
Citadel: Protecting Data Privacy and Model
Confidentiality for Collaborative Learning

Chengliang Zhang*, Junzhe Xia*, Baichen Yang*, Huancheng Puyang*, Wei Wang*,
Ruichuan Chen†, Istemi Ekin Akkus†, Paarijaat Aditya†, Feng Yan‡

*Hong Kong University of Science and Technology †Nokia Bell Labs ‡University of Nevada, Reno

Abstract
Many organizations own data but have limited machine
learning expertise (data owners). On the other hand, organi-
zations that have expertise need data from diverse sources
to train truly generalizable models (model owners). With
the advancement of machine learning (ML) and its growing
awareness, the data owners would like to pool their data and
collaborate with model owners, such that both entities can
benefit from the obtained models. In such a collaboration,
the data owners want to protect the privacy of its training
data, while the model owners desire the confidentiality of the
model and the training method that may contain intellectual
properties. Existing private ML solutions, such as federated
learning and split learning, cannot simultaneously meet the
privacy requirements of both data and model owners.
We present Citadel, a scalable collaborative ML system

that protects both data and model privacy in untrusted in-
frastructures equipped with Intel SGX. Citadel performs dis-
tributed training across multiple training enclaves running
on behalf of data owners and an aggregator enclave on behalf
of the model owner. Citadel establishes a strong informa-
tion barrier between these enclaves by zero-sum masking
and hierarchical aggregation to prevent data/model leakage
during collaborative training. Compared with existing SGX-
protected systems, Citadel achieves better scalability and
stronger privacy guarantees for collaborative ML. Cloud de-
ployment with various ML models shows that Citadel scales
to a large number of enclaves with less than 1.73X slowdown.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8638-8/21/11. . . $15.00
https://doi.org/10.1145/3472883.3486998

1 Introduction
Building high-quality machine learning (ML) services re-
quires not only extensive ML expertise in feature selection,
model design, hyperparameter tuning and testing, but also
a large amount of high-quality training data from diverse
sources. However, these two requirements are often chal-
lenging to be met simultaneously, for instance, in healthcare
and financial industries. The siloed data is often held by mul-
tiple entities (e.g., hospitals and banks), which are known as
data owners. Each data owner alone may not have sufficient
data nor ML expertise to train high-quality ML models. Thus
data owners would like to collaborate with each other as
well as the ML solution provider (e.g., technology firms) to
build an intelligent service. The solution provider, known
as a model owner, can provide data owners with an API to
access the trained model and charge per use, similar to the
prevalent ML-as-a-Service practices adopted in Amazon and
Google [6, 24]. Examples include hospitals collaborating with
an IT firm to train a diagnostic imaging model over their pa-
tients’ data [36], and banks pooling data to train an advanced
fraud detection model developed by a FinTech company [5].

A key requirement for such collaborative ML is to protect
both data privacy and model confidentiality. For data owners,
protecting the data from being revealed to external entities is
critical for protecting its business interests, and more often
than not, a regulatory requirement [14, 20, 62]. For a model
owner, the model is a valuable intellectual property [38, 65,
82]. Revealing proprietary model details (e.g., architecture
and weights) can potentially result in losing technological ad-
vances to its market competitors. To make matters worse, the
exposure of the model raises new security issues in training
and inference phases, such as backdoor attacks, membership
inference, and model inversion [11, 22, 29, 53].
Prevalent solutions for collaborative ML, such as feder-

ated learning [42, 55, 90] and split learning [26, 85], perform
training without exposing the participants’ data, thus pro-
tecting data privacy. However, they fail to protect model
confidentiality as the training model needs to be shared fully
or partially among participants (see §3.1).
Trusted hardware, such as Intel Software Guard Exten-

sions (SGX) [37], has been used to facilitate collaborative

546

https://doi.org/10.1145/3472883.3486998

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Zhang et al.

ML with privacy guarantees for both data and model own-
ers. A common approach is to perform ML training inside a
single SGX enclave, where all training data and the model
are loaded [35]. However, this approach does not scale to
large models nor large training datasets, due to the restricted
size of the enclave page cache (EPC) (a few hundreds of
megabytes [89]) and the excessive cryptographic overheads
associated with evicting EPC pages to the main memory
(see §3.3). Other approaches [33, 70, 73] distribute training
amongst multiple enclaves but operate under a weaker threat
model, thus insufficient for protecting both data privacy and
model confidentiality in collaborative ML (see §3.4).

In this paper, we present Citadel, a scalable ML system that
enables collaborative learning in untrusted infrastructures
by distributing the training across multiple SGX enclaves,
with strong privacy guarantees for both data and model
owners. Citadel proposes a privacy preserving mechanism to
divide SGX-based ML training into training and aggregating
parts, making it possible to spin up a distributed cluster to
accommodate voluminous multi-sourced data.
To provide these properties, we need to address the fol-

lowing challenges. First, providing privacy to data owners
without compromising model confidentiality is not straight-
forward. SGX is a vehicle to execute trusted ML code, but
data owners have to access and review all code running in the
enclave to trust it in the first place. Unfortunately, sharing
the ML code is against the model owner’s interest because
it risks exposing proprietary ML techniques (see §2.2). This
paradox makes existing solutions either assume that model
owners are not interested in stealing data and refrain from
sharing code with data owners [33], or ensure that all data
owners review and unanimously agree on the code running
in the enclave [35, 73]. To our best knowledge, there is yet a
practical SGX solution that can cater to both data and model
owners’ privacy requirements simultaneously.
Second, scaling the system with both data privacy and

model confidentiality constraints is difficult. It is already un-
realistic to train a state-of-the-art ML model with a large
dataset on a single machine within a reasonable amount of
time, and adopting SGX only makes the matter worse by
introducing steep performance degradation. Without scal-
ing out, an SGX-based solution becomes impractical despite
its security advantages. Careful deliberation is required to
effectively and efficiently partition workload across multiple
enclaves, and to enable them to securely collaborate together.

Third, reaping the security benefits of SGX requires adap-
tation of ML workloads. Modern software, including ML
tool chains, is usually memory-hungry, often using tech-
niques like multiprocessing and single instruction multiple
data (SIMD) operations to speedup data processing. How-
ever, such techniques cause harmful effects in the memory-
restricted SGX context. Our benchmarks demonstrate that

the overhead of creating new processes and the excessive
memory usage can easily overtake the benefits of paralleliza-
tion. As a result, besides being able to scale out, reducing
SGX overheads within each enclave is critical.
We tackle these challenges with a novel system design

in Citadel. First, to earn data owners’ trust while protect-
ing a model owner’s confidentiality, we introduce two ap-
proaches, zero-sum masking and hierarchical aggregation,
to isolate code that is handling data and code that is han-
dling the model, and run these two parts in separate en-
claves. Therefore, only the code that has direct access to
data shall be shared with data owners to gain trust, while
the model handling code remains private to a model owner.
Second, with data handling code singled out, we are able to
set up multiple such enclaves concurrently to process data
in parallel, and aggregate the intermediate results together
to update the model. We also delegate the attestation and
secret distribution to a centralized service Palæmon [25], so
that model and data owners do not have to manage trust
and secrets across many enclaves. Third, we employ tech-
niques like hierarchical aggregation and multi-threading
with pre-compiled C libraries to make ML workloads adapt
to SGX’s memory constraints. We have implemented Citadel
atop SCONE [8], a secure Linux container framework facil-
itating confidential computing with SGX. Our implemen-
tation supports common distributed ML approaches such
as local-update SGD [27, 50, 88], model averaging [27, 55],
and relaxed synchronization [30, 49, 94], so that existing
ML training applications can migrate to Citadel with min-
imal efforts. Citadel is open-sourced. We evaluate Citadel
with various ML workloads of different sizes on Azure, and
confirm that it can effectively speed up training via more
enclaves. With 32 training enclaves, we are able to boost the
throughput to 4.7X–19.6X compared with those running in
a single enclave. We also demonstrate that Citadel achieves
the privacy guarantees without significant overhead by com-
paring with baselines, including Chiron [33] and running
Citadel natively without SGX.

2 Collaborative ML and Threat Model
In many application domains such as healthcare and finance,
building a high-quality ML model requires the participation
of both model and data owners. The model owner (e.g., a tech
company or ML developer) has advanced ML expertise but
may not have access to diverse training datasets. On the other
hand, data owners (e.g., hospitals and retailers) have quality
labeled datasets, but any single one may not have enough
data samples or ML expertise to build a quality model. An
ideal solution enables collaboration among data owners and
the model owner, such that the model developed by the latter

547

Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning SoCC ’21, November 1–4, 2021, Seattle, WA, USA

can be trained over the data owned by the former, while still
preserving data privacy and model confidentiality.

2.1 Entities in Collaborative ML
Collaborative ML typically involves three entities, a model
owner, a number of data owners, and a third-party infrastruc-
ture such as a public cloud for providing training resources.
These entities have different goals in collaborative ML.
Data Owner. Data is a critical asset containing personal
or business-sensitive information. In business-to-customer
settings, the protection of data privacy is further mandated
by regulations (e.g., GDPR [20]). The violation of such re-
quirements can lead to hefty fines and serious legal con-
sequences [21]. Therefore, a data owner wants to protect
its data from being exposed to other entities, including the
model owner, the cloud, and other data owners.
Model Owner. For the model owner, protecting the confi-
dentiality of the training model (i.e., design and weights) is
a top requirement. First, the model is a valuable intellectual
property as its development demands tremendous research
and engineering effort [65, 82]. Protecting it helps maintain
the model owner’s technical advances and supports its busi-
ness as data owners would otherwise train the model by
themselves. Second, maintaining the model confidentiality is
also a security requirement. Prior work shows that sharing
the model with (untrusted) participants poses new threats
that are hard to defend against, such as membership infer-
ence, model inversion, and backdoor attack [11, 22, 29, 53].
In security-critical applications such as fraud detection and
spam filtering, exposing the model details creates a wider
attack surface as adversaries can forge attacks to evade the
model’s defense mechanisms by offline trial and error [66].
In addition, the model owner wants to conceal the ML

training method, such as optimizer selection [75], gradient
manipulation [95], and learning rate schedule [92]. These are
critical to the training performance. Selecting, combining,
and configuring them require extensive ML expertise, which
are part of the model owner’s intellectual property.
Third-Party infrastructure. Training complex ML mod-
els over large datasets requires a large amount of computa-
tional resources, which model and data owners may not have.
Therefore, a common practice is to rent a large number of
virtual instances in a third-party cloud (e.g., Azure and AWS)
and perform distributed training across those instances.

