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Adaptive Photonic Microwave Instantaneous
Frequency Estimation Using Machine Learning
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Abstract— Instantaneous microwave frequency estimation
enables numerous essential applications in the commercial,
defense, and civilian marketplace. The advancement of
applications is hindered by the bottleneck in electronic-based
frequency measurement systems including narrow bandwidth,
high errors rate, and low dynamic range. Photonics-based
frequency estimation approaches not only increase the operation
frequency range and provide rapid measurement response, but
also benefit from immunity to electromagnetic interference and
enhancement in system adaptability. Despite the unique
advantages offered by photonics-based frequency estimation
approaches, it is challenging to obtain linear mapping between the
unknown frequency and the measured optical characteristics due
to the nonlinear response in electro-optical devices, which
consequently results in degradation in measurement precision and
a complex calibration relationship. Therefore, it is critical to
mitigate the challenge to achieve dynamic, adaptive, and high-
precision estimation of microwave frequency. To this end, this
paper presents the design and demonstration of a high-precision
photonic based instantaneous frequency estimation system driven
by machine learning. A three-layer deep neural network is used to
tackle device nonlinearity and system noise, resulting in absolute
error of <50 MHz and root mean square error of 1.1 MHz.

Index Terms— Frequency estimation, Machine learning

1. INTRODUCTION

IDEBAND instantaneous microwave frequency
estimation system is an essential tool for radar detection,
electronic warfare, military threats identification, decisive
intelligence acquisition, and deceptive counter-measures
implementation [l1]. However, emerging wideband and
complex wireless environment brings critical challenges to
realize frequency estimation using conventional electronic
technologies, resulting in narrow bandwidth, high errors rate,
and low dynamic range measurements. The unique
characteristic of photonic, including wideband operation, high
reconfigurability, and instantaneous response make photonics
be a promising candidate to overcome hurdles faced by
electronics approaches. Microwave photonic based frequency
estimation have been demonstrated using frequency-to-time
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mapping [2], power fading comparison [3], SBS-assisted phase-
to-intensity modulation [4], and frequency-to-intensity
mapping [5]. Although existing photonic approaches solved
some of the challenges that their electronic counterparts are
facing, current photonic schemes suffer from relatively limited
reconfigurability for optimizing measurement performance,
large frequency estimation error in the order of hundreds of
MHz, and inability to adapt to dynamic RF scenario.

At the same time, machine learning (ML) has been used to
enhance a wide range of photonic signal processing tasks,
including optical performance monitoring, nonlinearity
compensation in transmission system, proactive fault detection,
and software-defined networking [6]. Recently, a convolutional
neural network-assisted optimization method is proposed to
achieve instantaneous frequency estimation over the Brillouin
frequency range (~10 GHz) and achieve significant accuracy
improvement with error within several tens of MHz [7].
However, there is a trade-off between measurement range and
tolerance error. Most existing frequency estimation methods
could either enable wideband measurement range with
relatively low frequency resolution (i.e. a few hundred MHz) or
achieve a small error (i.e. tens of MHz) with narrow
measurement range. In [8], we have obtained some preliminary
results for demonstrating the feasibilty of machine learning in
microwave photonic frequency estimation to improve
measurement error performance. However, there is still a
critical need to supply solid theoretical analysis, detailed
simulation comparison as well as the practical implementation
of the DNN-assisted frequency estimation model with dynamic
parameters tuning (i.e. extinction ratio, free spectral range,
varying electrical power).

In this letter, we principally and experimentally
demonstrated an adaptive instantaneous frequency estimation
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Fig. 1. Schematic of the basic photonic microwave frequency estimation
system. CW: continuous wave; EOM: electro-optic modulator; PC:
polarization controller. OC: optical coupler. (b) optical spectra of (i) optical
carrier, (ii) CS-DSB signal, (iii) (iv) filter pair (cosine shape).
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system based on complementary optical power measurement
assisted by deep neural network (DNN). Based on prior
experience the intelligent frequency estimation system has,
high measurement accuracy as well as high tolerance to device
nonlinearity and system noise are achieved. The DNN-assisted
frequency estimation system can adapt to dynamic RF
transmission condition and significantly decrease the resultant
frequency estimation error to 50 MHz with a 1.1-MHz root
mean square error over a 14-GHz frequency range.

