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Real-space origin of topological band gaps, localization, and reentrant phase transitions
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Lattices of interacting gyroscopes naturally support band gaps and topologically protected wave transport
along material boundaries. Recently the authors and their collaborators found that amorphous arrangements of
such coupled gyroscopes also support nontrivial topological phases. In contrast to periodic systems, for which
there is a comprehensive understanding and predictive framework for band gaps and band topology, the theory of
spectral gaps and topology for amorphous materials remains less developed. Here we use experiments, numerics,
and analytic tools to address the relationship between local interactions and nontrivial topology. We begin with a
derivation of the equations of motion within the framework of symplectic mechanics. We then present a general
method for predicting whether a gap exists and for approximating the Chern number using only local features of
a network, bypassing the costly diagonalization of the system’s dynamical matrix. Finally we study how strong
disorder interacts with band topology in gyroscopic metamaterials and find that amorphous gyroscopic Chern
insulators exhibit similar critical behavior to periodic lattices. Our experiments and simulations additionally
reveal a topological Anderson insulation transition, wherein disorder drives a trivial phase into a topological
one.
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I. INTRODUCTION

The past decade has witnessed a surge of interest in ex-
ploiting concepts from topology as a powerful tool to engineer
material behavior [1–4]. In particular, an important realiza-
tion was that collections of a material’s normal modes are
not merely independent; instead, phase relationships between
modes—quantified, for example, by Berry curvature—can
have physical implications. This realization provides a natural
framework for linking topological ideas to material systems
and distinguishing topologically distinct phases of matter
[5–7].

These connections have revealed unique phenomena gov-
erned by the topology of the band structure of the material in
question. Crucially, the resulting exotic effects, such as the ap-
pearance of chiral edge modes, are protected from disorder by
their topological origin, meaning that chiral edge modes are
insensitive to geometric features of the boundary or inhomo-
geneity in the material’s bulk [8,9]. The design of mechanical
metamaterials—engineered structures assembled from com-
posite components—has extended topological protection to
elastic structures, enabling us to control and direct phononic
excitations robustly without requiring extreme precision in the
metamaterial’s construction [7,10,11].
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At the same time, metamaterials offer an ideal arena
for fundamental insights into topological phases. In meta-
materials, we observe topological excitations directly at a
macroscopic scale, rather than through indirect transport
measurements. Tabletop metamaterials furthermore support
rapid prototyping and access to the material’s individual
components. This class of platforms has allowed the direct
identification of topological behavior in crystalline systems
as diverse as coupled pendula [11], photonic waveguides
[12], isostatic frames [13], chains of gears [14], and lattices
of acoustic resonators [15]. One other emerging platform
of metamaterial systems is composed of interacting gyro-
scopes suspended from a plate [16–22]. Because networks
of gyroscopes break time-reversal symmetry in a geometry-
dependent manner, these gyroscopic tabletop metamaterials
have provided a simple platform to observe topological phase
transitions [17] and switch between multiple topological
phases with multiple gaps [18].

This ease of access in turn allows for discovery. For exam-
ple, constructing amorphous materials using the gyroscopic
platform provided a route to discovering that topology arises
not just in crystalline materials, but even in amorphous net-
works [23]. This last example suggests that topological phases
should arise in glassy systems composed of randomly ar-
ranged inclusions, dopants, or vacancies—a prediction that
has since been identified in models of quantum matter
[24–29]. Some instances of these topological amorphous
phases have been suggested to be distinct phases of matter
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[25,30] and have been placed into a topological classification
scheme for mechanical systems [31].

These recent discoveries place a spotlight on the impor-
tance of local, real-space physics in determining topological
phenomena. Here we build methods to predict spectral gaps
and estimate band topology from local material structure.
We begin by revisiting the symmetries underlying gyroscopic
metamaterials reported in [16–18,23] from the point of view
of symplectic dynamics. This reveals a previously overlooked
change in the normalization of states. While this correc-
tion does not affect any previously reported results, we find
that other aspects of the system do change—including Berry
curvature distributions, the sign of real-space topological in-
variants for negative-frequency bands, and the appropriate
form of the projection operator. We then construct a predic-
tion of spectral gaps that does not require diagonalization of
the dynamical matrix, estimate topological invariants using
only local neighborhoods of a material, and investigate how
couplings between local neighborhoods enable long-ranged
edge modes. This extends the current understanding of the
mesoscopic or quasilocal character of band topology that has
emerged based on studies of gyroscopic materials.

Last, we present experimental and numerical measure-
ments of phase transitions driven by disorder and the
localization properties of gyroscopic materials’ band struc-
tures. In contrast to recent studies of critical behavior in
amorphous topological insulators [25,32], we find the scaling
behavior of critical exponents consistent with the universality
class with Cartan label A. In addition, a topological Anderson
insulator phase diagram shows reentry into the topological
phase with increasing disorder strength, in both experiments
and simulations.

II. AN ODD INTERACTION AND ITS
SYMPLECTIC DYNAMICS

In this section, we reconsider oscillations of coupled gy-
roscopes in light of the observation that the dynamics are
not Hermitian but symplectic. The system is composed of
coupled spinning gyroscopes suspended from a plate shown in
Fig. 1. When the spinning speed is large, the high-frequency
nutation becomes negligible in amplitude. A gyroscope with
a hanging orientation vector n̂ subjected to forces acting at
!n̂ exhibits motion in the xy plane governed by the action of
torques redirecting the angular momentum axis, generating a
chiral—or “odd”—equation of motion:

Iω0

!
∂t x = !

∂U
∂y

, (1)

Iω0

!
∂t y = −!

∂U
∂x

, (2)

where ! is distance from the pivot point to the point where
forces act, x and y are the in-plane displacements of the same
point, U is the potential energy of the gyroscope from pinning
forces (like gravity and the springs connecting the gyroscope
to its neighbors), ω0 is the spin frequency, I is the moment of
inertia along the spinning axis, and x and y are the displace-
ments from the equilibrium position.

Equations (1) and (2) reflect the unusual behavior of gy-
roscopes: they respond to an applied force by moving in a

FIG. 1. Gyroscopic metamaterials provide a platform for engi-
neering exotic behavior. (a) Each gyroscope is suspended from a
plate and spins rapidly with a speed ω0. (b) Coupled gyroscopes
experience an interaction frequency, $k , and precess under the
influence of restoring forces such as gravity. (c) In an experimen-
tal realization, externally powered motors spin small masses with
magnets embedded at their cores. All gyroscopes spin in the same
direction. A weak spring suspends the gyroscope from a plate, en-
abling low-loss precession, as in Refs. [16,17,23]. In this work,
the coil beneath each gyroscope that locally modulates the effec-
tive gravitational torque on each gyroscope allows us to introduce
disorder and staggered potentials. (d) Chiral waves skim along the
boundary when the system is shaken at a frequency in the resulting
band gap. Each colored circle represents the measured displacement
of a gyroscope in our experimental realization, with the radius pro-
portional to the displacement amplitude and the color denoting the
phase (inset shows color wheel). (e) Protected chiral waves persist
even if the spatial structure of the underlying network is amorphous,
as demonstrated in [23]. Here a simulated amorphous network of
gyroscopes consists of a kagome-like structure above and a Voronoi-
like structure below a boundary shaped into the letters “CHERN.”
The upper and lower regions differ in their topological phase, so
that an extended wave packet travels along the boundary between
the regions.

direction transverse to that force. Building a material out of
coupled gyroscopes translates this unusual response into new
collective material excitations that are profoundly different
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FIG. 2. A charged particle in a magnetic field provides a simple
setting in which to understand symplectic dynamics. A particle of
positive unit charge moves in a confining potential (blue gradient)
and experiences cyclotron orbits due to an out-of-plane magnetic
field of strength B.

from those of inertial materials, where we are accustomed to
having displacements follow the direction of forces.

In conventional elastic materials, waves emerge from the
conversion of potential energy into kinetic energy and back
again. As energy sloshes back and forth between two forms,
disturbances propagate through the material. For interact-
ing gyroscopes, however, inertia is dominated by the rapid
spin of each gyroscope, rendering the kinetic energy of the
gyroscopes’ center of mass motion irrelevant. Instead, the
independent degrees of freedom are the orthogonal gyroscope
displacements x and y, and the resulting energy oscillation is
an oscillation of potential energy between these two spatial
degrees of freedom, which are coupled to one another because
of the transverse response of gyroscopes to applied forces.
These dynamics are analogous to those of Tkachenko waves
in vortex crystals [33].

The relationship between motion in these two directions
forms a symplectic structure. By defining q =

√
Iω0x/! and

p =
√

Iω0y/!, we see that Eq. (1) and Eq. (2) are the same as
Hamilton’s equations:

∂t q = ∂U
∂ p

, ∂t p = −∂U
∂q

, (3)

which provides symplectic structure to the dynamics.

A. Symplectic structure of cyclotron orbits

To gain some insight into the practical consequences of
these conservative transverse dynamics, it is helpful to exam-
ine a simple related system, a charged particle in a magnetic
field confined by an external potential, as sketched in Fig. 2.
This simple example highlights subtleties in this category of
problems with time-reversal-broken dynamics.

We take the energy to be given by

H = 1
2m

(
#p − q #A

c

)2

+ k
2

(x2 + y2), (4)

where we adopt the gauge such that #A = Bxŷ for the vector
potential #A so that #B = Bẑ = #∇ × #A and #p is the canonical
momentum. In order to fully describe the normal modes of the
particle’s motion, both real-space coordinates (x, y) and the
conjugate momenta (px = m∂t x, py = m∂t y + qBx/c) must

be included. Hamilton’s equations [Eq. (3)] become

∂t





x
y
px
py



 =





0 0 1
m 0

− qB
mc 0 0 1

m

− q2B2

mc2 − k 0 0 qB
mc

0 −k 0 0









x
y
px
py



. (5)

This is simply a recasting of Hamilton’s equations seen before
in Eq. (3). Similarly to a quantum mechanical Hamiltonian,
the dynamical matrix is a linear operator governing the evo-
lution of the system, but the matrix here is not Hermitian.
Instead, it is symplectic, as we will see. The four eigenmodes
of the dynamical matrix trace out elliptical orbits, taking the
form of

e± = 1
√

2ω±
(
mα2

± + 1
k

)

(
α±, −iω±

k , imα±ω±, 1
)

(6)

and their complex conjugates, e+ and e−, where the frequen-
cies of the orbits are ±ω+ and ±ω−. Above,

α± = c
qBk

(
k − mω2

±
)
, (7)

and the eigenmode frequencies are

ω± =

√√√√ k
m

+ q2B2

2c2m2

(

1 ±

√
4c2km
q2B2

+ 1

)

. (8)

These eigenmodes, which correspond physically to cyclotron
orbits of the particle precessing in the magnetic field, are
orthogonal under the symplectic form, defined for any two
modes, represented by four-component vectors ψα and ψβ , as

〈ψα| ·⊥ |ψβ〉 = i
∑

j∈{1,2}
xα, j pβ, j − pα, j xβ, j, (9)

where #x = (x, y) and #p = (px, py) and j runs over the two
spatial dimensions.

This highlights a difference between parity-breaking sys-
tems and more common inertial systems that do not break
parity. In the latter case, there is a direct proportionality
between momentum and velocity. For an eigenmode in an
inertial system, the momentum is then simply proportional to
the position offset by a phase (p j = −im jωx j). This simplifies
the dynamical matrix considerably to produce eigenvectors
that are orthogonal under both the symplectic form and the
familiar Euclidean norm defined as

∑
j m jxα, jxβ, j . This fea-

ture persists in systems of many coupled inertial objects.
In contrast, rotational coupling between motion in x and y
prevent the eigenvectors from being orthogonal under the
Euclidean inner product. However, under the symplectic form,
the eigenmodes are orthogonal for any value of magnetic field
B according to

〈ψα| ·⊥ |ψβ〉 = δαβ sgn(ωα ). (10)

In systems with chiral coupling between positions and
momenta, the only appropriate inner product is given by
Eq. (9), and this norm relates the time-averaged energy of a
mode, 〈U 〉, to the oscillation frequency, ω. This relationship
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is given by

ωα = 〈U 〉
〈ψα| ·⊥ |ψα〉

, (11)

which holds only when 〈ψα| ·⊥ |ψα〉 is the symplectic form
of the eigenmode given in Eq. (9). This simple relation-
ship allows one to estimate oscillation frequencies by having
an intuitive picture of energies involved in a mechanical
deformation.

The consequences of symplecticity extend beyond a redef-
inition of the inner product: a symmetry between eigenvectors
at positive and negative frequencies appears. Each mode ap-
pears twice, with one eigenvector representation at frequency
ω and a second, redundant eigenvector with frequency −ω and
conjugated position and momentum, but each pair represents
the same physical cyclotron orbit. This redundancy in the sys-
tem foreshadows the emergence of “particle-hole” symmetry
in networks of gyroscopes.

