

The relationship of C and N stable isotopes to high-latitude moss-associated N₂ fixation

Julia E. M. Stuart¹ · Hannah Holland-Moritz² · Mélanie Jean³ · Samantha N. Miller¹ · José Miguel Ponciano⁴ ·
Stuart F. McDaniel⁴ · Michelle C. Mack¹

Received: 11 February 2021 / Accepted: 23 July 2021 / Published online: 28 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Moss-associated N₂ fixation by epiphytic microbes is a key biogeochemical process in nutrient-limited high-latitude ecosystems. Abiotic drivers, such as temperature and moisture, and the identity of host mosses are critical sources of variation in N₂ fixation rates. An understanding of the potential interaction between these factors is essential for predicting N inputs as moss communities change with the climate. To further understand the drivers and results of N₂ fixation rate variation, we obtained natural abundance values of C and N isotopes and an associated rate of N₂ fixation with ¹⁵N₂ gas incubations in 34 moss species collected in three regions across Alaska, USA. We hypothesized that $\delta^{15}\text{N}$ values would increase toward 0‰ with higher N₂ fixation to reflect the increasing contribution of fixed N₂ in moss biomass. Second, we hypothesized that $\delta^{13}\text{C}$ and N₂ fixation would be positively related, as enriched $\delta^{13}\text{C}$ signatures reflect abiotic conditions favorable to N₂ fixation. We expected that the magnitude of these relationships would vary among types of host mosses, reflecting differences in anatomy and habitat. We found little support for our first hypothesis, with only a modest positive relationship between N₂ fixation rates and $\delta^{15}\text{N}$ in a structural equation model. We found a significant positive relationship between $\delta^{13}\text{C}$ and N₂ fixation only in Hypnales, where the probability of N₂ fixation activity reached 95% when $\delta^{13}\text{C}$ values exceeded –30.4‰. We conclude that moisture and temperature interact strongly with host moss identity in determining the extent to which abiotic conditions impact associated N₂ fixation rates.

Keywords Nitrogen · Bryophytes · Arctic · Boreal · Alaska

Introduction

Moss-associated nitrogen (N₂) fixation is the largest source of N inputs to boreal and Arctic ecosystems (Alexander and Schell 1973; Basilier 1979; DeLuca et al. 2002; Lindo et al. 2013; Vile et al. 2014). High northern latitude ecosystems, which are currently experiencing rapid changes associated with climate warming, harbor large reservoirs of carbon (C) and are often N limited for vascular plants (Shaver and Jonasson 1999; Lebauer and Treseder 2008; Tarnocai et al. 2009; Hugelius et al. 2014). While the N₂ fixation rates associated with the autotrophic microbes in the bryosphere are relatively low compared to symbiotic N₂ fixers associated with angiosperms such as *Alnus* spp. or cyanolichens such as *Peltigera* spp., the ubiquity of mosses in these ecosystems compensates for lower process rates (Hobbie et al. 2005; Weiss et al. 2005; Mitchell and Ruess 2009; Turetsky et al. 2010). Many biotic and abiotic variables have been proven to affect rates of moss-associated N₂ fixation directly and

Communicated by Duncan Menge.

Julia E. M. Stuart
jms2435@nau.edu

¹ Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

² Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA

³ Département de Biologie, Université de Moncton, Moncton, NB, Canada

⁴ Department of Biology, University of Florida, Gainesville, FL, USA

indirectly, including temperature, moisture, and N deposition (Ackermann et al. 2012; Gundale et al. 2012, 2013; Lindo et al. 2013; Rousk et al. 2013; Kardol et al. 2016; Salemaa et al. 2019). Other research shows that host moss identity can drive microbial community composition, *nifH* gene expression, and associated rates of N₂ fixation (Ininbergs et al. 2011; Bragina et al. 2012; Warshan et al. 2016; Holland-Moritz et al. 2018; Jean et al. 2020; Stuart et al. 2020). Previous measurements made in three Alaska ecoregions found consistent and significant differences in associated N₂ fixation rates among moss genera (Stuart et al. 2020). As abiotic conditions as well as moss biomass and community composition are expected to change with climate, understanding the interaction between environment and host moss identity is critical for predicting future N inputs (Gundale et al. 2012; Turetsky et al. 2012; Deane-Coe et al. 2015; Carroll et al. 2019).

The natural abundance of ¹⁵N in plant material can provide clues regarding the source of plant N (Högberg 1997). For example, nitrogenase, the enzyme responsible for biological N₂ fixation, has a low discrimination against ¹⁵N, leading to a $\delta^{15}\text{N}$ near $-1\text{\textperthousand}$ or 0\textperthousand for plants that are utilizing fixed N (Vitousek et al. 1989; Högberg 1997). In contrast, other plant N sources from soils or atmospheric N deposition are relatively enriched or depleted, respectively (Nadelhoffer et al. 1996; Bragazza et al. 2005). In mosses, natural abundances of $\delta^{15}\text{N}$ vary across ecological gradients, experimental treatments, and moss species (Bragazza et al. 2005; Gavazov et al. 2010; Deane-Coe et al. 2015). Critically, mosses obtain N fixed by microbial epiphytes (Bay et al. 2013; Berg et al. 2013; Rousk et al. 2016). Previous studies have used moss $\delta^{15}\text{N}$ as a potential reflection of differences in associated N₂ fixation rates across space or potential hosts by assuming signatures increasing toward 0\textperthousand from more depleted values ($\delta^{15}\text{N} < -3\text{\textperthousand}$) had a higher N contribution via fixation, usually in combination with moss N concentrations, atmospheric N deposition signatures, and/or observed cyanobacteria colonization (Boddey et al. 2000; Deane-Coe and Sparks 2016; Novak et al. 2016; Živković et al. 2017).

Few studies have explicitly linked quantifications of moss-associated N₂ fixation to $\delta^{15}\text{N}$ signatures of the host mosses. In *Sphagnum* spp., more depleted (0 to $-3\text{\textperthousand}$) $\delta^{15}\text{N}$ measurements were associated with higher rates of N₂ fixation (Leppänen et al. 2015), but in *Pleurozium schreberi* no relationship between these measurements was found (Hyodo et al. 2013). This discrepancy may be because the key measurements were made asynchronously or use only one natural abundance value linked with multiple N₂ fixation measurements. Mosses are also morphologically and ecologically heterogeneous, and may vary in features that lead to greater soil N uptake or the translocation of N within the moss which can obscure recent inputs from N₂ fixation

or other sources (Eckstein and Karlsson 1999; Aldous 2002; Bragazza et al. 2005; Ayres et al. 2006; Krab et al. 2008). Additionally, alternative forms of nitrogenase, such as vanadium (V)- and iron (Fe)-only nitrogenase, differ from molybdenum (Mo) nitrogenase in their levels of fractionation and thus their natural abundance signature, where V- and Fe-nitrogenase produce $\delta^{15}\text{N}$ signatures of -6 to $-7\text{\textperthousand}$ (Zhang et al. 2014). Sampled lichen thalli from Alaska fell mostly, though not exclusively, above the Mo concentration threshold which would indicate an increased reliance on V-nitrogenase activity (Darnajoux et al. 2019). Experimental Mo additions have shown a brief positive effect on N₂ fixation in subarctic feather mosses, but overall Mo concentration in control plots also fell above the threshold suggested by cyanolichen research (Rousk and Rousk 2020). By directly pairing N₂ fixation and natural abundance measurements across a broad diversity of host mosses and environmental conditions, we can more effectively explore the link between process rates and $\delta^{15}\text{N}$.

Given the key role that climate has in affecting N₂ fixation, another tool for exploring N₂ fixation rate variation is $\delta^{13}\text{C}$. In mosses, $\delta^{13}\text{C}$ reflects temperature, moisture conditions, and plant productivity, both in natural and experimentally induced conditions (Williams and Flanagan 1996; Skrzypek et al. 2007; Deane-Coe et al. 2015; Royles et al. 2016; Granath et al. 2018). Unlike vascular plants, where fractionation against ¹³C isotope occurs both in diffusion through stomata and enzymatic discrimination, mosses in moist environments often have a film of water on the surface which limits diffusion (Farquhar et al. 1989; Williams and Flanagan 1996; McCarroll and Loader 2004). Thus, while $\delta^{13}\text{C}$ in vascular plants becomes relatively depleted with increased temperature/decreased precipitation, mosses are relatively more enriched in ¹³C in moist conditions, as limited diffusion decreases enzymatic discrimination (Stuiver and Braziunas 1987; Williams and Flanagan 1996; Rice 2000; Diefendorf et al. 2010). Therefore, $\delta^{13}\text{C}$, which is often obtained concurrently with $\delta^{15}\text{N}$ analysis, is linked to climatic drivers of N₂ fixation.