2.2 Threat Model
Training is performed on a third-party cloud trusted by nei-
ther data owners nor the model owner. The cloud instances,
including privileged software like OS and hypervisor, are
untrusted. Attacks can be performed by the cloud provider
or anyone with access to the OS and hypervisor. On the other

hand, data and model owners trust the implementation of the
trusted computing base (e.g., Intel SGX) and its attestation
service. We also assume that the participants trust standard
ML frameworks like TensorFlow [2] and PyTorch [68]. These
frameworks are under public scrutiny in open-source com-
munities, and their security is orthogonal to this work.
We assume that data owners and the model owner are

honest but curious. They faithfully follow the training process
specified by our system, as they have no incentive to hinder
the training. While doing so, however, data owners may
collude with each other to obtain the model and methods
to perform training on their own. Data owners also want to
pry on each other’s data to improve their competitiveness
in the same business sector. The model owner, on the other
hand, may want to access the training data for illicit use.

The model owner might theoretically engineer the model
to preserve information from input data. Such a vulnerability
could happen as it stems from the concept of model confiden-
tiality and the information retaining nature of ML models.
There are potential routes to address this issue. First, Citadel
can potentially export the trained model to a secure enclave
directly for deployment, thus eliminating the model owner’s
access to plaintext model after training. Second, Citadel can
get a third-party entity, which has no conflict of interest (e.g.,
a government agency or a neutral authority), involved to
verify that the model is not maliciously engineered [61].
What does Citadel not protect? We do not address denial-
of-service attacks, side-channel attacks [84] and rollback
attacks [67], as there have been complementary mechanisms
to prevent them [12, 43, 44, 64]. Besides, we do not protect
against membership inference and data extraction attacks
from model owners, similar to the state-of-the-art federated
learning approaches and other SGX-based solutions [78].

3 Prior Arts and Their Insufficiency
In this section, we describe why prior work is insufficient to
protect data privacy and model confidentiality for collabora-
tive learning under the threat model introduced in §2.2. We
start by introducing existing solutions designed for different
collaborative learning scenarios and explaining why they
cannot be applied here. We then introduce the SGX-based so-
lutions, which are the most related to our work, and discuss
their problems to achieve scalable collaborative learning.

3.1 Solutions for Collaborative Learning
Existing solutions to collaborative ML focus on data privacy
without model confidentiality.
Federated learning (FL) is a computing paradigm inwhich
multiple clients collaboratively train a shared model by up-
loading their local updates to a central server for aggregation
without exposing private training data [42, 90]. FL employs

548

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Zhang et al.

various security measures to protect data privacy for clients,
including secure multi-party computation (SMPC) [13, 19, 58,
59, 80, 90, 96], differential privacy (DP) [23, 54, 56, 77], and
homomorphic encryption (HE) [16, 51, 52, 69, 93]. However,
FL is not designed to protect model confidentiality as the
training model is shared among all clients, each being both
a model owner and a data owner.

Split Learning (SL) offers an alternative approach to col-
laborative ML for training deep neural networks [26, 85]. In
SL, a neural network is split into two parts at a certain layer,
called a cut layer. The model owner releases the neural net-
work up to the cut layer to data owners, while keeping the
remaining layers private. Data owners train the network up
to the cut layer with their private data and send the updates
to a central server, based on which the model owner trains
the remaining network. While this scheme preserves data
privacy, the model confidentiality cannot be fully protected,
as the neural network up to the cut layer is shared among
data owners. In addition, the parameters of neural network
are only accessible to data owners, meaning the model owner
cannot access the complete network of the trained model.
Given that these collaborative learning solutions assume

the actual training is distributed among data owners, they
have fundamentally different system architectures and can-
not be easily adapted to a scenario under our threat model.

3.2 Intel SGX
ML training requires access to both data and model. To pro-
tect their privacy, the training must be performed at a se-
cure place trusted by both data and model owners. Trusted
hardware like Intel SGX (Software Guarded Extensions [37])
offers a viable solution to create a trusted execution environ-
ment (TEE) even if the underlying platform is untrusted.
Intel SGX is one of the most widely available hardware-

assisted TEE, along with other implementations such as
ARM TrustZone [7] and AMD Secure Memory Encryption
(SME) [1]. It sets aside a protected memory region, called an
enclave, within an application’s address space. Code execu-
tion and memory access in the enclave are strongly isolated
from external programs. The processor ensures that only
code running in an enclave can access the data loaded into
it. External programs, including the operating system and
hypervisor, can only invoke code inside an enclave at the
statically-defined entry points. SGX also supports remote
attestation, which allows a remote user to verify that the
initial code and data loaded into an enclave match a given
cryptographic hash, hence creating trust that the enclave
will perform the expected computation.

However, the enclave’s hardware-protected confidentiality
and integrity come with a steep price for performance. First,
as the host platform is untrusted, copying between CPU and

enclave memory must be protected to prevent memory bus
snooping. SGX uses memory encryption engine (MEE) to
transparently encrypt and decrypt data exchanges through
memory bus, incurring 2X-3X performance overhead than
native executions [34]. Second, the performance of an en-
clave is usually bounded by the enclave page cache (EPC) size,
a hardware-protected memory region used to host the en-
clave pages. The EPC is usually small, e.g., only 168MB in the
most expensive Azure confidential computing instance [10].
Any memory usage beyond the EPC will cause enclave pages
to evict to the unprotected main memory. To ensure the con-
fidentiality and integrity of the evicted EPC pages, SGX uses
symmetric key cryptography, which compounds to a large
overhead as the number of evictions increases. Such over-
head can be mitigated by optimizing code to avoid paging
as much as possible. Third, because system calls still need
to be facilitated outside the enclaves, there is a substantial
context switching overhead. State-of-the-art SGX systems
often avoid system calls like I/O and threading [8].

Software Fault Isolation (SFI) [87] is a software instru-
mentation technique for sandboxing untrusted modules, pre-
venting codes from accessing others’ secrets. It has been
adopted lately in Occlum [76] and Chancel [3] to provide
certain levels of secret isolation. However, SFI alone cannot
provide strong security up to our threat model. For example,
a malicious model owner can run codes to compress users’
data and export the unidentifiable data through SFI’s defined
exit. Consequently, we believe verification for codes with
direct data access is essential.

3.3 Private ML with a Single SGX Enclave
One solution to private collaborative ML is to use a single
SGX enclave attested by both data owners and the model
owner (Fig. 1).1 The training is performed in a remote enclave
running on an untrusted host (e.g., a cloud server). Before
the training begins, a data (or model) owner generates a
private symmetric key and uses it to encrypt the data (or
model). The encrypted data and model are then uploaded to
an unprotected storage on the host, which does not have the
key. The host then creates an enclave containing the agreed-
upon ML code by all secret (i.e., model and data) owners,
and lets them initiate attestation to ensure the integrity and
correctness of the initialized enclave. Once the attestation is
successful, each secret owner uploads its encryption key to
the enclave over a TLS-protected channel, with which the
enclave can retrieve the encrypted data and model from the
storage and decrypt them. The training starts once the data,
model, andML code are all loaded into the enclave. When the

1This design is an extension to [35], in which data owners also own the
training model, similar to the FL setting.

549

Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Data Owner 1

Data
Key 1

…

Model Owner

Model
Model Key

Storage
Operating
System

Host Machine

Secure Enclave

ML code

Decrypted
Data

Decrypted
Model

Keys

Data Owner N

Data
Key N

Figure 1: Illustration of a single-enclave that protects
the confidentiality of both data and model.

8 16 32 64 128 256

batch size

0

5

10

15

20

e
p
o
c
h
 t

im
e
 (

s
):

 b
a
r

SGX Native

0

5

10

15

20

s
lo

w
d
o
w

n
:

li
n
e

(a) Training epoch time and slow-
down w.r.t. batch size

8 16 32 64 128 256

batch size

0

2

4

6

m
e
m

o
ry

 u
s
a
g
e
 (

1
0
0
 M

B
)

(b) Memory usage w.r.t.
batch size

Figure 2: Epoch time under SGX and native mode. The
slowdown (line) represents the ratio between SGX and
native time. Memory refers to active SGX memory.

training completes, the model owner downloads the model,
and the enclave is destroyed along with the contained data.

Poor Scalability. Such a design, however, does not scale
to a large training dataset. To illustrate this problem, we
characterize its performance with Azure’s latest confiden-
tial computing offering DCsv2 [10]. We run experiments in
a Standard_DC8_v2 instance, the largest in DCsv2 with 8
vCPUs and 32 GB memory, of which 168MB is dedicated
to an enclave’s EPC. We train AlexNet [46] over images of
size 32 × 32 × 3 with TensorSCONE [47], an SGX-optimized
version of TensorFlow v1.15. We then run the same training
workload with the unmodified TensorFlow outside the en-
clave. Note that, to speed up training on a single machine
without accelerators, one common technique is to configure
a large batch size for increased parallelism and reduced it-
erations. We evaluate the training epoch time (time needed
to finish processing the entire dataset) with varying batch
sizes in SGX and the native environment, respectively.
When the batch size is small (8 or 16), running in SGX is

only 2.9X slower than running natively outside of the enclave,
meeting the expected performance of TensorSCONE [47]
(Fig. 2a). Such slowdown is mainly due to the MEE encryp-
tion overhead but not EPC paging, as memory usage is barely
over the EPC size (Fig. 2b). Further increasing the batch size
leads to more parallelism, which reduces the epoch time in
the native mode. This trend does not hold in SGX: as the
batch size increases, the epoch time first reduces but then
surges rapidly, a consequence of frequent EPC paging due
to excessive memory usage beyond the EPC size (Fig. 2b).

