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SCOT: Single-Cell Multi-Omics Alignment with Optimal

Transport
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ABSTRACT

Recent advances in sequencing technologies have allowed us to capture various aspects of
the genome at single-cell resolution. However, with the exception of a few of co-assaying
technologies, it is not possible to simultaneously apply different sequencing assays on the
same single cell. In this scenario, computational integration of multi-omic measurements is
crucial to enable joint analyses. This integration task is particularly challenging due to the
lack of sample-wise or feature-wise correspondences. We present single-cell alignment with
optimal transport (SCOT), an unsupervised algorithm that uses the Gromov–Wasserstein
optimal transport to align single-cell multi-omics data sets. SCOT performs on par with the
current state-of-the-art unsupervised alignment methods, is faster, and requires tuning of
fewer hyperparameters. More importantly, SCOT uses a self-tuning heuristic to guide hy-
perparameter selection based on the Gromov–Wasserstein distance. Thus, in the fully un-
supervised setting, SCOT aligns single-cell data sets better than the existing methods without
requiring any orthogonal correspondence information.

Keywords: data integration, manifold alignment, multi-omics, optimal transport, single-cell

genomics.

1. INTRODUCTION

The growing variety of single-cell assays allows us to measure the heterogeneous landscape of cell

state in a sample, revealing distinct subpopulations and their developmental and regulatory trajectories

across time. Different technologies can interrogate different molecular aspects of the cell, such as gene

expression, protein synthesis, chromatin accessibility, DNA methylation, histone modifications, and chro-

matin three-dimensional (3D) confirmation. Combining data generated by these single-cell assays can
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provide novel insights into the interactions between these molecular views and their joint regulatory

mechanisms. Hence, learning this combined information is critical to our understanding of complex bio-

logical processes and heterogeneous diseases.

Despite its importance, combining single-cell multi-omics data is a challenging task. Aside from a few recent

co-assay procedures that simultaneously isolate separate molecular material for each measurement, applying

multiple assays on the same single cell is impossible. Sometimes, sequencing assays need access to the same

molecular material, such as with chromatin accessibility and 3D chromatin conformation capture assays. In

such cases, the measurements are taken by dividing a cell population into subpopulations and assaying them

separately, losing the potential for 1–1 correspondence of cells that is required for easy data integration.

Moreover, in cases where we can take measurements in the same cell and preserve the 1–1 corre-

spondences, the choice of the experimental method for processing cells and isolating molecular materials of

interest can introduce additional challenges and noise in the co-assayed data (Hu et al., 2018). For example,

for simultaneous isolation of DNA and RNA, there are two general approaches: physical separation of

DNA and RNA followed by separate amplification, or simultaneous preamplification followed by physical

separation of the two materials. For the first approach, separation techniques such as centrifugation and

micropipetting are not high-throughput; however, high-throughput approaches (Macaulay et al., 2015;

Angermueller et al., 2016) have been found to introduce variability in coverage and sequencing depth of

various genomic regions in the isolated DNA (Hu et al., 2018).

In recent years, computational methods have been developed to solve the single-cell data integration

problem. Many of these methods combine different experiments from a single modality such as RNA

sequencing for correcting batch effects (Welch et al., 2017, 2019; Amodio and Krishnaswamy, 2018;

Barkas et al., 2019; Stuart et al., 2019). However, integrating data from multiple modalities such as

gene expression and DNA methylation presents unique challenges. For example, when we measure

different properties of a cell, we cannot a priori identify correspondences between features in the two

domains.

Accordingly, integrating two or more single-cell data modalities requires methods that rely on neither

common cells nor features across the data types. This aspect prevents the application of some existing

single-cell alignment methods to unsupervised settings because they require some correspondence infor-

mation to perform alignment (Welch et al., 2017, 2019; Amodio and Krishnaswamy, 2018; Barkas et al.,

2019; Stuart et al., 2019). Earlier versions of the popular batch integration method Seurat required cor-

respondence information in the form of cells from a similar biological state that are shared across the two

data sets (known as ‘‘anchor points’’).

While a more recent version automatically selects these anchor points, it still requires features from one

domain to be mapped to the other domain to perform the single-cell alignment (Stuart et al., 2019). This

mapping might be possible for experiments such as gene expression and chromatin accessibility, where one

can map the chromatin region read counts to the corresponding gene regions. However, it can be difficult to

perform for other sequencing assay combinations. Furthermore, Cao et al. (2020) have shown that such

methods do not yield quality alignments in unsupervised settings.

Multiple approaches have tried to align data sets in an entirely unsupervised manner. One of the earliest

attempts, the joint Laplacian manifold alignment algorithm, constructs eigenvector projections based on

k-nearest neighbor (k-NN) graph Laplacians of the data (Wang and Mahadevan, 2009). The generalized

unsupervised manifold alignment (GUMA) (Cui et al., 2014) algorithm seeks a 1–1 correspondence be-

tween two data sets based on optimization of a local geometry matching term. Liu et al. (2019) showed that

these methods do not perform well on the single-cell alignment task and proposed a manifold alignment

(MA) algorithm based on the maximum mean discrepancy (MMD) measure, called MMD-MA. Another

method, UnionCom (Cao et al., 2020), extends GUMA to perform unsupervised topological alignment and

makes it more suitable for single-cell multi-omics integration.

