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Mechanical properties of disordered networks can be significantly tailored by modifying a small fraction
of their bonds. This procedure has been used to design and build mechanical metamaterials with a variety of
responses. A long-range “allosteric” response, where a localized input strain at one site gives rise to a localized
output strain at a distant site, has been of particular interest. This work presents an approach to incorporating
allosteric responses in experimental systems by pruning disordered networks in situ. Previous work has relied
on computer simulations to design and predict the response of such systems using a cost function where the
response of the entire network to each bond removal is used at each step to determine which bond to prune. It is
not feasible to follow such a design protocol in experiments where one has access only to local response at each
site. This paper presents design algorithms that allow determination of what bonds to prune based purely on the
local forces in the network without employing a cost function; using only local information, allosteric networks
are designed in simulations and then built out of real materials. The results show that some pruning strategies
work better than others when translated into an experimental system. A method is presented to measure local
stresses experimentally in disordered networks. This approach is then used to implement pruning methods to
design desired responses in situ. Results from these experiments confirm that the pruning methods are robust and
work in a real laboratory material.
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I. INTRODUCTION

Recent advances in the field of mechanical metamaterials
have shown that disordered networks are extremely tunable so
that their mechanical response can be altered dramatically by
modifying a small number of edges or bonds between nodes.
This can be demonstrated in the Poisson’s ratio ν, which is
the negative of the ratio of the strain along the transverse
axes to an applied strain along a given axis. In an isotropic
network material in d dimensions, ν can be varied between the
two theoretical limits, ν = −1 (auxetic) and ν = +1/(d − 1)
(incompressible), by selectively removing a small fraction of
the network bonds [1–3].

A more general property that can be incorporated into a dis-
ordered network is a long-distance response, where applying
an input strain at a local site in the system creates an output
strain at another distant localized site [4–6]. This is referred to
as a mechanical “allosteric” response because it is inspired by
the property of allostery in protein molecules.

Both allosteric and auxetic responses have been success-
fully designed and incorporated into physical networks by
pruning selected bonds [4,7]. An important difference be-
tween auxetic and allosteric response is that the Poisson’s
ratio is a monotonic function of the ratio of the shear G and
bulk B moduli of a material. In a disordered system, once
contributions of every bond to the bulk and shear moduli are
known, it is straightforward to change its Poisson’s ratio by
pruning specific bonds.
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On the other hand, in earlier works, allosteric systems
have been designed by removing bonds from a disordered
network using a cost function. This protocol succeeds well for
designing materials with multiple targets controlled by a sin-
gle source using computer simulations [4,8]. A cost function
calculates the global response of the system due to the removal
of each bond individually in the network in order to decide
what bonds need to be pruned to minimize the difference from
a desired response. Such a cost function is difficult to interpret
or quantify in terms of simple local properties of the individual
bonds in the network. This makes it difficult to create such
behavior in a network in situ so that the result can be achieved
without recourse to prior design on a computer.

This paper takes an alternate approach for designing a
pruning protocol; the aim is to use only local information
encoded in the tension on each bond due to an externally
applied strain. This would allow the creation of allosteric
responses in spring-network simulations by using only local
information before a bond is removed. This approach is a
generalization of the one used to incorporate auxetic response
into networks [1]. In that case, the pruning was based on
the local stresses in the bonds due to an externally applied
strain. In the case of allostery, the procedure is extended to
include the response to a set of separate, individually applied
strains which are then combined. The results are then tested
and validated in experiments; I take the networks that were
designed in simulations and build them out of rubber sheets.

