zero-bias neural network is will

be a better tool to enable the intelligent surveillance of RF

signals in IoT.

B. Zero-bias neural network for unsupervised and adaptive
abnormality detection

In the zero-bias neural network, the comparison between

class fingerprints and mapped data in the feature space is fair

without bias and weights. Naturally, we could assume that:

Remark 2. For each fingerprint in the classification hyper-
sphere, there will be a cut-off cosine similarity value that



TABLE I
PERFORMANCE OF ABNORMALITY DETECTORS.

Metric One-class SVM 1 Zero-bias DNN 1 Regular DNN 1

False
Positive

0.19 0.2 0.2

False
Negative

0.05 0.05 0.28

1 We set a threshold value on the maximum matching score of each
input, and the threshold is set according to the maximum margin
of separation as in [11].

separates the feature vectors of known and abnormal data.
We define this value as the cut-off distance of this fingerprint.

To verify this assumption, we use an aircraft ADS-B signal

dataset [25] with the corresponding zero-bias DNN signal

emitter identification model in Figure 4.

Fig. 4. Deep neural network architecture [26].

We first train the network in different stages, we then use

the t-SNE algorithm to visualize the class fingerprints, feature

vectors from known and abnormal data in the classification

hypersphere as in Figure 5. We can find several important

features:

• The size of clusters for different classes are gradually

becoming smaller.

• The abnormalities are gradually becoming more distinc-

tively separated from the known data. We can depict

the relation of feature vectors from regular data and

abnormalities as in Figure 6.

• The abnormalities (signals from unknown RF emitters)

distribute randomly throughout the classification hyper-

sphere.

For a given DNN model with the zero-bias dense layer, we

follow these steps to find the cut-off distance of each class

fingerprint:
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Fig. 5. Class fingerprints, feature vectors of known and abnormal data
in the classification hypersphere in the zero-bias neural network for signal
identification

Step 1: The training set is utilized to learn the boundaries of
known classes while the validation set will be mixed

with abnormal data (𝑨0) to measure the performance
of converted abnormality detector.

Step 2: We pass accurately classified data of 𝑖th known class
from the training set, denoted as 𝑲𝑿𝑖 , through layers

of the DNN model and obtain the compressed feature

vectors before fingerprint matching, denoted as:

𝒀1 [𝐹𝑛−1 (𝑲𝑿𝑖)] = 𝑾0𝐹𝑛−1 (𝑲𝑿𝑖) + 𝒃 (3)

Where 𝑾0 and 𝒃 are defined in Equation 2, 𝐹 (·)𝑛−1
denotes all network layers before the fingerprint

matching. 𝒀1 [𝐹𝑛−1 (𝑲𝑿𝑖)] denotes feature vectors of

accurately classified data in 𝑲𝑿𝑖 .

Step 3: Calculate the centroid 𝒄𝑖0 of 𝑲𝑿𝑖 as:

𝒄𝑖0 = 𝑚𝑒𝑎𝑛(𝒀1 [𝐹𝑛−1 (𝑲𝑿𝑖)]) (4)

Step 4: Calculate all the cosine distances between the 𝒄𝑖0 to all
accurately classified feature vectors. We then use the

greatest cosine distance value as the cut-off distance,

𝐶𝑂𝑖 , for the 𝑖th known class.
Step 5: Abnormality detection using cut-off boundaries on

input data 𝑿) is formally defined as:

𝐷 (𝑿) =

{
1 ∃ 𝑖, 𝑐𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝒀1, 𝒄

𝑖
0] ≤ 𝐶𝑂𝑖

0 Otherwise
(5)

These steps convert a zero-bias DNN into an abnormality de-

tector with binary output. In this binary abnormality detector,

we do not need to specifically adjust its decision threshold

compared with our previous method in [11]. According to

our observation, as long as the zero-bias DNN is well-trained

before conversion, very few anomaly data may have a cosine

distance less than the cut-off distance.

From the perspective of signal surveillance, we may ran-

domly encounter known or abnormal signals. Therefore, the

output of the binary abnormality detector can also be regarded

as a random sequence, in which when the signals are from

some known events, the output of the abnormality detector

follows a Bernoulli distribution: [27]:

𝑃0 (𝐼𝑘 ) = 𝐹𝑃𝑅𝐼𝑘 (1 − 𝐹𝑃𝑅)1−𝐼𝑘 (6)

Fig. 6. Class cut-off distance for distinguishing known and abnormal feature
vectors in the classification hypersphere of zero-bias DNN.



where �: ∈ {0, 1} is the output of the binary abnormality
detector with �: = � (^k ). �%' is the false positive rate of
the binary abnormality detector.