While MMD-MA aims to match the global distributions of the data sets in a shared latent space,

UnionCom emphasizes learning both local and global alignments between the two distributions. Neither

method requires any correspondence information, either among samples or features, to perform an align-

ment. The respective articles demonstrate state-of-the-art performance on simulated and real data sets.

Although these results are encouraging, MMD-MA and UnionCom require that the user specify three and

four hyperparameters, respectively. Hyperparameter selection can significantly affect the quality of

alignments. Therefore, in an unsupervised real-world setting with no validation data on correspondences,

hyperparameter tuning can be difficult to perform and can lead to subpar alignments.
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In this article, we propose an unsupervised alignment method based on optimal transport theory. Optimal

transport finds the most cost-effective way to move data points from one domain to another. One way to

think about it is as the problem of moving a pile of sand to fill in a hole through the least amount of work.

Traditionally, optimal transport problems have been difficult to compute, especially for large-scale data

sets. However, subsequent relaxations (Kantorovich, 1942; Peyré et al., 2019) modify the original optimal

transport problem, making it more applicable and easier to compute. Recently, several regularization

procedures (Peyré et al., 2016) have further improved the computational scalability of optimal transport.

In biology, an emerging number of applications are using optimal transport to learn a mapping between

data distributions (Alvarez-Melis and Jaakkola, 2018; Yang et al., 2018; Schiebinger et al., 2019; Yang and

Uhler, 2019; Cang and Nie, 2020). Schiebinger et al. (2019) used it to study temporal changes in gene

expression by using regularized unbalanced optimal transport to compute expression differences between

time points. SpaOTsc (Cang and Nie, 2020) maps cells with high ligand expression onto cells with high

receptor expression to recover cell signaling relationships in spatially resolved single-cell RNA-seq data

sets. ImageAEOT (Yang et al., 2018) maps single-cell images to a common latent space through an

autoencoder and then uses optimal transport to track cell trajectories. In related work, the same authors used

autoencoders and optimal transport to learn transport maps among multiple domains (Yang and Uhler,

2019). However, the application of their method to single-cell data sets requires some form of supervision,

such as class labels, to be used during transport.

The classic optimal transport problem requires data sets from the same metric space. Mémoli (2011)

generalized optimal transport to the Gromov–Wasserstein distance, which compares metric spaces directly

instead of comparing samples across spaces, making optimal transport suitable for multimodal alignment. In

natural language processing, Alvarez-Melis and Jaakkola (2018) used this approach to measure similarities

between pairs of words across languages to compute the similarity between languages. As far as we are aware,

the only biological application of the Gromov–Wasserstein optimal transport comes from the study by Nitzan

et al. (2019), which uses it to reconstruct the spatial organization of cells from transcriptional profiles.

We present single-cell alignment with optimal transport (SCOT), an unsupervised algorithm that uses the

Gromov–Wasserstein-based optimal transport to align single-cell multi-omics data sets (presented schemati-

cally in Fig. 1). Like UnionCom, SCOT aims to preserve local geometry when aligning single-cell data. SCOT

achieves this by constructing a k-NN graph for each data set (or domain) and then computing graph distance

matrices for each k-NN graph to capture the intra-domain distances. SCOT then finds a probabilistic coupling

matrix that minimizes the discrepancy between the intra-domain distance matrices. Finally, it uses the coupling

matrix to project one single-cell data set onto another through barycentric projection, thus aligning them.

Unlike MMD-MA and UnionCom, SCOT requires tuning only two hyperparameters and is robust to the

choice of one. We compare the alignment performance of SCOT with MMD-MA and UnionCom on four

simulated and two real-world data sets. SCOT aligns data sets as well as the state-of-the-art methods and

scales well with increasing numbers of samples. Moreover, we demonstrate that the Gromov–Wasserstein

distance can guide SCOTs hyperparameter tuning in a fully unsupervised setting when no orthogonal

alignment information is available. Thus, unlike other methods, SCOT provides a heuristic for hy-

perparameter selection without validation data. The source code for SCOT is publicly available at http://

rsinghlab.github.io/SCOT.

FIG. 1. Schematic of SCOT alignment of single-cell multi-omics data. A population of cells is aliquoted for different

single-cell sequencing assays. SCOT constructs k-NN graphs based on sample-wise correlations and finds a probabi-

listic coupling between the samples of each domain that minimizes the distance between the two intra-domain graph

distance matrices. Barycentric projection projects one domain onto another based on this coupling matrix. SCOT,

single-cell alignment with optimal transport.
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2. METHODS

SCOT relies on the Gromov–Wasserstein optimal transport to move data points from one domain to another

while preserving the original local geometry. The goal of the transport problem at the core of SCOT is to find an

ideal ‘‘coupling’’ (also called ‘‘correspondence’’) matrix that describes the probability of alignment between

each point across domains. In this section, we first introduce optimal transport theory, followed by its

extension to the Gromov–Wasserstein distance. Then, we present the details of our algorithm.