The objective of our study was to evaluate the relationships between $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, and N₂ fixation in high-latitude mosses to identify links between stable isotope composition and process rates as well as to explore the interaction of host moss identity with these relationships. We used ¹⁵N₂ incubations to measure the fixation rates associated with 34 different moss species across a latitudinal transect in Alaska from 60° to 68° N, each with a paired natural abundance measurement from the same sample pre-incubation. We hypothesized that moss $\delta^{15}\text{N}$ would increase toward 0\textperthousand with increasing N₂ fixation (H1). Past studies have shown a positive relationship between cyanobacteria colonization and $\delta^{15}\text{N}$ and that mosses utilize N fixed by microbial epiphytes (Berg et al. 2013; Deane-Coe and

Sparks 2016). We also hypothesized that more enriched $\delta^{13}\text{C}$ would have a positive relationship with rates of N_2 fixation (H2), as higher $\delta^{13}\text{C}$ can indicate consistent moist conditions that facilitate microbial N_2 fixation. Finally, we expected that these relationships would vary in magnitude among mosses. In addition to known differences in anatomy and habitat niche differentiation related to nutrient acquisition and water retention strategies, previous analysis of these samples indicated the key role of host identity in determining associated rates of N_2 fixation (Stuart et al. 2020). To test these hypotheses, we used mixed models and a multi-group structural equation model after first using exploratory random forest models to inform tested relationships. We also used a binomial generalized mixed-effects model to establish a broad threshold of for N_2 fixation activity related to $\delta^{13}\text{C}$ signatures.

Materials and methods

Sites

In June 2016, we selected ten sites near Fairbanks, AK (N 64° W 148°) and four sites near Toolik Field Station, AK (N 68° W 149°). The following June, we selected an additional ten sites near Anchorage, AK (N 60–61°, W 149°). These sites encompassed a diversity of ecotypes found in the regions, including *Picea* spp. dominated upland and peatland boreal forest, alpine tundra, *Tsuga* spp. coastal forests, and Arctic tundra. Sites were selected based on accessibility, low human disturbance, and the presence of moss. Each site was based on a 30 m transect where environmental measurements were made at 5 m intervals, hereafter called subplots. For more details on the location and characteristics of sites, please see Stuart et al. (2020).

Environmental data collection

Gravimetric water content of the moss was measured via a 5 × 5 × 5 cm plug of moss from each subplot. These plugs were placed in an airtight plastic bag to be transported to the laboratory and immediately weighed for a field wet weight before being transferred to a 60° drying oven for 48 h before reweighing for a dry weight. Moisture, or gravimetric water content, was calculated by dividing the difference between the wet and dry weights by the dry weight. Coordinates and elevation were recorded for each site using a Garmin GPS-MAP 64x handheld GPS. Coordinate information was then used to extract the mean annual temperature (MAT, in °C) and precipitation (MAP, in mm) for each site from 2014 to 2017 from Climate NA (Wang et al. 2016).

Relative abundance of Nostocaceae

To compare our results to papers that looked only at cyanobacteria colonization, we compared Nostocaceae relative abundance with N_2 fixation rates and $\delta^{15}\text{N}$ in linear models. For full details of microbial methods, please see Holland-Moritz et al. (2021). Briefly, we used amplicon-based sequencing of a 253 bp region of the 16S rRNA bacterial and archaeal marker gene on a third subsample paired with the natural abundance and N_2 fixation measurement samples described above. We extracted DNA from moss tissue, homogenized with liquid N_2 and PCR-amplified the V4-V5 region of the 16S rRNA gene. Amplicons were sequenced on the Illumina MiSeq platform at the University of Colorado Next Generation Sequencing Facility using 2 × 150 bp paired-end chemistry. After sequencing we identified microbial phylotypes using the UNOISE pipeline (Edgar 2018) which denoises the reads and distinguishes between phylotypes using a unique sequence variant approach (i.e. all sequences belonging to a single phylotype have 100% identical sequences). We assigned taxonomy to these phylotypes with the RDP Naive Bayesian Classifier (Wang et al. 2007) and GreenGenes database (McDonald et al. 2012). After filtering out phylotypes assigned as mitochondrial or chloroplast, we created a phylotype-by-sample table and controlled for differences in sequencing depth across samples by randomly selecting 3000 reads per sample. Finally, we converted our read-counts to relative abundances and calculated the percent relative abundance of Nostocaceae in each sample.

N_2 fixation and natural abundance measurements

All mosses at each site were identified and, if they appeared in at least two distinct patches, collected in each subplot where present. Common mosses, appearing in at least six distinct patches, were collected a maximum of six times (once per subplot). For each sample, circa 40 moss ramets were collected. From this original sample, several stems were removed for a voucher specimen to be identified at the University of Florida, ten stems were immediately placed in a drying oven for natural abundance values, and ten stems were placed in syringes to be incubated with $^{15}\text{N}_2$ gas. Each moss ramet included was of approximately 5 cm of length, including both green and senescent moss tissue, and was cleaned of debris or other plant material. Natural abundance samples were dried at 60 °C for 48 h before being shipped to Northern Arizona University. The incubation subsample was lightly sprayed with distilled water in an airtight 60 ml polypropylene syringe. Each syringe was plunged to 10 ml of ambient air before 10 ml of 98 at% enriched $^{15}\text{N}_2$ gas was added, making the final volume 20 ml (Sigma-Aldrich Inc., Lot # MBBB3807V and MBBB9003V). Incubations

took place in a common garden (one in each geographic area of Toolik, Fairbanks, and Anchorage) for 24 h, as past research showed no significant difference between in situ and common garden incubations (DeLuca et al. 2007). Three additional syringes, each containing a Thermochron iButton (Model DS1921G-F5#, Embedded Data Systems USA), recorded field temperature every 10 min throughout the duration of the incubation. After incubation, moss material was removed from the syringes, dried as described above, and sent to Northern Arizona University.

Natural abundance and incubated samples were finely ground using either a clean coffee grinder or hand-chopped with scissors. Six mg of each sample was rolled into a tin capsule and run with a Costech ECS4010 elemental analyzer coupled to a Thermo Scientific Delta V Advantage isotope ratio mass spectrometer to obtain %N, %C, $\delta^{15}\text{N}$, and $\delta^{13}\text{C}$. The atom percent enrichment (APE) of each sample was calculated by subtracting the natural abundance subsample atom percent from its paired incubated subsample atom percent. Isotopic uptake was then scaled by the sample weight and the air:tracer ratio to calculate total ($^{15}\text{N} + ^{14}\text{N}$) N_2 fixation (Jean et al. 2018). Rates are expressed as $\mu\text{g N g moss}^{-1} \text{ day}^{-1}$.

We measured both natural abundance values and N_2 fixation rates associated with 505 samples. The average natural abundance and enriched $\delta^{15}\text{N}$ was $-3.09 \pm 0.08\text{‰}$ (mean \pm standard error) and $54.67 \pm 4.05\text{‰}$, respectively. Natural abundance of $\delta^{13}\text{C}$ averaged -30.81 ± 0.10 and percent N and percent C were 0.81 ± 0.01 and 46.45 ± 0.11 , respectively. Based on the sensitivity of the isotope ratio mass spectrometer, samples with $< 2\text{‰}$ $\delta^{15}\text{N}$ difference between the paired samples were assumed to have a N_2 fixation rate of zero. For more detail on the past analyses of these samples, please see Stuart et al. (2020). Note that results presented in this manuscript include only samples that had both a measurement of N_2 fixation and a directly paired natural abundance value. In the previous study, some samples without a paired natural abundance value were included based on a site-level, moss species-specific average natural abundance value.

Statistical analyses

All statistical analyses were performed in R Studio 1.2.1335 using R version 3.6.1 (R Core Team 2017). To test the hypotheses of this study, we used piecewise structural equation models (SEMs) through the package piecewiseSEM 2.1.0 (Lefcheck 2016) and linear mixed-effects models in lme4 1.1-21 (Bates et al. 2015) paired with Satterthwaite's degrees of freedom method in lmerTest (Kuznetsova et al. 2017). Prior to implementing SEMs, we used random forests in the package randomForest 4.6–14 to explore both linear and non-linear relationships for each of the three response

variables we were interested in modelling as endogenous variables within the SEM framework: $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, and N_2 fixation rate (Liaw and Wiener 2002). Random forests are a flexible and informative approach in variable selection as they can incorporate both continuous and categorial variables and do not rely on assumptions of frequentist statistics (Cutler et al. 2007). As previous results demonstrated the importance of host moss identity in determining rates of N_2 fixation, we divided mosses into genera or orders for analyses: Hypnales (containing the genera *Hylocomium*, *Ptilium*, *Pleurozium*, *Hypnum*, *Tomentypnum*, *Rhytidadelphus*, and *Sanionia*), Sphagnales (including 11 different species of *Sphagnum*), Rhizogoniales (three *Aulacomnium* spp.), Dicranales (eight *Dicranum* spp.), and Polytrichales (three *Polytrichum* spp.). Therefore, the only order than contains multiple genera is Hypnales. We grouped our samples to gain statistical power and we use the ordinal names here as a convenience. However, we note that our conclusions are specific to these samples and do not necessarily characterize these physiological processes in the orders as a whole. Past analysis suggests that lower taxonomic levels are likely to possess ecologically relevant rate variation in N_2 fixation (Stuart et al. 2020). We compared the R^2 values between two different models for each endogenous variable, where one model contained moss genus as a predictor and the other substituted order for genus, to determine whether it was appropriate to test our hypotheses at a broader taxonomic scale. Each model also contained MAP, MAT, altitude, incubation temperature average, gravimetric water content, site, geographic area (Toolik, Fairbanks, or Anchorage), and the other endogenous variables as predictors. Each model averaged six executed runs with mtree set at 10,000.

