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Abstract—Lossy compression techniques have demonstrated
promising results in significantly reducing the scientific data size
while guaranteeing the compression error bounds. However, one
important yet often neglected side effect of lossy scientific data
compression is its impact on the performance of parallel I/O.
Our key observation is that the compressed data size is often
highly skewed across processes in lossy scientific compression.
To understand this behavior, we conduct extensive experiments
where we apply three lossy compressors MGARD, ZFP, and SZ,
which are specifically designed and optimized for scientific data,
to three real-world scientific applications Gray-Scott simulation,
WarpX, and XGC. Our analysis result demonstrates that the size
of the compressed data is always skewed even if the original
data is evenly decomposed among processes. Such skewness
widely exists in different scientific applications using different
compressors as long as the information density of the data varies
across processes. We then systematically study how this side effect
of lossy scientific data compression impacts the performance
of parallel I/O. We observe that the skewness in the sizes of
the compressed data often leads to I/O imbalance, which can
significantly reduce the efficiency of I/O bandwidth utilization
if not properly handled. In addition, writing data concurrently
to a single shared file through MPI-IO library is more sensitive
to the unbalanced I/O loads. Therefore, we believe our research
community should pay more attention to the unbalanced parallel
I/O caused by lossy scientific data compression.

I. INTRODUCTION

As several exascale supercomputers are anticipated to be

operational in the next a few years, scientific applications

running on those machines are projected to generate massive

amount of data at enormous velocity. For example, nowadays

the X-point Gyrokinetic Code (XGC) [1] developed by the

Princeton Plasma Physics Laboratory can easily produce more

than 1PB of data per day when running on the OLCF’s Summit

supercomputer. As a conservative estimate, the data rate will

increase to 10PB per day if running on an exascale supercom-

puter. Although data storage technologies have also improved

tremendously over the years, absorbing data generated at such

high rates is almost an impossible mission for most of the

data storage systems built under rational budget. To address

this critical and challenging issue, multiple lossy compression

techniques that are specifically designed and optimized for the

data generated by scientific applications have been proposed

in recent years. Promising results from existing studies [2]–[5]

demonstrate that these lossy compression techniques can sig-

nificantly reduce the size of scientific data while guaranteeing

that the compression error is within certain bound.

Since the data size can be effectively reduced by lossy

compression, it is natural for scientists to expect the overhead

caused by writing or reading their data can also be reduced

accordingly. For example, if the size of the data is reduced by

100X, it is reasonable for scientists to believe that their data

can be written out about 100X faster. This is true when their

codes are run at small scale and only small amount of data is

written out using a few processes. However, for data-intensive

scientific applications running with massive parallelism on

high-performance computing systems, the I/O performance

does not simply depend on the size of the data. It also

depends on how efficient the concurrent I/O bandwidth can

be utilized. Ideally, the maximal concurrent I/O throughput is

achieved if all the processes write out or read in the same

amount of data. This is why when scientists configure their

simulations, they tend to divide the global simulation space

into regions of equal size and assign one region to each

process to ensure that the I/O loads from all processes are

balanced. If the I/O loads among processes are unbalanced,

meaning that some of the processes need to write out or read in

much more data than others, the overall I/O throughput would

decrease as the I/O time is determined by the slowest process

that finishes the I/O. Unfortunately, when we apply lossy

compression to the data on each process, this I/O imbalance

issue often occurs. Specifically, as the data assigned to each

process after domain decomposition are often heterogeneous in

nature, the information density of these data portions usually

varies. Therefore, applying lossy compression to such hetero-

geneous domain decomposed data would inevitably result in

significantly different compressed data sizes across the parallel

processes and cause the imbalance of the parallel I/O loads.

To verify the aforementioned conjecture and characterize

the imbalance in compressed data size, we apply three widely

used lossy compressors MGARD [2], [3], [6], [7], ZFP [4], and

SZ [5] to the datasets generated by three real world scientific

applications: Gray-Scott simulation, WarpX [8] and XGC [1],
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[9]. We aim to answer the following questions.

• If the original data is evenly decomposed and assigned to

each parallel process, would the compressed data still be

imbalanced among the processes?

• Would imbalance exist in compressed data regardless of

which compression method is used?

• How imbalanced can the compressed data sizes be?

• How would the imbalance of the compressed data sizes

affect the overall I/O performance?