II. OPERATION PRINCIPLE

A. Basic Photonic Microwave Frequency Estimation

To perform microwave frequency estimation, the unknown
microwave signal-of-interest is modulated onto an optical
carrier via an electro-optic intensity modulator (EOM), as
shown in Figure 1(a). The EOM is biased at the null
transmission point to achieve carrier suppressed double
sideband modulation (CS-DSB). The CS-DSB modulated
optical output is then sent to an optical comb filter pair with
complementary spectral responses (i.e. with positive and
inverse responses). Therefore, the microwave frequency can be
determined by monitoring the filtered optical powers using two
optical power meters. Assuming the input electrical field
amplitude is Ejexp(j2mf.t) , the CS-DSB optical signal
resulted from an applied microwave signal at frequency fgr can
be written as,

Eout(t) = EoZpfon(B)cos(2mf ot + 2n - 2mfppt
—nm) + Jon_1(B)cos@rft (1)
— (2n—1) - 2nfppt + nm)

where J,,(.) is the n-th Bessel function of the first order. It
can be seen that amplitudes of the generated optical sidebands
are proportional to the corresponding Bessel functions
Vmcos(2rfrr)

Ve )

In conventional optical digital signal processing, the
modulating microwave signal power and the nonlinear transfer
function of modulator are ignored such that the assumption of
the small signal modulation is satisfied, resulting in only the
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Fig. 2. Simulated transmission curve comparison. (a) sinusoidal transmission
curve (log scale); (b) triangular transmission curve (log scale); (c) attenuation
slope comparison between sinusoidal (purple) and triangular (green)
transmission function.
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first-order sidebands are being considered in the model.
However, high-order sidebands in non-ideal modulation,
varying microwave signal power, as well as frequency (in-
)dependent optical/RF noise will significantly affect the
frequency estimation model in practical. Since the power ratio
between the complementary-filtered output is proportional to
the summation of the Bessel functions and the two
complementary spectral responses, they can be written as:

= Pipy « 1010gy0 Z,J7 (B)

pos

T,
+ 10logy, 7

Ppos

@)

+ N(M' O-r%oise)
inv

where B,,s and P;,, are the optical power in log scale
experiencing positive and inverse transmission responses,
respectively. Tj,o5 and Ty, are the transmission functions of the
complementary output of the comb filter. N(u, 62,;5.) is the
unknown instantaneous noise following a Gaussian distribution
with mean u and variance 0.2, in the case of central limit
theorem [9], which include shot noise, relative intensity noise,
and thermal noise.

B.  Improved Transfer Function

Conventionally, complementary comb-like spectral response
can be obtained easily by putting birefringence medium in an
interferometric structure, such that a sinusoidal transfer
function can be obtained, as depicted in Fig. 2(a) [10],

T(dB) = 10log;, [1 —ycos (%)] 3)

where v, frr, and FSR define the peak-notch contrast ratio,
microwave frequency, and free spectral range of the comb filter
pair, respectively. However, the resultant spectral response
drifts easily with small environmental variations, and the
spectral response is sensitive to the polarization of the incident
light. Furthermore, the inherent sinusoidal transfer function
results in nonlinear mapping between the optical attenuation
ratio and the signal frequency, causing a large error variation
especially in the peak and notch regions. To control the
complementary spectral responses with large degree of freedom
and high stability, a programmable wave shaper [11] is utilized
in this work instead. Furthermore, a linear triangular
transmission function 7 (depicted in Fig. 2(b)) is used instead
of a sinusoidal function to increase the linear range,
ER
T(dB) = max (ER ~FR IfRFI,O) 4)