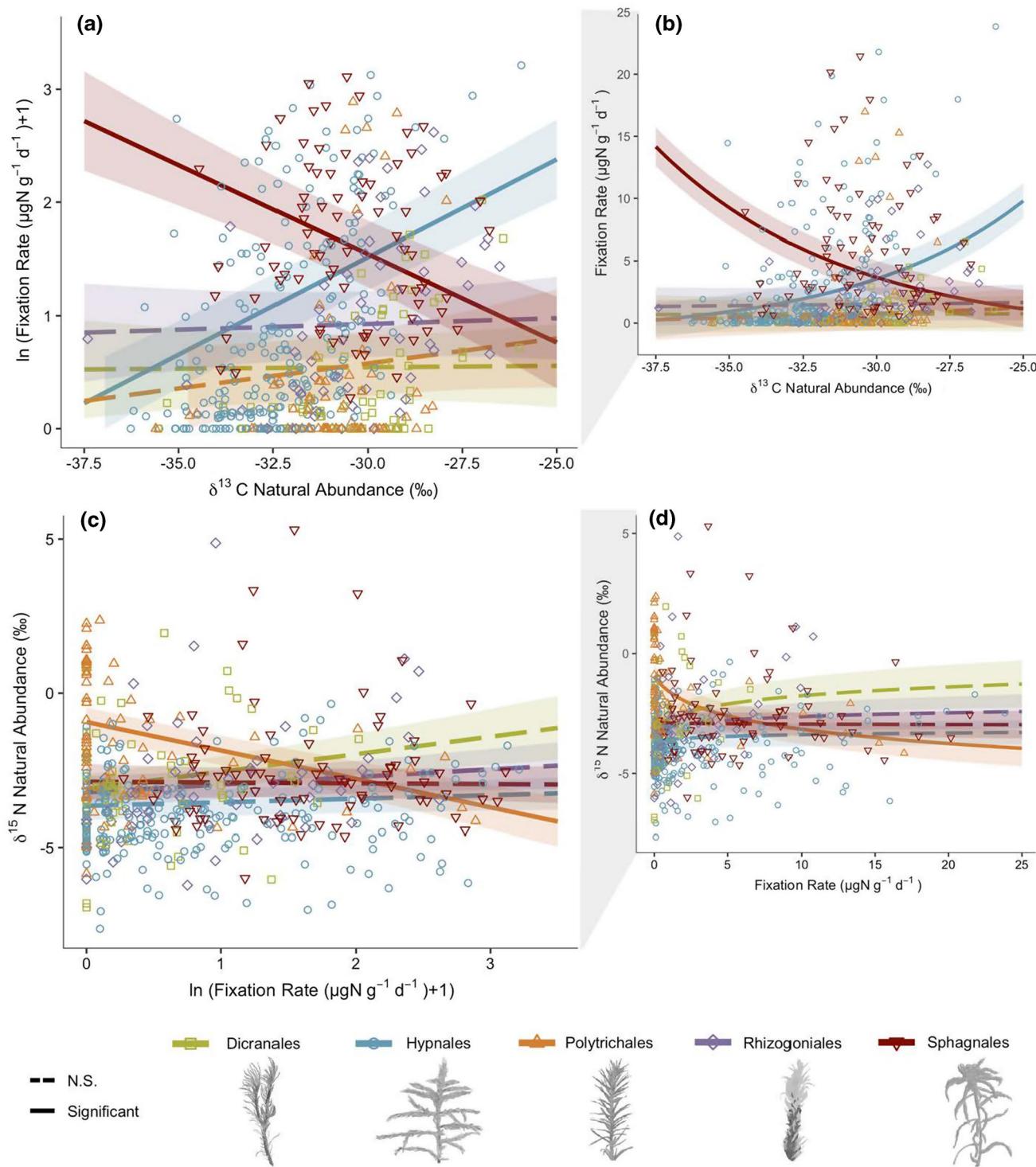
After confirming the limited reduction of explained variance when using host moss order instead of genus, we implemented two mixed models. To account for spatial autocorrelation, we included the geographic area (Anchorage, Toolik, or Fairbanks), site nested in geographic area (24 sites, described above) and subplot nested in site and geographic area (six subplots per site) as random effects. Interactive fixed effects of $\delta^{13}\text{C}$ and order were regressed with the natural log of (N_2 fixation rate ($\mu\text{g N g moss}^{-1} \text{ day}^{-1}$) + 1), while interactive fixed effects of N_2 fixation rate and order were used with $\delta^{15}\text{N}$ as the response variable. $\delta^{13}\text{C}$ was treated as the independent variable because it is a reflection of climate conditions, which in turn is hypothesized to relate to rates of N_2 fixation. Conversely, N_2 fixation rate was the independent variable when regressed with $\delta^{15}\text{N}$ because the natural abundance of N isotopes may reflect rates. Model results are shown with transformed and back-transformed predicted relationships implemented through the ggeffects package 1.0.2 (Lüdecke 2018). For the Hypnales, we also ran a generalized linear mixed-effects model on a binomial dataset, where N_2 fixation rates were allocated to zero if no

fixation was observed and one if fixation did occur during the incubation. We were unable to test the effect of geographic area because all samples from Toolik fixed N₂ during our incubation (see Supplementary Fig. 1). We regressed the presence/absence of N₂ fixation activity against the δ¹³C natural abundance value in a binomial model with a bobyqa optimizer with random effects of site and subplot nested in site.

We used SEMs to further test our initial hypotheses for Hypnales and Sphagnales. The a priori model included MAT and MAP as exogenous predictors of δ¹³C and ln(N₂ fixation rate +1) and %N as an exogenous predictor of δ¹⁵N and ln(N₂ fixation rate +1) (see Fig. 2). We opted for MAT and MAP indicators over snapshot measurements of temperature and moisture made at the time of sampling as they may correspond better with δ¹³C values that reflect longer term trends. Additionally, we previously found that MAT and MAP were generally better predictors of N₂ fixation rates than the snapshot measurements (Stuart et al. 2020). Measures that combine temperature and precipitation, such as climate moisture deficit, were considered but ultimately rejected to enable looking at each driver separately, as moisture has a consistently positive effect on N₂ fixation while temperature optima can differ among N₂ fixers (Gentili et al. 2005; Rousk et al. 2013). While %N could be a result of, rather than a cause of, N₂ fixation rate variation, we worked under the assumption that increased N deposition would act more directly on %N and thus downregulate fixation activity (Solga and Fram 2006; Gundale et al. 2013; Salemaa et al. 2019). This explanation seems plausible in our data, given the weakly negative relationship between %N and N₂ fixation in our data. In the SEM, N₂ fixation rates +1 were natural log-transformed to meet model assumptions. A multi-group SEM was employed to directly compare paths between Hypnales and Sphagnales within the same model. A multi-group piecewise SEM allows a direct comparison between two groups within the same model by allowing paths to vary if there is a significant interaction between the term and the grouping factor. The package automatically tests which paths to constrain, with selections made for the best output. The piecewise SEM also allows for the inclusion of the hierarchical sampling design, as each relationship includes the random effect structure described for mixed-effect models above.

Results

Across all three variables of interest (δ¹³C, δ¹⁵N, and N₂ fixation), the substitution of moss order for moss genus as a predictor resulted in small or no change to the amount of variance explained by the model (Table 1). The largest diminution of explained variance between two models for


Table 1 Comparison of random forest R^2 for modeling variables of interest with different moss taxonomic levels as a predictor with the same suite of environmental predictors (including MAT, MAP, altitude, incubation temperature average, gravimetric moss water content, site, and geographic region)

Predicted variable	Model R^2	
	Moss genus	Moss order
δ ¹³ C (‰)	0.651	0.650
N ₂ fixation rate (µg N g ⁻¹ moss ⁻¹ day ⁻¹)	0.422	0.333
δ ¹⁵ N (‰)	0.551	0.561

the same variable of interest was for N₂ fixation rate, where the model including genus explained 9% more variation. Across all models, moss identity (genus or order) was the top-ranked predictor. Similarly, all models showed some influence of site of collection and relatively little influence from the geographic area (Toolik, Fairbanks, or Anchorage).