We have two data sets representing two domains, X = (x1‚ x2‚ . . . ‚ xnx
) from X and Y = (y1‚ y2‚ . . . ‚ yny

)

from Y. The data sets have nx and ny points, respectively. We do not require any correspondence infor-

mation or assume that there is any ground truth for 1–1 correspondence between samples or features, but

we do assume that there is some underlying shared biology (e.g., cells across the data sets sharing a lineage

or belonging to shared cell types), so that the data sets can be meaningfully aligned.

2.1. Optimal transport

The Kantorovich optimal transport problem seeks to find a minimal cost mapping between two proba-

bility distributions or discrete measures (Peyré et al., 2019). Referring back to the problem of moving a

sand pile to fill in a hole, the Kantorovich optimal transport allows us to split the mass of a grain of sand

instead of moving the whole grain; therefore, the mappings need not be 1–1. Consider discrete measures l
and � as such

l =
Xnx

i = 1

pidxi
and � =

Xny

j = 1

qjdyj
‚ (1)

where
Pnx

i = 1 pi = 1 =
Pny

j = 1 qj‚ pi � 0‚ qj � 0 and dxi
is the Dirac measure. This optimal transport problem

finds a minimal coupling p that attains

min
p2P(�‚ l)

Xnx

i = 1

Xny

j = 1

c(i‚ j)p(i‚ j) (2)

subject to : p(i‚ j) � 0‚
Xnx

i = 1

p(i‚ j) = qj‚
Xny

j = 1

p(i‚ j) = pi

where c(i‚ j) is a cost function defined over the samples from the two data sets and P(l‚ �) is the set of

couplings of l and � given by

P(l‚ �)= fp 2 R
nx · ny

+ : p1ny
=l‚ pT1nx

= �g: (3)

Intuitively, the cost function says how many resources it will take to move point xi in the first data set to

point yj in the second data set, and the coupling p relates the two discrete measures l and � by corre-

spondence probabilities. Each row pi tells us how to split the mass of data point xi onto the points yj for

j = 1‚ . . . ‚ ny, and the condition p1ny
= p requires that the sum of each row pi is equal to pi, the probability of

sample xi. The discrete optimal transport problem finds a coupling matrix, G, that minimizes the cost of

moving samples through the linear program:

min
G2P(l‚ �)

ÆG‚ Cæ: (4)

Although this problem can be solved with minimum cost flow solvers, it is usually regularized with

entropy for more efficient optimization and empirically better results (Cuturi, 2013). Entropy diffuses the

optimal coupling, meaning that more masses will be split. Thus, the numerical optimal transport problem is

min
G2P(l‚ �)

ÆG‚ Cæ - �H(G)‚ (5)

where � > 0 and H(G) is the Shannon entropy (
Pnx

i = 1

Pny

j = 1 Gij logGij).
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Equation (5) is a strictly convex optimization problem, and for some unknown vectors u 2 Rnx and

v 2 Rny , the solution has the form G� = diag(u)K diag(v)‚ with K = exp - C
e

� �
, element-wise. This solution

can be obtained efficiently via Sinkhorn’s algorithm, which iteratively computes

u)l%Kv and v)�%KTu‚ (6)

where % denotes element-wise division. This derivation immediately follows from solving the corre-

sponding dual problem for Equation (5) (Peyré et al., 2019).

2.2. The Gromov–Wasserstein optimal transport

While the classic optimal transport formulation requires us to define a cost function across domains [Eq.

(2)], this is difficult to do when working with data from different metric spaces. This is because we cannot

directly compare data points with different modalities, such as in the case of multi-omic alignment. The

Gromov–Wasserstein distance extends optimal transport by comparing distances between data points rather

than directly comparing the data points themselves (Alvarez-Melis and Jaakkola, 2018) and allows us to

work with data from different modalities. Consider the same discrete measures l and � as above, the cost

function in the formulation of the optimal transport problem will now be defined over sample-wise pairwise

distances dx(i‚ k) and dy(j‚ l) in the X and Y data sets, respectively:

GW(l‚ �) : = min
p2P(l‚ �)

Xnx

i‚ k

Xny

j‚ l

L(dx(i‚ k)‚ dy(j‚ l))p (i‚ j)p(k‚ l): (7)

where L indicates the cost function. The main change from basic optimal transport [Eq. (2)] to the Gromov–

Wasserstein optimal transport [Eq. (7)] is that we consider the effect of transporting pairs of samples rather

than single samples. Intuitively, L(dx(i‚ k)‚ dy(j‚ l)) captures how transporting xi to yj and xk to yl would

distort the original distances between i and k and between xj and xl. This change ensures that the optimal

transport plan p will preserve some local geometry.