B. Coupled gyroscopes yield coupled polarizations

Gyroscopic metamaterials similarly break parity, support-
ing waves that transfer energy between displacements in the
two orthogonal spatial dimensions. We consider the motion
of the gyroscopes about their hanging rest configuration. For
small displacements (x, y) of the centers of mass, the equation
of motion for a gyroscope takes the form

∂t

(
xi
yi

)
≈ $p

(
yi

−xi

)
+ !2

Iω0

N∑

j=1

(
−Fi j,y
Fi j,x

)
, (12)

where $p is the pinning frequency due to gravity and
other site-specific restoring potentials such as a magnetic
field generated by coils placed beneath each gyroscope [see
Figs. 1(b)–1(e) and [16]] and the sum is taken over all N
neighbors connected to site i. It is useful to write the displace-
ment of the pth gyroscope as ψp ≡ xp + iyp. In an eigenmode,
the gyroscope tip then moves along an ellipse represented by
a superposition of clockwise and counterclockwise circular
motions:

ψp = ψR
p e−iωt + ψL

p eiωt , (13)

where ψL
p is the complex conjugate of ψL

p . The coordinates
(ψR,ψL ) then act as a useful decomposition for describing
eigenmodes. If the frequency of oscillation ω is positive, the
first term encodes clockwise motion, while the second en-
codes counterclockwise motion.

How do these dynamics play out in the simplest scenario
of two interacting gyroscopes? One possible motion is uni-
form precession at a frequency $p, which does not stretch or

FIG. 3. Interacting gyroscopes highlight the interplay between
clockwise and counterclockwise polarizations in elliptical eigen-
modes. Eigenmode displacements are represented by ellipses traced
out by the gyro tips, each colored by its phase in the ellipse at a
snapshot in time. (a) Two interacting gyroscopes support an in-phase
circular motion “ground state” (ω = $p) and out-of-phase elliptical
motion “excited state” (ω > $p). (b) Three interacting gyroscopes
generate two excited states in addition to an in-phase circular motion
“ground state” (ω = $p). One has elliptical motion with relative
phases staggered by 2π/3, while the highest frequency motion is
again circular, with relative phases staggered by −2π/3. In this
figure, we let $k = $p.

compress the bond connecting the two gyros, shown in the
lower mode of Fig. 3(a). This motion is entirely in-phase.
The other possible motion is out-of-phase, which does stretch
and compress the bond and results in a higher frequency. This
out-of-phase motion is elliptical, not circular, as shown in the
upper mode of Fig. 3(a). Elliptical traces reflect a superpo-
sition of both clockwise and counterclockwise polarizations,
foreshadowing that the interaction between polarizations in
the dynamical matrix will play a central role in understanding
gyroscopic metamaterials. As in the case of a charged particle
in a magnetic field, here each of these modes is represented
twice—with one eigenstate of frequency ω dominated by ψR

and one of frequency −ω dominated by ψL. Physically, both
ψR at positive frequency and ψL at negative frequency repre-
sent the same clockwise motion according to Eq. (13).

By casting the equations of motion in terms of (ψR,ψL ) as

i∂t

(
ψR

p

ψL
p

)
= $p

(
ψR

p

−ψL
p

)
+ $k

2

∑

q∈N(p)

(
ψR

p − ψR
q + ei2θpq (ψL

p − ψL
q )

−ψL
p + ψL

q − e−i2θpq (ψR
p − ψR

q )

)
, (14)

where $k = k!2/(Iω0) is the characteristic spring frequency,
θpq is the bond angle between gyroscopes p and q fixed by net-
work geometry, and the sum over q is over all of p’s coupled

neighbors, we see that clockwise and counterclockwise polar-
izations are coupled through the geometry of bonds between
gyroscopes. Here k is the spring constant, ! is the length of the
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pendulum from the pivot to the point of applied forcing, I is
the moment of inertia along the spinning axis, and ω0 is the an-
gular spinning frequency about the long axis of the gyroscope.

Now that we have gained intuition from the two-gyroscope
case, we can formulate the many-gyroscope case as an eigen-
value problem. Equation (14) defines the entries for a system’s
dynamical matrix, D, such that

i∂t #ψ = D #ψ, (15)

where the components of #ψ = (ψR,ψL ) encode the displace-
ments of the gyroscopes. The matrix elements Di j describe
the response of gyroscope i to displacements of gyroscope j.
Note that here D maps displacements in the complex plane
to velocities, in contrast to the dynamical matrix of inertial
systems [10,22], and both the real and imaginary components
are physical observables.

C. Symplecticity affects eigenmodes

The dynamical matrix is not Hermitian. However, due to
the symplectic symmetry of our dynamical matrix, all eigen-
values of D are nonetheless real. The symplectic symmetry of
our dynamical matrix can be stated as

D = QD†Q, (16)

with

Q =
(
In 0
0 −In

)
. (17)

Just as the real-valued frequencies of the charged particle in
a magnetic field come in positive and negative pairs, so too
the frequencies of gyroscopic motion arise in positive and
negative pairs. These two copies of the system’s dynami-
cal response are related by a particle-hole symmetry: each
eigenmode has two redundant descriptions with frequencies
±ω related by ψR ↔ ψL, which exchanges the two terms in
Eq. (13). This is analogous to particle-hole symmetry in elec-
tronic systems, wherein the behavior of an electron’s excited
state above the Fermi level is tied to the behavior of a electron
“hole” left behind below the Fermi level. In later sections,
we find that the symplectic form must be used in the proper
definition of Berry curvature and projector operator elements
to build real-space descriptions of band topology.

D. Time-reversal symmetry breaking

An interesting transformation to consider is ψ → ψ̄ and
t → −t . This transformation is the same as the time-reversal
symmetry (TRS) transformation of the Schrödinger equation,
which resembles Eq. (14). The conjugation operation ψ → ψ ,
however, has a different interpretation. Here it corresponds
to reflecting the displacements y → −y of each gyroscope
about its pivot point. A single gyroscope clearly respects this
symmetry, in contrast to a charged particle in a magnetic field;
spinning alone does not break this form of TRS.

Interestingly, a system of two interacting gyroscopes also
respects TRS. If the bond connecting the two gyroscopes is
aligned with the x axis, this follows trivially from the fact
that θpq = 0 or π . Even if the angle θpq is nonzero, we can
globally rotate the system without penalty. Therefore, after

FIG. 4. A triad of gyroscopes provides intuition for the effects of
time-reversal symmetry breaking. (a) Time-reversal operation, given
by ψ → ψ̄ and t → −t , transforms the instantaneous displacements
(black bars) of one eigenmode into another for the gyroscopic triad.
Here the instantaneous displacements differ between the two pictured
eigenmodes only by y → −y. Since eigenmodes #ψωa (left) and #ψωp

(right) have different frequencies, and given that the time-reversal
operator conjugates these displacements, we see that time-reversal
symmetry is broken. (b) Simulating the dynamics of the triad reveals
strong signatures of chirality from time-reversal symmetry breaking.
Because of the phase interference between the different eigenmodes,
the displacement generally propagates counterclockwise between the
three gyroscopes. For special values of $k/$p, the oscillation is
periodically localized to one site at regular intervals, and the site
of localized excitation advances in a chiral fashion, here shown for
$k/$p = 0.4. We note that the excitation is not fully localized at
times between the snapshots shown.

this coordinate change, the factor ei2θpq is purely real, and there
is no phase associated with the coupling between polarizations
ψR and ψL.

Introducing a third gyroscope, however, allows time-
reversal symmetry to be broken. Now no global rotation of the
system will result in bond angles θpq such that all factors ei2θpq

are real. The simplest example in which one can observe the
role of TRS breaking is the equilateral triad of coupled gyro-
scopes shown in Fig. 3(b). For this triad, three distinct eigen-
modes arise: one uniform in-phase precession with no spring
stretching, and two “excited state” motions #ea and #eb. In the
particular case of the equilateral triad, neighboring gyroscopes
differ in phases by 2π/3 either clockwise (for #ea) or counter-
clockwise (for #eb) around the triangle. The action of the time-
reversal operation mixes eigenstates. This can be seen intu-
itively by examination of the excited states shown in Fig. 4(a).
In particular, the time-reversal operation, given by ψ → ψ̄
and t → −t , mixes #ea and #eb, which have different frequen-
cies. In this scenario, we find that TRS breaking is manifest
by the difference in frequency of the two eigenmodes that are
mixed by the time-reversal operation. More generally, for sys-
tems of more than two gyroscopes, time-reversal transforms a
given configuration into a linear superposition of modes with
different frequencies unless there are additional symmetries
that guarantee the bond energy is preserved: time-reversal is
not typically a symmetry of the dynamical equations [18].

The lack of TRS in the triad is manifest in the differing
frequencies of these eigenmodes. Together with the fact that
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the two excited states have differing relative phases between
gyroscopes (±2π/3 rad), the frequency difference between
these modes leads to beating patterns with a chiral flow of
energy. As shown in Fig. 4(b), displacing a single gyroscope
leads to large amplitude excitation that sloshes from one gy-
roscope to another in a chiral fashion over time. This resulting
chiral conductance of energy foreshadows the emergence of
chiral edge waves.

Now that we have gained intuition for the role of TRS
breaking from the three-gyroscope case, we can see the effects
of TRS breaking in the dynamical matrix itself. We can envi-
sion excitation of gyroscopes “hopping” from site to site with
couplings given directly by the elements of the dynamical
matrix D in Eq. (15). In fact, we see directly from Eq. (14) that
the coupling of clockwise precession and counterclockwise
precession depends explicitly on the geometry with complex
couplings, whereas gyroscopic motion with the same polariza-
tion at different sites—ψR

i and ψR
j , for example—have purely

real couplings.

E. Connection to tight-binding models: The limit
of weak interactions

If we consider the dynamics when interactions between
gyroscopes are weak compared to the pinning forces restoring
a gryoscope toward its hanging position, the effects of coun-
terclockwise motion act as a perturbation on the dominant
clockwise precession. Figure 5 highlights how the two-gyro
and three-gyro cases explored thus far vary as the interaction
strength is tuned. Modes that mix polarizations become in-
creasingly elliptical as the coupling strength grows. For weak
interactions ($k/$p . 1), gyroscopic networks’ eigenmodes
become nearly circular, which highlights the perturbative
effect of the counter-rotating polarization on the dominant
precession.

In fact, in this limit there is a natural correspondence with
hopping models ubiquitous in condensed matter, as discussed
in [16]. Just as precession of a gyroscope can exert torque
on its neighbors to induce precessional motion, with an en-
ergy cost depending on the bond strength, so too electrons
or other excitations can hop from one site to another site
associated energy based on the coupling between sites. In this
“tight-binding limit,” in which ψL has a perturbative effect on
the dominant ψR precession, we again see that all complex
terms arise from the network geometry, meaning that phase
offsets are introduced in the response of one gyroscope to
another’s displacement in a manner that depends on angles
between adjacent bonds in the network [16]. In particular,
the approximate equations of motion allow one to predict the
evolution by considering only the magnitudes and phases of
the dominant rotation at each site:

ωψR
i = $pψ

R
i + $k

2

∑

m∈N (i)

(
ψR

i − ψR
j

)

+
$2

k

8$p

[

−
∑

j, j′

(
ψR

i − ψR
j

)
e2iθ j′ i j

+
∑

j,k

(
ψR

j − ψR
k

)
e2iθi jk



, (18)

FIG. 5. Low interaction strength enables connection to tight-
binding models by diminishing coupling between polarizations. In
the limit that $k/$p → 0, eigenmode frequencies of a gyroscope
pair or triad approach the precession frequency, $p. The slight de-
viations from $p are proportional to $k , resembling a tight-binding
model with intersite coupling of $k/2 [Eq. (18)]. (a) Two modes
represent a pair of gyroscopes’ bonding and antibonding behav-
ior. Decreasing the interaction strength decreases the ellipticity of
the higher-frequency mode: the counter-rotating component presents
only a small perturbation on the dominant clockwise motion. In the
limit of $k/$p → 0, both modes are nearly circular, like in quantum
mechanical models with unitary evolution. Here the phase of the
displacement is akin to the phase of a wave function. (b) For the
gyroscopic triad, the oscillation frequency is $p for the uniform
precession (“ground state”) mode and $p + 3$k/2 for the phased
circular mode. The intermediate mode frequency varies as a function
of $k/$p, interpolating between the two bounds. Only the interme-
diate eigenmode changes shape, becoming increasingly circular as
the coupling strength weakens.

where the bond angle θi jk is the opening angle between bonds
i j and jk, the first sum is over the N neighbors of i, and the
subsequent sums are over pairs of neighbors j and j′ of i and
neighbors k of j for each of i’s neighbors j. In this limit,
the full equations of motion become more like a standard
hopping model because they contain only one complex degree
of freedom per site, ψR

i .
Note that the phase offsets of 2θ arise in the term pro-

portional to $2
k/8$p. This complex next-nearest-neighbor

coupling is reminiscent of phases from magnetic flux in com-
mon tight-binding models [2], but here the phases depend
on the arrangement of the gyroscopes in space. Furthermore,
the phase shifts arise here because of the counter-rotating
polarizations, ψL, which are not present in the tight-binding
picture. We stress that the complex-valued coupling encodes
the fact that perturbing one gyroscope gives rise to a phase-
shifted response at a nearby site, with a phase shift dictated
by the geometric arrangement of the bonds. Thus, geometry
provides phase shifts which generically break TRS except in
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special circumstances such as a rectangular lattice, where all
angles θi jk are multiples of π/2. As discussed below, it is these
TRS-breaking terms that generate topological band gaps in
gyroscopic networks.