Therefore, one cannot expect to scale ML training by config-
uring a large batch size in an enclave: with a batch size of
256, the slowdown with SGX is about 17X (Fig. 2a).

Training Logic Exposure. Note that, in the single-enclave
solution, the ML code must be shared and agreed by all data
owners to ensure that it contains nomalicious code that could
harm their privacy (e.g., writing data to an external storage).
However, this sharing inevitably reveals the details of the
model update logic (e.g., optimizer selection, learning rate
scheduling, and gradient manipulation), which the model
owner may consider as intellectual property (§2).

3.4 Private ML with Multiple SGX Enclaves
As model training in a single enclave does not scale, recent
works propose distributed solutions with multiple enclaves.
Notably, Ping An [70] augments FL with SGX enclaves at
the data owners’ side for enhanced data privacy while ex-
ploiting data parallelism, but the data owners can still access
the training model. Chiron [33], built atop Ryoan [34], en-
sures model confidentiality for ML-as-a-Service providers
with SGX enclaves, and supports running multiple training
enclaves in parallel. However, its design is based on the as-
sumption that the model owner (i.e., MLaaS provider) is not
interested in harvesting data owners’ data, which may not
be the case in collaborative ML. The two approaches cannot
be combined to complement each other, as Chiron places the
training data in cloud servers, which is not allowed in Ping
An. SecureTF [73] presents a modified TensorFlow to sup-
port distributed training in multiple enclaves, but assumes
that model and data belong to the same entity, and hence can-
not be applied to collaborative ML. PPFL [57] adopts TEEs
on mobile devices to train the final layers of a proprietary
model in the context of cross-device federated transfer learn-
ing. The data passes through a public base model, and the
intermediate results are then fed into the TEEs holding secret
model layers. In this design, only parts of the final model can
remain private. Substantial information can also be inferred
by a malicious model owner within the blackbox enclaves
as they are not verified by data owners [69]. Furthermore,
mobile devices’ constrained TEE memory greatly limits the
ML model size and the training efficiency. To our knowledge,
a scalable collaborative ML system that protects the privacy
for both model and data owners is still lacking.

4 Citadel Design
We aspire to devise an ML system that not only preserves
data and model privacy simultaneously, but also enables
distributed training across multiple SGX enclaves. To do so,
we securely partition training workload, and make part of it
replicable. Citadel achieves this by separating and isolating
data handling code and model handling code. The former

550

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Zhang et al.

Cloud Host

Training Enclave

Data Handling Code

Storage Service

Aggregator Enclave

Model Handling Code

Admin Enclave

Model

Owner

CAS

keys
model &

data

masks

updates

modelkey

keys

model

data

Data

Owner

key

UntrustedTrusted
Model Owner

private code

Figure 3: An overview of Citadel. All codes (except the
model handling code) are open-sourced to gain data
owner’s trust, while the model handling codes remain
private to model owner.

can be shared with data owners to gain their trust, while
the latter remains private to the model owner. Afterwards, a
barrier has to be inserted between the two parts to ensure the
model handling code cannot recover data owners’ data with
its private code. With data handling codes isolated securely,
Citadel is able to accelerate training through data parallelism.

4.1 Design Overview
Fig. 3 illustrates an architectural overview of our Citadel
system. It facilitates collaborative ML in multiple enclaves
hosted in untrusted infrastructure. These enclaves can run
in a single or multiple cloud instances. A data (or model)
owner communicates with Citadel through a client running
on a local machine. The client includes a verifier which the
data (or model) owner uses to attest Citadel. It also provides
a key manager with which the owner generates a symmetric
encryption key and uses it to encrypt data (or model). The
client uploads the encrypted data (or model) to a general
cloud storage service. The storage itself does not need to
be trusted since the secrets are encrypted. Citadel launches
multiple enclaves on behalf of data and model owners, es-
tablishes trust between the enclaves and the owners via
attestation (handled by CAS, configuration and attestation
service), and performs distributed training in those enclaves.
Specifically, Citadel runs three types of enclaves: training
enclaves, aggregator enclave, and admin enclave.

Training Enclave. In Citadel, each data owner has a dedi-
cated training enclave, which needs to be attested by both
the corresponding data owner(s) and the model owner to
gain their trust. It takes private data as input, runs data han-
dling code (e.g., compute gradient updates) provided by the
model owner, and generates model updates. As the code has
direct access to the training data, it must be shared to and
agreed by the data owner. The code should reveal no model
information that the model owner wants to protect, such
as hyper-parameter configuration and the training model.

Instead, it loads such information as environment variables
and non-executable binary model files from the storage ser-
vice. Note that, it is not possible to inject malicious code into
the model files, as they are non-executable in the standard
ML toolchains. After the model updates are computed, the
training enclave sends them to the aggregator enclave for
global aggregation. Citadel currently does not consider the
scenario where models are too big for a single enclave. Such
an extension could be achieved by either increasing EPC size
with a specialized SGX card [15], or applying existing model
parallelism techniques to split large models [28, 32, 91].
Aggregator Enclave. Citadel launches an aggregator en-
clave on behalf of themodel owner to run themodel handling
code. Each training job has only one such enclave, and it
is attested by the model owner only. It collects aggregated
updates (§ 4.2) from all training enclaves and updates the
model for the next training iteration. The updated model is
encrypted and stored in storage service, so that the training
enclaves can start the next iteration after retrieving it. As
the aggregator enclave has no access to data from data own-
ers, the code running inside remains private to the model
owner. This prevents sensitive training methods developed
by the model owner from being revealed (e.g., learning rate
schedule, optimizer selection, gradient selection and manip-
ulation), which are required for aggregation.
Admin Enclave. Citadel launches an admin enclave for
a training job, uses it to schedule the training workload
and orchestrate the associated training and aggregator en-
claves. Code running inside an admin enclave (i.e., mask
generator described later in §4.2 and enclave scheduler) are
open-sourced for public access. The enclave itself is attested
by all model and data owners. To facilitate communication
between an enclave and external entities, Citadel provides
open-source utilities that run as part of admin code in a train-
ing or aggregator enclave. As the cloud host’s network is
untrusted, communications inside Citadel are secured by
TLS connections with endpoints located inside the enclaves.
Attestation with CAS. In Citadel, a secret owner needs to
attest multiple enclaves to ensure the integrity and confiden-
tiality of the data and code. The default SGX attestation can
be tedious as it attests one enclave at a time. CAS (config-
uration and attestation service) offers a simplified solution
to secret management and attestation. CAS itself is open-
sourced and runs in an enclave, which the model and data
owners can verify and attest. Once the secret owners have
established trust via CAS, they can delegate their encryption
keys to it, and instruct it on how to maintain their security
including which enclave can access which secrets and which
code should run in which enclave. CAS faithfully follows the
specified security policy, attesting each enclave on behalf of
the data or model owners and supplying the enclave with

551

Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning SoCC ’21, November 1–4, 2021, Seattle, WA, USA

secrets once it is trusted. With the help of CAS, model and
data owners only have to initiate the attestation process once.
Citadel employs Palæmon [25], a trust management service
built on top of SCONE [8], as its CAS system.

Fault Tolerance. Citadel’s training enclaves are stateless
by design, because model and data are all stored into and
fetched from a storage system. In case of training enclave
failures, Citadel can easily launch replacements and resume
the training process via restarting the ongoing iteration. The
training progress is always checkpointed since the updated
model is encrypted and stored into storage after each itera-
tion. If admin or aggregator enclaves fail, Citadel can also
similarly restart the cluster and continue training.

4.2 Separating Data and Model Handling
A key design in Citadel is to separate the model owner’s ML
code into two parts: model handling code and data handling
code. The model handling code computes the global model
updates based on the gradients received from the training
enclaves. As such, it concerns with potentially confidential
methods and values. Citadel runs the model handling code in
the aggregator enclave. In contrast, the data handling code
is shared with data owners (i.e., open-sourced) to gain their
trust. It handles standard forward and backward propagation
mechanisms, and has access to data owners’ private data.
This separation provides the model owners with model

confidentiality: Citadel ensures that the data owners only see
placeholders for the model and hyperparameters, which are
loaded dynamically into training enclaves after attestation
(§4.1). The secrets to load these values and replace the place-
holders are only shared after the attestation, such that model
and hyperparameters remain unknown to data owners.

On the other hand, this separation alone does not fully pro-
vide data privacy for data owners. Although data owners can
verify the open-source data handling code and ensure it does
not leak private data, prior work shows that a data owner’s
training data can still be inferred accurately from computed
gradients [69]. Citadel addresses this problem to protect data
privacy with two methods: First, data owners do not receive
intermediate models from the model owner, such that they
cannot pry into other data owners’ data. Second, a barrier is
inserted between the training enclaves and the aggregator
enclave, so that the model owner only receives aggregated
updates but not the raw updates from any individual training
enclave. Specifically, we propose two mechanisms for such a
barrier: zero-sum masking and hierarchical aggregation.

