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Principles of adaptive element
spacing in linear array antennas

Tanzeela Mitha & Maria Pour™

A novel approach to linear array antennas with adaptive inter-element spacing is presented for the
first time. The main idea is based upon electronically displacing the phase center location of the
antenna elements, which determine their relative coordinates in the array configuration. This is
realized by employing dual-mode microstrip patch antennas as a constitutive element, whose phase
center location can be displaced from its physical center by simultaneously exciting two modes. The
direction and the amount of displacement is controlled by the amplitude and phase of the modes at
the element level. This in turn facilitates reconfiguring the inter-element spacing at the array level. For
instance, a uniformly-spaced array could be electronically transformed into a non-uniform one without
any mechanical means. The proposed idea is demonstrated in two- and three-element linear antenna
arrays. The technique has the potential to control the radiation characteristics such as sidelobe levels,
position of the nulls, and the beamwidths in small arrays, which are useful for adaptively controlling
the array performance in emerging wireless communication systems and radars.

Phased array antennas have attracted much attention in recent years because of their appealing capabilities to
realize a variety of unique radiation characteristics such as high gain, low sidelobe levels, beam scanning, and
null steering. The radiation characteristics mainly depend upon the element pattern, the excitation amplitude and
phase, inter-element spacing, as well as the array geometry'?. A number of well-defined techniques, namely the
Taylor and Dolph-Chebyschev methods'™, use tapered amplitude excitation on uniformly-spaced array anten-
nas to reduce and control the sidelobe levels. Low sidelobe levels can also be achieved by optimizing the phase
shifts of the uniformly-spaced array elements®. In 1961, Harrington® proposed a novel technique of reducing
the sidelobe levels of array antennas with uniform excitation by employing the method of non-uniform spac-
ing of array elements. This technique was further investigated to design unequally-spaced array antennas with
uniform®? as well as non-uniform excitation!®!! to improve the array performance, compared to uniformly
spaced arrays'?"'. It was demonstrated that the radiation characteristics, e.g., the position of the nulls, beam-
width, sidelobe levels, of the non-uniform arrays can be controlled by the location, magnitude and phase of
their base elements. A vast variety of evolutionary algorithms such as genetic algorithm (GA), particle swarm
optimization (PSO), and differential evolution (DE), were developed for the purpose of optimizing the element
positions and excitation to reduce the computational cost'®-*. This has led to the development of antenna arrays,
realizing narrow beamwidths, null steering and reduced sidelobe levels by controlling the element position and
excitation?*-2*, However, in order to achieve different desired radiation characteristics, it is required that the base
element be physically displaced to a pre-determined position. As the element position varies per the require-
ment, the practical implementation becomes costly and complex. Therefore, a new research paradigm is needed
to realize adaptive element spacing arrays over the course of the operation.

In this article, a novel approach is proposed for the first time to electronically change the array inter-element
spacing by displacing the phase center locations of its antenna elements. It has already been established that the
phase center location of a single, dual-mode circular microstrip patch antenna can be controlled by the amplitude
and phase of mode content factors*~?%. Such an intriguing and inspiring displaced phase center capability is
utilized herein for the first time to realize adaptive element spacing in antenna arrays, whose physical elements
are uniformly spaced. This article focuses on investigating the phase center displacement idea in two- and three-
element linear arrays, consisting of the dual-mode circular microstrip patches. Nonetheless, the concept can be
applied to N-element equally-spaced arrays as graphically illustrated in Fig. 1. The coordinates of each element
are electronically changed by displacing the phase center location of the base element from its pre-determined
central position to modify the element spacing in the array. First, a brief review of the phase center displacement
in a single, dual-mode patch antenna is provided to understand the relation between the phase center location
and element position and how it can be adaptively controlled. The dual-mode antenna is then considered as the
base element for the two- and three-element linear array antennas where the phase center displacement technique
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Figure 1. An N-element equally-spaced linear array with different phase center locations to generate different
combinations of element spacing.

is employed to adaptively change the element spacing without any physical displacement. Based on the analyti-
cal results of the three-element linear array, the array antenna along with its feeding network were simulated
in a full-wave electromagnetic solver and fabricated using printed circuit board technology. The measured and
simulated results are in good agreement with each other. They also verify the proposed idea in practice that the
phase center displacement concept can be utilized to facilitate adaptive element spacing in equally-spaced array
antennas to generate a variety of radiation patterns without any physical displacement.