One problem encountered in using simulated networks
to prune real materials is that the simulations used, which
have been of disordered central-spring networks derived from
jammed packings of spheres [9], are overly simplified models
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FIG. 1. (a) A sample network with adjacent nodes chosen to be source and target sites. (b) Results from pruning in simulations. Success rate
of pruning networks as a function of |η|. Networks pruned to lower the effective moduli Meff = M link (M target )3 (blue circles) have the highest
success rate, followed by M linkM target (black triangles), with M link (red squares) being the least effective way to prune. (c) Average fraction of
bonds pruned as a function of |η| for each of the three Meff . (d) Performance of experimental networks that were designed in simulations to
have η ≈ 1. Plot shows the fraction of networks with a response higher than R as a function of R.

of the real materials. A physical system is more complicated
than such a spring network because it has forces other than
those derived from harmonic central-spring interactions. To
circumvent this problem, I present an experimental approach
to measure the relative magnitude of stresses in networks
under any external strain and use it to prune the network sys-
tems in situ. This is done using photoelastic networks that are
observed between pairs of cross-polarizers. In this approach,
no simulations are necessary for determining which bonds to
prune.

I find that experimental networks that are designed in sim-
ulations have a drastically different response than those that
are pruned in situ using photoelastic stress measurements.
In addition, the different local pruning methods can produce
different results in experiments even when they are designed
to give the same response in simulations. Taken together, this
work improves the understanding of the mechanisms that con-
trol allostery in mechanical systems and opens up possibilities
of building new and interesting mechanical responses in real
materials.

II. THEORETICAL APPROACH

The random disordered spring networks are created in two
dimensions, 2D, with periodic boundary conditions. These
networks are derived from 2D jammed packings of soft disks
which are under force balance [9–11]. Each point of contact
between the disks is replaced by a harmonic spring that con-
nects the centers of the two disks. The equilibrium length of
each spring is chosen to be the distance between the centers of
the disks. This ensures that the resultant network of nodes con-
nected by bonds is under zero stress in its ground state. The
network coordination number, which is the average number of
bonds coming out of a node, is denoted by Z . In order for such
a network to be rigid, it needs to have an average Z ! Zc, the
critical coordination number. In d dimensions and excluding
finite-size effects, Zc = 2d; the 2D networks used here have
Z > Zc = 4.

In order to incorporate a long-distance allosteric response
between two distant sites within a network, two pairs of nodes
are picked at random as the source and target, respectively.
These are separated by typically half of the system size. One

such network is shown in Fig. 1(a). In order to have an al-
losteric interaction, there should be an output strain εT at the
target pair of nodes when an input strain εS is applied between
the two source nodes. The ratio of output to input strains is
η ≡ εT

εS
. The aim is to incorporate an allosteric response with a

desired value of η in the network by removing specific bonds
from the network using a local pruning rule that uses only
information that is available prior to the pruning itself.

The general idea is to apply strains at both the input and
output sites (in some cases simultaneously and sometimes
separately) to discover which bonds should be removed in
order to produce a strain at the target when the source is ac-
tivated. One might be tempted simply to minimize the energy
for a specific mechanical behavior. That is, one might consider
removing the bonds that are under highest stress when both
the source and target are simultaneously put under the desired
strains. This, however, would nearly always fail, because the
dominant energy for the strained system is often just due to
the strains of the source and target, irrespective of whether
the source and target are applied simultaneously. In case of
designing an allosteric response, the goal is not merely to
lower the energy for the input and output strains but to create
an interaction between the source and target sites. Thus the
source and target sites must communicate with each other. In
order to achieve this, one needs to identify specifically the
bonds that facilitate and the ones that hinder this allosteric
response. By identifying and pruning the right set of bonds,
it is possible to minimize the interaction energy (not just the
total energy of distortion) of the input and output strains.

We apply a deformation to our system, εk . This εk could
be an axial strain applied between two points in the system
or a combination of strains applied at various locations. In
response to this applied strain εk , each bond in the system, j,
is stretched or compressed. The force on bond j that appears
due to εk is denoted by T k

j . For example, T source
j is defined as

the force on bond j as a result of the input strain applied at the
source. A positive value of Tj corresponds to extension, and a
negative value implies compression of the spring.

