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Abstract—A quantum simulation methodology developed
previously based on model order reduction is applied to a 2D
nanostructure. The approach is derived from proper orthogonal
decomposition that projects the nanostructure from its physical
domain onto a function space represented by a finite set of POD
modes. Numerical solution data of the wave function are collected
from the Schriodinger equation to adapt the variation of the energy
band induced by electric fields. The POD modes generated from
the data are thus able to account for the variation of electric field.
Two different models based on different training methods are
explored. Their efficacy and accuracy are investigated.

Keywords—reduced order model, POD, quantum dots, wave
functions, data science

I. INTRODUCTION

Nanostructures have far reaching applications in many
scientific and engineering areas. Analysis and design of
nanostructures usually rely on numerical simulations of the
quantum eigenvalue problems for the nanostructures based on
the Schrodinger equation. For example, simulations of quantum
dots (QDs) are usually needed for design of QD electronic and
photonic devices and they also have many useful applications in
medicine, chemistry and material sciences [1-4]. However,
large-scale multi-dimensional simulations of the Schrodinger
equation often require immense computational power and time,
especially in structures with locally non-periodic regions. One
typical example is the quantum simulation based on density
functional theory (DFT), a quantum mechanical simulation
method for calculating electronic structure of atoms, molecules
and solids; this method is computationally intensive in large
quantum structures, especially with impurities/defects [5-12].

In an attempt to improve the computational efficiency, a
quantum simulation methodology [13] was derived from a
reduced order learning algorithm based on proper orthogonal
decomposition (POD) [14,15]. The approach solves the
Schrodinger equation subjected to the energy band variation
induced by external electric fields. POD projects the quantum
problem from a physical domain onto a functional space
represented by a finite set of the basis functions (or POD modes)
that are generated via a data training method. The POD quantum
model along with domain decomposition was also extended to
the quantum element method (QEM) [16,17] that partitions a
large quantum domain into subdomain (or elements) to make the
approach more flexible and feasible for more complex structure.

The quantum POD modes in previous work [13,16,17] were
trained by several sets of wave function (WF) solution data
accounting for the variation of electric field along one direction
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applied to 1D quantum structures. In this work, the quantum
POD simulation methodology is applied to a 2D QD structure
whose modes are trained by a few sample data sets of WFs.
Instead of using electric fields in many different directions in the
2D domain to train the modes, only electric fields in 2
orthogonal directions are involved. More specifically, in
addition to a sample data set at zero field, several WF data sets
are collected to adapt the variation of electric field in only one
direction, and the other sets in its orthogonal direction. It is
found that the trained POD modes are able to predict the WFs
influenced by any combination of these 2 orthogonal fields.

Two data training methods are explored in this study: the
individual method and the global method. The former trains the
modes using the WF data for all quantum states (QSs), which
produces one set of POD modes. The latter however trains the
modes using WF data in each individual QS, and thus generate
a set of POD modes for each state.

II. QUANTUM PROPER ORTHOGONAL DECOMPOSITION
The electron WF is described by the Schrodinger equation,

V- [+ U=E (@), (M

where 1 (7) is the electron WF, # is the reduced plank constant,
m* is the electron effective mass, U (T) is the potential energy of
the system and E is the QS energy of (7).

The POD modes 1 (#) that constitute the POD space are
determined via a Fredholm equation [14,15],

Jo, RGP dr" = 25 (7), @

where A is the eigenvalue associated with the eigenvector n ()
and R(#,7) is a two point correlation tensor given by

R 7)) = <) Q Y(F") > 3)

Once the POD modes are found using the method of snapshots
[18,19], the WF can be calculated from a linear combination of
these modes,

Y(@) = Zjtiam;(P) “

where M is the total number of modes or DoF to represent the
WF and a; are weighting coefficients pertaining to parametric
variations of electric fields.

The POD eigenvalues A; in (2) represent the mean squared
WF captured by the POD modes. Thus, this eigenvalue spectrum
reveals information regarding the number of modes needed to
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reach a specified accuracy. Given a large enough data set, the
theoretical least square (LS) error for a model constructed of M
modes is given by

Errsm = \/ZéstMHAi/ZIiV:sl A, (5)
where N; is the number of parametric variations applied during
data collection. This equation only holds if one used identical
numerical settings between the data collection and the POD
application and if the parametric variations of the application
falls within the range of the collected data.