Phase center displacement of antenna element. The proposed concept of adaptive inter-element
spacing in an array is realized by electronically displacing the phase center location of its base elements, which
in turn alters the relative coordinates of the array elements. The phase center deviation is achieved by simulta-
neously exciting the first two azimuthal modes of circular microstrip antenna elements, detailed as follows. As
per IEEE standard®, the phase center location of an antenna is the effective source of radiation, from which the
spherical waves are formed in space with constant phase fronts over a sphere in the far-field region. Thus, any
phase center displacement in an antenna element leads to an apparent change in its position. In general, the
phase center location of a circular microstrip antenna is coincident with its physical center when it operates at a
single mode, whether the dominant or a higher order mode?*. However, if two or more modes are concomitantly
excited, the phase center of the antenna may be displaced from the physical center of the patch. In order to dem-
onstrate the phase center displacement, a stacked dual-mode circular patch antenna configuration is considered
here. The antenna excites the TM,;, and TM,, modes at the frequency of 10 GHz, using two probes located at
p1 and p, respectively along the x-axis, as shown in Fig. 2a. The patches and the ground plane are separated by
thin layers of dielectric material (Rogers 5880) with a relative permittivity ¢,=2.2 and heights s, =1.6 mm and
h,=1 mm, respectively. The top- and side-views of this antenna are shown in Fig. 2.

To simplify the analysis, it is assumed that the patches are backed by an infinite ground plane. Based on the cavity
model, the combined far-field equations of the radiation pattern for the x-polarized TM,;, and TM,, modes are given by:
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where the second and third exponential terms represent the antenna phase center location in polar coordinates,
denoted by (74, ¢, 2,); ] is the Bessel function of the first kind with associated eigenvalues of 1.8412 and 3.0542
for the TM,, and TM,, modes, respectively; A,, is the normalized excitation ratio (TM,, to TM,, mode), which
is also known as the mode content factor. It is a complex number in general, defined as A,, =|A,;|2a,,, where
|A, | and a,, represent the magnitude and the phase shift between the two modes, respectively. The arguments
of the Bessel functions, i.e., #; and u,, are defined by:

uy; = koaysind
- ; (€)

up = koaysind
here k, is the wave number and a, and g, are the physical radii of the TM,, and TM,, patches with values 5.4 mm
and 9.2 mm, respectively, at the designed frequency of 10 GHz. The radii (a,) of a TM,,, mode circular patch
can be calculated using":

X120

= on Jer @)
where A is the free space wavelength at the resonant frequency and y',,, is the zero of the derivative of the Bessel
function of first kind and order n'". In the ¢ = 0° plane, both TM;; and TM,; modes contribute to the E, radiation
pattern. Thus, the E, radiation pattern is further investigated. When only the TM;, mode is excited, the antenna
emits a broadside radiation pattern with a uniform phase distribution, indicating that the phase center is located
at the physical origin. By adding the TM,; mode to the dominant TM;; mode, the far-field phase distribution
over the main beam is no longer uniform, implying that the phase center has been displaced, whose coordinates
are represented by (g §,, 2,) in (1) and (2). As the thickness of the substrate is very small with respect to the
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Figure 2. (a) Top- and (b) cross-section view of the stacked circular patch antenna operating at the TM,, and
TM,, modes over an infinite ground plane. The patches have radii 4, =5.4 mm and 4,=9.2 mm, placed over
Rogers 5880 dielectric with permittivity €,=2.2; h;=1.6 mm and h,=1 mm and excited by SMA probes located
at p;=2.7 mm and p,=5.8 mm; the “eye sign” represents the antenna phase center location, denoted by r,,. and
¢, in the xy-plane.
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Figure 3. The effect of mode content factors on the phase center location for excitation phases of «,; =0° and
180°.