Our analysis shows that the compressed data is always

skewed even if the original data is evenly decomposed and

such skewness exists in all the compressed data from different

compressors. The difference in compressed data can be more

than 10X and Weibull distributions can be used to fit the sizes

of the compressed data on each process. During the write out

or read in process of scientific applications, the overall write or

read performance is usually bounded by the slowest process.

Therefore, the skewness in compressed data can potentially

degrade the parallel I/O performance if not handled carefully.

To demonstrate such negative impacts caused by unbalanced

parallel I/O due to skewed compression data, we conduct

experiments on OLCF’s Andes cluster [10]. In our experi-

ments, we launch tests to simulate the highly skewed data

among processes caused by lossy compression and measure

the write performance when different write patterns are used.

From the results, we observe that the I/O imbalance caused

by lossy compression can significantly reduce the efficiency

of I/O bandwidth utilization if the processes that own high

information density data blocks happen to run on the same

compute node. Moreover, witing data concurrently to a single

shared file through MPI-IO library is more sensitive to the

unbalanced I/O loads.

In summary, the paper makes the following contributions.

First, we characterize the skewness of three real world com-

pressed scientific data by studying three widely used data

compressors. Second, we analyze the potential impacts of

the skewed compressed data on parallel I/O performance.

Finally, we compare the write time and write throughput under

different use scenarios.

II. ANALYSIS OF LOSSY COMPRESSED DATA SIZE

Scientific codes are often run with a large number of

processes in parallel on high-performance computing sys-

tems to achieve satisfactory speedups. Particularly, during the

execution of these codes, each process is often assigned a

single or multiple portions of the data to operate on, which

is known as domain decomposition or “data parallelism”. For

instance, when scientists launch an MPI-based particle-in-cell

simulation code, each MPI process is assigned to simulate

the movements of particles in certain areas of the entire

simulation region. Since the movements of particles are driven

by complex physics models, the information density of the

data that each process operates on is usually quite different.

In some areas, the large distribution of the particles leads to

high information density, while in others the data is sparse due

to the lack of physics phenomena. This type of heterogeneity

Fig. 1: Different simulation steps of domain decomposition in

parallel scientific applications.

in domain-decomposed data, is commonly observed in many

other parallel scientific applications [9].

Fig. 1 shows an example of the domain decomposition in

a parallel Gray-Scott simulation [11]. Each of these three

sub-figures illustrates the concentration of a chemical species

at different simulation steps. The simulation is run by 16

MPI processes and each of them operates 1
16 of the entire

simulation region. In each sub-figure, we use red dashed lines

to differentiate the areas each process owns. The first sub-

figure shows that the data on most of the processes is sparse. In

the second sub-figure, the information density of data increases

and demonstrates more differences across processes. In the

third sub-figure, the data on each process has rich information

content, but their characteristics are quite dissimilar. According

to the information theory [12], the size of the compressed

data is strongly correlated with the information content which

is defined by the entropy in the original data. If we apply

lossy compression to the data on each process, our conjecture

is that the sizes of the data after compression would be

significantly different from each other in many real world

scenarios since the data on each process has quite different

information density.

To verify our conjecture, we conduct characterization stud-

ies by applying different lossy compressors to datasets gen-

erated by three real world scientific applications. The three

lossy compressors we select for our study are MGARD [2],

[3], [6], [7], ZFP [4], and SZ [5]. These lossy compressors are

specifically designed and optimized for compressing scientific

data and their effectiveness are verified by existing works [13].

The datasets we use in our study are generated by three

parallel scientific codes. Gray-Scott is a 3D 7-point stencil

code to simulate Gray-Scott reaction diffusion model. It’s a

simple system simulating the time evolution of the spatial

distributions of two interacting chemical concentrations. And

parameters for the simulation such as the diffusion coefficient

can be easily adjusted by the user. WarpX [8] is an ad-

vanced multi-platform electromagnetic Particle-In-Cell code.

It supports many features including Perfectly-Matched Layers

(PML), mesh refinement, and the boosted-frame technique.