Since all the calculations below are in the linear-response
regime,

T −k
j = −T k

j ; T k+l
j = T k

j + T l
j .
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One can calculate the energies in each bond of the network
under any applied deformation εk: the energy U k

j in bond j
when its length is changed by an amount γ k

j due to a force T k
j

is

U k
j = 1

2 T k
j γ k

j . (1)

Since the total energy of the network is simply the sum of the
energies of all the individual springs, the total energy stored
in the network under an applied strain εk is U k =

∑
j U k

j .
The modulus Mk for any given deformation εk is defined as

U k = 1
2 Mk (εk )2. It can be decomposed into the contributions

of each bond: Mk =
∑

j Mk
j . Mk

j is related to T k
j as follows:

U k
j = 1

2 Mk
j (εk )2 = 1

2 T k
j γ k

j . (2)

For a linear spring, Tj and γ j only differ by a factor of the
spring constant. This gives the following:

Mk
j ∝

(
T k

j

)2
. (3)

Mk
j is the contribution of bond j to Mk , where Mk is the

modulus for the deformation εk . In Sec. IV it will be shown
that Mk

j is a quantity that can be measured experimentally.
Moreover, it is easier to measure Mk

j than to measure T k
j or

γ k
j . Since the goal is to be able to prune the networks in

experiments, the pruning protocols presented below will be
based on measurements of Mk

j .

Pruning algorithm

In order to incorporate an allosteric response, it is not
particularly important how much energy is required to move
the source nodes apart as long as it results in an effect
of the correct sign and magnitude at the target site. Therefore
the individual values of (T source

j ) and (T target
j ) are of little

importance; the important quantity is the product of the two,
(T source

j )(T target
j ). This term identifies which bonds are most

relevant to both source and target , and pruning the bonds with
the largest (T source

j T target
j ) helps create an interaction between

the source and target sites.
Consider applying the input strain at source and output

strain at target . The force on bond j resulting from applying
both the strains together is represented as T s+t :

T s+t
j = T source

j + T target
j . (4)

Similarly, applying the input strain at source and the negative
of output strain at target is represented by T s−t :

T s−t
j = T source

j − T target
j . (5)

The moduli Mj can be expressed in terms of Tj :

Ms+t
j ∝

(
T s+t

j

)2 =
(
T source

j + T target
j

)2
, (6)

Ms−t
j ∝

(
T source

j − T target
j

)2
, (7)

and

M link
j ≡ Ms+t

j − Ms−t
j = 4

(
T source

j

)(
T target

j

)
. (8)

Note that taking the difference of the in-phase and out-of-
phase terms produces the product of tensions due to applied
strain at source and target sites. This term, M link, links the

effects of strains at both source and target and can be either
positive or negative. One pruning protocol that would create
an allosteric interaction between the source and target would
be to prune those bonds in the network that have a maximum
value of M link.

Because M link
j = 4(T source

j )(T target
j ) is symmetric between

source and target, the source and the target have been treated
on an equal footing. If this were the only criterion for pruning
bonds, then the effect on the target by activating the source
would be the same as the effect on the source by activating
the target. Thus such a criterion would produce η ≈ 1.

However, in many situations it might be preferable to have
η %= 1. For example, one might want to create a strain at the
target that is twice as large as the strain at the source (i.e.,
η = 2). This would require that the symmetry between source
and target be broken so that, for example, the target nodes are
easier to move than the source nodes. One effective way to
break the symmetry is to bias the modulus by giving more
weight to T target

j than to T source
j . One way to do this is to prune

the bond with a maximum value of (M link
j )(M target

j )n where
n > 0.