When we encounter some abnormal events, the output of
the binary abnormality will become:

%1 (�: ) = (1 − �#')�:�#'1−�: (7)

= ()%')�: (1 − )%')1−�: (8)

where )#' and )%' are the true negative and true positive
rates of the binary abnormality detector.

Relations of �%', )%' of the binary abnormality detector
and the training accuracy of zero-bias DNN before conversion
are depicted in Figure 7. These relations can be quantified
using two linear models on both MNIST [23] and our ADS-B
signal dataset [25], [26]. They are:

�%' = 1 − ��� '2 = 0.85 (9)

)%' = 0.2 + 0.77 · ��� '2 = 0.89 (10)

Therefore, we can directly use the training accuracy of the
zero-bias DNN model as an predictor for �#' and )%' of
the converted binary abnormality detector.
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Fig. 7. Performance of the converted abnormality detector.

C. Sequential event detection with zero-bias neural network

As we have converted the regular zero-bias DNN model
into a binary abnormality detector and have formulated the
behavior of this model using two Bernoulli Distributions
with predictable parameters. We can then define the event
detection problem as a sequential statistical test scheme using
the CUSUM algorithm.

First, a likelihood ratio test is employed to sequentially
process the observed data at each timestamp : , denoted as:

6(:) = ;=( %1 (Y: )
%0 (Y: )

) (11)

where 6(:) is a sufficiency metric, %0 (·), %1 (·) denotes
the probabilistic density functions of abnormal and abnormal
states, respectively. A constrained cumulative sum of suffi-
ciency metrics is used as an indicator, denoted as:

B(:) = <0G(0, B(: − 1) + 6(:)) (12)

An alarm will be sent once B(:) is greater than a predefined
threshold, ℎ�*(*" , and this alarm will indicate that some
unknown events are happening. The CUSUM algorithm has
been proved to provide the lowest worst-case detection latency

at specific false alarm intervals [21], [28]. Therefore, if our
solution is applied, the detection threshold, ℎ�*(*" , is the
only parameter that needs to be specified.

D. Light-weight incremental learning algorithm for zero-bias
neural network

A benefit of zero-bias DNN enabled binary abnormality
detector is that incremental learning can be implemented to
facilitate the model to evolve in its lifecycle. Incremental learn-
ing enables a neural network to classify new targets without
needing to retrain from scratch. In our research, specific events
can be learned as new classes to be recognized directly. For
both zero-bias DNN and conventional DNN classifiers:

Remark 3 (Incremental learning on the classification hyper-
sphere). To enable a neural network to recognize a new class,
we only need to place its class fingerprint on the classification
hypersphere and fine-tune the old fingerprints’ directions when
necessary.

We also have:
• For a specific new class, as long as the previous layers

have extracted sufficient distinctive features, we do not
need to retrain the previous layers.

• For new classes, we need to insert new fingerprints and
then adjust the old fingerprints when necessary.

To adjust an old fingerprint, we need to identify which pa-
rameter (or dimension) is critical to the classification accuracy.
According to the Elastic Weight Consolidation (EWC) [29],
the Fisher Information Matrix is used to model the importance
of parameters as:

L
 = [ m;>6(%(^�+ |
))
m


] [ m;>6(%(^�+ |
))
m


])

%(^�+ |
) ≈ _(> 5 C<0G (^�+ |
) (13)

Where _(> 5 C<0G (^�+ |
) denotes the averaged outputs of
Softmax layer on validation set ^�+ given parameter set

, it approximates the posterior probability %(^�+ |
). L


denotes the Fisher information matrix of the current task. In
our experiment, we further apply an exponential function to
the Fisher Information to increase the numerical stability as:

L
 := exp (L
) (14)

Intuitively, the importance of a parameter is equivalent to the
square of its gradient with respect to the logarithm of Softmax
function.