For solving the Gromov–Wasserstein optimal transport formulation, we compute pairwise distance

matrices Dx and Dy for the two domains separately, as well as the fourth-order tensor L 2 Rnx · nx · ny · ny ,

where Lijkl =L(Dx
ik‚ D

y
jl). Then, the discrete Gromov–Wasserstein problem can also be expressed as the

inner product

GW(l‚ �) = min
G2P(l‚ �)

ÆL(Dx‚ Dy) � G‚ Gæ (8)

Equation (8) is now both nonlinear and nonconvex and involves operations on a fourth-order tensor,

including the O(n2
x n2

y) operation tensor product L(Dx‚ Dy) � G for a naive implementation. Peyré et al.

(2016) showed that for some choices of loss function this product can be computed in O(n2
x ny + nx n2

y)

cost. In particular, for the case L= L2, the inner product can be computed by

L(Dx‚ Dy) � G = (Dx)2l1T
ny
+ 1nx

�T ((Dy)2)T -DxG(Dy)T : (9)

As in the classic optimal transport case, the coupling matrix can be efficiently computed for an entro-

pically regularized optimization problem:

GW(l‚ �) = min
G2P(l‚ �)

ÆL(Dx‚ Dy) � G‚ Gæ - �H(G): (10)

Larger values of � lead to not only an easier optimization problem but also a denser coupling matrix,

meaning that solutions will indicate significant correspondences between more data points. Smaller values

of � lead to sparser solutions, meaning that the coupling matrix is more likely to find the correct one-to-one

correspondences for data sets where there are one-to-one correspondences. However, it also yields a harder

(more nonconvex) optimization problem (Alvarez-Melis and Jaakkola, 2018).

Peyré et al. (2016) proposed using a projected gradient descent approach for optimization, where both the

projection and the gradient are taken with respect to the Kullback–Leibler divergence. These projections

are computed via the Sinkhorn iterations. Algorithm 1 in the Supplementary Materials presents the algo-

rithm for L= L2:

SINGLE-CELL ALIGNMENT WITH OPTIMAL TRANSPORT 7
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Algorithm 1: Unsupervised hyperparameter search procedure

Input: Data sets X‚ Y .

n)min (nx‚ ny), k1)min (0:2n‚ 50)

�1)arg min�2 [10 - 3‚ 10 - 2]SCOT(X‚ Y‚ k1‚ �) // Fix k1 and vary �
// Fix �1 and vary k

if n > 250 then

k2)arg mink2 [20‚ 100] SCOT(X‚ Y‚ k‚ �1)

end

else

k2)arg mink2 [0:05n‚ 0:2n] SCOT(X‚ Y‚ k‚ �1)

end

// Do a more refined search around k2 and �1

kbest‚ �best)arg mink2 [k2 - 5‚ k2 + 5]‚ �2 [10 - 0:25�1‚ 100:25�1] SCOT(X‚ Y‚ k‚ �)
Return: kbest‚ �best

2.3. Single-cell alignment with optimal transport

Our method, SCOT, works as follows. First, we compute the pairwise distances on our data in a way

similar to Nitzan et al. (2019). To do this, we use the correlations between data points within each data set

to construct k-NN connectivity graphs. We find that connectivity graphs, which connect nodes with binary

edges, empirically work better than weighted edges. This could be because connectivity graphs potentially

denoise the data. Next, we compute the shortest path distance on the graph between each pair of nodes via

Dijkstra’s algorithm.

We set the distance of any unconnected nodes to be the maximum finite distance in the graph and

normalize the matrix by dividing the elements by this maximum distance. If k is the number of samples,

then the k-NN graph is the complete graph, so the corresponding distance matrix is a matrix of all ones. In

this case, the distance matrix does not provide information about the local geometry, so we recommend

keeping k small relative to the number of samples to avoid this scenario. We find that our approach is robust

to the choice of k (Fig. 5).

Since we do not know the true distribution of the original data sets, we follow the study by Alvarez-Melis

and Jaakkola (2018) and empirically set l and � to be the uniform distributions on the data points. Then, we

solve for the optimal coupling G, which minimizes Equation (10). To implement this method, we use the

Python Optimal Transport toolbox (https://pot.readthedocs.io/en/stable) (Flamary and Courty, 2017).

One of the advantages of using optimal transport is the probabilistic interpretation of the resulting

coupling matrix G, where the entries of the normalized row 1
pi
Gi are the probabilities that the fixed data

point xi corresponds to each yj. However, to use the evaluation metrics previously used in the field and to

visualize alignment, we need to project the two data sets into the same space. The Procrustes approach

proposed in the study by Alvarez-Melis and Jaakkola (2018) does not generalize to data sets with different

feature and sample dimensions, so we use a barycentric projection:

xi1
1

pi

Xny

j = 1

Gijyj: (11)

2.4. Alternative unsupervised alignment procedure

In the description of SCOT, the number k for nearest neighbors and the entropy weight � are hy-

perparameters. One way to set these hyperparameters for optimal alignment is to use some orthogonal

correspondence information to select the best alignment either directly (Liu et al., 2019; Cao et al., 2020) or

by performing cross-validation (Singh et al., 2020). This selection strategy is problematic for truly unsu-

pervised setting, where no correspondence information is available a priori upon sequencing separate cell

cultures.