These combinations of moduli are referred to as the effec-
tive modulus, Meff . In the results presented in the next section
below there are three examples:

(1) (Me f f ,0) = M link,
(2) (Me f f ,1) = M linkM target,
(3) (Me f f ,3) = M link (M target )3.
Our pruning algorithm is as follows:
(1) Calculate Meff

j for each bond j in the network;
(2) Remove the bond with the maximum value of Meff

j ;
(3) Calculate the new value of η;
(4) Repeat until the desired value of η is obtained.
By using effective moduli as the underlying quantity that

controls a network’s behavior, it is possible to incorporate re-
sponses in disordered networks using local rules alone. Local
rules refer to the fact that one only needs to measure the value
of Meff

j at each bond instead of measuring any kind of global
parameter for the network. I explore the above three Meff s,
with n = 0, 1, 3 as representative moduli to show the effect of
symmetry breaking. Appendix A shows detailed results from
simulations that show the general trend as a function of n.
The rest of this paper explores the efficacy of this pruning
approach using spring-network simulations followed by an
experimental method to measure Meff in order to incorporate
allosteric responses in situ in physical systems.

III. SIMULATION RESULTS

In order to check the efficacy of these algorithms, I sim-
ulate the response of networks as the protocols are applied.
The simulations can be performed on networks with periodic
boundaries as well as ones with free boundaries. A free bound-
ary network is created by cropping out a circular section from
a periodic network. This often produces dangling bonds or
zero modes which are eliminated by removing the relevant
bonds and nodes from the edges of the cropped network. Since
open boundary networks are easier to build in experiments, I
use these networks to compare the response between simula-
tions and experiments.
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The simulation results shown here are performed on net-
works that have periodic boundaries with ∼500 particles and
∼1080 bonds. Unpruned networks have η ≈ 0.0 on average
between randomly chosen source and target sites. Networks
are pruned until the desired value of η is reached or until
the process fails due to the creation of a zero mode in the
system. 50 different networks are pruned for both positive and
negative values of η. The networks used in these simulations
have an average %Z = Z − Zc ≈ 0.32. This corresponds to
an excess of ∼7% bonds more than necessary to maintain
rigidity.

The pruning algorithms themselves do not depend on the
desired value of η. As a network is pruned, |η| increases
steadily until it exceeds the specified value of |η|. The pruned
networks never have a response that is exactly equal to the
desired η, and the network is considered to be successfully
pruned when the desired value of |η| is first exceeded. The
success rate of each of the pruning methods is shown in
Fig. 1(b). As one might expect, if we prune for higher |η|,
the success rate decreases. It is clear from this data that using
just M link to prune a network is not the best strategy because,
due to the symmetry between source and target, one can prune
only to a maximum of |η| ≈ 1. Even this response can be
achieved only about half the time.

Biasing Meff towards the target improves the effective-
ness of pruning significantly; using Me f f ,3 = (M link )(M target )3

makes it possible to reach |η| > 1000. However, it is im-
portant to note that these calculations are performed in the
linear-response regime of the network. Such a very large |η|
implies that the source strain must be extremely small in order
for the target strain to be 1000 times the source strain and still
be in the linear regime. This makes it highly impractical to
measure such a response in a laboratory system.

These results are from networks with periodic boundaries,
but the trend remains the same for networks with open bound-
aries. The exact values of success rates depends on other
factors such as the distance between source and target sites.
For a given system size, it is generally easier to prune a
network where source and target are closer together.

Figure 1(c) shows the average fraction of bonds that need to
be pruned as a function of η. We see that 100% of the networks
fail after an average of ∼6% bonds are removed. This is when
nearly all the excess bonds above the rigidity threshold have
been removed; therefore removing any subsequent bond has a
high probability of creating a zero-energy mode.

Efficiency in experiments

It is known from previous studies that linear spring simu-
lations do not capture all the material details of a real network
[7,12]. There are other interactions, such as angle-bending
forces, that are present in a real material. In order to test
how well our pruning algorithms translate to real networks,
we design 2D networks with open boundaries using the three
mentioned protocols and then fabricate them in experiments.

We took networks with free boundaries ranging between
110 and 150 particles in size and pruned each of them using
our three protocols. We stopped pruning either once the net-
work achieved η > 1 or once a zero mode was produced so
that the pruning process failed. Since not all of our algorithms

have a 100% success rate, we chose 10 networks that could be
pruned successfully using the three effective moduli, (Me f f ,0),
(Me f f ,1), and (Me f f ,3). For consistency, in all three cases the
same set of source and target nodes are used. For any given
starting network, each protocol removes a different set of
bonds. I then laser cut 30 realizations of these networks (10
networks × 3 algorithms) and measured their responses in
experiments.