4.2.1 Zero-SumMasking. Zero-summasking, originally pro-
posed for federated learning (FL) as a way to implement
secure aggregation [13], allows data owners to collectively
generate masks and apply them to their individual updates

1 # download, decrypt and, process data with data owner's key
2 train_data = download_decrypt_data(data,

os.environ[DATA_KEY])
3 train_x, train_y = preprocess_data(train_data)
4 # download, decrypt, and load model with model owner's key
5 model = download_decrypt_model(os.environ[MODEL_KEY])
6 TH, ml_toolchain.load_model(model)
7 # training
8 gradients = ml_toolchain.train(train_x, train_y,

os.environ[BATCH_SIZE])
9 # request and apply mask, send only masked gradients
10 mask = citadel.get_mask()
11 masked_gradients = mask + gradients
12 citadel.send(masked_gradients)

Pseudocode 1: Training Enclave.

1 # initiate sum and masks
2 sum = 0, masks = []
3 # generate N - 1 random masks
4 for i in range(N - 1):
5 mask_i = rand.generate_mask(shape)
6 masks.append(mask_i)
7 sum += mask_i
8 # add the last mask so that the total is 0
9 masks.append(-sum)
10 # distribute masks to training enclaves
11 citadel.distribute_masks(masks)

Pseudocode 2: Admin Enclave.

1 # collect and aggregate gradients from training enclaves
2 all_masked_gradients = citadel.wait()
3 aggregated_gradients = numpy.sum(all_masked_gradients)
4 # download, decrypt, and load model with model owner's key
5 model = download_decrypt_model(os.environ[MODEL_KEY])
6 ml_toolchain.load_model(model)
7 optimizer =

ml_toolchain.optimizer(os.environ[LEARNING_RATE_SCHEDULE])
8 # update model
9 clipped_gradients = ml_toolchain.clip(aggregated_gradients)
10 updated_model = ml_toolchain.apply(clipped_gradients)
11 # encrypt and save the updated model for next round
12 citadel.save(updated_model, os.environ[MODEL_KEY])

Pseudocode 3: Aggregator Enclave.

before sending them to the aggregator. The masks are gener-
ated in such a way that they are canceled out when summed
up, so that the updates are correctly aggregated. Since the ag-
gregator does not have access to individual masks, it cannot
learn the raw gradients from any data owner.
Inspired by such a concept, we propose a new zero-sum

masking scheme for Citadel. Compared with the FL setting,
where themasks have to be generated among distributed data
owners, TEE enables us to execute code that is verified and
trusted by the involved parties, so we can opt to a centralized
mask generation approach.
As shown in Pseudocode 1-3, 𝑁 masks 𝑚0,𝑚1, ...,𝑚𝑁−1

are generated for 𝑁 training enclaves by the admin enclave

552

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Zhang et al.

trusted by all secret owners (i.e., data and model owners).
These masks are of the same size as the model gradients, with
a sum being zero:

∑𝑁−1
𝑖=0 𝑚𝑖 = 0. After the training starts, each

training enclave first downloads and decrypts a fresh model
from the storage service, and then computes gradients with
the code shared and verified by data owners. The training en-
clave 𝑖 then requests admin enclave for the mask𝑚𝑖 , applies
it to its gradients, and finally sends them to the aggregator
enclave. The aggregator enclave collects the masked gradi-
ents from all training enclaves, aggregates them, and updates
the model using the specified model update method. As an
individual update from each training enclave is obscured
with a random mask, the model owner’s private model han-
dling code cannot infer any information about the training
data. By aggregating all updates together, the masks cancel
each other out, resulting in the same aggregated update as
it would have been without masking. The security of this
approach is based on the fact that if data owners’ values have
uniformly random pairwise masks added to them, then the
resulting values appear uniformly random, conditioned on
their sum being equal to the sum of data owner’s values, as
proven in [13].

Our centralized zero-sum masking approach protects the
model confidentiality, while guaranteeing the same level
of privacy for data owners as in secure aggregation [13],
but without the time-consuming synchronous distributed
mask generation. Although the codes in training enclaves
are shared with data owners, the secrets are omitted; thus,
protected. Static secrets like model weights, encryption keys,
and training batch size are shared as placeholders, and are
only dynamically loaded as environment variables once the
enclaves pass attestation. The aggregator codes remain pri-
vate to the model owner because the raw training data and
gradients produced from individual training enclaves are no
longer accessible. Consequently, model owners retain intel-
lectual properties like gradient manipulation and learning
rate schedules.

Offline Mask Generation. In our zero-sum masking ap-
proach, protecting the mask confidentiality is the key to
shielding individual updates from the model owner and
the cloud provider. Therefore, the masks have to be gen-
erated within the admin enclave and encrypted before leav-
ing the enclave. However, with an increasing number of
training enclaves, the compute-intensive mask generation
and bandwidth-intensive mask distribution would inevitably
make the admin enclave a performance bottleneck.
To address this problem, we choose to generate masks

offline and offload mask distribution to the untrusted storage
service after encrypting the generated masks. Before the
training starts, the admin enclave generates sufficient sets
of 𝑁 masks, encrypts each mask with a separate key and

stores them in the storage service. During training, upon
receiving a masking request from a training enclave, the
admin enclave redirects the request to the storage service,
and provides the training enclave with the corresponding
decryption key. As such, the heavy tasks of masking are
removed from the critical path.

To handle potential training enclave stragglers, Citadel op-
tionally employs a relaxed consistency model like SSP [30]:
assuming the first 𝐾 out of 𝑁 training enclaves would par-
ticipate in the aggregation, the admin enclave can return
the sum of the remaining pre-generated masks

∑𝑁
𝑖=𝐾𝑚𝑖 to

enclave 𝐾 , thus ensuring the overall sum remains zero.

4.2.2 Hierarchical Aggregation. The zero-sum masking solu-
tion requires one-to-all and all-to-one synchronization in the
mask distribution (between the admin enclave and training
enclaves) and aggregation (between training enclaves and
the aggregator enclave) phases. As more training enclaves
run in the system, such synchronization overheads become
increasingly prominent. In fact, given SGX’s memory limi-
tations, neither generating a large number of masks within
an admin enclave nor aggregating large updates within an
aggregator enclave scales.
To address this potential issue at large scale, we propose

to establish a tree-structured hierarchical aggregation among
training enclaves. Since our goal is to protect individual
updates from being learned by the aggregator enclave, we
can utilize training enclaves to aggregate the intermediate
results, which are trusted by data owners. As described in
Algorithm 1, after processing a batch, each training enclave
holds its own gradients and follows a tree-structured hierar-
chical aggregation scheme to accumulate gradients. Citadel
does not require ring-reduce like communication as the up-
date propagation pattern is all-to-one instead of all-to-all.

Assume there are 𝑁 training enclaves, and each leader in
the aggregation tree has𝐶 children (𝐶 − 1 neighbors need to
transfer their updates to the leader in one round). It requires
⌈𝑙𝑜𝑔𝐶𝑁 ⌉ + 1 rounds of aggregation (height of the aggrega-
tion tree), and on the 𝑙 th level, there are ⌈...⌈⌈𝑁 /𝐶⌉/𝐶⌉ ...⌉
active nodes remaining. On the 𝑙 th level, we denote the 𝑖th

remaining active node by 𝑖𝑑𝑙𝑖 , so that each of these active
nodes sends its aggregated results from last round to a leader
node 𝑖𝑑𝑙⌊𝑁 /𝐶 ⌋ . The recursion continues until the last leader
accumulates the final results and sends it to the aggregator
enclave. Hierarchical aggregation avoids the expensive all-to-
one synchronization, eliminating communication hotspots.

4.2.3 Comparison of Two Approaches. Both zero-sum mask-
ing and hierarchical aggregation effectively shield the raw
updates from the aggregator enclave. Zero-sum masking
requires an all-to-one communication from all training en-
claves, and then all the updates have to be aggregated in

553

Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Algorithm 1 Citadel with Hierarchical Aggregation
Training Enclave 𝑖:

1: function StartsTraining
2: for epoch 𝑒 = 0, 1, 2, ..., 𝐸 do
3: for all training batch 𝑡 = 0, 1, 2, · · · ,𝑇 do
4: Download fresh model𝑚𝑜𝑑𝑒𝑙 , compute gradients 𝑔 (𝑒,𝑡)

𝑖

5: Call HierarchicalAggregate to start aggregation.
6: function HierarchicalAggregate
7: if I am leader in this round. then
8: Collect and accumulate intermediate results.
9: if I am the final leader. then
10: Send aggregated result𝐺 (𝑒,𝑡) to aggregator.
11: else
12: CallHierarchicalAggregate to send results to next leader.
13: else
14: Send results to the leader.

Model

Owner

…

Enclave

CAS

Enclave

Admin

Enclave

Training 0

Enclave

Training N

…

Enclave

Aggregator

Storage
Service

Data Owner

0

Data Owner

X

  
  

 




Enclave

TLS conn.

Regular

conn.