As a solution, we provide an alternative procedure to learn reasonable alignments based on tracking the

Gromov–Wasserstein distance [Eq. (8)]. This procedure is based on our observation that the Gromov–

Wasserstein distance serves as a proxy for measuring alignment quality (Fig. 4A). In this procedure, we
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alternate between optimizing � and k to minimize the Gromov–Wasserstein distance between the domains

(detailed in Algorithm 1). Although the lowest Gromov–Wasserstein distance is not always the best

alignment, it consistently appears to be one of the better alignments.

3. EXPERIMENTAL SETUP

3.1. Simulated data sets

We follow the study by Liu et al. (2019) and benchmark SCOT on three different simulations (https://

noble.gs.washington.edu/proj/mmd-ma). All three simulations contain two domains with 300 samples that

have been nonlinearly projected to 1000- and 2000-dimensional feature spaces, respectively. The three sim-

ulations are a bifurcation, a Swiss roll, and a circular frustum (Fig. 2) with points belonging to three different

groups. In addition to these three previously existing simulations, we use Splatter (Zappia et al., 2017) to create

simulated single-cell RNA sequencing count data, which we call synthetic RNA-seq. We generate 5000 cells

with 1000 genes from 3 cell groups and reduce the count matrix to the 5 genes with the highest variances. This

count matrix is mapped into two new domains with dimensions p1 = 50 and p2 = 500 by multiplying it with two

randomly generated matrices, resulting in data with dimensions 5000 · 50 and 5000 · 500.

All four data sets were simulated with 1–1 sample-wise correspondences, which are solely used for

evaluating model performance. Each domain is projected to a different dimension, so there is no feature-

wise correspondence either. In all simulations, we Z-score normalize the features before running the

alignment algorithms as in the study by Liu et al. (2019).

3.2. Single-cell multi-omics data sets

We use two sets of single-cell multi-omics data to demonstrate the applicability of our model to real data

sets. Both data sets are generated by co-assays; thus, we have known cell-level correspondence information

for benchmarking. The first data set is generated using the scGEM assay (Cheow et al., 2016), which

simultaneously profiles gene expression and DNA methylation. The data set (Sequence Read Archive

accession SRP077853) is derived from human somatic cell samples undergoing conversion to induced

pluripotent stem cells and shows a continuous trajectory. This data set was also used by Cao et al. (2020) to

demonstrate the performance of their UnionCom algorithm. We preprocessed the data as described in the

original publications (Cheow et al., 2016; Cao et al., 2020) and ended up with dimensions 177 · 34 for the

gene expression data and 177 · 27 for the chromatin accessibility data.

The second data set is generated by the SNAREseq assay (Chen et al., 2019), which links chromatin acces-

sibility with gene expression. The data (Gene Expression Omnibus accession GSE126074) is derived from a

mixture of human cell lines: BJ, H1, K562, and GM12878 and show distinct cell type clusters. We preprocess the

data sets following the study by Chen et al. (2019).The resulting data matrices for the SNARE-seq data set were of

size 1047· 19 and 1047· 10 for ATAC-seq and RNA-seq, respectively. We unit normalize all real data sets as

done in the study by Singh et al. (2020). Both data sets that we work with have been previously published and made

publicly available by the original authors. Therefore, they do not require IRB approval.

3.3. Evaluation metrics

We compare SCOT with the two state-of-the-art unsupervised single-cell alignment methods MMD-MA

(Liu et al., 2019) and UnionCom (Cao et al., 2020). None of these methods use any correspondence

information for aligning the data sets. However, all data sets have 1–1 sample-level correspondence

information, which we use to quantify the alignment performance through the ‘‘fraction of samples closer

than the true match’’ (FOSCTTM) metric introduced by Liu et al. (2019). For each domain, we compute the

Euclidean distances between a fixed sample point and all the data points in the other domain. Next, we use

these distances to compute the fraction of samples that are closer to the fixed sample than its true match.

Finally, we average these values for all the samples in both domains. For perfect alignment, all samples

would be closest to their true match, yielding an average FOSCTTM of zero. Therefore, a lower average

FOSCTTM corresponds to better alignment performance.

Since all the data sets have group-specific (simulations) or cell-type-specific (real experiments) labels,

we also adopt the metric used by Cao et al. (2020) called ‘‘label transfer accuracy’’ (LTA) to assess the

quality of the cell label assignment and to allow for a more direct comparison with their results. This metric

SINGLE-CELL ALIGNMENT WITH OPTIMAL TRANSPORT 9
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measures the ability to correctly transfer sample labels from one domain to another based on their

neighborhood in the aligned domain. As described in the study by Cao et al. (2020), we train a k-NN

classifier on one of the domains and predict the sample labels in the other domain. The LTA is the

proportion of correctly predicted labels, so it ranges from 0 to 1, and higher values indicate good per-

formance. We apply this metric to alignments selected by the FOSCTTM measure.

3.4. Hyperparameter tuning

We run each method over a grid of hyperparameters and select the setting that yields the lowest average

FOSCTTM. For SCOT, the grid covers the regularization weight � 2 f0:0001‚ 0:0005‚

0:001‚ 0:005‚ . . . ‚ 0:1g and number of neighbors k 2 f10‚ 15‚ 20‚ 25‚ 30‚ 35‚ . . . 100‚ 1
6

nxg. We ob-

serve empirically that going above 1
6

n for k does not yield any improvement in alignment.