Our networks were laser cut from 1.5-mm-thick sheets
of silicone rubber with a hardness of shore A70. The bonds
were made thinner near the nodes to minimize angle-bending
interactions in the networks as was done in previous work [4].
The ratio of the width of a bond to its average length is 1:6,
with the bonds being half as wide near the nodes.

The observed η of these laser-cut networks is measured by
applying an input strain of 5% at the source and measuring
the output strain at the target site. Figure 1(d) shows the
response of these networks. In order to measure how well a
network pruned in simulations responds in experiments, the
experimental result for each network, ηexp, is normalized by
the value of η produced in the simulation, ηsim: R = ηexp/ηsim.
The fraction of networks whose response exceeds a given R
is plotted as a function of R. Note that this is the only time
the success rate needs to be measured as a function of R
instead of η. If our simulations were a perfect model for the
experimental systems, then the data in Fig. 1(d) would have
been a horizontal line at 1.0.

This data is surprising, because some algorithms have
much better agreement between experiments and simulations
than others. Interestingly, Fig. 1(b) shows that pruning with
Me f f ,0 = M link works only about 50% of the time, but when
these networks are translated to experiments, they have a very
high success rate. On the other hand, Me f f ,3 = M link (M target )3

works very well in simulations but not in experiments. This
suggests that the disparity between experiments and simula-
tions increases as the complexity of the pruning algorithm
increases. I hypothesize that the inclusion of (M target )n in-
creases the effect of the nonlinear terms so that the predictions
from simulation are farther from our experimental results.

IV. PRUNING in situ

Our results show that linear spring models do not work
perfectly for designing real materials. In order to see what is
going on in the laboratory material, we need a way to measure
the stresses in a physical network. This section presents exper-
iments to measure the stress distribution in physical networks
and use that information to prune the networks in situ.

Setup

The stresses in a transparent material can be quantitatively
detected by measuring stress-induced birefringence [13]. The
linear polarization of a beam of light will not be affected
as it passes through an isotropic material; an analyzing po-
larizer with perpendicular orientation on the exiting side of
the material will block all the light. A photographic image
would be completely dark. However, if there are stresses in the
photoelastic material, the polarization axis of the light will be
rotated depending on the orientation of the stress with respect
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to the polarization axis. The relative phase shift, %, between
two principal directions is proportional to the difference in the
two principal stresses [13]:

% ∝ S1 − S2. (9)

If the stresses are small enough so that the rotation angle is
small, the analyzing polarizer will transmit the light in propor-
tion to the stress. A photographic image will be bright in those
regions where the stress is large and completely dark where
there is no net stress. In the simplified spring-network model,
the only nonzero stress is along the length of the bond. In a
physical network, there could be forces along any direction
in the material. Using circularly polarized light allows the
total magnitude of the stress to be measured regardless of its
orientation. The drawback of using circular polarization is that
circular polarizers are sensitive to the wavelength of the light.
Thus monochromatic light must be used.

In the experimental measurements of stresses reported
here, the disordered networks are made out of molded ure-
thane rubber (Smooth-on Clear Flex 50) with a shore hardness
of A50. This material is highly sensitive to stresses and al-
lows measurement of stresses in the range of 4–20 kPa in
the current setup. The liquid urethane material is poured into
molds in the shape of the desired networks. The molds are
3D printed in a soft rubber material with a shore hardness of
A28. Before each use, the molds were coated with a release
agent (EaseRelease 200) to ensure that the molded urethane
networks are easy to remove from the molds. The networks
were cured in the mold at room temperature for a duration
of 12 h. After removal from the mold, they were cured for
an additional 2–3 days at room temperature to reduce the
tackiness of the surfaces of the molded networks.