Model

Owner

…

Enclave

CAS

Enclave

Admin

Enclave

Training 0

Enclave

Training N

…

Enclave

Aggregator

Storage
Service

Data Owner

0

Data Owner

X

 
 

  

 









(a) zero-sum mask (b) recursive aggregation

 
 





Figure 4: The workflow of Citadel with zero-sum
masking. Enclave TLS connections terminate within
enclaves.

the EPC-limited aggregator enclave, so the overall overhead
grows as more training enclaves run in the system.
Hierarchical aggregation, on the other hand, breaks the

all-to-one communication pattern into a hierarchical aggre-
gation tree. Although the potential network congestion is
mitigated, extra cryptographic operations are needed to pro-
tect the communication connections on the aggregation tree.
However, it is difficult, if not impossible, to quantitatively
justify such trade-off in this scenario, as the time needed
to finish a certain operation within an enclave depends on
both the memory footprint and the memory access pattern.
Assume there are 𝑁 training enclaves. Let 𝑡𝑛𝑒𝑡 (𝑥), 𝑡𝑒𝑛𝑐 (𝑥),
and 𝑡𝑑𝑒𝑐 (𝑥) respectively denote the time needed to transfer,
encrypt, and decrypt message 𝑥 . Let 𝑡𝑚𝑎𝑠𝑘 , 𝑡𝑡𝑟𝑎𝑖𝑛 , and 𝑡𝑎𝑝𝑝𝑙𝑦
be the computation time needed to apply a mask, generate
gradients, and apply gradients to model, respectively, and
𝑡𝑎𝑔𝑔 (𝑘) the time spent on aggregating updates from𝑘 training
enclaves. The iteration time for zero-sum masking 𝑡𝑚𝑎𝑠𝑘 (𝑁)
is estimated as

𝑡𝑚𝑎𝑠𝑘 (𝑁) = 𝑡𝑡𝑟𝑎𝑖𝑛 + 𝑡𝑛𝑒𝑡 (𝑚) + 𝑡𝑑𝑒𝑐 (𝑚) + 𝑡𝑚𝑎𝑠𝑘 + 𝑡𝑒𝑛𝑐 (𝑔)
+𝑡𝑛𝑒𝑡 (𝑔) + 𝑡𝑑𝑒𝑐 (𝑔) + 𝑡𝑎𝑔𝑔 (𝑁) + 𝑡𝑎𝑝𝑝𝑙𝑦,

where 𝑚 and 𝑔 stand for a set of mask and gradients, re-
spectively. Assuming each node in the aggregation tree has
𝐶 children, the iteration time for hierarchical aggregation
𝑡𝑡𝑟𝑒𝑒 (𝑁,𝐶) is estimated as

𝑡𝑡𝑟𝑒𝑒 (𝑁,𝐶) = (𝑡𝑒𝑛𝑐 (𝑔) + 𝑡𝑑𝑒𝑐 (𝑔) + 𝑡𝑎𝑔𝑔 (𝐶) + 𝑡𝑛𝑒𝑡 (𝑔)) × (⌈𝑙𝑜𝑔𝐶𝑁 ⌉ + 1)
+𝑡𝑡𝑟𝑎𝑖𝑛 + 𝑡𝑎𝑝𝑝𝑙𝑦 .

As a general guideline, zero-sum masking tends to work
better on smaller models with fewer training enclaves, as the
memory footprint within the aggregator is smaller and net-
work congestion is less likely. When there is a large number
of training enclaves, hierarchical aggregation becomes more
favorable. We will evaluate the two approaches in §6.
We stress that both zero-sum masking and hierarchical

aggregation require no change to distributed training al-
gorithms, thus introducing no model accuracy loss on this
front. Citadel performs extra floating point additions during
zero-sum masking and hierarchical aggregation compared to
vanilla distributed training, leading to tiny numerical errors
due to the exponent-alignment. Extensive study shows that
such small errors do not affect ML accuracy [79].

4.3 Citadel Workflow
Putting it all together, we elaborate on Citadel’s workflow
with the two aggregation approaches. The workflow of zero-
sum masking is depicted in Fig. 4a. A training iteration is
broken down as follows. 1 Model and data owners attest
CAS, and share their encryption keys with CAS. 2 Model
and data owners upload their encrypted model and data
to storage service. 3 CAS attests training and admin en-
claves on behalf of data owners, then shares data encryption
keys with training enclaves. CAS also attests training, ad-
min, and aggregator enclaves on behalf of model owner, then
shares the model decryption key to training and aggrega-
tor enclaves. 4 Training enclaves fetch corresponding data
and model, decrypt them and compute gradients; aggregator
downloads and decrypts model. 5 Training enclaves ask
admin enclave for masks and have the requests redirected
to storage service with mask decryption keys. 6 Training
enclaves fetch masks from storage service, decrypt and apply
them to updates, and send masked updates to aggregator.
7 Aggregator collects masked updates, summarizes them,
and updates global model. The model is then encrypted and
uploaded to storage.

Similarly, Fig. 4b depicts the workflow of hierarchical ag-
gregation, where Steps 1 - 4 are the same as masking ap-
proach. 5 Training enclaves hierarchically aggregate all
updates until the final sum of all updates is available at train-
ing enclave 0. 6 The aggregator enclave receives the final
update and applies it to the model. 7 The model is then
encrypted and uploaded to storage service.

554

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Zhang et al.

Security Against Attacks. Citadel’s security stems from
three levels. The first level of security is provided by Intel
SGX. By verifying training enclaves and Citadel codes, data
owners are ensured that data cannot be abused nor recovered.
As the second level, we reduce the possibility of data leak
by splitting data handling and the model update parts. This
split ensures that model owners cannot access raw gradient
updates. It also ensures that model owners’ secrets are pro-
tected from data owners, as the model update code remains
private. For the third level, placeholders (instead of actual
values) are added in data handling codes shared with data
owners, secrets such as model weights are protected.

SGX and its attestation ability enable Citadel to prevent
the scenario described in [13] where the model owner forms
a collusionwith some data owners to steal other data owners’
data. Such attacks require additional codes to be executed in
the enclaves, and can be identified in the code verification
process by the non-colluding data owners. Model inversion
attacks [22] from data owners are avoided compared with
conventional methods like FL, because the code running in
training enclaves is verified by both data and model owners
and is strictly enforced by SGX. Data owners can no longer
insert backdoors into the global model by tampering updates,
or perform membership inference attacks [78], or conduct
data extraction attacks [22, 29], because data owners have
no access to the intermediate training results and the model,
which only exist in enclaves.

5 Implementation
In this section, we describe the implementation details of
Citadel. We base our implementation on SCONE [8], but it
can also be extended to other SGX-enabling frameworks such
as Graphene [83] and Ryoan [34]. We use MongoDB [60] as
the storage service, and containerize all system components
and orchestrate them in Kubernetes [39]. Our implementa-
tion consists of 5,000 lines of Python code and Linux Shell
script, and is open-sourced.2

Trusted Computing Base (TCB). For an easy support of
SGX andmultiple enclave orchestration, we adopt SCONE [8]
in our system. SCONE provides SGX-protected Linux con-
tainers, so that we can utilize tools like Docker [18] and
Kubernetes [39] to orchestrate enclaves. The SGX provided
function sgx_read_rand is used to generate randomness,
and the attacks [74] on such generators are beyond the
scope of Citadel. In order to establish trust, users have
to verify codes running in the enclaves. Such verification is
non-trivial, and requires some domain knowledge. However,
since Citadel and most ML toolchains are open-sourced, we
believe wider adoption and public scrutiny can offload indi-
vidual user’s verification burden greatly. Besides, research
2The source code of Citadel is available at [17].

work like [25] is making SGX trust management easier and
more accessible.

Efficient Encryption & Decryption. As the host infras-
tructure is not trusted, encrypted data and models must be
decrypted within the enclaves. In addition, network connec-
tions between enclaves must be secured with TLS. These
requirements result in substantial cryptographic operations
performed inside an enclave. Especially during the aggre-
gation process, a single enclave has to decrypt results from
multiple enclaves and add them up. Therefore, the efficiency
of cryptographic inside an enclave plays an important role
in overall performance of Citadel.

In a native setting without SGX, one way to increase per-
formance is to increase the parallelism with multi-processing
or multi-threading. However, inside an SGX enclave, each
process runs inside its own enclave, so launching new pro-
cesses is extremely slow as it requires to set up new en-
claves and initialize EPC pages. Furthermore, the new sub-
process enclaves contend with the parent enclave for EPC,
resulting in performance degradation for all of them. Our
experimental evaluations with the OpenSSL implementa-
tion of AES-256-CBC shows that, encrypting and decrypting
16 AlexNet [45] models with multi-processing is at least 2X
slower than processing them seriallywithoutmulti-processing
in SGX. On the other hand, SCONE [8] provides efficient
user-level threading to avoid costly system calls, so it is pos-
sible for us to improve cryptographic operations with multi-
threading. However, due to Python’s Global Interpreter Lock
(GIL) [72], only one Python thread can run at any given time
even with multi-threading. To overcome this hurdle, we im-
plement our cryptographic operations in C++ and compile it
with C Foreign Function Interface (CFFI) [71]. This not only
allows us to bypass the GIL limitation, but also exploits the
highly efficient performance of native code.

6 Evaluation
In this section, we evaluate the performance of Citadel with
representative ML models trained on a public cloud. We first
examine the scalability of Citadel with zero-sum masking
in clusters of various sizes. We then evaluate hierarchical
aggregation with different configurations to quantify how
avoiding all-to-one communication helps improve system
scalability. Finally, we assess the system overhead of our de-
sign by comparing Citadel with three baselines: Chiron [33],
the single-enclave approach and native Citadel without SGX.

6.1 Methodology
Settings. We consider a distributed ML setting where all
instances are located within the same cluster. We do not
consider geo-distributed training, as Citadel enables data

555

Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning SoCC ’21, November 1–4, 2021, Seattle, WA, USA

to be centralized securely in a verifiable manner, eliminat-
ing the necessity of geo-distribution like FL. We conduct
all experiments on Azure confidential computing instances
with SGX support in Canada Central region with the in-
stance Standard_DC4s_v2, which has 4 vCPUs, 16 GB of
memory, and 112 MB of EPC memory. We deploy exactly
one enclave on each instance to avoid EPC contention. To
emulate multiple data owners, we randomly partition these
datasets into multiple shards and encrypt them with differ-
ent keys before uploading them to Citadel. The scale of our
evaluation is limited to 34 such instances (including train-
ing, aggregator and admin enclaves), because Azure limits
the total number of DCsv2 family vCPUs for non-enterprise
users. Nevertheless, we believe the trend demonstrated in
our evaluation applies to larger scale, and is sufficient to
validate our implementation.