We pick the hyperparameters for MMD-MA and UnionCom based on the default values and re-

commended ranges. MMD-MA has three hyperparameters: weights k1‚ k2 2 f10 - 3‚ 10 - 4‚ 10- 5‚

10 - 6‚ 10- 7g for the terms in the optimization problem and the dimensionality p 2 f4‚ 5‚ 6‚ 16‚ 32‚ 64g
of the embedding space. UnionCom requires the user to specify four hyperparameters: the number

kmax 2 f40‚ 100g of maximum number of neighbors in the graph, the dimensionality

p 2 f4‚ 5‚ 6‚ 16‚ 32‚ 64g of the embedding space, the trade-off parameter b 2 f0:1‚ 1‚ 10‚ 15‚ 20g for

the embedding, and a regularization coefficient q 2 f0‚ 5‚ 10‚ 15‚ 20g. We select the embedding di-

mension p 2 f16‚ 32‚ 64g around the default value of 32 set by UnionCom but also add p 2 f4‚ 5‚ 6g to

match the recommended values for MMD-MA. We keep the hyperparameter search space size approxi-

mately consistent across the three methods. For each data set, we present alignment and runtime results for

the best performing hyperparameters.

Furthermore, we consider the scenario where correspondence information is unavailable to pick the

optimal hyperparameters. For SCOT, we apply the alternative unsupervised alignment algorithm (Algo-

rithm 2 in the Supplementary Materials S1) to align all the data sets. Since MMD-MA and UnionCom do

not provide a hyperparameter selection strategy, we rely on the default hyperparameters; we use Union-

Com’s provided default parameters of kmax = 40‚ p = 32‚ q= 10‚ and b = 1, and the center values of

MMD-MA’s recommended range: p = 5‚ k1 = 10- 5‚ and k2 = 10- 5: We also present the alignment results

for all three methods in this fully unsupervised setting.

4. RESULTS

We use four simulation data sets and two real-world single-cell sequencing data sets to assess the

alignment performance of SCOT. We benchmark it against the two state-of-the-art unsupervised single-cell

multi-omics alignment algorithms, MMD-MA and UnionCom, using FOSCTTM and LTA metrics. The

former assesses cell-to-cell alignment error and the latter assesses the cell-type grouping accuracy upon

alignment.

4.1. SCOT successfully aligns the simulated data sets

In this experiment, we align the three simulation data sets from the study by Liu et al. (2019), as well as

the synthetic single-cell RNA-seq count data generated with Splatter (Zappia et al., 2017). Before align-

ment, we first select the best performing hyperparameters for each method using the ground-truth corre-

spondence information, as described in Section 3.4.

In Figure 2, we visualize the original domains, as well as the alignment performed by SCOT. We color

the samples by their domain and cell-type identity. We observe that the global structure is matched, and

cells cluster correctly based on cell-type identity. We then sort and plot the FOSCTTM score for each

sample in Figure 2C. The mean FOSCTTM values are summarized in Table 1. We also report the LTA

values in Table 2 when the first domain is used to train a classifier to predict the labels in the second

domain. Overall, we observe that SCOT consistently achieves one of the lowest average FOSCTTM scores,

thereby demonstrating its ability to recover the correct correspondences. SCOT also consistently yields

high LTA scores indicating that samples are correctly mapped to their assigned groups.
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4.2. SCOT gives state-of-the-art performance for single-cell multi-omics alignment

Next, we apply our method to real single-cell sequencing data and visualize the alignments in Figure 3.

To have ground-truth information on cell–cell correspondences solely for benchmarking purposes, we use

data sets generated by co-assaying technology. Overall, SCOT gives the lowest average FOSCTTM

measure in comparison to MMD-MA and UnionCom (Table 1) and recovers accurate 1–1 correspondences

in single-cell data sets. For the scGEM data, we report LTA using the DNA methylation domain for

predicting the cell-type labels in the gene expression domain.

For the SNARE-seq data set, we use the gene expression domain for predicting cell labels in the

chromatin accessibility domain (Table 2). SCOT yields the best LTA result on SNAREseq data set and

performs comparably to the other methods for scGEM. All methods have higher LTA performance on

SNAREseq data set compared with scGEM data set because SNAREseq data set contains a mixture of

different cell types that cluster separately, whereas scGEM data set contains cells going through a con-

tinuous differentiation.

While MMD-MA and UnionCom project both data sets to a shared low-dimensional space, SCOT

projects one data set onto the other. We find that the direction of projection makes no significant difference

in performance (Supplementary Table S1).

4.3. SCOTs alternative unsupervised hyperparameter tuning procedure achieves quality
alignments

We compare the alignment performances in fully unsupervised settings, when we have no validation data

on correspondences to use for hyperparameter tuning, as described in Section 3.4. We present the alignment

performances, measured by average FOSCTTM measures, in Table 3, and by LTA in Table 4, when using

SCOTs alternative self-tuning procedure. In this procedure, hyperparameter choice is guided by the

Gromov–Wasserstein distance, as we have observed a correlation between the Gromov–Wasserstein dis-

tances between the aligned data sets and alignment quality (Fig. 4A).