III. REAL-SPACE INTUITION FOR BAND
GAPS IN LATTICES

In this section we consider the spectral gaps that arise nat-
urally in large collections of gyroscopes in ordered as well as
amorphous configurations. We focus on the role of symmetry
and local dynamics in determining their origin. We begin by
examining the mechanical motions that underlie the frequency
splitting of neighboring bands, linking these motions to TRS
breaking through the coupling of left- and right-circular polar-
izations. We then study the evolution of the band structure as
we tune the coupling between neighboring unit cells of gyro-
scope pairs, allowing us to contrast the topological gap origins
with gaps created from bonding and antibonding behavior of
isolated dimers. Last, we provide a simple method to predict
the existence of band gaps without full diagonalization of a
system’s dynamical matrix.

A. Band gaps in the honeycomb lattice

A simple honeycomb lattice of gyroscopes has gaps in
the system’s bulk phonon spectrum, shown in the black band
structure in Fig. 6(a). If the springlike coupling between sites
is weak, the gap nearly closes at the corners of the Bril-
louin zone [orange spectrum in Fig. 6(a)]. As we increase the
coupling, the gap broadens. Physically, gaps arise due to the
coupling of left-polarized motion with the right-polarized mo-
tion of the gyroscopes, which breaks time-reversal symmetry
in the dynamics [Eq. (14)]. Inspecting the honeycomb lattice’s
normal modes bounding the gap leads to an intuitive picture
of this coupling’s effect.

The lattice symmetry allows us to focus on a single hexag-
onal plaquette to fully describe the bulk excitations bounding
the band gap. Figure 6(a) shows these modes bounding the
gap, located at the corners of the Brillouin zone K and K ′. In
the higher frequency mode bounding the gap, one sublattice
site precesses clockwise and the other does not move. In the
lower frequency mode, on the other hand, the excitation is not
completely localized to one of the two lattice sites: the other
site precess counterclockwise with a small amplitude. The
difference in this motion provides an intuitive way to explain
the gap, as we detail in a multistep argument in Fig. 6 and
Appendix B.

The crux of the argument is the relationship between
energy and frequency given earlier in Eq. (11). The small
counterclockwise displacement in the lower-frequency mode
relaxes the cycle-averaged spring energy, and since the os-
cillation frequency ω is directly proportional to the average
potential energy over a normal mode cycle, the frequency of
this mode is smaller than the state with a truly immobile site
(see Appendix B for details). This lower energy is evident
from the force imbalance from the neighboring springs in the
lower-frequency mode [Fig. 6(a)]. In contrast, for the higher-
frequency mode, springs are stretched or compressed by the
same amount around the B site, so there is no net force, and
the center gyroscope does not move at all. This mechanical

mechanism for gap generation is different than in the Haldane
model [2], where all excitation resides on only one of the
two sublattice sites for both modes bounding the gap and the
energy splitting arises purely from the next-nearest neighbor
coupling.

In this case, the particular lattice symmetry of the hon-
eycomb allowed us to make strong constraints on the shape
of the mode displacements to explain the band gap (see Ap-
pendix B), but this is not always possible in general. In later
sections, in discussing structures without translational order,
we will provide alternative arguments for the existence of
topological band gaps.

Increasing the spring coupling amplifies the frequency
separation between the two states, broadening the gap and
leading to larger and larger counterclockwise rotation on the
B sites at K ′, as shown in Fig. 6(c). If, instead of increasing
the spring coupling, we detune the precession frequencies
at the two sublattice sites, the gap similarly broadens. How-
ever, the material in this case is a trivial insulator, and the
motions of the two states bounding the gap remain un-
changed as the inversion symmetry breaking grows, without
any signature of coupling between right and left polarizations
[Fig. 6(d)].

What have we learned? The coupling between right- and
left-circular polarizations produces phase shifts between inter-
acting gyroscopes, thereby breaking time-reversal symmetry,
in a manner reminiscent of the simple three-gyroscope triad of
Figs. 3–5. The spring forces directly induce counter-rotation
because of the surrounding gyroscopes’ phases. In turn, this
coupling between the clockwise and counterclockwise states
opens the gap by splitting the cycle-averaged spring energies,
imparting an opposite chirality of precession between the two
sublattice sites. In more general scenarios, we may not have
such symmetric configurations near the gap, but the role of
coupled polarizations and relative phases remains.

Importantly, if the dynamics were artificially modified to
suppress the coupling between the left polarized (dominant for
ω < 0) and right polarized (dominant for ω > 0) excitations,
this splitting would not be possible, and no gap would emerge.
That is, if we adjust the strength of block off-diagonal entries
of the dynamical matrix that describe the coupling between
clockwise and counterclockwise motion,

D =
(

DLL εDLR
εDRL DRR

)
, (19)

so that ε → 0, then the topological character of the bands
vanishes. From Eq. (14) we recognize that this modification
destroys any dependence of the dynamics on the geometry of
the lattice, further highlighting the geometry-dependent topo-
logical phases that emerge. This right-left-coupling avenue for
gap formation is distinct from inversion symmetry breaking,
which instead adds only diagonal offsets to the dynamical
matrix in DLL and DRR, with no mixing of polarizations.

B. From isolated fragments to a strongly coupled network

One way to disentangle local and global effects in an
ordered system is to artificially partition it into subsections
and study what happens as the partitions are coupled. We
do this here with our gyroscopic lattice, showing that the
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FIG. 6. Gyroscope mode displacements reveal how coupled circular polarizations lead to a gap. (a) The Dirac cones for the weak-coupling
band structure (light orange bands) evolve into a band gap for the finite coupling case (black band structure), here shown for $k = $p. The
point of closest approach lies at the wave vectors #k = K or K ′, where the normal mode displacements take on a simple character: clockwise
precession of one sublattice site and small (lower) or vanishing (upper) counterclockwise motion at the second sublattice site (left inset). Upon
examination of the spring couplings connecting a unit cell to its neighbors (right insets), we find that spring forces cancel for the upper mode but
do not cancel at the sublattice site with small excitation for the lower mode. (b) The geometry of these eigenmodes is determined by rotational
symmetry at the K and K ′ points. Since a 120◦ rotation about any gyroscope must change the pattern only by a phase, all displacements must
be purely circular. Furthermore, the state can either be invariant under rotation (upper panel) or else phase shifted with a counterclockwise
rotation at the A site (lower panel). (c) For $k . $p, the two normal modes are asymptotically equivalent, up to an inversion of A ↔ B, since
the smaller counterclockwise rotation on A vanishes in this limit. As the spring coupling increases, the counterclockwise excitation at the A site
grows in magnitude, decreasing the spring energy and broadening the gap. In the limit of $k 1 $p (rightmost images), the counterclockwise
excitation magnitude approaches that of the clockwise excitation. (d) When the pinning frequencies at the two sublattice sites differ, so that
$A

p → $p + ,AB and $B
p → $p − ,AB, a trivial gap opens in the limit of $k . $p. Though the lower frequency state does not exhibit torque

balance at the immobile sublattice site, the spring energy is negligible compared to $p, so pinning torques dominate and no counterclockwise
motion is observed. As a consequence, the excitation patterns bounding the gap do not change as the frequency splitting between the A and B
sites grows.

topological gap cannot be understood as frequency splitting
between bonding and antibonding behaviors, and we find
analogous behavior in a familiar tight-binding model.

A pair of coupled oscillators will typically have a fre-
quency splitting between bonding (in-phase) and antibonding
(out-of-phase) behavior. Even in the presence of coupling
between many such pairs of sites—which creates bands with a
finite width out of the two localized modes of each pair—this
fundamental origin of the two bands can be seen in the in-
phase and out-of-phase character of eigenmodes. This results

in a local origin of band gaps in tight-binding systems, with a
natural extension to the case of amorphous materials [34].

It is tempting to think that the two bands of our topological
metamaterial seen in Fig. 6 may be continuously connected
to in-phase bonding and out-of-phase antibonding behavior of
gyroscopes in the unit cell. This, however, cannot be the case.
We show this in Fig. 7 by considering a periodic honeycomb
lattice with tunable coupling between unit cells, each of which
consists of a pair of sites. We compare both the tight-binding
and gyroscopic case, where the two-banded tight-binding
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FIG. 7. The transition from isolated bonding and antibonding behavior to Chern insulating behavior in a Haldane-like tight-binding model
mimics the analogous transition in gyroscopes. (a) Pairs of bonded sites or (b) gyroscopes are coupled to each other through bonds of varying
strength (dashed lines). When the coupling is absent (t ′

1 = 0 or $′
k = 0), the material is in a trivial insulating phase with one “bonding state,”

in which the excitations at site pairs are in phase, and one “antibonding state,” in which the excitations are out of phase. These bonding and
antibonding behaviors thicken into bands as the coupling is increased, until the two mix at the gap closing. Beyond this value, each band
becomes topologically nontrivial, as marked by their nonzero Chern numbers C = ±1 (red and blue, respectively). The strength of complex
next-nearest neighbor couplings, t2, are controlled by the weakest link between next-nearest neighbors, which is t ′

1. Here we set t2 = it ′
1/10.

(b) The gyroscopic case, governed by the equations of motion given in Eq. (14), mimics the tight-binding picture, though there is a redundant
copy of the positive frequency band pairs at negative frequencies.

dynamics analogous to Eq. (18) is given by the Haldane model
of Ref. [2]:

H = −t1
∑

〈i j〉
c†

i c j − t2
∑

〈〈i j〉〉
e−iφi j c†

i c j, (20)

where 〈i j〉 denotes nearest neighbors, 〈〈i j〉〉 denotes next-
nearest neighbors, c†

i is the creation operator at site i, and
φi j = −φ ji is a phase shift associated with hopping from site
i to site j. By comparison with Eq. (18), we see that t1 is akin
to the coupling $k between gyroscopes, t2 is akin to $2

k/8$p,
and φi j plays the role of the gyroscopic network bond angle
2θi jk . To tune between bonding and antibonding behavior
within each pair of sites and topological behavior across the
bulk, we vary the direct coupling t ′

1 between adjacent unit cells
while keeping t1 fixed for sites within a unit cell, and we set
t2 = it ′

1/10.
If the bonds denoted by dashed lines are severed com-

pletely (t ′
1 = 0), the resulting network consists of isolated

pairs of sites, each coupled by a bond of strength t1 and uncou-
pled from other pairs. Such a system is a trivial insulator, akin
to isolated molecular dimers in a lattice. As the dashed bonds
are strengthened, the width of the two bands begin to broaden
while remaining in the trivial insulator phase. The system
transitions to a topological phase once t ′

1 ≈ 0.5. Inspection
of the eigenstates near the topological gap for t ′

1 > 0.5 re-
veals that the displacement patterns do not resemble simple
bonding and antibonding patterns [refer back to the normal
modes for $k . $p in Fig. 6(c), which correspond to the
case of t ′

1 = t1]. How do we interpret this? For small t ′
1, the

gap is formed by a frequency separation between bonding and
antibonding behavior, while the gap with large t ′

1 arises due to
the phase shifts enabled by coupling between clockwise and
counterclockwise polarizations. Furthermore, the two phases
have a macroscopic difference: the topological phase supports
chiral edgemodes, indicated by the nonzero Chern number
of each band. In Fig. 7 the colored bands exhibit nonzero

topological invariants of C = +1 (red) and −1 (blue), which
we will define in depth in Sec. V. In short, by interpolating be-
tween the trivial and topological phases, we find that bonding
and antibonding bands mix in order to open a topologically
nontrivial gap.

The gyroscopic case is similar: trivial bonding and
antibonding gaps are not continuously connected to the topo-
logical gaps from TRS breaking. As shown in Fig. 7(b), the
spectrum of the gyroscopic honeycomb lattice with spring
interactions resembles two copies of the Haldane model
spectrum, one with ω > 0 and another with ω < 0, with
symplectic symmetry relating the two copies. (Elsewhere in
the paper, we omit the redundant, negative frequency states.)
Varying $′

k between adjacent unit cells drives a topological
phase transition, closing the gap generated by bonding and
antibonding behavior of the coupled dimers. Once the gap
reopens, the bonding and antibonding behaviors are mixed
together, allowing topologically nontrivial bands and chiral
edge modes in the gaps.

In this strongly interacting regime, the classic argument for
the local origin of band gaps (like that of [34]) does not apply.
This is because the physics of TRS breaking that opens the
gap is distinct from the bonding and antibonding picture. The
question is then: can we still predict whether there is a gap
using a local argument, or do we have to compute the full
band structure?

IV. BAND GAPS WITHOUT FULL DIAGONALIZATION

In the tight-binding limit discussed above in Sec. II E,
the dynamical matrix simplifies. Within this framework, we
consider three insightful forms of the dynamical matrix to
understand the origin of band gaps.

The first form of dynamical matrix we consider is D =
Ddiag + δ, where Ddiag encodes the on-site energy in the elec-
tronic tight-binding picture (and the precession frequency of
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the individual gyroscopes in the gyroscopic case). δ is a matrix
of weak (as compared to the elements of Ddiag) off-diagonal
couplings. Schematically,

D ≈





t0
−t0

δ

. . .

δ
t0

−t0




. (21)

For δ . |t0|, the eigenvalues of D are simply close to the
diagonal entries, and therefore gaps reside between different
values of diagonal elements. In the example of Eq. (21), the
eigenvalues bunch together around ±t0, and a spectral gap lies
in between.