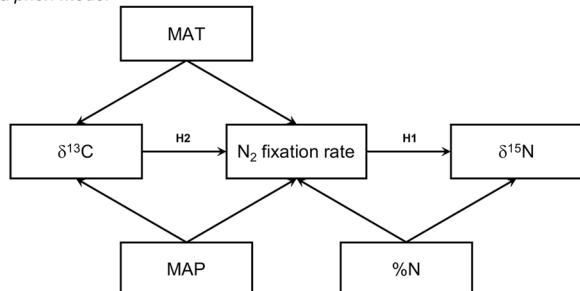
Mixed model analysis showed a significant interaction between δ¹³C and moss order ($p < 0.001$, Fig. 1, Table 2). Orders Hypnales and Sphagnales were significantly different from the intercept (95% Confidence Interval (CI) = 0.07–0.27, $p = 0.006$ and CI = –0.28 to –0.03, $p = 0.013$, respectively). Post hoc graphing of model results showed that the direction of the relationship between δ¹³C and transformed N₂ fixation rate was different between these orders; while Hypnales displayed the expected positive relationship, Sphagnales had a negative relationship (Fig. 1). Other moss orders did not have a significant relationship between δ¹³C and transformed N₂ fixation rates, though the direction of those relationships was positive (Fig. 1). Random effects testing confirmed that geographic area and site nested in geographic area accounted for 32% and 14% of variation explained respectively, while subplot was not significant and accounted for < 3% of variation. The interaction between the transformed N₂ fixation rate and order was significant when regressed with δ¹⁵N, but only significant for Polytrichales (Table 2, Fig. 1). The δ¹⁵N values of Polytrichales and Rhizogonales were significantly higher than other moss orders. Only site nested in geographic area was significant as a random effect and accounted for 33% of variance explained.

Based on mixed model results, ecological prevalence, and higher associated N₂ fixation rates within Hypnales and Sphagnales, these two orders were compared in a multi-group SEM. All but four relationships were constrained to the global model (Fig. 2). Therefore, there was a significant interaction between moss order and δ¹³C in relation to ln(N₂ fixation +1), percent N in relation to δ¹⁵N, and MAT in relation to δ¹³C and ln(N₂ fixation +1). For Sphagnales, MAT was negatively related to δ¹³C and, unlike the mixed model results, transformed N₂ fixation rate had a significant

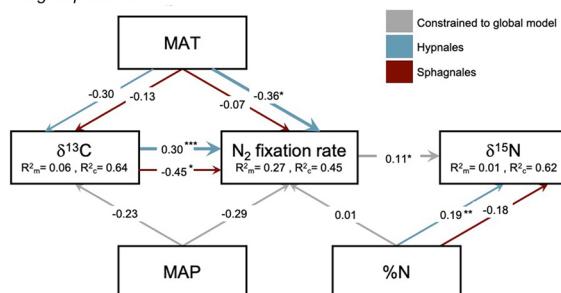
Fig. 1 Panel **a** shows estimated marginal means predictions of mixed model results regressing the interaction between moss order and $\delta^{13}\text{C}$ with transformed N_2 fixation rate ($\ln(\mu\text{g N g}^{-1} \text{ day}^{-1} + 1)$). Panel **c** shows estimated marginal means predictions of mixed model results regressing the interaction between moss order and transformed N_2 fixation rate ($\ln(\mu\text{g N g}^{-1} \text{ day}^{-1} + 1)$) with $\delta^{15}\text{N}$. Lines represent predicted relationships, and ribbons are the 95% confidence

interval of the predicted relationships. Both models included geographic region, site nested in geographic region, and subplot nested in site and geographic region as random effects. Panels **b** and **d** show estimated marginal means predictions for each model with $\ln(n+1)$ values back-transformed for graphing purposes for $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ model, respectively

Table 2 ANOVA tables (Type III with Satterthwaite method) for $\ln(N_2 \text{ fixation rate} (\mu\text{g N g moss}^{-1} \text{ day}^{-1}) + 1)$ as a function of the interaction of moss order and $\delta^{13}\text{C}$ (M1, see Hypothesis 2) and $\delta^{15}\text{N}$ as a


function of the interaction of moss order and $\ln(N_2 \text{ fixation rate} (\mu\text{g N g moss}^{-1} \text{ day}^{-1}) + 1)$, (M2, see Hypothesis 1)

M1: $\ln(N_2 \text{ fixation} + 1)$ model				M2: $\delta^{15}\text{N}$ model			
Model term	df	F	p	Model term	df	F	p
$\delta^{13}\text{C}$	1	0.36	0.551	$\ln(N_2\text{-fix} + 1)$	1	0.001	0.973
Order	4	10.48	<0.001	Order	4	42.80	<0.001
$\delta^{13}\text{C}:\text{Order}$	4	10.55	<0.001	$\text{Log}_e(N_2\text{-fix} + 1):\text{Order}$	4	6.98	<0.001


Bold indicates *p*-values less than 0.05

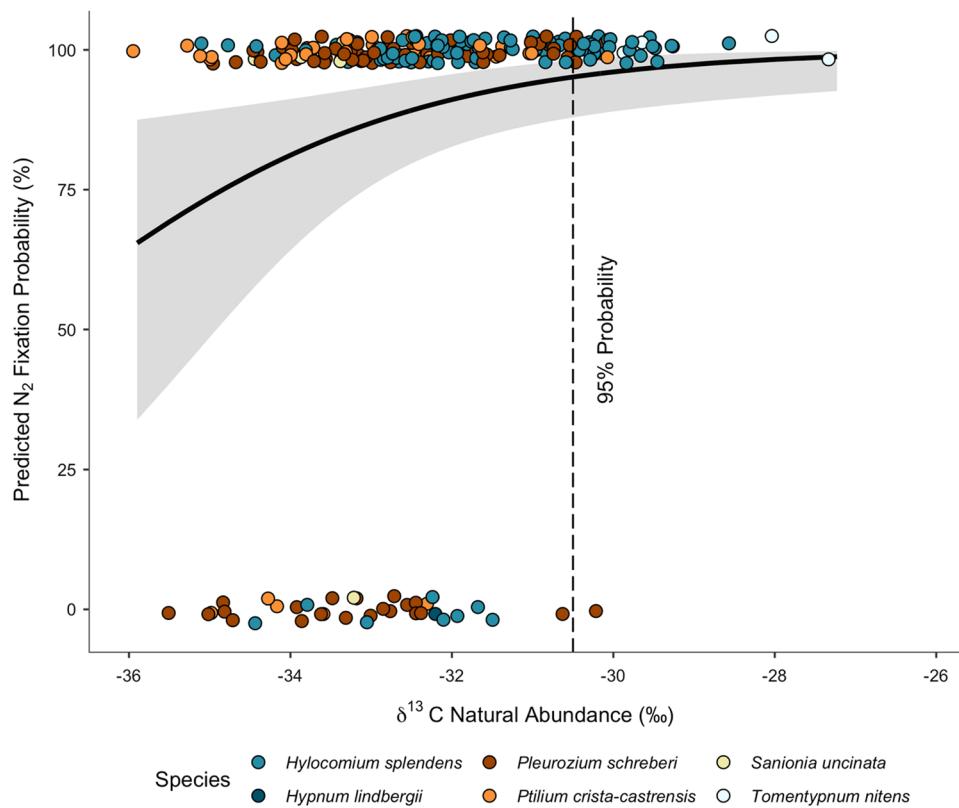
Model marginal R^2 was 0.320 in M1 and 0.172 in M2

(a) *a priori* model

(b) Multi-group model

Fig. 2 Panel **a** is the *a priori* model of proposed relationships within the SEM, where the hypothesis-testing relationships are highlighted. Panel **b** shows the multi-group model results, including the marginal and conditional R^2 values of the endogenous variables. The numbers on each path are the path coefficients, with significant *p* values denoted with $*(p < 0.05)$ and $***(p < 0.001)$. Model Fisher's *C* was 12.32 ($p = 0.138$, $df = 8$). MAT was measured in °C, MAP in mm, N_2 fixation rates in $\ln(\mu\text{g N g moss}^{-1} \text{ day}^{-1} + 1)$, and $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ in ‰

relationship $\delta^{15}\text{N}$ ($P = 0.0156$). Other relationships, such as MAP and $\delta^{13}\text{C}$ or percent N and transformed N_2 fixation rate, were not significant in the model (Fig. 2).