A schematic of the experimental setup is shown in
Fig. 2(a). Data is collected by the camera at wavelength λ =
500 ± 10 nm. The initially unpolarized white light is first po-
larized using a linear polarizer and then converted to circular
polarization using a quarter-wave plate for λ = 500 nm. The
light then passes through the sample. On the other side of the
sample, another quarter-wave plate converts the light back to
linearly polarized light followed by a linear polarizer that is
oriented perpendicular to the polarization of the initial light.
The total stress at each point in the material can be measured
by the intensity of the light in the photographic image.

Even after letting the molded photoelastic networks cure
for a few days, their surfaces are still tacky enough to stick to
a glass or acrylic surface. This produces extraneous stresses
in the material that are unrelated to those caused simply by
placing strains at the source or target nodes. Additionally,
because of a high surface tension of the molding liquid, the
top surface of the network has a meniscus so that it is not
completely flat. As a result, a ray of light going through such
a curved surface is reflected and refracted in various directions
and gives rise to unwanted signals in our data.

Both of these problems can be eliminated by submerging
the networks in an index-matched fluid. I used mineral oil with
a refractive index of 1.47, which is very close to the refractive
index of the photoelastic networks, which is 1.48. Sample
images from this setup with and without an applied strain
are shown in Figs. 2(b) and 2(c), respectively. The image in

FIG. 2. (a) Setup for visualizing stresses in photoelastic networks
including a design of a sample photoelastic network. Zoomed-in
picture shows the variation of bond width near a node. (b) Same
network as above cast out a photoelastic material imaged in the
experimental setup with no external strain. (c) Image of the same
network as in (b) with applied strains between adjacent node pairs
circled in yellow.

Fig. 2(b) shows that when the network is under no stress,
the image of the network in the camera is dark and nearly
undetectable.

When an external strain is applied to the network as shown
in Fig. 2(c), different bonds in the network are stressed by
different amounts as a reaction to the input strain. These
stressed regions now appear as bright spots in our image.

The intensity of light, I (x, y), at any point in the material
(x, y) is related to the electric field, E (x, y), and the phase
shift, %(x, y):

I (x, y) ∝ E (x, y)2 ∝ sin[%(x, y)]2 ∝ sin[S(x, y)]2. (10)

As long as the input strain is sufficiently small, the resultant
stresses are in the regime where sin(S) ≈ S. In this limit, the
brightness of a bond is proportional to the square of stress.
Hence the intensity I averaged over the length of bond j is
proportional to Mj in Eq. (3).
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FIG. 3. Success rate of networks pruned in situ as a function of
η. Following the same trend as the simulations, networks pruned
to lower the effective moduli Meff = M link (M target )3 (blue circles)
have the highest success rate, followed by Meff = M linkM target (black
triangles) and Meff = M link (red squares).

Experimental results

I conduct the in situ pruning experiments on photoelastic
networks that are between 110 and 150 nodes in size. The
photoelastic networks are molded to be 5 mm thick with an
average bond length of 12 mm. The ratio of the width of
a bond to its average length is 1 : 4, with the bonds being
a third as wide near the nodes than in their middle. This
slight difference in geometry makes the middle part of the
bonds wider than in the experiments described above that
pruned bonds according to the algorithm based on simulation
results. It ensures that the effect of noise from the edges
of photoelastic bonds is minimized. In order to measure the
response of these pruned networks, I remake them in silicone
rubber using the same specifications as in Sec. III. This is done
to avoid any differences arising from the material properties
while comparing the response of designed and experimentally
pruned networks.

In order to prune these networks, I take images where
a strain is applied (i) at the source and target in phase
(Ms+t ), (ii) out of phase (Ms−t ), and (iii) only at the target
site (M target ). By computing combinations of these images, I
obtain a measure of the same three effective moduli as de-
fined in Sec. II: Meff = M link, Meff = M linkM target, and Meff =
M link (M target )3. The experiments were conducted on 10 dif-
ferent networks for each Meff . In each pruning step, I first
calculate Meff for all the bonds, remove the bond with max-
imum Meff , and then measure η of the pruned network. As
the bonds are pruned sequentially, the signal-to-noise ratio
drops steadily; when the signal is too low to be reliable, the
pruning is halted. The recorded η for a particular sample is
the maximum η that the network exhibits at any point during
the pruning process.