For trivial insulators with bonding and antibonding behav-
ior, the dynamical matrix is not nearly diagonal, but can be
arranged to be nearly block diagonal. The dynamical matrix
of such a system appears in nearly block diagonal form, with
all strong couplings contained within blocks and only small
terms in the off-diagonal sectors:

D ≈





0 t
t 0 δ

. . .

δ
0 t
t 0




. (22)

As highlighted in the previous section, a system that can
be divided into pieces, like our weakly coupled unit cells
in a honeycomb lattice, generates two separated frequency
bands from bonding and antibonding. The weak connections
between the components broaden the spectrum by only a small
amount, leaving the gap intact. This is similar to previous
works in which a bond-centric description can explain why
amorphous glasses have band gaps [34]. Note that in this case,
though D is not nearly diagonal, D2 is nearly diagonal.

Unlike either diagonal or block diagonal systems, a system
with a topological band gap cannot be divided up into nearly
independent pieces (Fig. 7; see also [35]). To transform a triv-
ial gap into a topological one, couplings must be sufficiently
strong to close and reopen the gap. From the perspective of the
dynamical matrix, these strong off-diagonal couplings cannot
be arranged in block diagonal form [35,36]. For example,
the structure of such a dynamical matrix could follow the
structure of Eq. (14), which we can roughly conceptualize as

D ≈




0 ... t ... it ′

. . .

−it ′ ... t ... 0



, (23)

where large couplings t and TRS breaking terms it ′ are dis-
tributed throughout. One can certainly characterize band gaps
by diagonalizing the Hamiltonian, but it would be useful to
have a protocol for estimating whether a gap exists or what
frequencies a gap may occupy without this costly step. For
the case of a broad class of topological systems, we note that
although D is highly nonlocal, D2 is nearly diagonal, and we
construct a method for estimating the gap in these systems
below. This condition is closely connected to the condition of
having a flat band, as occurs in crystal materials supporting
the Fractional quantum Hall effect [37]. Such a protocol lends

FIG. 8. The Chern number can be calculated by a local approxi-
mation in a square lattice model. (a) The model’s dynamical matrix
D is built from couplings ±t (solid lines) with the sign drawn on
the picture. The gray diagonal lines have a coupling it ′ in the di-
rection indicated by the arrows and −it ′ in the opposite direction.
(b) The square of the dynamical matrix, D2, includes only horizontal
and vertical couplings of two steps with matrix entry t2 − 2t ′2 and
diagonal couplings with matrix entry t ′2. Because of the phases in
t , all the other matrix elements cancel out. (c) Examples of pairs of
paths that cancel one another in calculating D2 for the matrix element
connecting site 1 (red) to site 2 (blue).

itself particularly well to understanding gaps in amorphous
systems.

A. Existence of a band gap: Algebraic approach

Consider a system with a dynamical matrix D such that
(1) some off-diagonal elements of D are large compared to
on-diagonal elements—i.e., there are some couplings that are
large compared to on-site pinning—and (2) the square of the
dynamical matrix is nearly diagonal such that

D2 = ω2
01 + ε, (24)

where ω0 is defined as the square root of the diagonal entry
of D2 and ε contains all the off-diagonal entries. We seek
an argument that indicates whether a band gap exists without
diagonalization of D.

Both conventional insulators with strong bonding and an-
tibonding behavior and some topological systems meet these
criteria, provided one subtracts a constant frequency so that
the gap is approximately centered about zero. As an example
with which to make the argument concrete, we will use one of
the simplest systems with a Chern number, shown in Fig. 8.

This model comes from studying electrons in a square lat-
tice in a magnetic field (a Hofstadter model) with a half unit of
magnetic flux per unit cell. The diagonal couplings of strength
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t ′ break time-reversal symmetry, opening the possibility of
a topological band gap, while direct couplings are given a
strength t .

We choose signs and phases of the couplings so that the
sum of the phases of all the couplings going around each
right triangle is π/2. Using this model, we find that the gap
can be understood to result from interference during prop-
agation of waves in the system, and a variational principle
shows that this system has a gap for a range of values of the
complex, next-nearest-neighbor coupling strength, t ′/t . The
method presented below can also in principle be applied to a
system of gyroscopes.

We first show that there are both positive and negative
eigenvalues (i.e., eigenvalues both above and below the net
pinning frequency of an individual gyroscope). The value of
v†Dv for any normalized vector v is an upper bound for the
lowest eigenvalue of D if D is Hermitian, according to the
variational principle. Similarly, for another vector u, u†Du is
a lower bound on the highest eigenvalue. One can choose in
a variety of ways vectors v and u such that v†Dv is negative
and u†Du is positive, which forces there to be at least some
positive and some negative eigenvalues. For example, let v
be nonzero only on two adjacent sites of the network; the
expectation value is either positive or negative for a suitable
choice of relative phase between the two sites. This will be
the case if there are off-diagonal elements that are larger than
the diagonal elements of D—which is certainly true for the
Hofstadter model, for which diagonal elements are zero.

Not only are there states with eigenvalues above and below
zero, but furthermore these two collections of eigenvalues do
not touch. To see this, recall that the square of the dynamical
matrix has off-diagonal couplings that are small relative to
diagonal ones: D2 = ω2

01 + ε. If the entries of ε are small
compared to ω2

0 the eigenvalues of D2 must be close to ω2
0,

so D’s eigenvalues must be close to ±ω0, leaving a gap near
0. To make this argument more precise, we use a bound from
Appendix C. From Eq. (24) it follows that the eigenvalues of
D2 are greater than or equal to ω2

0 − maxi
∑

j |εi j |. If this is
positive, this ensures D has a gap whose width , is at least

, ! 2
√

ω2
0 − max

i

∑

j

|εi j |. (25)

Thus, the width of the gap is bounded by a quantity that does
not require the diagonalization of D.

Intuitively, we can see that D2 is nearly diagonal because
of the effects of interference between paths in the Hofstadter
model shown in Fig. 8. Each entry of D2 is a sum

∑
k DikDk j

over intermediate vertices k that have a nonzero coupling to
both vertex i and vertex j. For the D given above, the entries of
D2 are shown in Fig. 8(b). Any pair of sites that are connected
by a sequence of two bonds can in principle have a nonzero
matrix element, but many of the couplings are zero because
they cancel out [Fig. 8(c)].

The quantities in the estimate are ω0 = 2
√

t2 + t ′2

and maxi
∑

j |εi j | = 4|t2 − 2t ′2| + 4t ′2 so , !
4
√

t2 − |t2 − 2t ′2|. If |t ′| < |t |/
√

2, this bound is 4
√

2t ′,
which is proportional to the size of the time-reversal
symmetry breaking term, as expected. In this model, a
gap in fact exists for any value of t ′ 2= 0, while this estimate

can be extended to prove the existence of this gap at least up
to |t ′| = |t |.

B. Green’s function approach to estimating gaps

To better understand the connection of this argument
to interference and locality, consider the Green’s function
G( j, i; ω) = [(ω − D)−1] ji, the amplitude of the oscillations
of the jth site when the ith is oscillated by a unit force at a
frequency ω. This shows how far energy is transported at a
given frequency. We will show that this decays exponentially
over a range of frequencies, implying that this range is a gap.
[38].

First consider an ordinary insulator where there are two
types of sites with different diagonal spring constants. Write
D = Ddiag + δ, where Ddiag includes the diagonal pinning
frequencies and δ includes only the off-diagonal ones. The
Green’s function can be expanded in a geometric series as

1
ω−Ddiag

∑∞
n=0(δ 1

ω−Ddiag
)n. If ω is sufficiently far from the two

diagonal entries, this series decays exponentially with dis-
tance. Let us imagine “bonds” drawn connecting any two sites
with a nonzero value of δ. The first contribution to the sum for
a pair of sites i and j appears at the mth term if it requires m
steps to connect i to j along these bonds. The magnitude of
this term decays as (maxpq |δpq|/ minp |ω − Dpp|)m, with the
rate of decay given by the ratio of the maximum off-diagonal
component of D to the minimum on-diagonal component of
ω − D. This suggests that the Green’s function decays expo-
nentially. This argument leaves out a factor that counts the
number of paths connecting a given pair of sites, but when
this factor is included, we find that the Green’s function does
in fact decay exponentially when the off-diagonal terms are
sufficiently small, as shown in Appendix D. Intuitively, with a
short-range dynamical matrix, the network’s energy transport
is localized unless the couplings are large enough to be com-
parable with the difference between the applied frequency ω
and the natural frequencies on the diagonal of D.

For our system, this argument at first appears invalid since
the off-diagonal couplings are not small when gyroscopes
are strongly coupled. A slight modification of this calcula-
tion does hold, however. For some forcing #f , the system
responds in a manner determined by ∂tψi = −i

∑
j Di jψ j −

i fi. Through repeated differentiation, we can find the deriva-
tives of ψi in terms of the initial values of the ψ’s, and
typically higher derivatives depend on the displacement of
more distant gyroscopes. This suggests that energy can be
transported over long distances through chains of interacting
sites. But if D2 is almost diagonal, ∂2

t ψi = −
∑

jk Di jD jkψk −∑
j Di j f j − i∂t fi, and the coefficient of ψ on the right-hand

side is D2 = ω2
01 + ε, which is nearly diagonal. Physically,

the disturbance produced by a given gyroscope mostly reflects
back to itself after two steps due to interference. The solution
to the equation for forces at a frequency ω (using vector
notation) is

ψ = 1
ω2 − ω2

0 − ε
(ω + D) f

= ω + D
ω2 − ω2

0

∞∑

n=0

(
ε

ω2 − ω2
0

)n

f , (26)
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which converges if ε’s entries are small compared to |ω2 −
ω2

0|, so the Green’s function (the coefficient of f ) decays
exponentially with the distance.

Though no part of the topological system is disconnected
from the remainder by weak couplings, interference can
nonetheless suppress tunneling of excitation from a given
region. This interference can arise over short paths or long
length paths, depending on the details of the network. In the
Hofstadter model we have used here, short paths of length two
already generate significant interference, enabling a simple
test to identify the band gap. In general, the interfering paths
might be longer, requiring more and more terms in Eq. (26)
to converge. Though the paths may be long, the series will
necessarily converge for a suitable choice of parameters (see
Appendix E). If there is a gap, this method identifies its ex-
istence if Eq. (26) converges, even in the case of topological
systems with strong off-diagonal couplings.

We have discussed three cases. In trivial insulators with
nearly diagonal D, we can predict the presence of a gap
from the diagonal elements. Systems dominated by bonding
and antibonding behavior are instead nearly block diagonal,
and a gap will reside between bands of bonding and anti-
bonding behavior. Third, topological systems require strong
coupling between sites to drive the system into a different
phase—one that cannot be described as a composite of nonin-
teracting pieces. In this strongly coupled regime, interactions
and eigenstates are nonlocal, threatening any prediction of
band gaps without full diagonalization of the dynamical ma-
trix [35,36]. Nonetheless, we constructed a simple argument if
D2 is nearly diagonal. As shown in Appendix E, this argument
generalizes to a local method for finding locations of gaps
even when D2 is not nearly diagonal, since in such a case
interference occurs between sufficiently long paths.

Our argument applies both to topological systems and other
systems with strong couplings for which D2 is nearly diagonal
in the bulk. This point of view gives some insight into the
origins of edge modes: near the boundary, D2 is not nearly
diagonal because some of the paths of force propagation that
would interfere destructively are absent, and this delocaliza-
tion allows for edge modes.

For disordered and amorphous samples, the denominators
in Eq. (26) will sometimes be small, but the total expression
may nonetheless decay in a similar manner to the Green’s
function of disordered trivial insulators [39].

V. MESOSCOPIC PROBES OF REAL-SPACE TOPOLOGY

Now that we have gained insight into how gaps arise, we
turn to characterizing their topology. In particular, we seek
local, real-space probes for global topological invariants. A
natural starting point is the notion of flux pumping, which is
a natural connection between a localized perturbation and a
global consequence. After observing how flux-pumping plays
out in a mechanical context, we review the traditional notion
of the Chern number and its real-space generalizations in the
form of the Kitaev sum and the Bott index. We compare
these three methods of computing band topology and probe
the extent to which we can approximate the Chern number
using only the local structure of a network. Using a variant
of the Kitaev sum, we find that, surprisingly, a purely local

computation can approximate the real-space generalization of
the Chern number.

A. Flux pumping as a local probe for band topology

Arguably at the heart of band topology lies the notion of
flux pumping [5]. In [23], we made a connection between
flux pumping and real-space topology. Here we push this
connection toward an even more local picture by consider-
ing small system sizes, finding that even amorphous patches
∼16 gyroscopes wide still possess clear signatures of flux
pumping.

For an electronic Chern insulator, threading magnetic flux
through the core of an annulus effectively transfers occupancy
of edge states from one edge to another. On one boundary, the
process pumps electronic edge states into the bulk conduction
band and bulk states in the valence band onto the edge, while
on another boundary, the process pumps edge states into the
valence band and pumps bulk states in the conduction band
onto the edge. With the goal of building a local description,
we want to understand this topological phenomenon in terms
of a localized perturbation. A localized phenomenon that is
similar to pumping flux through an annulus arises when one
quantum of magnetic flux is threaded through a small area in
the bulk of the material. This localized insertion gives rise to
a quantized charge accumulation at the site of flux insertion
[23].