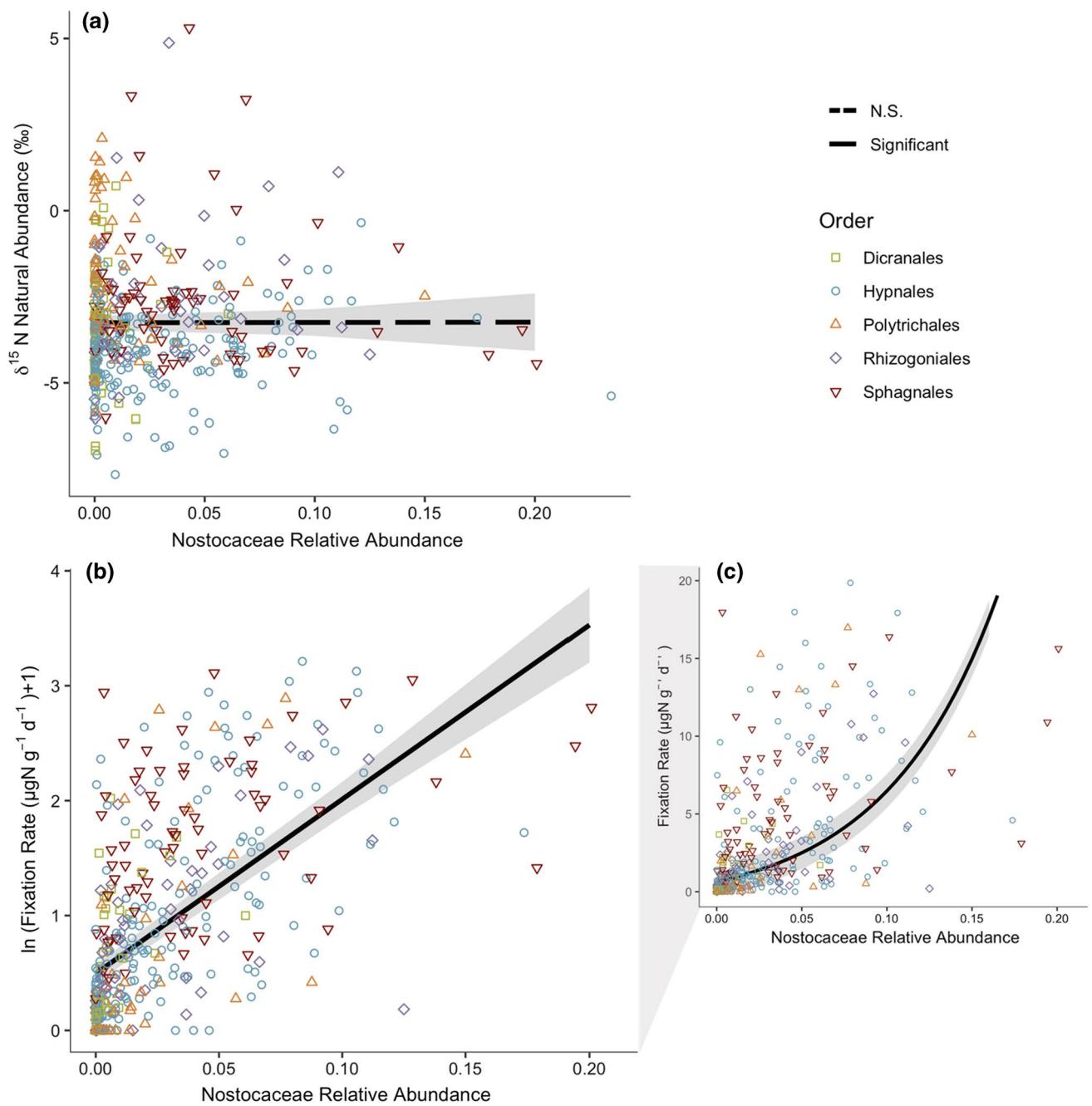

The presence of N_2 fixation activity was modeled as a function of $\delta^{13}\text{C}$ values, which was found to be a significant relationship ($CI = 1.12\text{--}2.12$, $P = 0.008$, Fig. 3). Geographic area could not be included as a model term, because all moss samples from Toolik fixed N_2 during our incubations (see Supplementary Fig. 1). In the most depleted samples ($-36\text{\textperthousand}$), mosses were slightly more likely to be fixing than not fixing N_2 , though the confidence region crosses below

the 50% threshold. However, at $-30.4\text{\textperthousand}$, samples crossed the threshold of a 95% probability prediction. All samples in our study displayed N_2 fixation activity at $\delta^{13}\text{C}$ values more enriched than $-30\text{\textperthousand}$. This trend did not appear to be driven by one moss species in particular, although *Tomentypnum nitens* had consistently high N_2 fixation rates and relatively depleted $\delta^{13}\text{C}$ (Fig. 3, Table 3).

Discussion

Our observations of a large paired dataset that compares moss-associated N_2 fixation rates with natural abundance stable isotope values revealed a surprising disconnect between $\delta^{15}\text{N}$ and rates of N_2 fixation. We found little evidence to support our hypothesis that $\delta^{15}\text{N}$ values would increase toward 0\textperthousand with N_2 fixation activity, even after accounting for host moss identity. We found a significant interaction of $\delta^{15}\text{N}$ and transformed N_2 fixation rate which was due to the relationship in Polytrichales (Table 2, Fig. 1). Polytrichales had a generally higher $\delta^{15}\text{N}$ signature despite having consistently low N_2 fixation rates, resulting in a relationship of the opposite direction than we predicted in H1. Members of the Polytrichales have more developed internal transport systems, which perhaps facilitates greater soil uptake than other studied moss groups (Brodribb et al. 2020). The modest positive relationship between $\delta^{15}\text{N}$ and N_2 fixation in the SEM framework was significant for Hypnales and Sphagnales together. However, the actual $\delta^{15}\text{N}$ values were not close to -1 or 0\textperthousand , instead remaining largely below $-2.25\text{\textperthousand}$ (based on value of 3rd quantile when rate of fixation was greater than $5 \mu\text{g N g moss}^{-1} \text{ day}^{-1}$). This is in contrast to a previous study, which saw a positive connection between the percentage of leaves with cyanobacteria colonization and elevated $\delta^{15}\text{N}$ in temperate forest mosses (Deane-Coe and Sparks 2016). While relative abundance does not necessarily equate to absolute abundance, we did see a significant positive relationship between Nostocaceae relative abundance and transformed N_2 fixation rates but no relationship between Nostocaceae relative abundance

Fig. 3 N_2 fixation activity was modeled as a function of $\delta^{13}C$ with random effects of site and subplot nested in site, where rates of $> 0 \mu\text{g N g}^{-1} \text{moss}^{-1} \text{day}^{-1}$ were assigned a value of 1. Shading represents the 95% prediction intervals. Points are staggered for visual differentiation and colored based on moss species. Vertical dotted line represents the point on the x-axis at which the predicted probability reached 95%. Graph and model contained data from all three geographic areas included in the study (Anchorage, Fairbanks, and Toolik)



and $\delta^{15}\text{N}$ (Fig. 4). There is some evidence that N_2 fixation rates associated with bryophytes in temperate forests may be up to an order of magnitude greater than boreal or Arctic rates and have higher $\delta^{15}\text{N}$ signatures, perhaps reflecting the increased footprint of fixation (Menge and Hedin 2009; Menge et al. 2011). Lower rates of N_2 fixation relative to high latitudes have been measured in temperate grasslands in North America, and higher rates of N deposition in temperate ecosystems would be expected to lead to downregulation of the process (Gundale et al. 2013; Hember 2018; Calabria et al. 2020).

One explanation for the absence of our hypothesized relationship is the increased reliance on alternative nitrogenases at higher latitudes, which would be expected to produce a much different natural abundance signature (Zhang et al. 2014; Darnajoux et al. 2019). The use of $\delta^{15}\text{N}$ as a straightforward proxy is also complicated by other N acquisition strategies in mosses which may dilute the signature of fixed N, including atmospheric deposition, uptake from soil, and translocation of N from senescent to live tissue (Aldous 2002; Turetsky 2003; Ayres et al. 2006; Krab et al. 2008; Harmens et al. 2014). Rates of N deposition in Alaska are generally less than $2 \text{ kg N ha}^{-1} \text{ year}^{-1}$ and extractable inorganic N was generally low across sampled sites (Hember 2018; Stuart et al. 2020). In particular, throughfall N can be a large source of N for boreal mosses and may dilute the signal of N_2 fixation or contribute to process downregulation

(Forsum et al. 2006; DeLuca et al. 2008). In experiments on *Sphagnum* spp. and *P. schreberi*, it seems likely that mosses obtain at least a portion of fixed N and that fixed N is retained in the green moss layer for at least 1 year, indicating the rapid loss of fixed N is an unlikely explanation for the weakness of the observed trend (Basilier 1980; Berg et al. 2013; Rousk et al. 2016). Based on our results, we cannot recommend using $\delta^{15}\text{N}$ as an indicator of N_2 fixation in high-latitude mosses without further elucidation of potential N sources and active nitrogenase forms.

Contrary to our initial prediction that host identity would impact only the magnitude of the hypothesized relationship between $\delta^{13}\text{C}$ and rates of N_2 fixation, we found instead that moss order was a key determinant of the presence and direction of significant relationships. A positive relationship between $\delta^{13}\text{C}$ and N_2 fixation was only significant in the feather moss order Hypnales. Previous research has confirmed the importance of moss identity in the composition of microbial communities and the associated rates of N_2 fixation (Ininbergs et al. 2011; Leppänen et al. 2015; Jean et al. 2020; Stuart et al. 2020; Holland-Moritz et al. 2021). Analysis of data from our sites found that moss taxonomic identity was the top-ranked predictor of associated N_2 fixation rates in all geographic areas (Stuart et al. 2020). However, site MAP and MAT were the third and fourth ranked predictors, respectively (Stuart et al. 2020). Our results here add evidence to the premise that the distinct microbial

Fig. 4 Linear model results comparing the relative abundance of Nostocaceae in each sample with the corresponding $\delta^{15}\text{N}$ **a** or natural log of N_2 fixation rate ($\mu\text{g N g}^{-1} \text{ day}^{-1} + 1$) **b**. Panel **c** shows back-transformed values for the relationship between Nostocaceae relative abundance and N_2 fixation. Each point represents one sample. Solid

lines represent a significant relationship ($p < 0.001$, $R^2 = 0.36$), and dotted line represents non-significant relationship ($p = 0.947$). Shaded area is 95% confidence interval. Colors represent taxonomic order, though order was not included as a model term

communities harbored by mosses will respond differently to key process drivers of moisture and temperature, and thus that the response of N_2 fixation to changes in climate will not be universal among mosses.