In addition, WarpX includes load balancing capabilities to

achieve better performance. XGC [1], [9] is a gyrokinetic

particle-in-cell code, which specializes in the simulation of

the edge region of magnetically confined thermonuclear fusion

plasma. The simulation domain can include the magnetic

separatrix, magnetic axis, and the biased material wall. All of
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Fig. 2: Distribution of data sizes among processes after applying different lossy compressors to three scientific datasets.

these datasets are written out through ADIOS2 [14], a library

that manages the parallel I/O and stores the data in a self-

describing format. The metadata of this self-describing format

contains rich information about how the dataset is generated,

such as which area each data block belongs to in the global

array, which MPI process produces which data blocks, etc.

By leveraging such information, we can launch a job to read

in the exact data blocks produced by each MPI process, and

compress them using different lossy compressors. Then we

study how different the sizes of the compressed data can be

among all the processes. Since different compressors might

adopt different error metrics, when we choose the error bounds

for each compressor, we try our best to make the peak signal-

to-noise ratio (PSNR) of the entire compressed data produced

by each compressors fall into a similar range. One thing we

would like to emphasize here is that our results cannot be

used to indicate which lossy compressor is better in terms

of compression ratio since the PSNR of the compressed data

from each compressor are not exactly the same. In this study,

we only focus on how skew the distribution of the data sizes

among processes can be after lossy compression.

For the dataset generated by the Gray-Scott simulation,

the entire data is evenly decomposed and assigned to 192

processes. The size of the original data each process owns

is 18MB. As shown in Fig. 2, after the lossy compression, the

sizes of the data on most processes are reduced to less than

0.5MB. However, no matter which lossy compressor is used,

the compressed data on a few processes are significantly larger

due to their high information density. For example, when SZ

is used, the compressed data owned by 5% of the processes

are on average more than 10X larger than other processes. As

a result, the distribution of data sizes among processes after

lossy compression is highly skewed.

When we use the dataset generated by the WarpX simulation

for our experiments, the sizes of the compressed data on almost

all of the processes are similarly small since the entire dataset

is very sparse. However, there are still several processes that

have much larger data after compression. The compressed

data on these processes can be hundreds of times larger than

the minimal data size among all the processes. When we

apply different lossy compressors to the data generated by

the XGC simulation, the sizes of the compressed data on each

process are also dispersed in a wide range. From all these

results, we can see that for parallel scientific applications,

even the original data is evenly decomposed and assigned

to each process, the sizes of the compressed data on each

process can be significantly different from each other due to

the nonuniform distribution of the information density in the

datasets.

III. IMPACT OF UNBALANCED PARALLEL I/O LOADS

When parallel scientific codes write out or read in their data,

the overall write or read performance usually depends on the

slowest process. This is because a synchronization is often

needed among processes before each computation step and no

process can start the computation of the next step until the

slowest process finishes its I/O. Therefore, scientists tend to

decompose the data into chunks of the same size and evenly

assign them to among processes, so that all the processes can

finish the data writing or reading at about the same time to

diminish the “straggler” effect. However, based on the observa-

tions we obtain in Section II, the amount of data each process
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Fig. 3: Q-Q plot of using Weibull distribution to fit the XGC data with different lossy compressors.

TABLE I: Experiments for understanding the impact of un-

balanced parallel I/O Loads.

Experiment Description
uncompressed-equal Each process writes the same amount of un-

compressed data.
compressed-random The sizes of the compressed data owned by

each process are randomly generated based on
certain probability distribution.

compressed-clustered The per-process compressed data sizes are ran-
domly generated based on the same probability
distribution, but they are sorted and assigned
to each process in ascending order so that
the largest sizes are always assigned to a few
processes running on the same compute node.

compressed-equal The per-process compressed data sizes are ran-
domly generated based on the same probability
distribution, but the total size of the compressed
data is equally divided by the number of pro-
cesses and each process writes the same amount
of compressed data.

writes out or reads in can be significantly different after lossy

compression even if the original decomposed data is evenly

distributed across processes, see Fig. 2. Therefore, applying

lossy compression can potentially leads to imbalanced I/O

loads across processes and thus cause “straggler” effect. In

this section, we study how the imbalance of I/O loads caused

by lossy compression affects the overall I/O performance of

parallel scientific applications.

We conduct all our I/O tests on OLCF’s Andes cluster.

Andes is a 704-compute node commodity-type Linux cluster.