Knowing the importance of existing parameters, we can
define an integral loss function for incremental learning as:

�1 (
) =
_1
2

∑
8

[L
∗ · (
 −
∗)2]

! (
) = (!2 (
) + �1 (
)) · Mm (15)

Where �1 (
) denotes the Fisher Loss with respect to old
tasks (a.k.a., task-1). 
∗ denotes the loss function and model
parameters on task-1. !2 (
) and 
 denote the raw loss
function on Task-2 and the new model parameters. _1 denotes



the importance of task-1. Intuitively, this integral loss function
additionally penalizes the change of critical parameters. Mm

is a mask matrix to control which parameter is locked or
unlocked. The value of each element can only be zero or one.

Given a neural network trained on Task-1 (�##1), incre-
mental learning on Task-2 is performed as follows:

Step 1: Store all learnable parameters of �##1 as 
∗ and
calculate their importance matrix L
∗ .

Step 2: Generate the initial fingerprint of each new class by
averaging their feature vectors.

Step 3: Concatenate initial fingerprints into the last dense
layer or zero-bias dense layer.

Step 4: Lock the weights of previous layers and calculate
the importance of parameters of old fingerprints. The
importance of newly concatenated fingerprints is set
to zeros; thus, we could allow them to learn freely.

Step 5: Use loss function as in Equation (15) and a training
set of Task-2 to perform network training.

Notably, we do not need to retain old training data to learn
a new task, and such a benefit is critical for DNN models in
practical scenarios.

V. EVALUATION AND DISCUSSION

A. Evaluation dataset

Our dataset is available in [25], we use the wide-spreading
signals from Automatic Dependent Surveillance-Broadcast
(ADS-B) signals [30], which provides a great variety of sig-
nals from commercial aircraft’s RF transponders with labels.
Specifically, each aircraft use transponders at 1090MHz to
broadcast its flight information to the Air Traffic Control
(ATC) center. The integrity and trustworthiness of ADS-B
messages are critical to aviation safety. However, the ADS-
B system does not contain cryptographic identity verification
mechanisms and thus is vulnerable to identity spoofing attacks.
Our previous works [11], [26] have shown that the responses
of the zero-bias DNN to known (learned) aircraft and unknown
sources (also from unknown aircraft) can be modeled by differ-
ent probability distributions. Here we define the appearance of
unknown aircraft’s signals as abnormal events, we can use the
framework in this paper to design a sequential event detector
to aggregate warnings and identify the adversaries who use
fake IDs.

From the perspective of DL, the input is the raw signal
collected by a Software Defined Radio Receiver (USRP B210)
and the DNN is trained to identify the known aircraft through
their signals. As in our previous work [11], [26], we take
the first 1024 samples from each signal record and extract
pseudo noise, magnitude-frequency, and phase-frequency fea-
tures. The extracted features of each signal record are then
packed into a 32 by 32 by 3 tensor. The architecture of our
DNN model is depicted in Figure 4 with a description of
the dataset in Table II. After training to recognize known
aircraft, the zero-bias DNN model is then converted to a binary
abnormality detector as in Section IV-B.

TABLE II
DESCRIPTION OF DATASET

Usage Description

Training 60% of signal records from 28 aircraft.

Test 40% of signal records from 28 aircraft.

Normal data The test set.

Abnormal data Signal records from the remaining 100 aircraft.

B. Quickest abnormal event detection

The converted binary abnormality detector can be utilized
for abnormal event detection with very low latency as a result
of both high true positive and low false positive rates. To
further evaluate our proposed method, we first define a quality

metric, & =
)%'

�%'
, for the binary abnormality detector. Then,

we can use numerical simulation to evaluate the performance
of zero-bias DNN under different & values and different
sequential detection algorithms: CUSUM [21], EWMA (Expo-
nentially Weighted Moving Average [31]) and sliding window
[32]. We simulate the possible values of ℎ�!', �%', and
)%' that a binary abnormality detector can encounter with
)%' ∈ [0.6, 0.99], �%' = 0.4, & ∈ [1.625, 2.25]. We
configure three sequential detection algorithms as follows:
• CUSUM: we set the event detection threshold ℎ�*(*" ∈
[2.0, 20.0].

• EWMA: we set _ = 0.15 and ! ∈ [3.0, 4.0].
• Sliding window: we set the length of window ! ∈
[50, 300] with a threshold 0.7.