The results from in situ pruning experiments are shown in
Fig. 3. To some extent, all pruning methods show an allosteric
response. In particular, by sequentially removing the bond
with the largest value of Me f f ,3 = M link (M target )3 at each step,
networks can often be successfully pruned to produce η =
1. The three different pruning methods have very different

success rates. This was also seen in the simulation results
shown in Fig. 1(b). The results from the experiments and from
the simulations follow the same trend. The maximum η to
which a network can be pruned depends on the system size.
Smaller networks can generally be pruned to higher values
of η. For a particular network design, the exact value of η
depends on various factors including the network material and
the geometry of the bonds. It has been previously shown that
η can be varied by modifying the width of the bonds near the
nodes [4].

The same network design pruned to minimize the same
Meff leads to the removal of very different sets of bonds
in simulations versus those pruned in the photoelastic ex-
periments. This is not surprising, since the simulations only
considered central harmonic springs, whereas the experiments
had all the interactions inherent in an elastic sheet, such as
angle-bending forces at each node and nonlinear stress/strain
curves for all the bonds. This can be seen clearly by comparing
Fig. 3 and Fig. 1(d). Both of these plots show how well the
networks perform in experiments when they have been pruned
using three different Meff s. The only difference being that in
Fig. 1(d), the stresses are measured in spring-network simula-
tions, and in Fig. 3, the stresses are measured experimentally.
However, it is surprising that, compared to the experimental
results shown in Fig. 1(d), the trend for networks pruned in
situ is completely reversed. This suggests that the simulation
models are too simple to capture all the stresses in a real
material.

One limitation of the data presented in Fig. 3 is that most
networks could not be pruned to η > 1. However, the exact
value of η that can be incorporated in a network depends on
various factors, including system size, material properties, and
network geometry. By modifying one or more of these param-
eters, one could design networks with higher values of η.

These results reinforce the conclusion that in order to make
a physical system with an allosteric response, a simplified
model is not sufficient and it is important to visualize and
measure all the interactions in the system. Using an experi-
mental procedure to detect the stresses in physical networks,
it is possible to create allosteric networks in experiments with
a high success rate.

V. CONCLUSIONS

The emphasis of this work has been to understand the
local pruning rules that control allosteric response in me-
chanical networks as well as to fabricate these networks in
real (physical) experimental systems. In order to create a
robust response, it is important to identify the relevant pa-
rameters that govern allosteric behavior. The effective moduli
introduced here are the bond-level contributions to allostery.
The simulations show that this approach is very effective at
designing allosteric responses with minimal computational
cost. In some cases, the results of these simulations can be
directly translated into experimental realizations. These local
pruning rules are more efficient than previous methods for
incorporating allosteric behavior into experimental systems
[4]. Similar local pruning rules can also be used to create more
general responses, such as multiple pairs of allosteric source
and target sites, or a single source site controlling multiple
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target sites. Predictably, when the complexity of the incor-
porated response increases, the efficiency of such pruning
algorithms goes down.

As expected, however, the simulations of networks con-
nected by linear, central-force springs do not capture all the
details of a real material. In order to create allosteric re-
sponses efficiently in experiments, it is necessary to be able
to measure stress distributions in the physical networks. I
have presented an experimental procedure to visualize and
measure the stresses in these systems and use them to prune
the appropriate bonds in the networks in situ to achieve a
desired response.