In agreement with previous studies, we found negative relationships between MAT and $\delta^{13}\text{C}$ for Hypnales

(Skrzypek et al. 2007; Deane-Coe et al. 2015). However, the direction of this relationship was reversed in Sphagnales within our SEM (Fig. 2). The absence of the same relationship in Sphagnales may reflect the unique anatomy of these mosses which enables a high water-holding capacity (van Breemen 1995; Elumeeva et al. 2011). Additionally, the

Table 3 Mean N_2 fixation rate ($\mu\text{g N g moss}^{-1} \text{ day}^{-1}$) for each moss order across all sampling sites \pm standard error with sample size (n)

Moss order	Mean N_2 fixation rate					
	Anchorage		Fairbanks		Toolik	
	$\mu\text{g N g moss}^{-1} \text{ day}^{-1}$	n	$\mu\text{g N g moss}^{-1} \text{ day}^{-1}$	n	$\mu\text{g N g moss}^{-1} \text{ day}^{-1}$	n
Dicranales	0.27 \pm 0.14	21	0.40 \pm 0.16	31	1.95 \pm 0.35	20
Hypnales	1.74 \pm 0.27	131	2.44 \pm 0.43	78	9.41 \pm 1.40	21
Polytrichales	0.12 \pm 0.03	31	0.04 \pm 0.02	19	5.01 \pm 1.32	19
Rhizogoniales	2.08 \pm 0.52	30	2.15 \pm 0.77	13	3.71 \pm 0.79	17
Sphagnales	5.27 \pm 0.67	47	4.53 \pm 0.85	22	9.31 \pm 2.25	9

isotopic composition of the CO_2 available to mosses may be influenced by plant detrital inputs and microbial fractionation (Werth and Kuzyakov 2010). As Sphagnales create areas with low decomposition and high organic matter accumulation (Gorham 1991), this may play a role in the reversal of the expected relationship. The range of $\delta^{13}\text{C}$ values for Sphagnales was only -34.0 to $-26.8\text{\textperthousand}$, compared to -37.4 to $-24.3\text{\textperthousand}$ for all other measured mosses. Unlike all other moss orders, every collected *Sphagnum* moss had detectable N_2 fixation activity across its more constrained $\delta^{13}\text{C}$ range. The high moisture retention of Sphagnales may increase latent heat loss (Fukuta et al. 2012). Previous research has shown that *Sphagnum palustre* (in the order Sphagnales) can buffer air temperatures, particularly when air temperatures exceed $20\text{ }^\circ\text{C}$, while *Hylocomium splendens* (Hypnales) does not provide as much temperature insulation at the moss carpet (Sonesson et al. 1992; Fukuta et al. 2012). It follows that the trend between MAT and $\delta^{13}\text{C}$ would be more important in the Hypnales than the Sphagnales, which is borne out in our model. MAP was not significantly related to $\delta^{13}\text{C}$, but this may be due to sites which were in relatively hygric to mesic landscape positions. Only one site fell below the moisture threshold described by Zielke et al. (2005) as inhibiting N_2 fixation. For Hypnales and Sphagnales, $\delta^{13}\text{C}$ was a more significant predictor of N_2 fixation activity than either of the climate variables in our model, which may better reflect the synthesis of conditions within the moss carpet than temperature or precipitation averages.

Using a binomial distribution of N_2 fixation activity associated with Hypnales, we identified a threshold of $\delta^{13}\text{C}$ values at which our model predicted a 95% probability of N_2 fixation. Across the spectrum of $\delta^{13}\text{C}$, feather mosses were fixing N_2 during our incubations. However, in samples more enriched than $-30\text{\textperthousand}$, all collected samples were fixing N_2 (Fig. 3). Due to the uniform presence of N_2 fixation activity at sites near Toolik, we were unable to account for the effect of geographic area in the binomial model. However, Toolik has a lower mean annual temperature than the other two sampling areas, and we observed generally more enriched $\delta^{13}\text{C}$ and higher N_2 fixation rates (Supplementary Fig. 1). Higher temperatures and/or lower moisture did not

universally inhibit fixation activity; even at the most depleted $\delta^{13}\text{C}$ values, our model predicted a 62% probability of N_2 fixation activity. From our data, we infer that while relatively lower temperatures and higher moisture promote N_2 fixing activity, the opposite cannot be assumed.

One caveat to the research presented here is that each site was measured only once, providing a snapshot of N_2 fixation values. It is possible that the measured N_2 fixation rate at any given site was anomalous for the location or the host species in question, or that the present conditions that facilitated or diminished N_2 fixation activity did not correspond with the historical trend that would be encapsulated by the C and N stable isotope values we measured. The 5 cm section of moss measured in our sampling could represent 1–4 years of growth, depending on the moss species (Pakarinen and Rinne 1979), and inter- and intra-annual variation in N_2 fixation rates has been observed previously (Rousk and Michelsen 2017; Jean et al. 2018). By sampling from many sites across a broad scale of geographic locations, however, we present a large dataset which can partially account for natural variation. Our nested random effects structure explained a notable proportion of model variance. Comparing the marginal and conditional R^2 in the SEM also shows that the random effects were a considerable source of variation, particularly in the stable isotope signatures (Fig. 2). This suggests that the stable isotope signature had a stronger geographic bias than N_2 fixation rates, possibly due to the more integrative stable isotope measurement of weather conditions or N sources over time.

Though we assumed that the strength of hypothesized relationships of N_2 fixation and stable isotope signature would vary between different groups of host mosses, the absence of significant relationships and/or different directions of relationships among orders indicates the degree to which the anatomy, life history, or micro-environment of these mosses could influence our attempts to understand the drivers of N_2 fixation rate variation. The most striking example of this is the difference between the relationship of $\delta^{13}\text{C}$ to fixation activity in Sphagnales and Hypnales. Though moisture and temperature are generally considered to be primary drivers of N_2 fixation rate variation, only in

Hypnales did the expected positive relationship between a metric of moisture/temperature status and activity occur. While no significant trends were seen among the other moss orders included in this study, Dicranales, Polytrichales, and Rhizogoniales also had generally lower rates of N_2 fixation, making the trend harder to observe.

These observations underline the importance of thinking of moss identity as an interaction term along with environmental variables and, where possible, testing hypotheses with a diversity of host mosses. Both rates of N_2 fixation and moss community composition are expected to change with the climate (Turetsky et al. 2010; Gundale et al. 2012; Deane-Coe et al. 2015; Carrell et al. 2019). Moss-associated N_2 fixation, along with other biogeochemically relevant moss traits, plays an important role in high-latitude C balance (Cornelissen et al. 2007; Lindo et al. 2013). Interspecific knowledge and trait-based approaches to exploring moss-associated N_2 fixation can complement and improve biogeochemical predictions as climate changes and are especially important to consider when employing proxies of the process.

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1007/s00442-021-05005-7>.

Acknowledgements Thanks to the Bonanza Creek LTER, Arctic LTER, and Toolik Field Station for their assistance and facilities. Additional thanks to Noah Fierer, Dakshina Marlier, Haley Dunleavy, Briana Jasinski, Henry Grover, Matthew Bowker, George Koch, and Ted Schuur for assistance with field work, coding, and comments.

Author contribution statement SFM, JMP, and MCM conceived of the study that produced the data presented here, JEMS, HHM, MJ, SNM, SFD, JMP, and MCM performed research, JEMS and MCM analyzed data, JEMS wrote the manuscript with HHM, MJ, SNM, SFM, and MCM contributing to the manuscript.

Funding Funding was provided by the National Science Foundation Division of Environmental Biology Award 1542586. Further graduate student support was provided by the ARCS Scholarship Award and Northern Arizona University. The data were deposited in the Arctic Data Center under the <https://doi.org/10.18739/A2QV3C475>.