As magnetic flux is inserted into the bulk of the system, an
induced electromotive force winds around the site. Given that
a Chern insulator will exhibit Hall conductance, this induced
field drives a current toward or away from the site of flux
insertion, accumulating charge at the insertion site that is
balanced at the outer boundary. Since the magnetic flux is
related to the phase winding of electrons, magnetic flux can
be simulated in the mechanical version of a Chern insulator
by altering the interactions such that the force of one gyro j
on its neighbor i is modified depending on the twisting angle
θtwist:

Fi j ∼ ψi − ψ j → ψi − ψ jeiθtwist . (27)

To give a concrete picture of how this could be built in
an experiment, we envision attaching an extensible Hober-
man ring to a small number of gyroscopes, as illustrated
in Fig. 9(a). Each ring remains centered about the hanging
axis of its gyroscope, so that when a gyroscope is displaced,
the ring uniformly extends in all directions. The ring freely
allows the gyroscope displacement to change in magnitude by
expanding or contracting without any resistance and allows
change in phase by rotating without any resistance. To twist
the gyroscope i’s response to its neighbor j, we affix the spring
that couples i and j to a position on the ring offset from the
gyroscope i’s tip. This introduces a phase-shifted torque on
the gyroscope. To mimic the effects of a gauge field, we are
free to concentrate the modifications to the spring attachments
along a radial cut of the annulus, shown as a blue dashed line
in Fig. 9(a), effectively supplying a “twisted” boundary con-
dition to the system along the cut of the annulus. If the spring
joining gyroscope i to gyrosope j is affixed at a location on
gyroscope j’s ring ahead of its tip by an angle θtwist, then the
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FIG. 9. The topological invariant in a small system can be measured by two related methods: the spectral response to twisted boundary
conditions and the Kitaev sum. (a) Twisting the bonds along the dashed blue line by attaching an extensible ring to each gyroscope above the
dashed line drives a phenomenon akin to flux pumping from a threaded magnetic field. The extensible ring, like a Hoberman ring, remains
centered around the pivot point of the gyroscope and is free to rotate. This modulates the interaction by an angle, θtwist. (b) Upon twisting the
interaction angle by 2π rad, the spectrum returns to its initial state, but the nontrivial topology ensures that one state from the central region is
pumped from the lower band to the upper band, while states localized to the outer boundary (green curves) are pumped towards the lower band.
Here bands are shaded by a gray overlay. The red circle in the spectrum corresponds to the normal mode excitation shown in panel (a). (c) The
Kitaev sum reveals that there is chiral conductance within the bulk of even a system ∼16 gyroscopes in extent. Here a region of summation
half the size of the system is used to evaluate the sum at a grid of locations. The sum is proportional to the number of states at the system’s
core that are pumped from the conduction to the valence band.

force on gyroscope i from the interaction is likewise rotated
Fi j = −k/2[(ψi − ψ jeiθtwist ) + e2iθi j (ψ̄i − ψ̄ jeiθtwist )].

Twisting the bonds along the cut deforms the resulting
band structure, but the system returns to its original state once
the twist has taken the value θtwist = 2π . Figure 9(b) shows
that during this operation, states localized to the outer bound-
ary decrease in frequency [green curves in Fig. 9(b)], while
a state localized to the center, where the effective magnetic
flux resides, increases in frequency [black curve in the gap of
Fig. 9(b)]. The net result of the operation is the exchange of
one state between the two bands. Figure 9(b) highlights this
action in the gap: the edge (green) states are transformed into
adjacent, lower frequency states, while the state at the center
of the sample (purple) pumps from the lower band to the upper
band. In contrast, a trivial insulator has no exchange between
the two bands, though extended states may be shuffled within
each band separately.

Traditional treatment explains this phenomenon by looking
at the band structure of the periodic bulk. We briefly review
this more restrictive perspective before moving to a real-space
point of view, where the lattice structure of the bulk is not
needed and we are able to compute the band topology and un-
derstand flux pumping seen even for the small system shown
in Fig. 9.

B. Real-space generalizations of Chern number

While flux pumping demonstrates a physical consequence
of band topology even in small amorphous systems, there
are compact mathematical quantities that capture the same
information without tracking the flow of states. Historically,

these were first defined in momentum space, but now sev-
eral real-space generalizations exist that extend predictive
power beyond crystalline materials. We will use these in two
ways: (1) to define an approximate and purely local analytical
expression for real-space topology in Sec. V C and (2) to
characterize Anderson localization transitions in Sec. VI.

1. Traditional view: Berry curvature

The traditional point of view for computing band topol-
ogy is to work entirely in reciprocal (momentum) space,
which requires a crystalline material. While more restrictive,
we briefly lay out this formulation in order to present the
modifications in the projection operator that are required by
symplectic symmetry. Here the Chern number for gyroscopes
on a lattice is defined from the band structure of the equations
of motion for small displacements. Diagonalizing the matrix
describing the network’s dynamics yields 2N frequencies of
the dispersion bands at each value of #k, where N is the number
of gyroscopes per unit cell. For each value of #k, each band has
a corresponding eigenvector,

|ψ j (#k)〉 =
(
ψR

1 , . . . ,ψR
N ,ψL

1 , . . . ,ψL
N

)
, (28)

characterizing the amplitudes and phases of the N gyroscopes’
collective motion. The symplectic symmetry of the dynamical
matrix enables the eigenstates to be orthogonalized such that

〈ψp| ·⊥ |ψq〉 =
∑

α

ψR
p,α ψR

q,α − ψL
p,α ψL

q,α (29)

= δpq sgn(ωq), (30)
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FIG. 10. The Chern number is given by the integrated Berry
curvature, which describes the connection between states in a band.
(a) A topologically trivial band may have nonzero Berry curvature,
but its integrated Berry curvature vanishes. (b) For a band with Chern
number of C = 1, the integrated Berry curvature sums to 2π .

where α runs over each gyroscope and ωq is the oscillation
frequency of |ψq〉.

In a lattice, momentum space is periodic, just as the real-
space lattice configuration is a tiling of the unit cell, implying
that the Brillouin zone is a torus. Information about the con-
nection of normal modes in each band is given by the Berry
curvature, defined as

#$n = ∇#k × i〈ψ |∇#k|ψ〉. (31)

This Berry curvature is akin to a magnetic vector potential
in momentum space, affecting the motion of wave packets as
they traverse the system. The integral of the Berry curvature
over the Brillouin zone describes the topological obstruction
to a continuous connection between states in the band, en-
coded in the Chern number:

∫

BZ
d #S · #$(#k) = 2π C. (32)

The integer C is the Chern number of the band [6].
Figure 10 shows two schematic examples of a band colored

by its Berry curvature. In Fig. 10(a), the Berry curvature is
nonzero, but its integral over the Brillouin zone vanishes:
this is a trivial insulator with inversion symmetry breaking.
In Fig. 10(b), however, the contributions add, and the total
value is a nonzero multiple of 2π . This nonzero Chern num-
ber signals the existence of the topologically protected chiral
modes that live on the boundary of a system [6]. Topological
protection ensures that, in the absence of available counter-
propagating states, an edge wave will not scatter, passing
around inclusions or voids and readily changing direction
along jagged boundaries (Fig. 11).

An alternative representation of the Chern number uses the
phase-invariant formula [40]

Cj = i
2π

∫
d2k Tr[∂kα

PjPj∂kβ
Pjε

αβ ], (33)

where Cj is the Chern number of the jth band, εαβ is the
antisymmetric Levi-Civita symbol, and Pj is the projection
matrix defined for our system as

Pj = |ψα〉〈ψα|Q sgn(ω j ), (34)

(a)

(b)

FIG. 11. The Chern number counts the number of modes occu-
pying a band gap. (a) In a system with a single gap and a single
boundary, the number of right-moving modes—i.e., sets of possi-
ble eigenstates with positive group velocity—minus the number of
left-moving modes is determined by the Chern number of a band.
Nonzero Chern numbers give rise to topologically protected chiral
edge modes, which are robust against back-scattering. (b) A topo-
logically trivial insulator does not support protected edge modes on
the boundary.

where

Q =
(
In 0
0 −In

)
. (35)

The factors of Q sgn(ω j ) arise from the symplectic structure of
gyroscopes’ equations of motion and the normalization of the
states in Eq. (29). If the symplectic symmetry were ignored,
and the projector was instead defined using a simple outer
product of bands which were not orthonormal, a nonphysical
distribution of Berry curvature would result, though this does
not affect any of the computed Chern numbers. That is, the
distribution of Berry curvature is altered, but the net curva-
tures are preserved. By using the symplectic formulation, the
correct Berry curvature distributions are readily obtained.

Note that in previously reported results [16,23], this sub-
tlety was overlooked. However, the results reported in these
texts are unaffected because the net Berry curvature in each
band with positive frequency is invariant without the symplec-
tic form in the definition of the projector. Equation (18) of the
supplementary information of [23], however, is incomplete,
since the equation is missing factors of Q and sign(ω j ). The
reported results of the Kitaev sum are nonetheless accurate
because the set of all states 〈/| was taken to be the matrix
inverse of the transpose of the set of states |/〉, rather than
just the set of conjugate transposes as the notation suggests,
so that P = |/〉M〈/|, where M is a matrix of ones along
the diagonal for each state |ψ〉 of the set |/〉 with frequency
ω > ωc and zero for all other entries. Since the full matrix
inverse was computed, the symplectic structure was implicitly
taken into account—up to the sgn factor sgn(ω j ). Since all ωc
considered were positive, this sgn factor does not cause issues
with previous results.

2. Kitaev sum

If disorder is present in a lattice or if a gyroscopic net-
work has amorphous structure, translational symmetry is
broken, and the Chern number previously described can-
not be defined due to the absence of a Brillouin zone.
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FIG. 12. The Kitaev sum and Bott index both measure band topology in real space. (a) The Kitaev sum measures the band-integrated
spectral flow at a particular location in the bulk of the material. The sum converges to a target integer value corresponding to the Chern number
of the system in the limit of an infinitely large system and large region of summation that does not enclose a boundary. The blue curve shows the
convergence of ν for increasing sizes of the summation region δ. The projector used for this calculation maps all states of the amorphous system
that are above ωc = 2.2$g to themselves and maps states below ωc to a zero vector. (b) Centering the summation region on different locations in
an amorphous network in which all sites are trivalent (top) or in which two different local geometries are present (bottom) generates a spatially
resolved measurement of the local topological character of the material. (c) In electronic systems, the Kitaev sum measures the net charge that
accumulates near the location of magnetic flux insertion (top panel) [23]. In gyroscopic and electronic systems alike, the contribution to the
sum is dominated by sites close to the site of flux insertion, represented by the large blue markers at the center of the circular sample. The
size of each site’s marker is proportional to the magnitude of the sum of terms in the Kitaev sum that include that site. Blue markers indicate
a negative net contribution, while red terms indicate a positive contribution. An equal and opposite contribution resides on the boundary sites,
mimicking the opposite charge that resides at the boundary in the electronic case, represented by the red markers at the edge of the circular
sample. (d) The Bott index measures a topological obstruction preventing band-projected position operators from commuting. The index is a
global measurement of band topology and requires closed boundary conditions. We contrast the Kitaev sum with the Bott index by studying a
small gyroscopic honeycomb network subjected to inversion symmetry breaking. The Kitaev sum here has summation window set to include
45% of the sites in the system. The inset below in panel (d) shows the pinning strength at each site (ranging from blue to orange) for the
samples used in the calculation with open (periodic) boundary conditions for the Kitaev sum (Bott index). The pinning strengths $p of each
site are disordered by adding an amount V sampled from a Gaussian distribution with a standard deviation of 0.1 〈$p〉, and the gyroscopes
have pinning strengths biased by their sublattice site: $p = 〈$p〉(1 ± ,AB) + V .

However, several real-space generalizations to the Chern
number have been proposed. We discuss two approaches
here. We use both to investigate topological phase transi-
tions, and one will even enable us to build an approximation
to the Chern number using only the local character of the
network.

The Kitaev sum generalizes the notion of Chern number
to a real-space measure of chirality integrated over a band in
the bulk of a 2D material [23,41,42]. By defining a projection
operator, P, that maps states above a cutoff frequency, ωc, to
themselves and states below the cutoff to zero, we obtain a
real-valued number ν via

ν(P) = 12π i
∑

j∈A

∑

k∈B

∑

l∈C

(PjkPkl Pl j − Pjl PlkPk j ). (36)

The projection operator could instead be defined to map
states below the cutoff ωc to themselves, as is often done
in electronic systems; in this case, ν → −ν. When nega-
tive frequency bands are included, it is important to include
the symplectic factors in Eq. (34). A, B, and C are three
nonoverlapping summation regions defined in a counter-
clockwise fashion as shown by the red, green, and blue
regions of Figs. 12(a) and 12(c), and these can be of any
shape.

In electronic systems, the Kitaev sum measures the charge
that accumulates for a localized magnetic field flux inserted
into the bulk position where the three regions A, B, and C
meet. For a single magnetic flux quantum, the amount of
charge is νe. In our gyroscopic system, ν similarly relates
directly to flux pumping, signifying the number of states ex-
changed between the boundary and the site of flux insertion
shown in Fig. 9(a) [23].