Benchmarking Models. We have implemented four ML
models with their respective privacy requirements, using
TensorFlow v1.15. The first two, AlexNetS and AlexNetL,
belong to the same application where a certain number of
hospitals collaborate with a medical tech company to train
a Retinopathy diabetes diagnosis model [40]. The input im-
ages are scaled to 32 × 32 × 3 for AlexNetS and 96 × 96 × 3
for AlexNetL, respectively. AlexNetS has 1.25M trainable
parameters while AlexNetL has 15.9M trainable parameters.
The third one SpamNet is a spam filtering model utilizing
LSTM [31] network with 9.6k trainable parameters, where
SMS messages [41] is input data. Here, the model is required
to be private and the SMSmessages are sensitive. The last one
MNIST is a 12-layer CNN handwriting recognition model
trained with MNIST dataset [48]. MNIST model has 887.5K
trainable parameters. The model owner wants to protect
its intellectual property, while data owners want to remain
anonymous as the adversary may forge their handwriting.
The above four workloads are backed by DL models of

various sizes and cover diverse tasks. Note that the models
and input data dimensions used to evaluate SGX systems in
literature are usually of modest sizes, due to memory lim-
its and overhead of SGX’s EPC. For example, secureTF [73]
only adopts MNIST dataset in distributed evaluation across
3 servers; Chiron only has simulation-based evaluation, and
the biggest model investigated is AlexNet with 6 million
parameters. Compared with the state-of-the-art, our evalu-
ations brought the training to include much larger models
with realistic inputs at an industrial scale.

Baselines. We use three baselines for comparison, Chi-
ron [33], the single-enclave approach described in §3.3,
and native-distributed that runs Citadel nativelywithout
SGX. Compared with these baselines, we show how Citadel
provides strong privacy and confidentiality, while still achiev-
ing high throughput.

training masking aggregation

4 8 16 32

training enclave #

0.0

0.5

1.0

1.5

ti
m

e
 (

s
)

0.6293
0.7323

0.8330

1.0053

(a) AlexNetS

4 8 16 32

training enclave #

0

2

4

6

8

ti
m

e
 (

s
)

3.6760

4.6558

5.7725

7.1273

(b) AlexNetL

4 8 16 32

training enclave #

0.0

0.5

1.0

1.5

ti
m

e
 (

s
)

1.0274 1.0396
1.1372

1.2414

(c) SpamNet

4 8 16 32

training enclave #

0.0

0.5

1.0

1.5

ti
m

e
 (

s
)

0.5773
0.6309

0.7306

0.8764

(d) MNIST

Figure 5: The iteration breakdown w.r.t. training en-
clave numbers with zero-sum masking adopted.

6.2 Effectiveness of Zero-Sum Masking
We first evaluate the effectiveness of Citadel’s zero-sum
masking technique. We report the iteration time breakdown
in Figs. 5a-5d. The iteration time is measured as the timespan
from downloading fresh models in training enclaves until the
aggregator enclave uploads the updated model. Specifically,
the training portion refers to the time spent inside training
enclaves, but excludesmask-related operations. The masking
portion includes the time spent on requesting, download-
ing, decrypting and applying the masks. The aggregation
portion covers the time spent in the aggregator enclave, and
the time used to receive all masked updates. All results are
averaged across all enclaves over multiple iterations.

As we can see, Citadel with zero-sum masking scales well
with increasing number of training enclaves. Even increasing
training enclaves from 4 to 32, the overall iteration time only
increases by 59.7% for AlexNetS, 93.9% for AlexNetL, 20.8%
for SpamNet, and 53.5% for MNIST. Looking into each por-
tion, we see that: 1) training time stays constant when Citadel
scales out as training operations are irrelevant to cluster size,
2) masking time stays constant thanks to offline mask gener-
ation (§4.2.1), and 3) aggregation time increases (inevitably)
because aggregation involves all-to-one communication and
the summing-up of all masked gradient updates. Altogether,
these results show only a modest increase of iteration time
as the cluster size grows, indicating that Citadel can accom-
modate a large number of data owners and complex models
with reasonable performance overhead.

6.3 Hierarchical Aggregation
Although §6.2 exhibits that Citadel with zero-sum masking
can effectively increase throughput by adding more training
enclaves, we also notice the significant aggregation overhead

556

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Zhang et al.

training masking recursive aggregation

M 2 4 8

Children #

0.0

0.5

1.0

ti
m

e
 (

s
)

1.0053 1.0219
0.9014

0.8275

(a) AlexNetS

M 2 4 8

Children #

0

2

4

6

8

ti
m

e
 (

s
)

7.1273
6.6139

5.5341 5.5937

(b) AlexNetL

M 2 4 8

Children #

0.0

0.5

1.0

ti
m

e
 (

s
)

1.2414 1.1926 1.1497 1.1015

(c) SpamNet

M 2 4 8

Children #

0.0

0.5

1.0

ti
m

e
 (

s
) 0.8764

0.7129
0.6125

0.5597

(d) MNIST

Figure 6: The hierarchical aggregation iteration time
breakdowns w.r.t. children number. The zero-sum
masking results with 32 enclaves are shown as𝑀 bars.

with increased cluster size. In this subsection, we evaluate
Citadel’s hierarchical aggregation approach, and validate if it
can reduce the aggregation overhead. The results are shown
in Figs. 6a-6d. We target the scenario with 32 training en-
claves which is the largest cluster we are able to run in Azure.
We test hierarchical aggregation with aggregation tree chil-
dren set to 2, 4 and 8, and use zero-summasking approach for
reference. The recursive portion in the breakdown refers
to the timespan from when the first training enclave update
is ready until the final model update is aggregated.

The overall iteration time is reduced by 17.7%, 21.5%, 11.3%,
36.1% for AlexNetS, AlexNetL, SpamNet, MNIST respectively.
With AlexNetL, Citadel performs best with 4 aggregation
children. When we reduce it to 2, even the computational
overhead at each aggregation level decreases, the gain is
offset by increased aggregation depth. When we increase it
to 8, we face large EPC overhead at each aggregation step
as 8 updates have to reside in the memory simultaneously.
On the other hand, with AlexNetS, Citadel performs best
with 8 children. In conclusion, there is no one-size-fits-all
optimal value across all models. The number of children in
hierarchical aggregation provides a trade-off knob for aggre-
gation performance. We are unable to extend our evaluation
to larger scale, but we believe hierarchical aggregation can
achieve better performance when at scale, thus addressing
the bottleneck in zero-sum masking.

6.4 Citadel vs. Other SGX Systems
Chiron [33] and secureTF [73] are two SGX-based systems
that support multi-enclave training. They adopt parameter
server (PS) as the distribution strategy, and have stronger
assumptions and weaker privacy guarantees than Citadel

AlexNetS AlexNetL SpamNet MNIST
0.0

0.5

1.0

n
o
rm

a
li
z
e
d
 t

im
e

0.638

0.779
0.836

0.661
0.581

0.472

0.809

0.620

Citadel Citadel_PS Chiron

Figure 7: Chiron’s runtime normalized by Citadel’s.
‘Citadel _PS’ shows Citadel’s performance with PS.

S 4 8 16 32

training enclave #

0.0

2.5

5.0

7.5

n
o
rm

a
li
z
e
d
 t

h
ro

u
g
h
p
u
t

1.00 1.27

2.19

3.84

7.74

(a) AlexNetS

S 4 8 16 32

training enclave #

0

2

4

6

n
o
rm

a
li
z
e
d
 t

h
ro

u
g
h
p
u
t

1.00 0.89
1.40

2.26

4.71

(b) AlexNetL

S 4 8 16 32

training enclave #

0

10

20

n
o
rm

a
li
z
e
d
 t

h
ro

u
g
h
p
u
t

1.00
2.62

5.18

9.47

19.56

(c) SpamNet

S 4 8 16 32

training enclave #

0.0

2.5

5.0

7.5

n
o
rm

a
li
z
e
d
 t

h
ro

u
g
h
p
u
t

1.00 0.92
1.68

2.90

7.56

(d) MNIST

Figure 8: The total throughput normalized by the
single-enclave solution’s throughput (labeled as S)
w.r.t. training enclave number.

(§3.4). Unfortunately, neither of the systems is opensourced.
As a result, we are only able to use profiling results and
back-of-the-envelope calculations to showcase how much
overhead Citadel introduces in return for stronger privacy.
We use Chiron as the representative system, as secureTF
shares the same distribution design as Chiron. We use the
results obtained with 32 training enclaves utilizing masking
techniques, as Citadel faces the most overhead here in our
evaluation. We follow Chiron’s workflow, and configure its
parameter server with 8 servers and 32 workers. The nor-
malized iteration runtime is shown in Fig. 7, the overhead
introduced by Citadel accounts for 19.1% to 52.8% of the run-
time. Chiron’s multiple aggregator implementation reduces
only half the elapsed time. However, besides offering weaker
privacy guarantees, it uses 8 times the aggregation resources
compared with Citadel. Such time reduction is non-linear
to the added computing power because of SGX EPC’s per-
formance constraint. Note that Citadel can adopt PS-style
multi-enclave aggregation as well. Such a modification is
not essential for our privacy objectives and will require sub-
stantial engineering effort; therefore, we do not include it in
Citadel yet. Instead, we add a second bar in Fig. 7 to demon-
strate the expected runtime with a PS implementation, where
the remaining overhead stems from masking.

557

Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Table 1: The slowdowns of Citadel. The 32-R column
shows hierarchical aggregation, the rest shows zero-
sum masking.

Training Enclaves 4 8 16 32 32-R
AlexNetS 1.22 1.18 1.23 1.24 1.40
AlexNetL 1.09 1.23 1.44 1.73 1.65
SpamNet 1.21 1.21 1.22 1.19 1.26
MNIST 1.15 1.15 1.14 1.15 1.17

6.5 Citadel vs. Single Enclave
The single-enclave solution described in §3.3 can achieve
data privacy and a limited protection of model confidential-
ity. In this subsection, we compare Citadel with this single-
enclave solution, and show that Citadel outperforms it in
both privacy guarantees and performance. Specifically, we
profile the single-enclave solution’s throughput via training
the same models on the same Azure instance. The results are
shown in Figs. 8a-8d. Note that we show the better results of
zero-sum masking and hierarchical aggregation approaches.