Numerically, the LS error between WFs derived via the
quantum POD model and the Schrodinger equation obtained
from direct numerical simulation (DNS) is defined as

Errisy = fﬂ (lpPOD,M @ - 1/)DN5(7))2 dQ, (6)

where Ypgp  is the WF produced using the POD model with M
modes, while s is the corresponding WF solved by DNS.

The equations for a; are derived by projecting the
Schrodinger equation onto the POD modes using the Galerkin
projection method. This leads to a Hamiltonian matrix equation
in the POD eigenspace [13,16,17],

H,d =Ed, (7
where H,is given as
H,=T,+B,+U, (8)
In (8), Tis the interior kinetic energy matrix,
2
T,,;= fn [‘7 n:(#) '%an(F)] dn, )
and B, is the boundary kinetic energy matrix,
By = — ;i@ Vi, (P)dS (10)
and lastly U, is the potential energy matrix,
Uyj= fn 0, (AU @)n;(#)dA. (11)
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Fig. 1. Eigenvalues for the first 65 modes generated from the global method.

40 50 60

III. APPLICATION OF POD TO A QUANTUM-DOT STRUCTURE

For this study, the Aly3Gao7As/GaAs heterostructure was
selected with the parameters: electron effective mass of m* =
.0919m, in Aly3GagpsAs and m* = .067m, in GaAs, and a
conduction band offset at the Alp3Gao7As/GaAs interface of
AE =0.24¢€V.

To generate POD modes from (2), data of WFs in Nps QSs
derived from DNSs of the Schrodinger equation are collected at
Nr different applied electric fields. There are different
approaches to generate the POD modes and each approach leads
to a different POD model. 2 approaches are presented in this
work for the 2D QD structure, which are briefly described
below.

Global method: This approach performs decomposition given
in (2) on the collected WF data in all the selected Nos QSs over
the Nr applied electric fields, and thus the total number of the
sample data sets is Ns= Nps x Nr. This generates one set of Ns
POD modes, and the maximum dimension of the POD
Hamiltonian is limited to Ni.

Individual method: Decomposition for this approach is
performed on each of QSs separately. This generates a set of
POD modes for each QS, and each set is trained by Ny electric
field samples in its QS. There are however Ny Hamiltonian
matrix equations to solve if WFs in all Nys QSs are needed, and
the maximum dimension of the POD Hamiltonian for each QS
will equal Ng.
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Fig. 2. |1|? in the first 6 QSs in the 2D QD structure predicted by the POD global method compared with the DNS of the Schrodinger equation along the x
direction (top row) and the y direction (bottom row). The plotting paths in x and y directions are indicated in the contours given in Fig. 3.
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Fig. 3. Contours of [1|? in the QD structure produced via the POD global method (top row) and DNS (bottom row). The red dashed lines reveal the
plotting paths for the WFs shown in Fig. 2. For the POD WFs on the top row, 10 modes are included in QSs 1 and 2, 9 modes in QS 3, and 13 modes in

QSs 4, 5 and 6.

Both the global and individual methods are examined in a
2D structure with 4x4 QDs and a 2.5nm space on each side of
the structure. The QDs, 4nm>4nm in size were each separated
by Inm. DNSs of this QD structure were performed influenced
by 16 non-zero electric fields plus an unbiased simulation
(electric field = 0); i.e., Nr = 17. For each direction (X, J, —X
and ¥), 4 electric fields were applied with a maximum value of
25 kV/cm. At each electric field, WFs of the first 6 QSs were
collected in the DNS. However, for the demonstrations of both
methods, an electric field was applied with a +X component of
24kV/cm and a —y component of 10kV/cm.

A. Global Method

The eigenvalue of each mode was determined from (2) and
its spectrum is plotted as seen in Fig. 1 that indicates the
importance of each POD mode. Because only the first 6 QSs are
collected, eigenvalues of the first 6 modes are nearly equal,
which suggests that for this system Modes 1 through 6 contain
essential information on the WFs and cannot be ignored. After
Mode 6, the eigenvalue declines rapidly and it drops 3 orders of
magnitude from the first to the 10th mode and 4 orders to the
13th mode. It continues decreasing with a similar rate beyond
the 13th mode. This suggests that this set of POD modes should
offer a good prediction of WFs with 10 modes and a very
accurate prediction with 13 modes. Due to the accuracy limited
by the number of digits used in numerical calculations, after
decreasing by nearly 16 orders of the magnitude from the first
mode, the eigenvalue becomes indistinguishable.