wavelength, the displacement along the z direction is considered negligible, i.e. z, ~ 0. Therefore, for a given A,,,
*4pc and ¢, can be uniquely determined such that they make the far-field phase distribution uniform. As a result,
the direction and the amount of displacement of the phase center depend on the magnitude and phase of the
mode content factor A,,. For all non-zero amplitude excitations and non-quadrature phase differences of + 90°,
the phase center is displaced along the x-axis. To obtain an equal amount of displacement, but in the opposite
direction, one may only change the polarity of the applied phase shift. For a given |A,,|, the maximum phase
center displacement is realized when the phase shift between the modes is 0° and 180°, which moves the phase
center away from the center along the + x and — x axis, i.e., $,=0° and ¢, = 180°, respectively*’. For further clari-
fication, the phase center location of the dual-mode antenna is plotted in Fig. 3, for different |A,,| with in- and
out-of-phase excitation of a,; =0° and a,, = 180°, respectively. As the mode content factor increases, the phase
center moves farther away from the origin. This is also graphically illustrated in Fig. 4, wherein the potential
phase center locations are denoted by “eye signs” and they are color-coded throughout this article. That is, the
black eye sign represents the physical center of the antenna, implying that only the TM,; mode is excited, and the
blue and green eyes accord with the phase center locations due to the dual-mode excitation, which are displaced
along the + x and — x axis, respectively.

The phase center displacement concept detailed above will be applied to two- and three-element arrays,
respectively, to demonstrate the underlying principles of adaptive element spacing in linear arrays.

Two-element array. In this section, a two-element linear array is studied, whose base elements are the
dual-mode circular patch antennas discussed above. These elements are placed such that their physical centers
are 0.7\, apart, where A, is the free space wavelength at 10 GHz. The phase center displacement for the two ele-
ments is investigated for the following four cases, as illustrated in Fig. 5. In Case I, only the TM,, mode of both
antenna elements are excited, i.e. A,; =0£0°. As no phase center displacement takes place due to the single-mode
excitation, the phase centers, represented by the black eyes, are located at the physical centers of the antennas.
The radiation pattern of this arrangement is shown in Fig. 6a. The pattern has a half-power beamwidth (HPBW)
of 39° and the first nulls are located at +45.5°. This case serves as the reference case and the radiation patterns of
the following three cases are compared to it to highlight the potential changes that occur due to the phase center
displacement and thus to the element spacing within the array.

Case II represents the scenario where the phase center location of the right element is electronically displaced
by r,,.=0.15), along the + x axis by exciting the TM,, mode in-phase with the dominant mode with A,, =1.0°.
The left antenna only excites the dominant TM,; mode and its phase center location thus remains unchanged at the
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Figure 4. Pictorial representation of the phase center displacement in the base element. The phase center moves
along the positive x-axis when a,, =0°, i.e., TM,, + TM,, mode is excited, and along the negative x-axis when
a,, =180° i.e. TM;;-TM,; mode is excited.
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Figure 5. Structure and position of phase center of the two-element array with physical element spacing of

d =0.7), for (a) Case I: both elements excite only the TM,; modes with |4,,|=0£0° (b) Case II: A,; =120°

for the right element and A,, =0£0° for the left element, (c) Case III: A,, =1£0° for the right element and

A, =12£180° for the left element, and (d) Case IV: A,, =12180° for the right element and A,, =1.20° for the left
element.
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Figure 6. Comparison of the radiation patterns of the dual-mode (TM;, and TM,,) two-element array antenna
configurations of (a) Case I, (b) Case II, (c) Case III, and (d) Case IV, as shown in Fig. 5; solid black lines: TM,
mode, dashed blue lines: dual-mode, green plus symbols: physically displaced.

physical patch center. This is illustrated in Fig. 5b. Therefore, the effective element spacing in Case I now becomes
greater than its physical one of d=0.7\, and is equal to d,.=d +r,4,,=0.7Ay+0.15X,=0.85A,. The corresponding
radiation pattern of Case II is plotted in Fig. 6b and compared with that of the reference case. The larger element
spacing occurred in Case II due to the displaced phase center of its right element increases the overall length of the
array. This in turn changes the location of the null to + 36.8°, the HPBW to 33.4° and increases the sidelobe level of
the array radiation pattern. This pattern closely resembles that of a single-mode, two-element array antenna with a
physical element spacing of 0.85\, which is also plotted in Fig. 6b for comparison, marked by green ‘+” symbols.