One feature of the Kitaev sum is that the result is not
strictly integer-valued for a finite system. In the limit that
the region of summation encloses many gyroscopes with-
out enclosing the material’s boundary, however, the value of
ν does converge towards an integer, which corresponds to
the Chern number. This integer counts the number of in-
dependent edge modes at the cutoff frequency ωc spanning
a spectral gap to connect surrounding bands. The proper
counting of edge modes is a more subtle affair in the ab-
sence of crystalline symmetry, but can be done via the
flux pumping analog considered in the previous section (see
Fig. 9). This noninteger character of ν is useful in that
the rate of convergence indicates the localization length of
modes at the cutoff frequency: ν approximates its target value
once the region of summation is larger than the localization
length.
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3. Bott index

An alternative approach which rests on K-theoretic meth-
ods is to measure what has become known as the Bott index
[43]. Like the Chern number, a nonzero Bott index signals
the impossibility of finding a complete, orthonormal basis
of localized functions (“Wannier states”) among the states
included in the projection operator. Unlike the Kitaev index,
the Bott index requires the construction of a periodic sys-
tem, so translational invariance is artificially restored on some
scale, though this scale can be made arbitrarily large. Given
a fully periodic sample of spatial extent W in both spatial
dimensions X and Y , the positions of each gyroscope are
indexed by 1 = 2πX/W and 2 = 2πY/W . Equipped with
a projection operator P as before, we define band-projected
position matrices

Pei1P ∼
(

0 0
0 U

)
, Pei2P ∼

(
0 0
0 V

)
, (37)

with the right-hand sides expressed in the basis of eigen-
modes. If the cutoff frequency of P lies in a mobility gap, the
block nonzero components U and V are almost unitary and
will almost commute [43]. The Bott index, B, defined as

B = Im{Tr[log(VUV †U †)]}
2π i

, (38)

indicates if U and V are “close” to a different pair of ma-
trices which are exactly unitary and exactly commute. Since
the logarithm is multivalued, Eq. (38) must be defined more
precisely: we evaluate the sum of the logarithm of the eigven-
values of VUV †U † and take the imaginary components to
be as small as possible. A potential advantage of the Bott
index over the Kitaev sum is that it returns an exact integer,
rather than converging towards an integer value, at the cost
of requiring the introduction of (potentially artificial) period-
icity to the sample. A potential disadvantage is that the Bott
index measurement is global: a given sample returns a single
value, whereas the Kitaev sum can be performed in a spatially
resolved manner [Figs. 9(b) and 12(a)–12(c)]. For a system
composed of multiple patches of different topological phases,
such as in the lower panel of Fig. 12(b), the Bott index selects
only a single global readout.

C. Determining topology without full diagonalization

Given that such small systems can still be used to accu-
rately compute real-space topological invariants and exhibit
bulk-boundary correspondence, it is tempting to think that we
can use the local properties of a network to approximate the
topological invariant, under the assumption that the region
is not exceptional. Here we will build on Kitaev’s insight
to address this challenge for systems that satisfy the same
conditions as we required in Sec. IV: namely, that (1) some
off-diagonal elements of D are large compared to on-diagonal
elements and (2) the square of the dynamical matrix is nearly
diagonal such that D2 ≈ ω2

01 + ε. The goal is to approximate
the projection operator, which is short-ranged [44,45]. This is
a critical assumption behind the classification of interacting
topological phases, which—like amorphous materials—are
studied in real-space rather than momentum space.

To begin, we use an expression we derived in [23] that casts
Kitaev’s formula into

ν = Im8π
∑

i jk

Pi jPjkPki, (39)

where P is the projection onto states below a given frequency,
and the sum is over all sets of three points in the network
that form a triangle surrounding a given point q in a coun-
terclockwise orientation. This formula can be derived as the
charge that accumulates when a magnetic flux quantum is
threaded through q, and this expression translates directly into
Kitaev’s (and vice versa) if P is the exact projector. However,
we will use an approximation to the projector, and Eq. (39)
seems more reliable in the situation when P is known only ap-
proximately. Kitaev’s formula requires a choice of subregions
A, B,C that can change the value of the sum if P is merely
approximated, but our expression requires no such choice.

The projection operator (or “projector”) in a coordinate
system where D is diagonal is

∑
ωn<ω |n〉〈n| in the Hermitian

case we are considering here, where ωn are the frequency
eigenvalues and |n〉 the eigenvectors. This is an inherently
nonlocal object, but we can overcome this difficulty by writing
the sum in an algebraic form as

∑
ωn

1
2 (1 − ωn/

√
ω2

n )|n〉〈n|,
where the square root is the positive square root. Recast in a
coordinate-independent way, P = 1

2 (1 − D/
√

D2), which can
be expanded using the assumption D2 = ω2

01 + ε, where ε is
small, as

P = 1
2
1 − D

2ω0

∞∑

n=0

(
− ε

4ω2
0

)n(2n
n

)
. (40)

Here we have used the Taylor series 1√
1−x

=
∑∞

n=0

(2n
n

)
(x/4)n. Substituting into Eq. (39), we note first

that the first term ( 1
21) and its cross-terms with the other

factors contribute only real terms to the sum because D is
Hermitian and can therefore be neglected. Only the sum
remains. If the n = 0 term dominates, then

ν ≈ Im
π

ω3
0

∑

i jk

Di jD jkDki. (41)

This is a local formula for the Chern number: since Di j is
short-ranged, the number of triangles i jk enclosing a point
that contribute nonzero terms is limited.

A simple model both provides intuition and tests the ac-
curacy of this result. For the Hofstadter model we considered
before, which is associated with a gyroscopic network in the
weakly interacting limit $k/$p . 1, ν is proportional to the
product of the magnitudes of the couplings around the sides
of a triangle times the sine of the net phase factor, normalized
by ω3

0. Intuitively, ω0 is akin to a mean value of the coupling
magnitudes, so this cancels out much of the dependence on
the overall magnitude of the couplings, leaving mainly the
dependence on the phases. For the square model, take q to
be the point shown in Fig. 13(a). There are only two tri-
angles surrounding q, which each contribute it2t ′. They are
each counted three times, since the three vertices i jk can be
enumerated with any cyclic permutation while retaining the

025007-16



REAL-SPACE ORIGIN OF TOPOLOGICAL BAND GAPS, … PHYSICAL REVIEW E 104, 025007 (2021)

FIG. 13. The Chern number can be approximated by a purely
local, real-space calculation. (a) In the Hofstadter model, there are
two three-hopping triangles formed from nonzero entries in D that
encircle q, which are needed to calculate the lowest-order approxima-
tion to the Chern number. The two triangles are 123 and 124. (b) The
approximation to the Chern number [Eqs. (39) and (40)] converges
toward the true value of ν = 1 as the number of terms included from
the expansion of Eq. (40) grows. The thin green curve corresponds
to the first term, given by Eq. (42), and thicker lines varying from
green to blue indicate the result from including two, three, four, five,
or six terms from Eq. (40). The measurement is shown here as a
function of the complex, next-nearest-neighbor hopping strength t ′/t
(yellow arrows in panel a). The dashed, vertical gray line indicates
the value of the ratio t ′/t = 1/

√
2, where the approximation should

be the most accurate. Above t ′ > t , the series does not converge for
our choice of ω0 in D2 = ω2

01 + ε. Note that the single-term ap-
proximation (thin green curve) reaches its maximum at this coupling
strength, and further terms improve the result near t ′/t = 1/

√
2.

proper counterclockwise ordering, so

ν ≈ 3πt2t ′

4(t2 + t ′2)
3
2

. (42)

A true topological invariant should be quantized, but clearly
this expression is not. We expect the approximation to work
best when t ′ is close to t/

√
2 because for this value the

next-nearest-neighbor entries in D2 cancel. At this point, the
approximation is π/(2

√
3) ≈ .9, which is close to 1. A plot

of the approximate Chern number against a range of complex
hopping magnitudes t ′ in Fig. 13 is nearly constant for a range
of values of t ′ near t/

√
2. Including more terms in the sum

in Eq. (41) increases the accuracy of the Chern measurement
in the vicinity of t ′ = t/

√
2. As discussed in Appendix E,

convergence of the series requires ω0 to be chosen so that ω2
0

is at least as large as half the maximum eigenvalue of D2. The
method discussed here for computing a local approximation to
ν generalizes to any system with a gap, regardless of whether
D2 is nearly diagonal, as we show in Appendix E.

This approximation to the real-space Chern invariant does
not require a full diagonalization of the dynamical matrix.
This result expands our computational machinery not only to
predict if a gap will appear (as derived before), but also to
predict if that gap will be endowed with chiral edge modes.

D. Mesoscopy versus homogeneity in determining topology

We have found that even in relatively small systems, a topo-
logical invariant can be readily approximated by the Kitaev
sum without periodic boundary conditions. This demonstrates
that band topology can be encoded on a mesoscopic scale—far
smaller of a scale than has been traditionally investigated. If
multiple topological patches are adjacent but uncoupled, then
each patch will have its own edge states, but the system as a
whole will not behave as a Chern insulator, since these states
are distributed throughout the bulk. Since the “edge modes”
of each patch occupy a frequency range that corresponds to
the gap of a fully connected system, the material as a whole
does not behave as an insulator. What degree of coupling
between patches is required for these patches to behave as a
single insulating system with chiral modes only at its outer
boundary, rather than throughout its interior? Here we study
the transition of weakly coupled mesoscopic patches of Chern
insulator into a single unit of material.

Figure 14 shows patches of gyroscopic honeycomb net-
works bonded together by spring coupling with variable
strength (dashed bonds in Fig. 14). With these bonds com-
pletely floppy ($′

k . $k), the composite system is a trivial
insulator, with a real-space Chern number measurement (here
using the Kitaev sum) of ν → 0 (gray circles in the phase
diagram of Fig. 14). If the coupling is strengthened, however,
the material transitions to a Chern insulator at $′

k ≈ 0.4$k .
Notably, so long as the patches are sufficiently large that
the edge modes localized to their boundaries do not span
the entire patch, the value of $′

k at the transition does not
vary with patch size. Figure 14 shows the associated phase
diagram: for cell sizes larger than w ! 2!, the transition from
trivial (ν = 0) to topological (ν = −1) occurs at a constant
coupling strength. This is an extension of our earlier obser-
vations in Fig. 7 in which varying the coupling between unit
cells led to a topological phase transition at a critical coupling
strength. There a sufficiently strong coupling ($′

k ≈ 0.4$k)
was necessary to transform a trivial insulator of bonding and
antibonding states into the delocalized states of a Chern in-
sulator. Here, in addition, we find that even if large patches
individually register as topological, a significant coupling is
still required for the sample as a whole to have a nonzero
topological invariant.

Below a critical coupling, the conductance of this gy-
roscopic material is not insulating on account of interior
interfaces between insulating grains, reminiscent of the rela-
tionship between percolation and topological transitions (see
[46] and references therein). This highlights the need for
homogeneity in the coupling for a topological material to
insulate throughout its bulk and highlights one of the ways in
which topological insulation can break down in the presence
of heterogeneity.

In the process of establishing a local origin of topological
band gaps, we encountered the importance of homogeneity in
the strengths of bonds throughout the bulk. Violating this as-
sumption of homogeneity in couplings can change a material’s
topological phase. We now turn to the other way of breaking
homogeneity in the bulk: modulating pinning strengths at each
site. Consistent with our findings so far, we find that whereas
inhomogeneity can break topological insulation, spatial order
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FIG. 14. In order for patches of Chern insulator to constitute
a topological sample, the patches must be sufficiently coupled. By
varying the spring constants connecting initially uncoupled regions
of a gyroscopic network, we find that a threshold coupling strength
is required to create a macroscopically topological sample. Here
we used a 21 × 21-cell gyroscopic honeycomb configuration with
$g = $k and open boundary conditions. On the right side, two
example eigenmodes with $′

k = 0.2$k and 0.8$k show the change
in spatial structure of the excitations nearest ω = 2.25$p for patch
sizes w/! = 7.5, where ! is the bond length. Below a critical patch
coupling strength, edge modes span the boundaries between patches
throughout the material, whereas above a critical patch coupling
strength, a single edge mode resides on the outer rim of the network.
The localization length ξ for a mode in the middle of the band gap
is on the order of the bond length: ξ ≈ !, with the precise value
depending on the orientation of the boundary with respect to the
lattice. So long as the patch size is greater than ∼2ξ , the transition
from trivial to topological occurs at a fixed coupling strength.

is utterly irrelevant to topological order. Indeed, in the final
section of this article, we find that even in their response
to on-site disorder, amorphous structures behave like their
crystalline counterparts and undergo localization transitions
consistent with the same scalings as in ordered crystals.

VI. SCALING AND REENTRANT TRANSITION OF
ANDERSON LOCALIZATION

Topological insulators are famous for the chiral waves
living at their edges for frequencies in the gap. However,
there are also differences in the bulk modes at frequencies
in bands bounding the gap. These modes can conduct energy
in phononic metamaterials, where there is no Pauli exclusion
and all modes are available excitations. For topologically
trivial materials in two dimensions, any disorder is sufficient
to localize all modes in a large enough system. For Chern

insulators, on the other hand, some normal modes in bands
will be spatially extended across the entire system [36]. The
study of how states localize in the presence of strong random
disorder as a function of system size—the so-called scaling
theory of “Anderson localization”–has provided a powerful
framework to understand and predict the conductivity of a
wide range of materials [39,47,48]. Recent extensions incor-
porate topological order into this scheme, giving rise to the
notion of a “topological Anderson insulator” [49,50].