The experimental technique to measure local stresses pro-
vides a pathway for modifying physical systems with more
complex interactions. It would be interesting to see if it can
be used to create other mechanical responses, such as auxetic
behavior. This protocol can also be applied to other disordered
systems that are not based on spring networks. The anisotropy
in stress distributions in these networks is reminiscent of the
anisotropy in contact forces in jammed packings [14]. The
pruning methods explored here could be extended to 3D sys-
tems and to smaller length scales by using stimuli responsive
materials that can detect stresses in polymers at the molecular
level [15,16].

Recent work has shown that stress-induced aging can
be used to modify material properties [17]. An externally
imposed strain can direct the evolution of a material and
determine its mechanical response. Our understanding of lo-
cal pruning rules that control allostery in combination with
directed aging protocols can be very useful in designing al-
losteric systems while eliminating the need to manipulate the
material manually at the microscopic level. Local learning
rules, such as those presented here, are also of interest in
supervised learning of elastic and flow networks [18]

In conclusion, local pruning rules that allow the manipula-
tion of material response combined with the ability to measure
stress distributions in situ enable the modification of materials
that are more complex than the linear spring networks that
have been the focus of previous simulation studies. This ap-
proach opens up ways to build mechanical metamaterials with
a desired function without relying on computer simulations.
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APPENDIX A: EFFECT OF SYMMETRY BREAKING ON
SUCCESS RATE

The difference between various pruning protocols explored
in this paper is the inclusion of the term (M target

j )n that breaks
the symmetry. Above I focused on three examples: n = 0, 1,

FIG. 4. Success rate of networks pruned in simulations as a func-
tion of |η|. Networks pruned to lower the effective moduli Meff =
M link (M target )n with n ranging from 0 to 10.

and 3. In Fig. 4 I show the comparison between the success
rate for a range of n. This plot shows that as the effective
moduli Meff is increasingly biased towards M target, the success
rate also increases monotonically. For η = O(1), a small bias
towards M target is sufficient to successfully prune the network
nearly 100% of the time. For η ( 1, a greater bias is needed
to produce a high success rate.

APPENDIX B: COMPUTING BOND-LEVEL RESPONSE

The tensions and moduli of individual bonds are obtained
by calculating the linear response of spring networks. This
section follows the notation used in previous work in the
literature [19]. Consider a system with Nb bonds and N nodes
in d dimensions. The tensions and elongations in the bonds
are represented as vectors |t〉 and |e〉, respectively, each with
length Nb. In the simulations presented in this work, an ex-
ternal tension |t∗〉 is applied and the system is allowed to
equilibrate in response to |t∗〉. The resultant |t〉 and |e〉 re-
spectively give the tension and extension of the whole system.
The resultant tension on bond j, referred to in this work as Tj ,
is simply the jth component of the tension vector |t〉.

In order to calculate the network response, one needs the
compatibility matrix (C) and the flexibility matrix (F ). The
compatibility matrix (C) is a rectangular, Nb × dN matrix that
has all the information about the position of nodes and con-
nectivity of bonds in a network under mechanical equilibrium
with no external forces. The flexibility matrix (F ) is a diagonal
Nb × Nb matrix that gives the stiffness of each bond and is
defined as

〈i|F | j〉 = δi j

ki
, (B1)

where ki is the spring constant of bond i. In this work, ki is set
to be σ/li, where σ sets the material stiffness and has units of
energy per unit length, and li is the length of bond i. Tension
and extension vectors are related to each other according to
Hooke’s law:

|t〉 = F−1|e〉. (B2)

The dynamical matrix, D = CT F−1C, is a square dN × dN
matrix that computes the equilibrium configuration of the
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system. The resultant bond extensions are related to the ex-
ternally applied tension as follows:

|e〉 = CD−1CT |t∗〉. (B3)

The pruning algorithms used in this paper are based on
measurements of individual bond contributions to moduli M∗

for various externally applied deformations. M∗
j is the contri-

bution of bond j to M∗ and can be calculated for any applied
tension |t∗〉 using the resultant tensions |t〉 and extensions |e〉:

M∗
j = 1

2 〈e|| j〉〈 j||t〉. (B4)
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