In Case III, the phase centers of both elements are displaced away from each other. That is, the phase center of
the left element is further pushed to the left by ,,.=0.15A,, by exciting the TM,, mode 180° out of phase with the
TM,; mode with A,, =12180°, whereas the phase center of the right element is shifted to the right by r,,.=0.15A,
by in-phase exciting the two modes with A,, =10°. Thus, the distance between the elements now increases to
d,.=d+2r4,.= 1), as illustrated in Fig. 5c. The radiation pattern of this arrangement is plotted in Fig. 6¢. This
pattern is similar to that of a single-mode, two-element array antenna with a physical element spacing of 1\, as
shown in Fig. 6¢c. As observed, the beamwidth becomes narrower as the HPBW shrinks to ~29° and the null loca-
tions change to +30.8°, which is attributed to the larger effective length of the array compared to the reference case.
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Case I CaseIl |Caselll | CaselV

HPBW 39° 33.4° 29° 67.6°
Null location +45.5° +36.8° +30.8° +90°
Gain 8.29dBi |7.52dBi |6.67dBi |6.44 dBi

Table 1. Radiation characteristics of the two-element linear array antennas.

In Case IV, the phase center locations of both elements are electronically pushed inwards by 7,4,.=0.15), on
each side, thus reducing the distance between the elements from d=0.7A, to d,.=d —2r,,.=0.4),, as depicted in
Fig. 5d. This is accomplished by exciting the higher order mode in-phase with the dominant mode in the left ele-
ment (TM,, + TM,,) and out-of-phase in the right element TM,,-TM,,. That is, the mode content factors of the
left and right elements are A,, =1£0° and A,, = 12£180°, respectively. The radiation pattern of this configuration is
shown in Fig. 6d, where a wider beam with HPBW of 67.6° is now realized due to the smaller effective length of the
array. The similarity between this pattern and that of a two-element array antenna with a physical element spacing
of 0.4\, is highlighted by their respective curves overlaid in Fig. 6d. Thus, the phase center displacement technique
can be used to electronically alter the element spacing and thus the overall length of this two-element antenna array.

From the above cases, it can be established that the distance between the phase center locations of the base
elements in an array can be varied by exciting the higher order mode in- and out-of-phase with the dominant
mode. This is achieved by varying the magnitude and phase of the mode content factor, i.e. |A,| and a,,. The
radiation characteristics for Cases I-IV are summarized in Table 1. The gain reduction in Cases II-1V is attrib-
uted to the reduction in the element gain due to the excitation of the higher order TM,, mode along with the
fundamental TM,; mode.

We can thus conclude that the displaced phase center technique can be used to electronically change the ele-
ment spacing without any physical movement and be eventually used to realize a non-uniform array in larger
array configurations. This idea of changing the apparent location of the base element by displacing its phase
center can be used in N-element arrays to create adaptive element positioning without any mechanical means.
It would help bypass the physical constraints of element rearrangement that is necessary to achieve the desired
radiation pattern. In order to demonstrate this further, the proposed concept is applied to a three-element array
where its effect on the null position, sidelobe level, and beamwidth is investigated.

Three-element array. In this section, the proposed concept is further examined in a three-element array
antenna. The base elements of the array are placed such that their physical centers are d=0.7A, apart. In order to
study the effect of displacing the phase center of the array elements on the element position, the overall length of
the array, and the resulting radiation patterns, four cases (V to VIII) are considered as follows.

In Case V, the phase center locations of all the elements are at their physical centers as only the dominant
mode is excited in each element, i.e., A, =0£0°. The array configuration along with its radiation pattern is shown
in Fig. 7. The main beam has a HPBW of 24.8° and the first nulls are located at +28.3°. This case is considered
as the reference case, to which the remaining three cases are compared.

In Case VI, the phase center of the right element is shifted to the right by 7,,.=0.15), by setting its mode content
factor to A,, =1£0°. The phase center locations of the remaining two elements are kept at their physical centers by
only exciting their dominant TM;; mode, i.e. A,;=020°. As the phase center of the right element is displaced, its
relative position in the array is shifted to the right by r,,, thus now forming an unequally spaced array. As a result,
the overall length of the array increases causing a change in the overall radiation pattern. This is illustrated by the
variation in the sidelobe level from —11.8 to —9 dB, as well as changes in the position of the nulls from +28.3°
to+25.6° and HPBW from 24.8° to 22° as shown in Fig. 8. This pattern closely resembles that of a three-element non-
uniform array, with element spacing 0.7), on the left side and 0.85)\, on the right, which is omitted here for brevity.