The WFs generated via the POD global method are
illustrated in Fig. 2 along the paths in the x and y directions
shown in the WF contours given in Fig. 3. The first POD mode
predicts the average of the WF data used in the training and thus
reveals the unbiased solution. The inclusion of more modes
gradually improves the accuracy of the POD WF in each state,
as shown in Fig. 4, where the LS error of each WF was
estimated by (6). The LS error also demonstrates that the POD
modes of the global method tend to include more essential
information for the lower states, and Fig. 4 shows that an error
near or below 1% can be reached for the first 3 QSs with 9
modes. To achieve such an accuracy in QSs 4-6, 13 modes are
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needed. Fig. 2 illustrates that, when using 9 or 10 modes for
QSs 1-3 and 13 modes for QSs 4-6, the predicted POD WFs are
practically identical to the control.
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Fig. 4. LS Error for the global method.

TABLE . PERCENT DIFFERENCE OF THE QUANTUM STATE ENERGY
BETWEEN THE GLOBAL POD METHOD AND DNS

Quantum | POD Encrgy | DNSERCISY | pyierence (%)
1 0.116699 0.116778 0.067603
2 0.143238 0.143351 0.07902
3 0.147114 0.147215 0.069048
4 0.173669 0.173806 0.07894
5 0.184776 0.184948 0.092996
6 0.188494 0.188651 0.083426
7 0.215102 0.215293 0.088841
8 0.215259 0.215455 0.091031

Furthermore, Table I reveals that the global method predicts
each QS energy accurately. The percent energy difference of
each state with respect to the minimum of the potential energy
is consistently below 0.1%, even for states 7 and 8 which are not
included in the POD mode training. Additionally, the global
method has no difficulty computing WFs in degenerate states,
such as States 2-3, States 5-6 and States 7-8.
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Fig. 5. |1|? in the first 6 QSs in the 2D QD structure predicted by the POD individual method compared with the DNS of the Schrédinger equation along
the x direction (top row) and the y direction (bottom row). The plotting paths in x and y directions are indicated in the contours given in Fig. 6.
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Fig. 6. Contours of [1|? in the QD structure produced via the POD individual method (top row). The red dashed lines reveal the plotting paths for the WFs
shown in Fig. 5. For the POD WF contours on the top row, 3 modes are included in QSs 1, 2, 3, 4 and 5, and 8 modes in QS 6. Contours derived from

DNS are shown in the bottom row of Fig. 3.
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Fig. 7. LS Error for the individual method.

B. Individual Method

Using the same QD structure, the individual POD method
was also investigated at the same applied electric field. WFs in
QSs 1-6 are illustrated in Fig. 5 along the directions shown in
the WF contours given in Fig. 6. As seen clearly, the individual
method inaccurately predicts QSs 2, 3 and 5. However, as shown
in Fig. 7, the individual method approximately predicts the WFs
in QSs 1 and 4 with LS errors near 6.95% and 9%, respectively,
using 3 or more modes. In addition, an LS error of 8.2% for QS
6 can be reached with 8§ modes and its error reduces to 5.63%
with 14 or more modes. One reason why the individual method
struggles to accurately predict QSs 2, 3 and 5 is because they are
degenerate states. As seen in Table I, QSs 2 and 3 have nearly
the same energy, and so do QSs 5 and 6. It is however interesting

to observe in Figs. 5 and 6 that the 6th QS WF is reasonably
predicted by the individual method, and its POD energy is
actually quite accurate.

TABLE II. PERCENT DIFFERENCE OF THE QUANTUM STATE ENERGY
BETWEEN THE INDIVIDUAL POD METHOD AND DNS

Qusa;:tt:m POI)(g,';ergy DNS(f%ergy Difference (%)

1 0.116992 0.116778 0.183481

2 0.147012 0.143351 2.521909

3 0.146968 0.147215 0.16791

4 0.173653 0.173806 0.087884

5 0.188662 0.184948 1.987912

6 0.188591 0.188651 0.03168

IV. CONCLUSION

The quantum POD methodology has been applied to
investigate its validity in a QD structure using 2 different
methods to generate the POD modes. With relativly few modes,
the global method is able to accuratly predict the WFs of the
selected QD nanostructure. Even though each data set in the
training only experiences one of the 2 orthogonal electric fields,
accurate results can be derived from the POD global method
responding to a field constructed by these 2 orthognal
components. Moreover, it is demonstrated that the global model
is able to predict WFs in nearly degenerate states and in the QSs
beyond what were included in the training of the POD modes.
On the contrastrary, the individual method only offers
reasonable accuracy for non-degenerate states and struggles to
predict WFs in degenerate states.
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