In this unsupervised setting, we use MMD-MA’s and UnionCom’s default parameters since they lack

self-tuning capability. SCOT returns nearly the same alignments for simulated data and only marginally

worse alignments for real data. In contrast, MMD-MA and UnionCom show inconsistent alignment per-

formance and fail to align some of the simulated and all real data sets with the default parameter values.

Therefore, the proposed procedure could guide a user to an alignment close to the optimal result when no

orthogonal information is available.

Table 2. Alignment Performance by Label Transfer Accuracy (k = 5) when the First Domain

is Used in Training (Gene Expression Domains for Real World Data Sets)

Simulation 1 Simulation 2 Simulation 3 Synthetic RNA-seq scGEM SNAREseq

SCOT 0.937 0.977 0.957 0.998 0.576 0.982

MMD-MA 0.89 0.783 0.947 0.706 0.588 0.942

UnionCom 0.96 0.62 0.613 0.997 0.582 0.423

Bold values indicate the best performing alignment for each data set.

Table 1. Alignment Performance by Average FOSCTTM Measure When the First Domain Is Projected

onto the Second Domain

Simulation 1 Simulation 2 Simulation 3 Synthetic RNA-seq scGEM SNAREseq

SCOT 0.085 0.022 0.009 0.001 0.192 0.150

MMD-MA 0.124 0.023 0.012 0.112 0.201 0.150

UnionCom 0.083 0.016 0.152 0.038 0.209 0.265

For real-world data sets, we picked gene expression domain in scGEM and chromatin accessibility domain in SNAREseq to be

projected.

Bold values indicate the best performing alignment for each data set.

FOSCTTM, fraction of samples closer than the true match; MMD-MA, maximum mean discrepancy-manifold alignment; SCOT,

single-cell alignment with optimal transport.
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4.4. SCOTs computation speed scales well with the sample size

We compare SCOTs running times with the baseline methods for the best performing hyperparameters

on the synthetic RNA-seq data set by varying the number of cells to demonstrate how each algorithm scales

to larger data sets. While SCOT is implemented for CPU, both MMD-MA and UnionCom algorithms

provide GPU versions, which run faster. Therefore, we use them for benchmarking. We run CPU com-

putations on an Intel Xeon e5-2670 with 16 GB memory and GPU computations on a single NVIDIA GTX

1080ti with VRAM of 11 GB. SCOTs running time scales similar to that of MMD-MA, even though SCOT

runs on a CPU and MMD-MA runs on a GPU (Fig. 4B). Both methods scale better than the GPU-based

UnionCom implementation.

4.5. Investigating algorithmic choices and hyperparameters of SCOT

To better understand our method, we investigated the effects of different algorithmic choices and hy-

perparameter combinations on the alignment performance of the real-world data sets. Figure 5 shows the range

of average FOSCTTM values we receive for alignments with different combinations of k (number of neighbors

in k-NN graphs) and � (entropic regularization coefficient) values for the two real-world sequencing data sets.

Overall, we observe that the choice of � tends to make a larger impact on the alignment performance than k.

Next, we consider the effect of different algorithmic choices on the alignment performance of SCOT.

We compare the final SCOT model with (1) no entropic regularization, (2) using Euclidean distances for

intra-domain distance matrices, and (3) using correlation-based intra-domain distance matrices in lieu of graph

distances. For each of these settings, we run alignments for the same combinations of hyperparameters as

described in Section 3.4 and record the average FOSCTTM measure we receive for each alignment. In

Figure 6, we compare these in violin plots for scGEM and SNARE-seq data sets. This experiment shows that

both entropic regularization and modeling the single-cell data sets as graphs for intra-domain distance com-

putations yield lower FOSCTTM measures, corresponding to higher quality alignments.

5. DISCUSSION

We have demonstrated that SCOT, which uses the Gromov–Wasserstein optimal transport for unsu-

pervised single-cell multi-omics data integration, performs on par with UnionCom and MMD-MA when

sample correspondence information is available for hyperparameter tuning and shows advantages in other

scenarios and aspects. Our formulation of a coupling matrix based on matching graph distances is

Table 4. Alignment Performance by Label Transfer Accuracy (k = 5) in the Fully Unsupervised Setting

When the First Domain Is Used for Training

Simulation 1 Simulation 2 Simulation 3 Synthetic RNA-seq scGEM SNAREseq

SCOT 0.977 0.977 0.95 0.996 0.582 0.701

MMD-MA 0.897 0.957 0.7 0.506 0.237 0.412

UnionCom 0.947 0.947 0.133 0.948 0.107 0.288

The hyperparameters for SCOT are chosen by the lowest Gromov–Wasserstein distance and the default hyperparameters are used

for MMD-MA and UnionCom.

Bold values indicate the best performing alignment for each data set.