In Case VII, both the right and left elements’ phase center locations are displaced away from the axis origin by
Tape=0.15), by exciting the higher order mode in-phase and out-of-phase with the dominant mode, i.e. A,;=120°
and A,, =12180°, respectively. This creates a uniformly-spaced array with element spacing of 0.85\, as depicted
in Fig. 9a. Thus, the overall length of the array increases without any physical displacement and its effect on the
radiation pattern is shown in Fig. 9b. It is observed that the null location shifts from + 28.3° to +22.7°, sidelobe
level increases from —11.8 to — 8.9 dB, and HPBW reduces from 24.8° to 20.8°, similar to the previous case. None-
theless, this case study may serve as the basis for larger array implementations with adaptive element spacing.

In Case VIIL, the phase center locations of the right and left elements are moved inwards by 7,,.=0.15A, on each
side. This is achieved by exciting the higher order mode out of phase with the dominant mode TM;;-TM,, in the
right element, i.e. A, =12180° and in-phase TM, + TM,, in the left element, i.e. A, =120°. This makes a uniformly-
spaced array with element spacing 0.55\, thus decreasing the overall length of the array and leading to a change in
the radiation pattern, as shown in Fig. 10. The null location shifts from +28.3° to + 34.7°, sidelobe level increases from
—11.8 to —9.5 dB, and HPBW increases from 24.8° to 32°, as now the effective array length becomes virtually smaller.

It is observed from the above cases that different periodic and aperiodic configurations can be realized using
the displaced phase center technique without physically rearranging base elements. Each configuration led to
a change in the overall radiation characteristics. The radiation characteristics of the arrays for Cases V-VII are
summarized in Table 2. The proposed displaced phase center technique can be utilized in larger array antennas
to develop different periodic and aperiodic configurations that alter the radiation patterns and achieve unique
characteristics such as low sidelobe levels to suppress interference signals, null steering for anti-jamming applica-
tions, high gain and beam scanning for tracking targets in radars.
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Figure 7. Case V (a) structure and (b) radiation pattern of dual-mode, three-element array antenna physically
placed d=0.7\, apart, with all three elements exciting TM,,; mode, i.e., A,; =02£0°.
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Figure 8. Case VI (a) structure and (b) radiation pattern of dual-mode, three-element array antenna physically
placed d=0.7A, apart, with phase center of the right element shifted to the right by r,,.=0.15\, when A,; =1£0°.
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Figure 9. Case VII (a) structure and (b) radiation pattern of dual-mode, three-element array antenna physically

placed d=0.7\, apart, with phase center of right element and left elements displaced away from the center of the
axis by 7,4,.=0.15),, with mode content factors A =12£0° and A,, =12£180° respectively.
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Figure 10. Case VIII (a) structure and (b) radiation pattern of dual-mode, three-element array antenna
physically placed d=0.7\, apart, with phase center of right element and left elements displaced towards the
center of the axis by 7,4, =0.15),, with mode content factors A, =12£180° and A, =1£0° respectively.

It should be noted that the aforementioned dual-mode elements generate a broadside radiation pattern despite
any phase center displacement, as the element pattern remains stationary in space. The phase center displacement
is carried out within the element, which then changes its relative coordinate in the array. This in turn facilitates
the realization of different aperiodic arrays to control the beamwidth in small arrays, sidelobe levels and null
locations. Thus, the proposed phase center displacement technique does not hinder the beam scanning capability
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Case V Case VI | Case VII | CaseVIII

HPBW 24.8° 22° 20.8° 32°
Null location +28.3° +25.6° +22.7° +34.7°
Gain 10.25dBi | 9.62dBi |9.19dBi 9.06 dBi

Table 2. Radiation characteristics of the three-element linear array antennas.

of the array in any way, as the main beam can be steered in a similar manner as in conventional phased array
antennas by applying proper phase shifts at the array level.