References

Ackermann K, Zackrisson O, Rousk J et al (2012) N_2 fixation in feather mosses is a sensitive indicator of N deposition in boreal forests. *Ecosystems* 15:986–998. <https://doi.org/10.1007/s10021-012-9562-y>

Aldous AR (2002) Nitrogen translocation in *Sphagnum* mosses: effects of atmospheric nitrogen deposition. *New Phytol* 156:241–253. <https://doi.org/10.1046/j.1469-8137.2002.00518.x>

Alexander V, Schell DM (1973) Seasonal and spatial variation of nitrogen fixation in the barrow, Alaska, Tundra. *Arct Alp Res* 5:77–88. <https://doi.org/10.2307/1550250>

Ayres E, Van Der Wal R, Sommerkorn M, Bardgett RD (2006) Direct uptake of soil nitrogen by mosses. *Biol Lett* 2:286–288. <https://doi.org/10.1098/rsbl.2006.0455>

Basilier K (1979) Moss-associated nitrogen fixation in some mire and coniferous forest environments. *Lindbergia* 5:84–88

Basilier K (1980) Fixation and uptake of nitrogen in *Sphagnum* blue-green algal associations. *Oikos* 34:239–242

Bates D, Maechler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. *J Stat Softw* 67:1–48

Bay G, Nahar N, Oubre M et al (2013) Boreal feather mosses secrete chemical signals to gain nitrogen. *New Phytol* 200:54–60. <https://doi.org/10.1111/nph.12403>

Berg A, Danielsson Å, Svensson BH (2013) Transfer of fixed-N from N_2 -fixing cyanobacteria associated with the moss *Sphagnum riparium* results in enhanced growth of the moss. *Plant Soil* 362:271–278. <https://doi.org/10.1007/s11104-012-1278-4>

Boedde RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the ^{15}N natural abundance technique to quantify biological nitrogen fixation by woody perennials. *Nutr Cycl Agroecosyst* 57:235–270. <https://doi.org/10.1023/A:1009890514844>

Bragazza L, Limpens J, Gerdol R et al (2005) Nitrogen concentration and $\delta^{15}\text{N}$ signature of ombrotrophic *Sphagnum* mosses at different N deposition levels in Europe. *Glob Chang Biol* 11:106–114. <https://doi.org/10.1111/j.1365-2486.2004.00886.x>

Bragina A, Berg C, Cardinale M et al (2012) Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. *ISME J* 6:802–813. <https://doi.org/10.1038/ismej.2011.151>

Brodrribb TJ, Carriquí M, Delzon S et al (2020) Advanced vascular function discovered in a widespread moss. *Nat Plants* 6:273–279. <https://doi.org/10.1038/s41477-020-0602-x>

Calabria LM, Petersen KS, Bidwell A, Hamman ST (2020) Moss-cyanobacteria associations as a novel source of biological N_2 -fixation in temperate grasslands. *Plant Soil* 456:307–321. <https://doi.org/10.1007/s11104-020-04695-x>

Carrell AA, Kolton M, Glass JB et al (2019) Experimental warming alters the community composition, diversity, and N_2 fixation activity of peat moss (*Sphagnum fallax*) microbiomes. *Glob Chang Biol*. <https://doi.org/10.1111/gcb.14715>

Cornelissen JHC, Van Bodegom PM, Aerts R et al (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. *Ecol Lett* 10:619–627. <https://doi.org/10.1111/j.1461-0248.2007.01051.x>

Cutler DR, Edwards TC, Beard KH et al (2007) Random forests for classification in ecology. *Ecology* 88:2783–2792. <https://doi.org/10.1890/07-0539.1>

Darnajoux R, Magain N, Renaudin M et al (2019) Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests. *Proc Natl Acad Sci USA* 116:24682–24688. <https://doi.org/10.1073/pnas.1913314116>

Deane-Coe KK, Sparks JP (2016) Cyanobacteria associations in temperate forest bryophytes revealed by $\delta^{15}\text{N}$ analysis¹. *J Torrey Bot Soc* 143:50–57. <https://doi.org/10.3159/TORREY-D-15-00013>

Deane-Coe KK, Mauritz M, Celis G et al (2015) Experimental warming alters productivity and isotopic signatures of tundra mosses. *Ecosystems* 18:1070–1082. <https://doi.org/10.1007/s10021-015-9884-7>

DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. *Nature* 419:917–920. <https://doi.org/10.1038/nature01136.1>

DeLuca TH, Zackrisson O, Gentili F et al (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. *Oecologia* 152:121–130. <https://doi.org/10.1007/s00442-006-0626-6>

DeLuca TH, Zackrisson O, Gundale MJ, Nilsson MC (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. *Science*. <https://doi.org/10.1126/science.1154836>

Diefendorf AF, Mueller KE, Wing SL et al (2010) Global patterns in leaf ^{13}C discrimination and implications for studies of past and future climate. *Proc Natl Acad Sci USA* 107:5738–5743. <https://doi.org/10.1073/pnas.0910513107>

Eckstein RL, Karlsson PS (1999) Recycling of Nitrogen among segments of *Hylocomium splendens* as compared with *Polytrichum commune*: Implications for clonal integration in an ectohydric bryophyte. *Oikos* 86:87–96

Edgar RC (2018) Updating the 97% identity threshold for 16S ribosomal RNA OTUs. *Bioinformatics* 34:2371–2375. <https://doi.org/10.1093/bioinformatics/bty113>

Elumeeva TG, Soudzilovskaia NA, During HJ, Cornelissen JHC (2011) The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. *J Veg Sci* 22:152–164. <https://doi.org/10.1111/j.1654-1103.2010.01237.x>

Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. *Annu Rev Plant Biol* 40:503–537

Forsum AÅ, Dahlman L, Näsholm T, Nordin A (2006) Nitrogen utilization by *Hylocomium splendens* in a boreal forest fertilization experiment. *Funct Ecol* 20:421–426

Fukuta E, Sasaki A, Nakatubo T (2012) Microclimate and production of peat moss *Sphagnum palustre* L. in the warm-temperate zone. *Plant Species Biol* 27:110–118. <https://doi.org/10.1111/j.1442-1984.2011.00357.x>

Gavazov KS, Soudzilovskaia NA, van Logtestijn RSP et al (2010) Isotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte species. *Plant Soil* 333:507–517. <https://doi.org/10.1007/s11104-010-0374-6>

Gentili F, Nilsson MC, Zackrisson O et al (2005) Physiological and molecular diversity of feather moss associative N_2 -fixing cyanobacteria. *J Exp Bot* 56:3121–3127. <https://doi.org/10.1093/jxb/eri309>

Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. *Ecol Appl* 1:182–195. <https://doi.org/10.2307/1941811>

Granath G, Rydin H, Baltzer JL et al (2018) Environmental and taxonomic controls of carbon and oxygen stable isotope composition in *Sphagnum* across broad climatic and geographic ranges. *Biogeosciences* 15:5189–5202. <https://doi.org/10.5194/bg-15-5189-2018>

Gundale MJ, Nilsson M, Bansal S, Jäderlund A (2012) The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. *New Phytol* 194:453–463. <https://doi.org/10.1111/j.1469-8137.2012.04071.x>

Gundale MJ, Bach LH, Nordin A (2013) The impact of simulated chronic nitrogen deposition on the biomass and N_2 -fixation activity of two boreal feather moss-cyanobacteria associations. *Biol Lett* 9:20130797–20130797. <https://doi.org/10.1098/rsbl.2013.0797>

Harmens H, Schnyder E, Thöni L et al (2014) Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe. *Environ Pollut* 194:50–59. <https://doi.org/10.1016/j.envpol.2014.07.016>

Hember RA (2018) Spatially and temporally continuous estimates of annual total nitrogen deposition over North America, 1860–2013. *Data Br* 17:134–140. <https://doi.org/10.1016/j.dib.2017.12.052>

Hobbie SE, Gough L, Shaver GR (2005) Species compositional differences on different-aged glacial landscapes drive contrasting responses of tundra to nutrient addition. *J Ecol* 93:770–782. <https://doi.org/10.1111/j.1365-2745.2005.01006.x>

Högberg P (1997) ^{15}N Natural abundance in soil-plant systems. *New Phytol* 137:179–203. <https://doi.org/10.1046/j.1469-8137.1997.00808.x>

Holland-Moritz H, Stuart J, Lewis LR et al (2018) Novel bacterial lineages associated with boreal moss species. *Environ Microbiol* 20:2625–2638. <https://doi.org/10.1111/1462-2920.14288>

Holland-Moritz H, Stuart JE, Lewis LR et al (2021) The bacterial communities of Alaskan mosses and their contributions to N_2 fixation. *Microbiome*. <https://doi.org/10.1186/s40168-021-01001-4>

Hugelius G, Strauss J, Zubrzycki S et al (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. *Biogeosciences* 11:6573–6593

Hyodo F, Kusaka S, Wardle DA, Nilsson MC (2013) Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. *Plant Soil* 364:315–323. <https://doi.org/10.1007/s11104-012-1339-8>

Ininbergs K, Bay G, Rasmussen U et al (2011) Composition and diversity of *nifH* genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses. *New Phytol* 192:507–517. <https://doi.org/10.1111/j.1469-8137.2011.03809.x>

Jean M, Mack MC, Johnstone JF (2018) Spatial and temporal variation in moss-associated dinitrogen fixation in coniferous- and deciduous-dominated Alaskan boreal forests. *Plant Ecol* 219:837–851. <https://doi.org/10.1007/s11258-018-0838-y>

Jean M, Holland Moritz H, Melvin AM et al (2020) Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. *New Phytol* 227:1335–1349. <https://doi.org/10.1111/nph.16611>

Kardol P, Spitzer CM, Gundale MJ et al (2016) Trophic cascades in the bryosphere: the impact of global change factors on top-down control of cyanobacterial N_2 -fixation. *Ecol Lett* 19:967–976. <https://doi.org/10.1111/ele.12635>

Krab EJ, Cornelissen JHC, Lang SI, Van Logtestijn RSP (2008) Amino acid uptake among wide-ranging moss species may contribute to their strong position in higher-latitude ecosystems. *Plant Soil* 304:199–208. <https://doi.org/10.1007/s11104-008-9540-5>

Kuznetsova A, Brockhoff PB, Christensen RHB (2017) Imtest package: tests in linear mixed effects models. *J Stat Softw*. <https://doi.org/10.18637/jss.v082.i13>

Lebauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. *Ecology* 89:371–379

Lefcheck JS (2016) piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. *Methods Ecol Evol* 7:573–579. <https://doi.org/10.1111/2041-210X.12512>

Leppänen SM, Rissanen AJ, Tiirola M (2015) Nitrogen fixation in *Sphagnum* mosses is affected by moss species and water table level. *Plant Soil* 389:185–196. <https://doi.org/10.1007/s11104-014-2356-6>

Liaw A, Wiener M (2002) Classification and regression by randomForest. *R News* 2:18–22

Lindo Z, Nilsson MC, Gundale MJ (2013) Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. *Glob Chang Biol* 19:2022–2035. <https://doi.org/10.1111/gcb.12175>

Lüdecke D (2018) ggeffects: tidy data frames of marginal effects from regression models. *J Open Source Softw*. <https://doi.org/10.21105/joss.00772>

McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. *Quat Sci Rev* 23:771–801. <https://doi.org/10.1016/j.quascirev.2003.06.017>

McDonald D, Price MN, Goodrich J et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. *ISME J* 6:610–618. <https://doi.org/10.1038/ismej.2011.139>

Menge DNL, Hedin LO (2009) Nitrogen fixation in different biogeochemical niches along a 120 000-year chronosequence in New Zealand. *Ecology* 90:2190–2201. <https://doi.org/10.1890/08-0877.1>

Menge DNL, Troy Baisden W, Richardson SJ et al (2011) Declining foliar and litter $\delta^{15}\text{N}$ diverge from soil, epiphyte and input $\delta^{15}\text{N}$ along a 120,000-year temperate rainforest chronosequence. *New Phytol* 190:941–952. <https://doi.org/10.1111/j.1469-8137.2010.03640.x>

Mitchell JS, Ruess RW (2009) N_2 fixing alder (*Alnus viridis* spp. *fruticosa*) effects on soil properties across a secondary successional chronosequence in interior Alaska. *Biogeochemistry* 95:215–229. <https://doi.org/10.1007/s10533-009-9332-x>

Nadelhoffer K, Shaver G, Fry B et al (1996) ^{15}N natural abundances and N use by tundra plants. *Oecologia* 107:386–394. <https://doi.org/10.1051/0004-6361/201322381>

Novak M, Jackova I, Curik J et al (2016) Contrasting ^{15}N values of atmospheric deposition and sphagnum peat bogs: N fixation as a possible cause. *Ecosystems* 19:1037–1050. <https://doi.org/10.1007/s10021-016-9985-y>

Pakarinen P, Rinne RJK (1979) Growth rates and heavy metal concentrations of five moss species in paludified spruce forests. *Lindbergia* 5:77–83. <https://doi.org/10.2307/20149331>

R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>

Rice SK (2000) Variation in carbon isotope discrimination within and among *Sphagnum* species in a temperate wetland. *Oecologia* 123:1–8. <https://doi.org/10.1007/s004420050983>

Rousk K, Michelsen A (2017) Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming. *Glob Chang Biol* 23:1552–1563. <https://doi.org/10.1111/gcb.13418>

Rousk K, Rousk J (2020) The responses of moss-associated nitrogen fixation and belowground microbial community to chronic Mo and P supplements in subarctic dry heaths. *Plant Soil* 451:261–276. <https://doi.org/10.1007/s11104-020-04492-6>

Rousk K, Jones DL, DeLuca TH (2013) Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. *Front Microbiol* 4:1–10. <https://doi.org/10.3389/fmicb.2013.00150>

Rousk K, Jones DL, DeLuca TH (2014) Moss-nitrogen input to boreal forest soils: tracking ^{15}N in a field experiment. *Soil Biol Biochem* 72:100–104. <https://doi.org/10.1016/j.soilbio.2014.01.031>

Rousk K, Sorensen PL, Michelsen A (2016) Nitrogen transfer from four nitrogen-fixer associations to plants and soils. *Ecosystems* 19:1491–1504. <https://doi.org/10.1007/s10021-016-0018-7>

Royles J, Amesbury MJ, Roland TP et al (2016) Moss stable isotopes (carbon-13, oxygen-18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula. *Oecologia* 181:931–945. <https://doi.org/10.1007/s00442-016-3608-3>

Salemaa M, Lindroos AJ, Merilä P et al (2019) N_2 fixation associated with the bryophyte layer is suppressed by low levels of nitrogen deposition in boreal forests. *Sci Total Environ* 653:995–1004. <https://doi.org/10.1016/j.scitotenv.2018.10.364>

Shaver GR, Jonasson S (1999) Response of Arctic ecosystems to climate change: results of long-term field experiments in Sweden and Alaska. *Polar Res* 18:245–252

Skrzypek G, Kałuzny A, Wojtuń B, Jedrysek MO (2007) The carbon stable isotopic composition of mosses: a record of temperature variation. *Org Geochem* 38:1770–1781. <https://doi.org/10.1016/j.orggeochem.2007.05.002>

Solga A, Fram JP (2006) Nitrogen accumulation by six pleurocarpous moss species and their suitability for monitoring nitrogen deposition. *J Bryol* 28(1):46–52

Sonesson M, Gehrke C, Tjus M (1992) CO₂ environment, microclimate and photosynthetic characteristics of the moss *Hylocomium splendens* in a subarctic habitat. *Oecologia* 92:23–29. <https://doi.org/10.1007/BF00317258>

Stuart JE, Holland Moritz H, Lewis LR et al (2020) Host identity as a driver of moss-associated N₂ fixation rates in Alaska. *Ecosystems*. <https://doi.org/10.1007/s10021-020-00534-3>

Stuiver M, Braziunas TF (1987) Tree cellulose $^{13}\text{C}/^{12}\text{C}$ isotope ratios and climatic change. *Nature* 328:58–60. <https://doi.org/10.1038/328058a0>

Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. *Global Biogeochem Cycles* 23:1–11. <https://doi.org/10.1029/2008GB003327>

Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. *Bryologist* 106:395–409

Turetsky MR, Mack MC, Hollingsworth TN, Harden JW (2010) The role of mosses in ecosystem succession and function in Alaska's boreal forest. *Can J for Res* 40:1237–1264. <https://doi.org/10.1139/X10-072>

Turetsky MR, Bond-Lamberty B, Euskirchen E et al (2012) The resilience and functional role of moss in boreal and arctic ecosystems. *New Phytol* 196:49–67. <https://doi.org/10.1111/j.1469-8137.2012.04254.x>

van Breemen N (1995) How *Sphagnum* bogs down other plants. *Trends Ecol Evol* 10:270–275

Vile MA, Kelman Wieder R, Zivkovic T et al (2014) N₂-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. *Biogeochemistry* 121:317–328. <https://doi.org/10.1007/s10533-014-0019-6>

Vitousek PM, Shearer G, Kohl DH (1989) Foliar ^{15}N natural abundance in hawaiian rainforest : patterns and possible mechanisms. *Oecologia* 78:383–388

Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol* 73:5261–5267. <https://doi.org/10.1128/AEM.00062-07>

Wang T, Hamann A, Spittlehouse D, Carroll C (2016) Locally down-scaled and spatially customizable climate data for historical and future periods for North America. *PLoS ONE* 11:1–17. <https://doi.org/10.1371/journal.pone.0156720>

Warshan D, Bay G, Nahar N et al (2016) Seasonal variation in *nifH* abundance and expression of cyanobacterial communities associated with boreal feather mosses. *ISME J* 10:2198–2208. <https://doi.org/10.1038/ismej.2016.17>

Weiss M, Hobbie SE, Gettel GM (2005) Contrasting responses of nitrogen-fixation in arctic lichens to experimental and ambient nitrogen and phosphorus availability. *Arct Antarct Alp Res* 37:396–401. [https://doi.org/10.1657/1523-0430\(2005\)037\[0396:CRONIA\]2.0.CO;2](https://doi.org/10.1657/1523-0430(2005)037[0396:CRONIA]2.0.CO;2)

Werth M, Kuzyakov Y (2010) ^{13}C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. *Soil Biol Biochem* 42:1372–1384. <https://doi.org/10.1016/j.soilb.2010.04.009>

Williams TG, Flanagan LB (1996) Effect of changes in water content on photosynthesis, transpiration and discrimination against $^{13}\text{CO}_2$ and $\text{C}^{18}\text{O}^{16}\text{O}$ in *Pleurozium* and *Sphagnum*. *Oecologia* 108:38–46

Zhang X, Sigman DM, Morel FMM, Kraepiel AML (2014) Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. *Proc Natl Acad Sci* 111:4782–4787. <https://doi.org/10.1073/pnas.11104-012-1282-8>

Zielke M, Solheim B, Spjelkavik S, Olsen RA (2005) Nitrogen fixation in the high arctic: role of vegetation and environmental conditions. *Arct Antarct Alp Res* 37:372–378. [https://doi.org/10.1657/1523-0430\(2005\)037\[0372:NFITHA\]2.0.CO;2](https://doi.org/10.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2)

Zivković T, Disney K, Moore TR (2017) Variations in nitrogen, phosphorus and $\delta^{15}\text{N}$ in *Sphagnum* mosses along a climatic and atmospheric deposition gradient in eastern Canada. *Botany* 95:829–839