Going from a single-enclave solution to a distributed sys-
tem across multiple servers, Citadel introduces secured con-
nections that require both network communication and cryp-
tographic operations. As a result, we see marginal improve-
ments compared with single-enclave when using only 4
training enclaves. However, with more training enclaves,
Citadel is able to improve throughput substantially. Note
that the benefits of distributed training is more prominent
for ML models with longer total training time (e.g., Spam-
Net in Fig. 5c). Furthermore, we aggregate model updates
after each iteration in our experiments, the result therefore
demonstrates the lower bound of our improvement. One can
easily improve the training performance via less commu-
nications, a.k.a., local update SGD [27, 50, 88]. With such
techniques, Citadel’s throughput could be further improved.

6.6 SGX Overhead in Citadel
Finally, we compare Citadel against running at the native
speed. To do that, we repeat our evaluation on Citadel with
the four workloads outside of SGX enclaves. All the experi-
ments are conducted on the same Azure Kubernetes cluster
but with native docker containers running the same code
as in §6.2-6.3. We seek to show how much slowdown SGX
induces in the entire workflow. We run the experiments over
multiple iterations and compile Citadel’s slowdown with
different numbers of training enclaves in Table 1. The slow-
down ranges from 1.09× to 1.73×. We show that SGX results
in 15%–73% performance slowdown, depending on the mod-
els and scales. With larger models like AlexNetL, memory
consumption is higher, so the EPC paging happens more of-
ten, causing higher overhead. We also notice that, the more

training enclaves there are, the more memory it needs to
finish aggregation, thus a higher slowdown at larger scale.

7 Conclusion and Discussion
We presented Citadel, the first scalable system for collabo-
rative machine learning that protects both data privacy and
model confidentiality. Citadel partitions training into two
parts, the verifiable data handling code running in training
enclaves and the private model handling code running in
the aggregator enclave. Citadel imposes a barrier between
the two parts by zero-sum masking to prevent data and
model leakage, and uses hierarchical aggregation to scale
up aggregation performance. Citadel is open-sourced, and
the evaluation shows Citadel scales to a large number of
enclaves with less than 1.7× overhead despite the stringent
enclave page cache (EPC) size limit. At the end, we discuss
Citadel’s limitations and some future directions.

Large Models. Citadel’s current design does not consider
models too big for single enclaves. This issue is addressable
by either increasing the EPC size with a SGX card [15], or
applying model parallelism to split large models [28, 32, 91].

GPU Support. GPUs currently do not support trusted com-
puting. Graviton [86] proposes an augmented GPU architec-
ture with TEE support. In addition, Slalom [81] offloads parts
of the computation to GPUs with secure outsourcing.Citadel
can be combined with such approaches.

Side Channel Attacks. Intel SGX is currently vulnerable
to side channel attacks, [63] substitutes data-dependent ML
operations with data-oblivious ones to address this potential
issue which could be employed by Citadel.

Other TEEs. Citadel is built with SGX, but its design is
generally applicable to other TEE implementations including
Arm TrustZone [7] and Amazon Nitro [9].

Network andMemory limits. Citadel enables secure cen-
tralized ML within datacenters, thus susceptible to less crit-
ical bandwidth and memory constrains compared with FL.
Furthermore, Citadel can adopt existing techniques to re-
duce memory and network footprint. It is compatible with
compression schemes that support additive operations, such
as sparse gradients and quantization [4, 93].

Acknowledgement
We thank our shepherd Pierangela Samarati and the anony-
mous reviewers for their insightful comments. We also thank
Do Le Quoc (from TUDresden and Scontain) for his generous
support to set up the SCONE environment. This research was
supported in part by ACCESS – AI Chip Center for Emerg-
ing Smart Systems, Hong Kong SAR, and National Science
Foundation CAREER-2048044 and IIS-1838024.

558

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Zhang et al.

References
[1] 2016. AMD Memory Encryption. https://developer.amd.com/

wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_
v7-Public.pdf.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine
learning. In USENIX OSDI. 265–283.

[3] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and
Byoungyoung Lee. 2021. Chancel: efficient multi-client isolation under
adversarial programs. In NDSS.

[4] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse communication for
distributed gradient descent. arXiv preprint arXiv:1704.05021 (2017).

[5] altexsoft 2020. How Machine Learning Systems Help Reveal Scams in
Fintech, Healthcare, and eCommerce. http://bit.ly/2K58Nli.

[6] Amazon 2020. Amazon SageMaker. https://aws.amazon.com/
sagemaker/.

[7] Arm 2020. Arm TrustZone. https://developer.arm.com/ip-products/
security-ip/trustzone.

[8] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’keeffe, Mark L Stillwell, et al. 2016. SCONE: Secure linux containers
with intel SGX. In USENIX OSDI. 689–703.

[9] AWS 2020. AWS Nitro System. https://aws.amazon.com/ec2/nitro/.
[10] azure 2020. DCsv2-series. https://docs.microsoft.com/en-us/azure/

virtual-machines/dcv2-series.
[11] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and

Vitaly Shmatikov. 2020. How to backdoor federated learning. In PMLR
AISTATS. 2938–2948.

[12] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding
applications from an untrusted cloud with haven. ACM TOCS 33, 3
(2015), 1–26.

[13] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. 2017. Practical secure aggregation for privacy-preserving
machine learning. In ACM CCS. 1175–1191.

[14] California State Legislature 2018. California Consumer Privacy Act
(CCPA). https://oag.ca.gov/privacy/ccpa.

[15] Somnath Chakrabarti, MatthewHoekstra, Dmitrii Kuvaiskii, andMona
Vij. 2019. Scaling Intel® Software Guard Extensions Applications with
Intel® SGX Card. In HASP. 1–9.

[16] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, and Qiang
Yang. 2019. SecureBoost: A Lossless Federated Learning Framework.
arXiv preprint arXiv:1901.08755 (2019).

[17] Citadel 2021. Citadel codebase. https://github.com/marcoszh/citadel-
project.

[18] docker 2020. Docker. https://www.docker.com/.
[19] Wenliang Du, Yunghsiang S Han, and Shigang Chen. 2004. Privacy-

preserving multivariate statistical analysis: Linear regression and clas-
sification. In SDM. SIAM, 222–233.

[20] EP 2016. Regulation (EU) 2016/679 of the European Parliament and of
the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection
Regulation). https://eur-lex.europa.eu/eli/reg/2016/679/oj.

[21] EU 2020. What are the GDPR Fines? https://gdpr.eu/fines/.
[22] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model

inversion attacks that exploit confidence information and basic coun-
termeasures. In ACM CCS. 1322–1333.

[23] Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially
private federated learning: A client level perspective. arXiv preprint

arXiv:1712.07557 (2017).
[24] Google 2020. Google Prediction API. https://cloud.google.com/ai-

platform/training.
[25] Franz Gregor, Wojciech Ozga, Sébastien Vaucher, Rafael Pires, Do Le

Quoc, Sergei Arnautov, André Martin, Valerio Schiavoni, Pascal Felber,
and Christof Fetzer. 2020. Trust Management as a Service: Enabling
Trusted Execution in the Face of Byzantine Stakeholders. arXiv preprint
arXiv:2003.14099 (2020).

[26] Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep
neural network over multiple agents. Journal of Network and Computer
Applications 116 (2018), 1–8.

[27] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi,
and Viveck Cadambe. 2019. Local SGDwith periodic averaging: Tighter
analysis and adaptive synchronization. In NeurIPS.

[28] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri,
Nikhil Devanur, Greg Ganger, and Phil Gibbons. 2018. Pipedream:
Fast and efficient pipeline parallel dnn training. arXiv preprint
arXiv:1806.03377 (2018).

[29] BrilandHitaj, GiuseppeAteniese, and Fernando Perez-Cruz. 2017. Deep
models under the GAN: information leakage from collaborative deep
learning. In ACM CCS. 603–618.

[30] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,
Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing.
2013. More effective distributed ml via a stale synchronous parallel
parameter server. In NeurIPS.

[31] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term
memory. Neural computation 9, 8 (1997), 1735–1780.

[32] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. In NeurIPS. 103–112.

[33] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and
Emmett Witchel. 2018. Chiron: Privacy-preserving machine learning
as a service. arXiv preprint arXiv:1803.05961 (2018).

[34] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. 2018. Ryoan: A distributed sandbox for untrusted computation
on secret data. ACM TOCS 35, 4 (2018), 1–32.

[35] Nick Hynes, Raymond Cheng, and Dawn Song. 2018. Efficient deep
learning on multi-source private data. arXiv preprint arXiv:1807.06689
(2018).

[36] IBMWH 2020. IBM Watson Health: Diagnostic Imaging Solutions.
https://www.ibm.com/watson-health/solutions/diagnostic-imaging.

[37] Intel 2020. Intel SGX. https://software.intel.com/content/www/us/en/
develop/topics/software-guard-extensions.html.

[38] Qi Jia, Linke Guo, Zhanpeng Jin, and Yuguang Fang. 2018. Preserving
model privacy for machine learning in distributed systems. IEEE TPDS
29, 8 (2018), 1808–1822.

[39] k8s 2020. Kubernetes. https://kubernetes.io/.
[40] Kaggle 2020. Diabetic Retinopathy. https://www.kaggle.com/sovitrath/

diabetic-retinopathy-224x224-gaussian-filtered.
[41] Kaggle 2020. SMS Spam Collection. https://www.kaggle.com/uciml/

sms-spam-collection-dataset.
[42] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,

Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, et al. 2019. Advances and
Open Problems in Federated Learning. arXiv preprint arXiv:1912.04977
(2019).