Methods

The stacked configuration of the dual-mode circular patch antenna, assumed in the preceding analytical inves-
tigations in the three-element array design, increases the complexity of its fabrication and assembly in practice.
Thus, to alleviate the manufacturing process of an adaptive three-element linear array, a single-layer dual-mode
patch antenna® with the displaced phase center property is used as the base element of the array. The single-layer
antenna element is printed on a 1.52 mm-thick Rogers RO3003 substrate with the dielectric constant ¢,= 3. The
base elements of the array are composed of a central circular patch with radius R, =4.16 mm, exciting the TM,,
mode and a concentric short-circuited ring patch with outer radius R,=9.751 mm and inner radius R;=4.9 mm
exciting the TM,, mode with probe p, and p,, respectively, at a frequency of 10 GHz. The central circular patch
of the base element has three vertical slits of thickness ¢, =0.25 mm and length Lt, =3.7 mm that are apart by
a distance dt; =2.1 mm to make the design compact. A detailed illustration of the base element is provided in
Fig. 11. The inner edge of the ring patch is short-circuited to the ground through the substrate with 16 metallic
vias with diameter v,=0.81 mm to improve the isolation between the TM,, and TM,, modes. Furthermore, four
symmetric arc slits of width w,=0.2 mm and angle a,=7.6° are etched on the ring patch to facilitate the TM,,
mode purity. The arc slits are at a distance d,=7.3 mm from the central circular patch and are curved as per an
outer circle of radius R, =55 mm. Additionally, the short-circuited concentric ring patch has two horizontal slits
with length I, =5.2 mm and width w,=0.2 mm, located at distance d, = 6.5 from the center, to improve the purity
of the TM,, mode and suppress its orthogonal mode.

Based on this single-layer element design, a three-element equally-spaced linear array antenna with the phase
center displacement property was designed using the finite-element based full-wave solver ANSYS HFSS?'.
The antenna array is printed on a circular, 1.52 mm-thick Rogers RO3003 substrate with dielectric constant
¢,=3 and radius R,=60 mm. To reduce the mutual coupling between the adjacent ports the base elements of
the array are placed 0.7\ apart. The geometry of this single-layer, three-element design is illustrated in Fig. 12.
Each element of the array is connected to two probes that excite the TM,, and TM,, modes at the frequency of
10 GHz. The simulated scattering parameters of the dual-mode element within three-element linear array are
shown in Fig. 12b, where |S,,| or |S,,| represents the mutual coupling between the TM;, and TM,, modes in the
base element and |S;,| and |S,,| are the reflection coefficients of the ports exciting the TM;, and TM,, modes,
respectively. The mutual coupling between the modes are well below —20 dB at 10 GHz thus contributing to
small interference between them. The dual-mode circular patches have a narrow impedance bandwidth of 2.2%
and 2.8% for the TM,, and TM,, modes, respectively.

In order to verify the proposed idea, the full-wave simulation and measurement analysis of Cases V and VIII
in the three-element linear array antenna are carried out with the help of the feeding network designed below.

Feeding network. The phase center location of the base elements in the three-element array are modified
using the 1:5 power splitter represented in Fig. 13a. This power splitter is composed of one 1:2 in-phase coupler
and two 1:3 power splitters®’. The power divider is etched on 0.508 mm-thick Rogers 5880 substrate with dielec-
tric constant ¢,=2.2. The feeding network is designed to operate at a central frequency of 10 GHz. The input
and output ports are connected to 50 Q) transmission lines of thickness 1.565 mm. This feeding network has one
input port (P,), 5 output ports (P,_), 5 isolation ports and one matched port. The isolation ports and matched
port are connected to 50 Q) loads. The feeding network is designed such that the radiating elements connected
to the output ports 2, 3, 4 and 6 are excited by signals of equal magnitude and 0° phase shift at the operating
frequency. Port 5, on the other hand, provides a signal with equal magnitude but 180° phase shift at the same fre-
quency. The feeding network has an insertion loss of ~—10.5 dB at 10 GHz. The measured reflection coefficients,
insertion loss and phase shifts of all the input and output ports are summarized in Fig. 13b,c,d.