We first compare the best and the worst detection delay of
the three sequential event detection method in Figure 8. We
found that considering the best case, the detection delays of
EWMA and CUSUM algorithms are close while in the worst
case the CUSUM algorithm performs better than EWMA
and sliding window. The averaged detection delays as well

Sliding window CuSum EWMA
0

100

200

300
Lowest detection delay
Highest detection delay

Fig. 8. The best and the worst case detection delay

as its range are compared in Figure 9 and 10. Although
EWMA algorithm seems to achieve the best performance in
the averaged detection delay, the ranges of detection delay in
Figure 10 reveal that the EWMA algorithm is not very stable
when the & value is not sufficiently large. As predicted, the
sliding window algorithm always has the worst performance.

C. Incremental learning

To evaluate our incremental learning mechanism, we sep-
arate our data set into two parts, namely task-1 and task-
2, respectively. We first train the zero-bias DNN on task-1
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Fig. 10. The range of detection delay.

and use continual learning mechanisms to let our network
recognize wireless transmitters in task-2.

1) Numerical stability: We compare the numerical stability
of Fisher Loss during incremental learning. The results in
Figure 11 demonstrate that without applying the exponential
function as in Equation (14), the Fisher Loss is numerically
unstable and gradually vanishes to zero (depicted by dashed
lines). When Fisher Loss becomes zero, the incremental
learning algorithm can no longer penalize the neural network
for forgetting the old tasks. In contrast, if the exponential
function is applied, the Fisher Loss never vanishes to zero
and prevents catastrophic forgetting. As incremental learning
procedures, the Fisher Loss gradually converges to a nonzero
constant value. The results indicate that the zero-bias layer has
a smoother converging characteristic than the regular dense
layer.
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Fig. 11. Compare of numerical stability during continual learning

2) Comparison of incremental learning approaches: This
subsection will compare other incremental learning approaches
with our method. The descriptions of all these approaches
are given in Table III. We aim to compare the effect of
EWC as well as other network knowledge protection methods.
Please be noted that during the incremental learning, !2
regularization factors for the regular dense layer and zero-bias
layer are all set to 0 and 0.025, respectively.

TABLE III
COMPARED APPROACHES FOR CONTINUAL LEARNING

Approaches Lock zero-bias
layer

Elastic Weight
Consolidation

Locked prior
layers

Global EWC No Globally No

Only train new
Fingerprints

Lock old
fingerprints No Yes

Only protect old
Fingerprints

Lock old
fingerprints Yes No

Only use EWC in
the last layer No Only in the

last layer. Yes
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Fig. 12. Performance comparison of zero-bias layer and regular dense layer
DNNs for incremental learning

The results are given in Figure 12, with the following
highlights:

1) In Global EWC, catastrophic forgetting is not prevented.
Besides, the zero-bias layer retains far less knowledge
from previous tasks.

2) Only training new fingerprints and locking all old weights
in the network can help retaining knowledge from previ-
ous tasks. This phenomenon indicates that the prior layers
have already extracted useful features for the final classifi-
cation. Moreover, the zero-using bias layer’s performance
indicates that it can enable prior neural network layers
to discover better features without relying on biases and
weights. Please be noted that this scenario also prevents
the fine-tuning of existing fingerprints even if they are in
sub-optimal directions.

3) Only protecting old fingerprints does not seem to be
helpful. The new task will destroy all useful feature
extractors in prior layers.

4) Applying EWC only in the last layer provides the most
promising results. Notably, the neural networks with the
zero-bias layer still outperform regular neural networks.
This fact explains that EWC tries to protect old finger-
prints from changing erroneously (forgetting) and enables



fine-tuning.

VI. CONCLUSION

In this paper, we significantly extend the analysis of our
previously proposed zero-bias DNN and combine it with the
Quickest Detection algorithms to detect abnormalities and
time-dependent abnormal events in IoT with the lowest assured
latency. We first analyze the zero-bias DNN and show that
zero-bias DNN is superior than regular DNN for RF signal
surveillance. We then propose a novel solution to convert
zero-bias DNN classifiers into performance-assured binary
abnormality detectors. We model the converted abnormality
detectors using Bernoulli distribution, which perfectly adapts
to the CUSUM based Quickest Detection scheme. In this
Quickest Detection scheme, the theoretically assured lowest
abnormal event detection delay is provided with predictable
false alarms. Finally, to facilitate DNN for RF signal surveil-
lance to evolve incrementally, we propose a more stable EWC
algorithm and shown that zero-bias DNN is more reliable than
regular DNN under incremental learning. The framework is
evaluated using both massive signal records from real-world
aviation communication systems and simulated data. In the
future, we will explore the incremental learning capability of
zero-bias DNN.
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