Table 3. Alignment Performance by the Mean FOSCTTM Scores in Fully Unsupervised Setting

Simulation 1 Simulation 2 Simulation 3 Synthetic RNA-seq scGEM SNAREseq

SCOT (GW) 0.088 0.025 0.009 0.001 0.209 0.218

MMD-MA 0.125 0.012 0.739 0.384 0.437 0.473

UnionCom 0.091 0.028 0.684 0.028 0.691 0.510

The hyperparameters for SCOT are chosen by the lowest Gromov–Wasserstein distance and the default hyperparameters are used

for MMD-MA and UnionCom.

Bold values indicate the best performing alignment for each data set.
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somewhat similar to UnionCom’s initial step; however, UnionCom only matches sample-to-sample dis-

tances, whereas the Gromov–Wasserstein distance considers the cost of moving pairs of points, enabling

our method to better preserve local geometry.

Additionally, SCOT performs global alignment of the marginal distributions, which is similar to how

MMD-MA uses the MMD term to ensure that the two distributions agree globally in the latent space. We

hypothesize that these properties result in SCOTs state-of-the-art performance. Furthermore, SCOTs op-

timization runs in less time and with fewer hyperparameters, and the Gromov–Wasserstein distance can

guide the user to choose an alignment when no validation information exists. Therefore, unlike other

methods, SCOT easily yields high-quality alignments in the realistic fully unsupervised setting.

While barycentric projection provides a way to visualize the alignment, it assumes that cells in one data

set should be mapped to the convex hull of the other data set. Future work will develop unbalanced optimal

transport, which would take care of outliers as well as under- or overrepresented groups. There are also

other ways to use the coupling matrix to infer alignment such as using it with other dimension reduction

methods such as t-SNE (as in UnionCom) to align the manifolds while embedding them both into a new

space. Alternatively, depending on the application, a projection may not be required; it may be sufficient to

have probabilities relating the samples to one another. Future work will develop effective ways to utilize

the coupling matrix and extend our framework to handle more than two alignments at a time.

FIG. 4. (A) Runtime comparisons with growing sample size. Dotted lines are polynomial trend lines. (B) Relationship

between the Gromov–Wasserstein distance between the aligned data sets and alignment quality. Lower Gromov–

Wasserstein values tend to correspond to better alignments (lower FOSCTTM measures).

FIG. 5. Hyperparameter tuning results for scGEM (left) and SNARE-seq (right) data sets. We sweep a range of values

for the two hyperparameters in our model: number of neighbors in k-NN graphs, k (on the x-axis), and the entropic

regularization coefficient, � (on the y-axis). The color of the scattered dots corresponds to the average FOSCTTM values

we receive for each alignment, with lower values corresponding to better alignments. The hyperparameter combinations

that yielded the best FOSCTTM values are in black squares.
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Peyré, G., Cuturi, M., and Solomon, J. 2016. Gromov-wasserstein averaging of kernel and distance matrices, 2664–

2672. In International Conference on Machine Learning. PMLR 48, 2664–2672. New York, NY, USA.

Schiebinger, G., Shu, J., Tabaka, M., et al. 2019. Optimal-transport analysis of single-cell gene expression identifies

developmental trajectories in reprogramming. Cell 176, 928–943.

Singh, R., Demetci, P., Bonora, G., et al. 2020. Unsupervised manifold alignment for single-cell multi-omics data. In

Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology, and Health

Informatics (ACM-BCB), 1–10. Association for Computing Machinery (ACM): New York, NY, USA.

Stuart, T., Butler, A., Hoffman, P., et al. 2019. Comprehensive integration of single-cell data. Cell. 77, 1888–1902.

Wang, C., and Mahadevan, S. 2009. Manifold alignment without correspondence. In Twenty-First International Joint

Conference on Artificial Intelligence, 21, 1273–1278. AAAI Press: Pasadena, California, USA.

Welch, J.D., Hartemink, A.J., and Prins, J.F. 2017. Matcher: Manifold alignment reveals correspondence between

single cell transcriptome and epigenome dynamics. Genome Biol. 18, 138.

Welch, J.D., Kozareva, V., Ferreira, A., et al. 2019. Single-cell multi-omic integration compares and contrasts features

of brain cell identity. Cell 177, 1873–1887.

Yang, K.D., Damodaran, K., Venkatchalapathy, S., et al. 2020. Predicting cell lineages using autoencoders and optimal

transport. PLOS Computational Biology 16, e1007828.

Yang, K.D., and Uhler, C. 2019. Multi-domain translation by learning uncoupled autoencoders. arXiv preprint ar-

Xiv:1902.03515.

Zappia, L., Phipson, B., and Oshlack, A. 2017. Splatter: Simulation of single-cell rna sequencing data. Genome Biol.

18, 1–15.

Address correspondence to:

Dr. Ritambhara Singh

Center for Computational Molecular Biology

Brown University

164 Angell Street, 3rd Floor

Providence, RI 02912

USA

E-mail: ritambhara@brown.edu

18 DEMETCI ET AL.

D
ow

nl
oa

de
d 

by
 B

R
O

W
N

 U
N

IV
ER

SI
TY

 P
A

C
K

A
G

E 
V

IA
 N

ER
L 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

1/
21

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 