Measured results. Based on the full-wave simulation of the design, a three-element single-layer array antenna
was fabricated using the printed circuit board (PCB) technology. Each element of the array was connected to two
SMA probes to excite the TM,, and TM,, modes. For Case V, only the TM;, modes of each element needed to be
excited. Hence, the TM, ports of each element of the array were connected to ports Ps, P, and P of the feeding
network, which supplied signals with equal magnitude and 0° phase shift. The remaining output ports of the feed-
ing network as well as the TM,, ports of the antenna array were connected to matched loads. This entire setup with
the antenna array and feeding network was first simulated in HFSS and then the fabricated model was assembled
and measured in the spherical near-field anechoic chamber at The University of Alabama in Huntsville. Figure 14a
shows the assembled antenna array prototype under test in the anechoic chamber. For Case VIII, the TM,; modes
of the right and left element of the array were excited along with the TM;; modes of all the three-elements. The left
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Figure 11. Geometry of the single-layer, dual-mode circular microstrip patch antenna operating at the TM,
and TM,, modes, where R, is the radius of the TM,, patch, and R, and R; are the outer and inner radii of TM,,
ring patch, respectively; p; and p, represent probe locations. (a) Top view, (b) TM,, circular patch, (¢) TM,, ring
patch.
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Figure 12. (a) Geometry of the single-layer, three-element array antenna operating at the TM,; and TM,,
modes, over a finite ground plane of R, =60 mm; the patches are etched on 1.52 mm-thick Rogers RO3003
dielectric with permittivity e,=3. (b) Simulated scattering parameters of the dual-mode base elements exciting
the TM;; and TM,; modes.

element TM,, mode was excited with a signal of equal magnitude and 0° phase shift by connecting it to port P, of
the feeding network, whereas the TM,, mode in the right element of the array was excited with a signal of equal
magnitude and 180° phase shift by connecting it to port P; of the feeding network. Consequently, the phase cent-
ers of the edge elements moved inwards, decreasing the overall electric length of the array. This altered the overall
radiation pattern of the array antenna. The simulated and measured active scattering parameters of the array with
the feeding network for both Cases V and VIII are shown in Fig. 14b. The measured and simulated active scattering
parameters are below — 18 dB at 10 GHz. The difference in the simulated and measured active scattering parameters
are due to the grounding mismatch in the simulated model and the manual assembly of the fabricated antenna
with the feeding network. The measured radiation patterns of the assembled array antenna are compared to the
simulated ones in Fig. 14c at the frequency of 10 GHz for Cases V and VIII. Overall, the radiation pattern results of
the fabricated antenna are in good agreement with the simulated ones. In particular, it is clearly observed how the
null locations and the beamwidths are impacted by adaptively changing the element spacing in the three-element
array. The slight variations observed in the measured and simulated radiation patterns are mainly attributed to the
inaccuracies in the antenna assembly and the supporting mast used for the measurement.

Conclusion

The concept of adaptive element spacing in linear array antennas was investigated in this article for the first time,
which was inspired by the intriguing capability of a dual-mode circular patch antenna to displace the phase
center location away from its physical center, while maintaining its broadside radiation pattern. This paved the
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Figure 13. (a) A photograph of the fabricated feeding network with one input port P, and five output ports
P,_¢. Measured (b) reflection coefficients, (c) insertion loss and (d) phase difference between the ports.
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Figure 14. (a) Three-element single-layer array under test in an anechoic chamber and its measured and
simulated (b) active scattering parameters, (c) radiation patters for Case V and Case VIIL

way to electronically change the array element spacing through associating the relative position of the antenna
element in an array configuration to its respective phase center location. As a result, the transformation of a
uniformly-spaced array into a non-uniform one was made possible with the proposed technique without any
mechanical means. As a proof of concept, thorough investigations were carried out in two- and three-element
uniform arrays, consisting of the dual-mode elements with a fixed physical element spacing of 0.7A. The results
demonstrated that different element spacing ranging from 0.55A, to 0.85\, could be realized by controlling
the magnitude and phase of the dual-mode elements without mechanically moving the elements. The distance
between the elements was varied electronically in different case studies to create periodic and aperiodic array
antennas that could control the radiation characteristics. Thus, the proposed technique can be used in larger
arrays to adaptively control their radiation characteristics, such as sidelobes, grating lobes, and nulls, without
facing the physical constraints on rearranging the antenna elements to pre-determined positions for a given

requirement. The proposed reconfigurable element-spacing array antenna has the potential to transform the
next generation phased array antennas in radar and remote sensing applications.
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