How do amorphous Chern insulators behave when sub-
jected to strong disorder? In the first half of this section, we
study the scaling of the topological index with system size,
with particular attention to the amorphous case. By varying
the disorder, we find behavior consistent with the expected
scaling for symmetry class A, including annihilation of ex-
tended states in the mobility gap at the transition.

We then use inversion symmetry breaking to add a second
dimension to this phase transition and find an avenue for
disorder to drive a trivial insulating phase into a topological
one. This reentrant topological behavior, dubbed “topological
Anderson insulation,” is surprising, since typically disorder
drives systems away from the topological phase [51–53]. Us-
ing experiments and simulations, we identify this interesting
feature of the interplay between disorder and topology in the
mechanical context.

A. Anderson insulator transition

Strong disorder in pinning strengths drive a transition to
the trivial insulating regime. In the canonical Anderson local-
ization picture without any topological effects, the addition of
infinitesimal disorder localizes all modes in a 2D system. In
the presence of nontrivial topology, however, stronger disor-
der strengths are required to drive Chern insulators into the
trivial insulating state. For small disorder, each band acquires
tails of localized states, and bands carrying Hall conductance
are confined to a region near the center of each band [leftmost
panels in Fig. 15(a)]. As the disorder strength grows, these
states approach and annihilate in a frequency region which
was previously a mobility gap. This process is called “annihi-
lation and levitation” due to the annihilation of the extended
states in the gap and the subsequent rise in variance in the
spacing between eigenfrequencies. In Fig. 15 we show that
amorphous gyroscopic networks display this behavior as well.

Figure 15(a) shows this annihilation of extended states
for amorphous networks of 450 gyroscopes. Without pinning
disorder, the two bands of states which span the system are
separated by a mobility gap. As we increase random pinning
frequencies $p drawn from a Gaussian distribution with width
V , however, the extended states move toward the gap, meet
in the frequency range which was previously the middle of
the gap, and annihilate, shown in Fig. 15(a). Figure 15(b)
shows that the localization length in the middle of the gap
(ω ≈ $p + 1.25$k) rises as the extended states invade. The
localization length peaks at a value near the system size, then
falls as disorder dominates. The peak in localization length
coincides precisely with the change in the ensemble-averaged
topological index—whether Kitaev sum or Bott index—from
nonzero to zero. Thus, the annihilation of the extended states
mark the transition from a topological to trivial phase.
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FIG. 15. Increasing disorder strength drives extended states to-
wards the gap, where they annihilate as the system passes from a
topological to a trivial insulator. (a) Illustration of the annihilation
of extended states (yellow states) in the gap as pinning disorder
strength V increases, as shown in a schematic cartoon (upper panel)
and in computed spectra for a collection of 20 disordered amorphous
gyroscopic networks of 450 gyroscopes (lower panel) with $k =
〈$p〉. The colors of these spectra reflect the localization of states,
ξ , measured in units of inverse average bond length. These extended
states (yellow) carry the Hall conductance for the system, so their
annihilation triggers a transition to a trivial insulating phase, in which
all modes are localized (purple). (b) We compute localization length
and topological indices for a range of on-site disorder strengths for
20 amorphous networks such as the example structure shown on the
right. As disorder grows, the localization length in the gap grows
to the system size, aligning with the change in average topological
invariant of the top band from −1 to 0. The vertical dashed line marks
the disorder strength at which the topological transition occurs.

By measuring the topological invariant for systems of dif-
ferent sizes, we find sharper and sharper transitions to the
trivial phase as the system size increases. Intuitively, a dis-
ordered topological system whose size is comparable to the
localization length will be susceptible to random variations
in disorder such that different realizations of disorder may
yield a trivial phase. Near the transition, where the localization
length of modes in the center of the gap is large, proportion-
ally larger systems are required to suppress fluctuations in
the resulting topological invariant. This is the case both for
amorphous structures shown in Figs. 15 and 16, as well as for
the honeycomb lattice we studied earlier. If the transition is
perfectly sharp in the limit of an infinitely large system, then
the system with disorder strength V < Vc is a Chern insulator
supporting topologically protected chiral edge modes, while
systems with V > Vc will register 〈ν〉 → 0 and 〈B〉 → 0.

In Fig. 16 we compute the topological invariants for thou-
sands of amorphous systems with different sizes and disorder
strengths. After tracing out the average topological invariant
as a function of disorder for many system sizes, we collapse
these curves by rescaling the disorder strength according to

Ṽ = Vc + (V − Vc)
( L

L0

)1/ν̃

. (43)

Here L is the system size, L0 is an intermediate size, Vc is a
critical disorder strength at which all curves should in princi-
ple intersect, and ν̃ is the critical scaling exponent. Figure 16
shows that both the Kitaev sum (top panels) and Bott index
(bottom panels) collapse under finite-size rescaling of Eq. (43)
with the same values Vc/〈$p〉 = 0.645 ± 0.007, and scaling
exponent, ν̃ = 2.80 ± 0.18, though small samples with fewer
than 450 gyroscopes deviate visibly from this scaling due to
boundary effects in the Kitaev sum. We note that while the
Bott index data collapse has a sharp minimum in summed
residuals (χ2) that gives the reported uncertainties, the Kitaev
sum collapse gives only loose bounds with uncertainties of
order ,ν̃ ≈ 1. The accepted value of ν̃ = 2.58 ± 0.03 found
in previous studies of quantum tight-binding models hugs our
lower uncertainty bound [50,54].

The scaling collapse suggests that the transition is, in fact,
infinitely sharp in the limit of large system sizes, with finite
size scaling consistent with the universality class of Cartan
label A [31]. This result is consistent with the idea that
amorphous Chern insulators share similar scaling behavior
with tight-binding models on lattices endowed with random
pinning disorder [36,55]. Our system is also different from the
traditional crystalline case in another way in that gyroscopic
metamaterials are symplectic rather than Hermitian. It is in-
teresting to note that neither difference appears to break the
standard universal scaling [50]. While two recent studies have
found nonuniversal behavior in amorphous systems [25,32],
which motivates continued study of the scaling behavior along
other directions of the phase boundary, we find no inconsis-
tency with the scaling dictated by the symmetry class of the
dynamical matrix.

B. Topological Anderson insulator phase diagram

We have seen that strong disorder destroys topological
behavior. By tuning an additional parameter, however, we find
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FIG. 16. Scaling collapse of the Anderson localization transition in our gyroscopic Chern insulators is consistent with the universality class
of Cartan label A. As disorder is increased, the topological index of the upper band averaged over many samples smoothly varies from −1 to 0.
The spatial structures of networks used here (left column) are Voronoi tessellations of hyperuniform point sets generated as in Ref. [23], with
a gyroscope placed at every vertex and bonds lining the polygons of the tessellation. As the size of the system for which the index is computed
grows (blue to black to red in each panel), the transition grows sharper. Each data point represents the average Kitaev sum 〈ν〉 or Bott index 〈B〉
for 100 amorphous gyroscopic networks (10 disorder realizations for each of 10 randomly generated amorphous structures) subjected to on-site
disorder strengths modulating $p at each site by an amount taken from a Gaussian distribution. The pinning disorder strength is measured in
units of 〈$p〉, and we let $k = 〈$p〉. Rescaling the disorder values according to a power law of the system size collapses the curves with an
exponent ν̃ = 2.80 ± 0.18 and Vc = 0.645 ± 0.007 〈$p〉, as shown in the right panels.

the remarkable possibility of transforming a trivial insulator
into a Chern insulator simply by adding disorder to the system.
Recently, this reentrant phase diagram of so-called “topolog-
ical Anderson insulation” was demonstrated in photonic [52]
and cold atom systems [53]. As shown in Fig. 17, gyroscopic
metamaterials support this same transition. Here we simul-
taneously vary both random disorder strength and inversion
symmetry breaking in a honeycomb lattice, both in experi-
ment and in numerical calculations. We introduce disorder
by changing the gyroscope spinning speeds, which changes
both pinning frequencies and bond strengths simultaneously
due to the dependence of each on spinning speed. Meanwhile,
inversion symmetry is broken by a periodic array of staggered
magnetic fields that splits the on-site precession frequencies
of the two sublattice sites.

Figure 17(c) shows the resulting topological index, here
shown by the Bott index averaged over 200 realizations for
each value of disorder. Increasing either inversion symmetry
breaking or disorder strength drives the gyroscopic lattice into
the trivial phase, but increasing both simultaneously allows

for the topological phase to persist for significantly larger val-
ues of inversion symmetry breaking. This enables a reentrant
phase transition by increasing disorder in a system with large
inversion symmetry breaking. Using the Kitaev sum in place
of the Bott index gives the same result, aside from weak-
ened convergence near the phase boundaries. In Fig. 17(c) we
choose $k = 0.67$p to match the relative values in our ex-
periment, and also choose the disorder to affect both pinning
and interaction strengths proportionally, as would occur in an
experiment. The qualitative features of the resulting reentrant
phase transition, however, are indifferent to modest variations
of these parameters, to the shape of the disorder distribu-
tion (flat versus Gaussian), and to whether or not interaction
strength disorder is varied in tandem with pinning frequencies
or instead of pinning frequencies.

Figure 17(d) shows complementary measurements made
in an experimental setup of 54 gyroscopes coupled with
repulsive magnetic interactions. Note that with magnetic inter-
actions, the equations of motion are similar to the spring case
considered thus far, as shown in Appendix A. The edge of the
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FIG. 17. Gyroscopic networks exhibit a topological Anderson insulator transition wherein a trivial insulator phase is driven into the
topological phase by adding disorder. (a) In our experiments, each gyroscope is constructed from an externally powered motor encased in a 3D
printed housing that minimizes damping. A magnetic coil placed beneath each site allows variation of the on-site precession frequency $p →
$p ± ,AB, with each sublattice site (orange and blue) receiving an opposite bias from the magnetic torque. (b) Daisy-chained microcontrollers
(TLCs) convert a serial output into a site-specific spinning speed via pulse width modulation, while a separate DC power supply drives inversion
symmetry breaking by passing current through each coil. (c) A 2D topological phase diagram shows that either breaking inversion symmetry
(increasing ,) or introducing strong disorder (increasing V ) drives a transition from topologically nontrivial (〈B〉 2= 0) to trivial (〈B〉 = 0).
Each colored region represents the average Bott index computed numerically for 200 random disorder configurations with nearest-neighbor
interactions only. The pinning frequencies are chosen from a flat distribution of disorder of width V = [max($p) − min($p)]/$0

p, and
magnetic interaction disorder covaries with the pinning frequency, as would occur in the experiments. (d) An experiment designed to realize
the topological Anderson insulator transition in 54 gyroscopes measures the localization length of normal modes excited in a frequency
range within the band gap of the clean system (, = 0, V = 0). As either disorder strength or inversion symmetry breaking is increased,
the localization length grows on average, reaching or exceeding the system size, L. Disorder is introduced by controlling the spinning
frequency of each gyroscope individually in a spatially uncorrelated fashion, which varies both pinning and interaction disorder strength.
The orange line is a guide to the eye taken from simulations. Though the experimental system exhibits many differences from the numerical
idealization, including long range interactions and strong nutation at low spinning speeds, the qualitative features of the transition are evident.

sample is shaken at a slowly varying frequency that spans the
band gap range of the clean (V = 0) and inversion symmetric
(, = 0) system. Taking the Fourier transform of the tracked
gyroscope displacements extracts the normal modes, from
which we measure the localization length by fitting the dis-
placement amplitudes to a decaying exponential as a function
of distance from the edge. The average localization length
ξ of modes in a narrow range of frequencies that lies in the
gap of the clean system is reported as a fraction of the system

width, L. As the system approaches the boundary between
topological and trivial phases, the localization length grows
[gray dots in Fig. 17(d)]. In principle, the localization length
should decrease again far from the phase boundary, though
this subsequent decrease is not visible in our experiment ex-
cept at low disorder.

In the experiments, the inversion symmetry is broken using
a staggered array of magnetic coils, and the disorder strength
is controlled by setting the spinning speeds of individual
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gyroscopes using a chain of microcontrollers [Fig. 17(b)].
In our experimental setup, we set all experiments to have
ω0 = 175 Hz spinning frequency, and we vary the width of the
distribution using a pulse width modulation setup. Briefly, we
first set all gyroscopes to have identical spinning frequencies
by iteratively adjusting the duty cycle (i.e., fraction of time
that a gyroscope is receiving power) assigned to individual gy-
roscopes using a pulse width modulation controller. This step
cancels out initial disorder from variations in the construction
of our 3D-printed and hand-assembled gyroscopes (Strata-
sys Objet 350 printer). We then generate a target spinning
speed assignment for all gyroscopes so that the precession
frequencies will approximately follow a flat distribution. We
first attempt to achieve this assignment by perturbing the
duty cycle values according to an average calibration relating
duty cycle to spinning speed. We then iteratively measure the
spinning speeds with a high-speed camera (Vision Research
Phantom v12.1) and adjust the duty cycle values to approach
the target spinning speed assignment.

There are several differences between the experimental re-
alization and the idealized model. For large disorder strengths,
some gyroscopes are set to spin very slowly. For these slowly
spinning gyroscopes, nutation and nonlinear effects play a
role in the dynamics, driving the system away from the
fast-spinning-limit assumption. Additionally, the magnetic in-
teractions are long range in the experiment. We choose to
suppress both of these complications in the model shown in
Fig. 17(c) to underscore the simplicity of the phenomenon.