[43] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and
JaehyukHuh. 2019. Shieldstore: Shielded in-memory key-value storage
with SGX. In EuroSys. 1–15.

[44] Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas
Knauth, Pramod Bhatotia, and Christof Fetzer. 2018. Pesos: Policy

559

https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://bit.ly/2K58Nli
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://aws.amazon.com/ec2/nitro/
https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series
https://oag.ca.gov/privacy/ccpa
https://github.com/marcoszh/citadel-project
https://github.com/marcoszh/citadel-project
https://www.docker.com/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://gdpr.eu/fines/
https://cloud.google.com/ai-platform/training
https://cloud.google.com/ai-platform/training
https://www.ibm.com/watson-health/solutions/diagnostic-imaging
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://kubernetes.io/
https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered
https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset

Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning SoCC ’21, November 1–4, 2021, Seattle, WA, USA

enhanced secure object store. In EuroSys. 1–17.
[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. 2012. Imagenet

classification with deep convolutional neural networks. In NeurIPS.
[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. 2017. Imagenet

classificationwith deep convolutional neural networks. Commun. ACM
60, 6 (2017), 84–90.

[47] Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod
Bhatotia, and Christof Fetzer. 2019. TensorSCONE: A secure Ten-
sorFlow framework using Intel SGX. arXiv preprint arXiv:1902.04413
(2019).

[48] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
86, 11 (1998), 2278–2324.

[49] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. 2015. Asyn-
chronous parallel stochastic gradient for nonconvex optimization. In
NeurIPS.

[50] Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi.
2018. Don’t Use Large Mini-Batches, Use Local SGD. arXiv preprint
arXiv:1808.07217 (2018).

[51] Changchang Liu, Supriyo Chakraborty, and Dinesh Verma. 2019. Se-
cure Model Fusion for Distributed Learning Using Partial Homomor-
phic Encryption. In Policy-Based Autonomic Data Governance. Springer,
154–179.

[52] Yang Liu, Tianjian Chen, and Qiang Yang. 2018. Secure Federated
Transfer Learning. arXiv preprint arXiv:1812.03337 (2018).

[53] Kalikinkar Mandal and Guang Gong. 2019. PrivFL: Practical privacy-
preserving federated regressions on high-dimensional data overmobile
networks. In ACM CCS Workshop. 57–68.

[54] H Brendan McMahan, Galen Andrew, Ulfar Erlingsson, Steve Chien,
Ilya Mironov, Nicolas Papernot, and Peter Kairouz. 2018. A general
approach to adding differential privacy to iterative training procedures.
arXiv preprint arXiv:1812.06210 (2018).

[55] H. BrendanMcMahan, Eider Moore, Daniel Ramage, and Blaise Agüera
y Arcas. 2016. Federated Learning of Deep Networks using Model
Averaging. ArXiv abs/1602.05629 (2016).

[56] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang.
2017. Learning differentially private recurrent language models. arXiv
preprint arXiv:1710.06963 (2017).

[57] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego
Perino, and Nicolas Kourtellis. 2021. PPFL: privacy-preserving fed-
erated learning with trusted execution environments. arXiv preprint
arXiv:2104.14380 (2021).

[58] Payman Mohassel and Peter Rindal. 2018. ABY 3: a mixed protocol
framework for machine learning. In ACM CCS. 35–52.

[59] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for
scalable privacy-preserving machine learning. In IEEE SP. 19–38.

[60] mongodb 2020. mongoDB. https://www.mongodb.com/.
[61] nexusguard 2021. NexusGuard. http://www.nexusguard.consulting/.
[62] NPCSC 2017. Cybersecurity Law of the People’s Republic of China.

http://www.lawinfochina.com/display.aspx?id=22826&lib=law.
[63] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Se-

bastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious
multi-party machine learning on trusted processors. In USENIX Secu-
rity. 619–636.

[64] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. 2018. Varys: Protecting SGX enclaves from practical
side-channel attacks. In USENIX ATC. 227–240.

[65] Tribhuvanesh Orekondy, Bernt Schiele, andMario Fritz. 2019. Knockoff
nets: Stealing functionality of black-box models. In IEEE CVPR. 4954–
4963.

[66] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. 2017. Practical black-box

attacks against machine learning. In ACM ASIACCS. 506–519.
[67] Bryan Parno, Jacob R Lorch, John R Douceur, James Mickens, and

Jonathan M McCune. 2011. Memoir: Practical state continuity for
protected modules. In IEEE SP. 379–394.

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In NeuriPS. 8026–8037.

[69] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and
Shiho Moriai. 2018. Privacy-preserving deep learning via additively
homomorphic encryption. IEEE Transactions on Information Forensics
and Security 13, 5 (2018), 1333–1345.

[70] PingAn 2020. Ping An: Security Technology Reduces Data Si-
los. https://www.intel.com/content/www/us/en/customer-spotlight/
stories/ping-an-sgx-customer-story.html.

[71] python 2020. CFFI. https://cffi.readthedocs.io/en/latest/.
[72] python 2020. Python GIL. https://realpython.com/python-gil/.
[73] Do Le Quoc, Franz Gregor, Sergei Arnautov, Roland Kunkel, Pramod

Bhatotia, and Christof Fetzer. 2020. secureTF: A secure tensorflow
framework. In USENIX Middleware. 44–59.

[74] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. 2021. Crosstalk: Speculative data leaks across cores are real.
In S&P. IEEE.

[75] Sebastian Ruder. 2016. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747 (2016).

[76] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi
Xu, Yubin Xia, and Shoumeng Yan. 2020. Occlum: Secure and efficient
multitasking inside a single enclave of intel sgx. In ASPLOS.

[77] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep
learning. In ACM CCS. 1310–1321.

[78] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
2017. Membership inference attacks against machine learning models.
In IEEE SP. IEEE, 3–18.

[79] Samuel Smith, Erich Elsen, and Soham De. 2020. On the Generalization
Benefit of Noise in Stochastic Gradient Descent. In ICML. PMLR.

[80] Jinhyun So, Basak Guler, and A Salman Avestimehr. 2020. Turbo-
Aggregate: Breaking the Quadratic Aggregation Barrier in Secure
Federated Learning. arXiv preprint arXiv:2002.04156 (2020).

[81] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and
private execution of neural networks in trusted hardware. arXiv
preprint arXiv:1806.03287 (2018).

[82] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. 2016. Stealing machine learning models via prediction apis.
In USENIX Security. 601–618.

[83] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-sgx: A
practical library OS for unmodified applications on SGX. In USENIX
ATC). 645–658.

[84] Jo Van Bulck, MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom,
and Raoul Strackx. 2018. Foreshadow: Extracting the keys to the intel
{SGX} kingdom with transient out-of-order execution. In USENIX
Security. 991–1008.

[85] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh
Raskar. 2018. Split learning for health: Distributed deep learning
without sharing raw patient data. arXiv preprint arXiv:1812.00564
(2018).

[86] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton:
Trusted execution environments on GPUs. In USENIX OSDI. 681–696.

[87] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Gra-
ham. 1993. Efficient software-based fault isolation. In SOSP.

[88] JianyuWang andGauri Joshi. 2018. Adaptive communication strategies
to achieve the best error-runtime trade-off in local-update SGD. arXiv

560

https://www.mongodb.com/
http://www.nexusguard.consulting/
http://www.lawinfochina.com/display.aspx?id=22826&lib=law
https://www.intel.com/content/www/us/en/customer-spotlight/stories/ping-an-sgx-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/ping-an-sgx-customer-story.html
https://cffi.readthedocs.io/en/latest/
https://realpython.com/python-gil/

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Zhang et al.

preprint arXiv:1810.08313 (2018).
[89] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. 2018. sgx-

perf: A performance analysis tool for Intel SGX enclaves. In USENIX
Middleware. 201–213.

[90] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Fed-
erated machine learning: Concept and applications. ACM TIST 10, 2
(2019), 12.

[91] Minchen Yu, Zhifeng Jiang, Hok Chun Ng, Wei Wang, Ruichuan Chen,
and Bo Li. 2021. Gillis: Serving Large Neural Networks in Serverless
Functions with Automatic Model Partitioning. (2021).

[92] Matthew D Zeiler. 2012. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701 (2012).

[93] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and
Yang Liu. 2020. BatchCrypt: Efficient homomorphic encryption for
cross-silo federated learning. In USENIX ATC.

[94] Chengliang Zhang, Huangshi Tian, Wei Wang, and Feng Yan. 2018.
Stay Fresh: Speculative Synchronization for Fast Distributed Machine
Learning. In ICDCS. IEEE.

[95] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. 2019. Why
gradient clipping accelerates training: A theoretical justification for
adaptivity. arXiv preprint arXiv:1905.11881 (2019).

[96] Yanjun Zhang, Guangdong Bai, Xue Li, Caitlin Curtis, Chen Chen, and
Ryan KL Ko. 2020. PrivColl: Practical Privacy-Preserving Collaborative
Machine Learning. In ESORICS.

561

	Abstract
	1 Introduction
	2 Collaborative ML and Threat Model
	2.1 Entities in Collaborative ML
	2.2 Threat Model

	3 Prior Arts and Their Insufficiency
	3.1 Solutions for Collaborative Learning
	3.2 Intel SGX
	3.3 Private ML with a Single SGX Enclave
	3.4 Private ML with Multiple SGX Enclaves

	4 Citadel Design
	4.1 Design Overview
	4.2 Separating Data and Model Handling
	4.3 Citadel Workflow

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Effectiveness of Zero-Sum Masking
	6.3 Hierarchical Aggregation
	6.4 Citadel vs. Other SGX Systems
	6.5 Citadel vs. Single Enclave
	6.6 SGX Overhead in Citadel

	7 Conclusion and Discussion
	References