Each of these compute nodes has 32 AMD EPYC 7302

cores and 256GB memory. Andes mounts the same center-

wide GPFS file system as Summit, which offers more than

3GB/s per node I/O bandwidth. Since after decomposition the

existing datasets we have are relatively small compared to

the memory size on each compute node, we notice that the

caching effect becomes a dominant factor when measuring

the write performance. The measured performance numbers do

not reflect the actual I/O throughput. In order to mitigate the

caching effects and fully saturate the I/O bandwidth, instead

of using the existing datasets, we developed a code which can

synthetically generate data with arbitrarily large sizes for each

process.

The impact of unbalanced parallel I/O might be different

if the data is written in different patterns. There are three

common patterns for writing data in parallel: N-N, N-1-

Fig. 4: Distribution of the synthetically generated data sizes

among processes to mimic the effect of lossy compression.

collective, and N-1-independent. “N-N” denotes the code is

executed by N processes and each process writes its data to

a separate file independently. I/O libraries such as ADIOS2

adopts this pattern. “N-1-collective” denotes N processes write

out their data to a single shared file using collective MPI-

IO functions, while “N-1-independent” represents the data is

written out to a single shared file using independent MPI-IO

functions. These two patterns are used by I/O libraries such

as HDF5, PnetCDF, etc. To understand which write pattern is

more sensitive to the unbalanced parallel I/O, we measure the

performance of writing data in all these three patterns in our

experiments.

First of all, we measure the overall performance of writing

out the uncompressed data in different patterns as the baseline.

In this experiment, we assume the uncompressed data on

each process is 8GB. We lunch a job on Andes with 10

compute nodes and 32 processes per node, and let each

process write out 8GB randomly generated data to the file

system using different patterns. This experiment is denoted by

“uncompressed-equal” in Table I.

Secondly, we randomly generate the sizes of compressed

data owned by each process based on a Weibull distribution.

The reason for choosing the Weibull distribution is that its

probability density function usually has a long tail, which is

similar to those shown in Fig. 2. To verify it, we use Weibull

distribution to fit the real XGC data and show Q-Q plot in

Figure 3. From the plot, we can see that most points perfectly

lie on y = x, which suggests Wellbull distribution is a good

representation. Since the size of the compressed data cannot
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be less than or equal to zero or greater than or equal to

the original data size, we make sure only the valid random

numbers are selected. Fig. 4 shows the sizes of the compressed

data synthetically generated for 320 processes using a Weibull

distribution whose shape parameter is 0.3 and scale parameter

is 5.0. These sizes are randomly assigned to each process and

each process writes out certain amount of data based on the

assigned size. This experiment is denoted by “compressed-

random” in Table I.

Thirdly, as shown in Fig. 1, the information density of each

process’ data demonstrates spacial locality. Data blocks that

have similar information density are likely to be assigned to

processes running on the same compute node or compute

nodes that are close to each other in the HPC system’s

interconnect topology. E.g., in the bottom left corner of the

second sub-figure in Fig. 1, data on those three processes all

have dense information content. It is also possible that those

three processes run on the same compute node as they need

to share the I/O bandwidth of that particular compute node.

If the sizes of the compressed data on those three processes

are much larger than other processes, the I/O on that compute

node would become a bottleneck. To mimic this scenario, we

sort the sizes of the compressed data synthetically generated

in the “uncompressed-random” experiment. We then assign

them to each process in ascending order, so that the largest

sizes are always assigned to a few processes running on the

same compute node to trigger the bandwidth contention. This

experiment is denoted by “compressed-clustered” in Table I.

Finally, we measure the write performance when the sizes

of the compressed data on each process are all the same.

Although this scenario rarely occurs in practice, we believe

the performance numbers can be useful for us to understand

how much write time the lossy compression can save ideally.

In order to have a fair comparison with numbers measured in

other experiments, we also use the sizes of the compressed

data synthetically generated in the previous two experiments.

We sum up all these synthetic sizes and calculate the mean of

them. Then we let each process write out data with the size of

that mean value. This experiment is denoted by “compressed-

equal” in Table I.

Fig. 5: The overall write time.

The overall write time measured in these four experiments

are shown in Fig. 5. As we can see, adopting lossy com-

pression does reduce the overall write time. The total size

of the original data is 8 × 32 × 10 = 2560GB, while the

total size of the compressed data is 441GB. Ideally, if the

sizes of the compressed data on each process are all the same

(“compressed-equal”), we expect the write time is reduced by

roughly 6 times. However, for other more realistic scenarios,

the amount of write time reduced are less than the ideal case.