where ER is the peak-notch extinction ratio of the
complementary triangular spectral responses. Figure 2(c)
shows the simulated attenuation ratio comparison between a
sinusoidal spectral response and a triangular spectral response.
It is observed that the attenuation ratio resulted from the
triangular spectral function (green) is highly linear over the
whole frequency range of interest, while the attenuation ratio
resulted conventional sinusoidal spectral function (purple) is
merely linear within a narrow spectral range in the middle of
the slope. The nonlinear region introduces inconsistent
variations in the relationship between the attenuation ratio and
frequency relationship over different frequency, resulting in
large measurement error variance. To compare the performance
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between a triangular and sinusoidal spectral function for
frequency estimation, we define a new parameter, attenuation
ratio slope, which describe both the linearity of the spectral
function and measurement resolution. In principle, a constant
slope across the frequency range of interest is desired to
mitigate the errors resulted from nonlinearity in the spectral
function. Figure 3 shows the attenuation ratio slope at different
FSR and frequency offset from the carrier frequency. The
attenuation ratio slope of the triangular spectral function has a
constant value over frequency (Fig. 3(c)) while the sinusoidal
spectral function has inconsistent attenuation ratio slope. (Fig.3
(a)). Furthermore, for a given FSR, the attenuation ratio slope
is consistent for a large range of extinction ratio (ER) in the
triangular spectral response (Fig. 3(d)) but varies a lot in the
sinusoidal spectral response (Fig.3 (b)). Thus, it is inevitable
that frequency estimation error is high at low and high
frequency ranges than the center frequency ranges in the
sinusoidal case, resulting in a frequency estimation model with
large mean squared error.
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Fig. 3. Performance comparison between the attenuation ratio slope in
sinusoidal and triangular spectral response. (a) sinusoidal with fixed ER; (b)
sinusoidal with fixed FSR; (c) triangular with fixed ER; (d) triangular with
fixed FSR.

C. Data-Driven Model Using Neural Network

Fig. 4 (b) shows the block diagram that describes the
workflow of the proposed data-driven frequency estimation
scheme: First, the collected data are loaded from the database.
Then, data preprocessing is applied, which consists of labeling
data, cleaning the data by removing the useless data points, and
normalize the data. Next, data partitioning is used to split the
data into training data and test data. It is worth to notice that 10-
fold cross validation is used, such that 10 different randomly
divided data partitions are resulted. Lastly, model inference is
performed with testing data, and the metrics are calculated once
the model is trained using training data.

DNN is uniquely designed to assist the frequency estimation
process in our experiment, that utilize information including
measured RF frequency, FSR and ER of the complementary
spectral functions, input RF power, and measured optical
powers after the complementary spectral filter pair. To train the
DNN, the collected data are partitioned into three parts, 90%
for training, 5% for validation, and 5% for testing. The designed
deep neural network is optimized by adjusting the weights and
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bias with Levenberg Marquardt regularization. Specifically, the
updated weight and bias parameters during each iteration is
equal to —[J7] + ul]~YJTe, where I is the identity matrix, J is
the Jacobian matrix that contains the first derivatives of network
errors with respect to the weights and biases, and e is the vector
of network errors. Before training, the raw data is normalized
into a more understandable format that has a standard deviation
of 1 with a mean of 0. The proposed data-driven DNN is then
trained in a processer with an Intel Xeon CPU ES5 3.5 GHz and
two NVIDIA Geforce-Quadro-P4000 GPUs. The trained
dataset consists of 14896 observations, which is applied to the
designed three-hidden layer DNN, where each layer consists of
10, 20, and 5 neurons, respectively.
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Fig. 4. The proposed data-driven photonic microwave frequency estimation
system with improved resolution and immunity to system nonlinearity. (a)
Experimental setup. DFB: distributed feedback laser; EOM: electro-optic
modulator; SG: signal generator; WS: optical wave shaper; OPM: optical
power meter; MP: microprocessor; DNN: deep neural network; (b) structure
of the designed DNN, and the overall block diagram showing the workflow of
the proposed data-driven evaluation methods.