We use the localization length as an indication of the phase
transition rather than measuring the Chern numbers of the
phases themselves. While this is an indirect measure of topol-
ogy, the results capture the essential features of the expected
phase diagram.

VII. CONCLUSION

Periodic order is dispensable for generating topology in
gyroscopic metamaterials. In light of this observation, by re-
examining the fundamental dynamics of coupled gyroscopes,
we have identified intuitive, real-space descriptions for the
origins of topological gaps. The signatures of time-reversal
symmetry breaking—an essential ingredient in endowing
bands with nontrivial topology—appear even at the three-
gyroscope level through the interaction of counter-rotating
polarizations. The three-way interaction between TRS break-
ing, network geometry, and coupled polarizations underlies
the emergence of topological gaps, and these nontrivial gaps
are topologically disconnected from bonding and antibonding
energy splitting. We present a method to predict the existence
of a band gap without full diagonalization of the dynamical
matrix that generalizes to amorphous structures. In the same
spirit of simplifying the predictive machinery for topologi-
cal phases irrespective of spatial order, we approximate the
topological index using only local properties of a gyroscopic
network, in contrast to other real-space methods in wide use.
The ability to do so reflects the ability of even mesoscopic
patches of gyroscopes to register as belonging to a topo-
logically nontrivial phase, further supporting the notion that
periodicity is not needed for nontrivial topology.

We find that disorder transitions in both amorphous and
crystalline gyroscopic networks have similar behavior to pe-
riodic electronic and photonic Chern insulators. Amorphous
networks display finite-size scaling that is consistent with
the universal behavior from crystalline Chern insulators when
subjected to pinning disorder on top of their existing struc-
tural disorder. Finally, we demonstrate a reentrant topological
phase diagram in a mechanical context.
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APPENDIX A: GYROSCOPES WITH
MAGNETIC INTERACTIONS

If we replace the spring coupling with magnetic interac-
tions as in Fig. 1(c), the equations of motion are modified
slightly in the experimental system, which uses magnetic
interactions rather than springs. In this case, the modified
equation can similarly be cast in the form of Eq. (15) and
appears as

i∂tψi = $pψi + 1
2

∑

q

[
($+

ii ψi + $+
i jψ j )

+ e2iθi j ($−
ii ψ

∗
p + $−

i jψ
∗
j )

]
, (A1)

where the sum is over nearby gyroscopes, $±
i j ≡ − !2

Iω
(∂Fi‖/∂x j‖ ± ∂Fi⊥/∂x j⊥) is the characteristic interaction fre-
quency between gyroscopes i and j, $p ≡ (mg + F suspension +
F coil

z )!/Iω is the precession frequency in the absence of other
gyroscopes, and θi j is the angle of the bond connecting gy-
roscope i to gyroscope j, taken with respect to a fixed global
axis. The interaction strengths, $±

i j , scale with the quantity
$k ≡ !2km/Iω, where km is the effective spring constant for
the magnetic interaction, and $±

i j depend nonlinearly on the
lattice spacing.
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APPENDIX B: NORMAL MODES AT THE BROKEN DIRAC
POINT FOR THE GYROSCOPIC HONEYCOMB LATTICE

For the honeycomb lattice, we provide an argument for
how symmetry determines the spatial structure of eigen-
mode displacements and their frequencies bounding the band
gap. The two states at a corner of the Brillouin zone have
frequencies

ω =
{

± 1
2 (2$p + 3$k)

±
√

$p($p + 3$k )

}
. (B1)

Using the basis e = (ψR
0 ,ψR

1 ,ψL
0 ,ψL

1 ), the positive frequen-
cies have eigenvectors

e+ =






(1, 0, 0, 0)(
0, 1, −3$k

2$p+3$k+2
√

$p($p+3$k )
, 0

)



. (B2)

For the pair of eigenvectors with larger absolute value of
frequency, the excitations are solely ψR for ω > 0 or solely
ψL for ω < 0. For the other normal mode pair with a smaller
absolute value of frequency, the eigenvector is almost entirely
in the opposite sublattice site, except for an excitation which
is smaller in amplitude and opposite in chirality.

We can see how translational and rotational symmetry en-
forces the modes’ form at K and K ′ in detail. First consider
rotational symmetry of the lattice: 120◦ rotation preserve the
momentum K or K ′ up to translation by a vector of the re-
ciprocal lattice, so the modes at K and K ′ can be classified by
their eigenvalue with respect to this operation. This eigenvalue
is a phase factor, 1, ei2π/3 or e−i2π/3. Multiplication by a phase
factor here corresponds to a displacement along the elliptical
orbit of each gyroscope.

Equation (13) shows that multiplication by a phase, ψR
p →

eiθψR
p , ψL

p → eiθψL
p , is equivalent to evolving in time by

θ/ω = θT/2π , where T is the period of the mode. Hence ro-
tational symmetry implies that the displacement pattern of the
gyroscopes returns to itself if the whole system is rotated by
120◦ counterclockwise and then one waits by a time of 0, T/3,
or −T/3. Consider specifically rotating 120◦ around one of
the gyroscopes. Any ellipticity in the gyroscope’s path would
prevent the possibility that the rotated configuration returns to
itself after some time. Thus, all nonzero gyroscope displace-
ments must trace perfectly circular paths, either clockwise or
anticlockwise.

Given that the orbits are circular, we can further constrain
their pattern by considering the case of weak coupling com-
pared to the pinning forces on each site ($k . $p). In this
limit, the components of motion that are clockwise have a
large amplitude compared to the counterclockwise compo-
nents. At the K point, there are two modes, one in which the
A sites have a strong clockwise motion and one in which the
B sites have a strong clockwise motion. One could envision
a mode in which all sites have a strong clockwise motion,
but symmetry prohibits this as well, as we now show by con-
sidering one gyroscope moving with a small amplitude and
the three gyroscopes around it moving with a large amplitude
[Fig. 6(b)].

The relative phase of the three neighbors is determined
by translational symmetry. Translating the excitation of an
eigenmode by a lattice vector R merely introduces a phase

shift of T k · R/2π . In Fig. 6, R1 and R2 are the two primitive
vectors of the lattice. Any gyroscope located R1 away has a
position that lags behind by a time T/3, and any gyroscope
located R2 away leads by a time of T/3. Since these three gy-
roscopes are all moving clockwise, this means that in the first
case the gyroscope will differ in phase by 2π/3 counterclock-
wise from the reference gyroscope, and in the second it will
be 2π/3 clockwise. If the gyroscope with a small clockwise
amplitude is at an A site [lower state in Figs. 6(a) and 6(b)],
then this implies that the displacements of the neighboring
B-gyroscopes rotate counterclockwise, while if it is at a B
site, then the neighboring gyroscopes’ displacements rotate
clockwise as you go around the site clockwise [upper state
in Figs. 6(a) and 6(b)]. As discussed in the text, this gives
rise to a net force on the lower-frequency state and force
balance on the immobile site of the higher-frequency state.
A larger displacement at the counterclockwise site therefore
lowers the spring energy for the lower state, opening the gap
as $k/$p increases.

APPENDIX C: PROOF OF UPPER BOUND
OF EIGENVALUES OF A MATRIX

Here we provide an upper bound on the eigenvalues of a
hopping Hamiltonian used in the main text; it relates their
magnitude to the sum of the hopping values from each site.
To state this bound precisely, let M be a Hermitian matrix. Let
A = maxi

∑
j |Mi j |. Then if λ is any eigenvalue of M, |λ| " A.

Let x be the eigenvector with eigenvalue λ. Let x’s largest en-
try (in magnitude) be the kth entry. We have

∑
j Mk jx j = λxk

by considering the kth entry of Mx = λx. So

|λ||xk| "
∑

j

|Mk j ||x j |

"
∑

j

|Mk j ||xk|

" A|xk|. (C1)

The first line follows by the triangle inequality, the second by
the assumption that xk is the largest entry in the vector and the
third by the assumption that A is the largest of the sums of the
absolute values of entries in a row of A. Cancelling |xk| gives
λ " A.

APPENDIX D: EXPONENTIAL DECAY
OF GREEN’S FUNCTION

In Sec. IV B, we argue that for a ordinary insulator, the
Green’s function expansion, which reads

1
ω − Ddiag

∞∑

n=0

(
δ

1
ω − Ddiag

)n

, (D1)

decays exponentially with distance. Here we provide more
detail on this point. The largest contribution to the geometric
series for the Green’s function is from the shortest path con-
necting a given pair of sites. However, the main contribution to
the Green’s function could in principle be from longer paths,
because although longer paths give a smaller contribution to
the sum, there are many more paths that meander through
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many sites from site i to j than direct paths. To give a rough
(but rigorous) upper bound that takes this into account, note
that there cannot be more than zn paths of length n starting at
site i if each site has z connections. In particular, there are not
more than zn paths connecting site i to site j in n steps. There-
fore, the largest the Green’s function can be is

∑∞
n=m(zα/β )n,

where α = maxpq |δpq| is the maximum off-diagonal entry of
the dynamical matrix, and β = minp |ω − Dpp| is the mini-
mum on-diagonal component of ω − D. This sum converges
to a constant times (zα/β )n if the off-diagonal elements are
small enough. This shows that the Green’s function decays
exponentially. A similar argument can be used to show that
the Green’s function and projection operator are also localized
for the topological insulator case based on the expansions in
Eqs. (26) and (40).

APPENDIX E: LOCAL APPROXIMATION WITHOUT
NEARLY DIAGONAL D2

When a system has a dynamical matrix such that D2 is
nearly diagonal, it is possible to calculate its Green’s function
(within a gap) and the Chern number in a local way [see
Eqs. (26) and (40)]. This expansion works also when D2 is not
close to a scalar, as long as the system has a gap (or probably
even just a mobility gap). If one wants to find an eigenvalue
close to a certain value, one can shift the diagonal entries
of the matrix uniformly so that this value is at zero, square
the matrix, and then use the Lanczos algorithm to find the
minimal eigenvalue of the squared matrix [56,57]. In a similar
way, we can find the Green’s function near a given frequency.
To calculate (ω1 − D)−1, square ω1 − D and then subtract
a scalar, ω2

01, to make what remains as small as possible:
(ω1 − D)2 = ω2

01 + ε. For a dynamical matrix whose square
is nearly a scalar, ε is extremely small. However, it is possible
that a dynamical matrix does not nearly square to a scalar, and
here we generalize our earlier result to this case.

Physically, if ε = ( (ω1−D)2−ω2
01

ω2
0

) has large entries, then in-
terference effects fail to keep an excitation localized within
only two steps. Yet interference may arise between sufficiently
long paths; correspondingly, the entries of higher powers of ε
start to decay exponentially. One can then expand the Green’s
function, (ω − D)−1 = (ω1 − D)(ω2

01 + ε)−1 by using a ge-
ometric series to calculate the reciprocal. This always occurs
for the right choice of ω0, as long as ω is in a gap.

The Chern number of the states above a frequency ω can
be calculated in the same way. The Kitaev sum depends on

the projection, which we express as P = 1
21 + 1

2
ω1−D√
(ω1−D)2

.

The square root can be expanded just as the Green’s function
was (the radii of convergence of the binomial expansion of√

ω2
0 + x and of (ω2

0 + x)−1 are identical), giving

P = 1
2
1 + ω − D

2ω0

∞∑

n=0

(
− ε

4ω2
0

)n(2n
n

)
. (E1)

Let us argue that there is always a value of ω0 such that this
converges. The eigenfrequencies of D are contained in two
intervals, [M1,ω − ,1], and [ω + ,2, M2], where ,1,,2 are
the distances to the edges of the bands, and M1, M2 are the
minimal and maximal frequencies. Thus the eigenvalues of
(ω − D)2 are all contained between κ = min(,2

1,,
2
2) and

K = max((M2 − ω)2, (ω − M1)2). Let ω2
0 be the center of

the spectrum, 1
2 (κ + K ), and define ε as above. Then ε’s

eigenvalues are between ± 1
2 (K − κ ), which is less than ω2

0 =
1
2 (K + κ ) because κ > 0, and thus the expansion converges.

This argument has thus far relied on computing the range of
eigenvalues. However, our goal is to calculate the projection
and the Chern number without diagonalizing the dynamical
matrix. To connect to our aim, we can note that if the terms
of the series decay exponentially in the basis of eigenvectors,
then they also decay exponentially in real space. One can find
a useful value for ω0 by calculating the terms of the series in
real space for different ω0’s until one finds that it converges.

The argument above shows that the series must converge so
long as there is a gap. In fact, large values of ω0 always lead to
a convergent series if a gap exists: in particular, values of ω0
such that ω2

0 > 1
2 K guarantee convergence if a gap exists. As a

consequence, checking for convergence with ω2
0 > 1

2 K , where
K is any upper bound on the spectrum, immediately signals
whether there is a gap (in which case the series converges) or
there is no gap (in which case the series does not converge).

The limitation of this approach is that the convergence
can be slow, requiring a numerical approach. Slow conver-
gence could result if the bands are wide compared to the
gap or if there are many other bands besides the two bands
bounding the gap. This is the case, for example, for gyro-
scopic lattices, in which there is a particle-hole symmetry
that results in an asymmetric distribution of bands around any
positive-frequency gap. In such situations, the convergence
improves if one applies a polynomial to D to fold the spec-
trum so that the bands on each side of ω bunch together in
frequency.
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