As expected, “compressed-clustered” reduces the least amount

write time. As we mentioned above, if processes running on

the same compute node all have much larger data compared

to other processes after lossy compression, I/O bandwidth

contention on that compute node is likely to happen which

makes the I/O on that particular node much slower than other

nodes. Even those processes run on different compute nodes

but those nodes are close to each other in the network topology,

bandwidth contention might also happen on the routers shared

by those nodes.

Fig. 6: The overall write throughput.

The write throughput for different scenarios are shown

in Fig. 6. Apparently, “compressed-clustered” achieves the

lowest write throughput no matter which write pattern is used.

“compressed-random” achieves almost the same throughput as

“compressed-equal” when each process writes its own data to

a separate file. This is because in the “compressed-random”

experiment, although the data sizes are very different across

processes, the total data size of the 32 processes on each

compute node does not show significant imbalance due to the

random assignment of synthetic data sizes. If all the processes

write data to a single shared file, “compressed-equal” always

outperforms “compressed-random”. This indicates that writing

data to a single shared file is more sensitive to the unbalanced

parallel I/O loads.

IV. RELATED WORK

As the advancement of computational power has greatly

out paced capacity and bandwidth of I/O systems over the last

decade, storing the whole scientific data has become infeasible

as it will be prohibitory expensive. To reduce the cost of

I/O and speed up scientific computations,using compression

is a promising direction. Namely, scientific data are first

reduced using lossless or lossy compressor before transfer-

ring through the I/O systems. Lossless compressors [15]–[19]

offer the capability of compressing data and preserving bit-

wise identical information content in decompressed data. As
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scientific data become increasingly large with the advance-

ment of scientific simulations and experiments, relative low

compression ratios obtained though lossless compression can

no longer satisfy both the time and resource constrains in

modern scientific computing. As not every bit of the scientific

data necessarily contributes to the useful information in data,

lossy compression is known as a more favorable approach

for greatly reducing the cost of I/O. Especially, to make sure

important information contents are not lost during compres-

sion, several lossy compressors for scientific data have been

proposed with guaranteed error control. For example, SZ [5]

lossy compressor is built based on using multiple prediction

methods. ZFP [4] lossy compressor is built based on block

transformation. MGARD [2], [3], [6], [7] lossy compressor is

built based on multilevel decomposition.

Based on compression techniques, many works has been

focusing on applying compression to reduce the cost of I/O.

For example, [20] proposes to use lossless compressors such

as LZO and BZip2 to reduce the amount of data transferred

over the network. They build I/O Forwarding Scalability Layer

in the communication libraries so that the compression and

decompression are transparent to users’ applications. [21]

proposes to use both lossless and lossy compressors to reduce

the data movement cost between scientific simulation code

and in-situ analytics. Based on their evaluation, they propose

an adaptive compression service for the in-situ analytics

middle-ware. [22] focuses on applying transparent compres-

sion between the computing and the storage systems. They

build on-line decision system that can predict whether to

compress at runtime, allowing guaranteed QoS for the I/O

systems. [23] proposes to adaptively applying compression at

highly-compressible regions and perform direct I/O on less-

compressible regions to optimize the overall I/O performance.

As lossy compression are continuing to evolve for achieving

higher compression ratios, it is anticipated that there will be

higher disparity in terms of compressed sizes across regions in

scientific data. This could lead to even more unblanaced I/O

workload, which results inefficient I/O operations. However,

very few existing studies have identified such issue or proposed

solutions to improve the I/O performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we focus on an often neglected side effect of

lossy scientific data compression: unbalanced parallel I/O. We

conduct a comprehensive study by applying three commonly

used lossy compressors MGARD, ZFP, and SZ to data gen-

erated by three real-world scientific applications Gray-Scott

simulation, WarpX, and XGC. Our study quantifies the data

skewness of lossy compressed scientific data across processes

due to heterogeneous information density. Further experiments

on write performance demonstrates how such data skewness

can cause unbalanced parallel I/O and thus impact the parallel

I/O performance.

In our future work, we aim to use information theory to

formally analyze the information density across decomposed

data and design an effective approach to estimate the data

skewness among parallel processes so that proper actions can

be taken to mitigate the parallel I/O imbalance issue. We also

plan to employ a tiered approach to group decomposed data

with complimentary information density on the same node to

reduce the imbalance in parallel I/O.
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