III. EXPERIMENTAL SETUP

Figure 4(a) shows the experimental setup of the proposed
data-driven frequency estimation system that consists of two
parts: a complementary optical power measurement unit and a
deep neural network for frequency estimation. To achieve
complementary optical power measurement, a distributed
feedback laser (DFB) centered at 1549.275 nm is used as the
optical carrier. To collect training data, an RF signal of interest
that sweeps from 1 to 16 GHz with a step of 200 MHz is used.
The RF signal is then modulated onto the optical carrier using
a 10-Gb/s electro-optic intensity modulator (EOM). The EOM
is biased at the null transmission point to achieve CS-DSB
modulation, as shown by the blue curve in Fig. 5(a). The CS-
DSB optical signal is then passed through the pair of triangular
complementary spectral responses (orange curve in log scale)
at the optical wave shaper. Triangular response is used to ensure
the power difference between the two measured complementary
power is proportional to the signal frequency. Transmission
outside of the triangular cycle is set to zero for removing optical
noise and undesired high frequency harmonics generated during
electro-optic modulation. Fig. 5(a) shows the triangular spectral
response with variable FSR and ER. In our experiment, FSR
ranges from 40 GHz to 70 GHz with step resolution of 5 GHz
is used. A larger FSR supports a wider frequency estimation
range but would results in a lower frequency resolution.
Frequency resolution can be improved by increasing the ER of
the triangular spectral response. ER ranges can be set from 15
dB to 30 dB with 5 dB step size. To enable signal power
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Fig. 5. Examples of various measurement using one setting: (a) Measured
optical spectra of CS-DSB signal (blue); complementary triangular
transmission curves (orange solid and dash), transmission curves with tunable
FSR and ER (purple dotted curves); (b) measured optical power at different
RF frequency (RF power =0 dBm, ER = 15dB and FSR = 0.05THz); (c) Model
error distribution among train, validation, and test data; (d) model evaluation
with R2 equal to 0.9994 (inset: training, validation and testing loss curves).

transparent frequency estimation, training data with RF power
from -10 dBm to 2 dBm and increment of 2 dB is used to train
the DNN model. A quasi-linear relationship is observed in the
measured complementary optical powers obtained through the
two triangular complementary spectral responses, as shown in
Fig. 5(b).

IV. RESULTS AND DISCUSSION

To evaluate the performance of the trained model, histogram
of the absolute error between the predicted and actual RF
frequency is shown by the yellow bars in Fig. 5(c), which is less
than 50 MHz. The histogram of the training and validation
processes are also shown in blue and orange in Fig. 5(c) for
comparison. In addition, the calculated RMSE is 1.1 MHz,
which correspond to only 0.5% of the RF frequency sweeping
step resolution. The regression performance plot between
predicted and the actual RF frequency with respect to the
training, testing and validation dataset is shown in Fig. 5(d).
The calculated R2 value is 99.94% among all groups of data,
indicating a goodness of fit of the proposed DNN model. The
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Fig. 6. Performance evaluation: Estimated frequency and true frequency at
different system settings. (a) the estimated frequency and true frequency; (b)
preset RF power and measured optical power at complementary triangular
spectral functions; (c) preset FSRs and ERs.
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DNNe-assisted frequency estimation system works well even
under dynamic user-defined settings with unknown frequency.

To evalute the perfomance of the trained DNN, we apply the
new input data to obtain the estimated frequency and compare
the result with the actual frequency. In Fig. 6(a), the thick blue
line represents the estimated frequency, which matches well
with the actual frequency (thin red line). The corresponding RF
powers, FSRs, ERs, and measured optical powers are also
shown in Fig. 6(b)-(c). The results has a measurement error of
less than 50 MHz, proving the successful implemetation of
DNN-assisted microwave frequency estimation.

V. CONCLUSION

We proposed and experimentally demonstrated a data-driven
instantaneous frequency estimation system based on
complementary optical power measurement. The absolute
measurement error is significantly reduced to 50 MHz with a
RMSE of only 1.1 MHz. Compared with the methods without
transmission curve improvement and machine learning, the
designed DNN-assisted frequency estimation system could
solve the precision issues resulted from system noise and device
nonlinearity, as well as overfitting problem in most
conventional frequency estimation methods. Unlike
conventional frequency estimation scheme, the proposed
frequency estimation model works well for both pre-known and
un-known data. With DNN training, the measurement error is
significantly improved through the training and validation
process, which also results in high adaptability to unknown RF
signal properties.
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