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Out of equilibrium, alack of reciprocity is the rule rather than the exception.
Non-reciprocity occurs, for instance, in active matter'"®, non-equilibrium systems’?,
1011 social groups with conformist and contrarian members'?,

3715 and metamaterials'®2°. Although wave

propagation in non-reciprocal media has recently been closely studied"'*%, less is
known about the consequences of non-reciprocity on the collective behaviour of
many-body systems. Here we show that non-reciprocity leads to time-dependent
phases in which spontaneously broken continuous symmetries are dynamically
restored. We illustrate this mechanism with simple robotic demonstrations. The
resulting phase transitions are controlled by spectral singularities called
exceptional points®. We describe the emergence of these phases using insights from

bifurcation theory

22,23

and non-Hermitian quantum mechanics®*%. Our approach

captures non-reciprocal generalizations of three archetypal classes of
self-organization out of equilibrium: synchronization, flocking and pattern
formation. Collective phenomena in these systems range from active time-(quasi)
crystals to exceptional-point-enforced pattern formation and hysteresis. Our work
lays the foundation for a general theory of critical phenomenain systems whose
dynamics is not governed by an optimization principle.

Toexplore how non-reciprocity affects phase transitions, consider mul-
tiple species or fields with asymmetricinteractions thatare modelled by
vector order parameters v (¢, X), for each species a. These canencode,
forinstance, the average velocities of self-propelled particles®*¥, the
average phases of coupled oscillators or the amplitude and position of
periodic patterns (Fig.1a-d). The v,(¢, x) could either be distinct fields,
or different harmonics of the same physical field, asin interface-growth
experiments® ™ (Fig. 1e, f). Systems with gain and loss'®?**! canaalso
be mapped onto non-reciprocal systems.
Allsuch systems are described by the evolution equation

0:Va=AapVp + Bapea (Vp* VIVg + O(V), ()]

where summation over repeated indicesis implied. Equation (1) is (up
tothird orderinv,) the most general dynamical systeminvariant under
rotations. In flocking, rotational symmetry arises from the isotropy of
space, whereasinsynchronization and patternformationitarises from
time or space translation invariance. Different symmetries or other
representations of rotations can be similarly enforced?; see Methods
and Supplementary Information section XI. The quantities A, and
B,scq are arrays of parameters that couple different species. We have
temporarily omitted in equation (1) terms that have spatial derivatives,
represented by O(V), but we have retained nonlinearities that are essen-
tial for discussing phase transitions. Here, we allow the macroscopic
coefficients to be asymmetric, for example, A, # A,.. For equilibrium
phase transitions, these coefficients would be fully symmetric because
thedynamics,v,=- 0, Fisderived froma (free) energy F. Removing
this constraint extends the theory of critical phenomena® to
non-reciprocal systems.

Dynamical systems described by equation (1) arise in various forms
of non-reciprocal matter. Consider, for instance, the Kuramoto model
of synchronization®

0.0n=wpn+ Y ), sin(6,-6,)+n(0), @)
n
whichdescribes coupled oscillators mwith phases 6,,(¢), frequencies w,,
and couplings J,,,, and where n(¢) is arandom noise. Equation (2) with
w,,= 0 also captures the Vicsek model of flocking®**S, with the oscilla-
tors replaced by self-propelled particles moving at constant speed v,
inthe planar direction 6,,. Their positions r,, follow

cos6,,
sin@,, )

O,y = uo( (3)

Inboth models, agent mtries toalign (bein phase) withagentnwhen
Jmn> 0, 0rtoantialign when J,,,<0.Above a critical coupling, both mod-
elsexhibitatransition fromincoherent motion (incoherent oscillations)
toflocking (synchronization) heralded by anon-vanishing order param-
eterv,(Fig.1a, c). We now consider two populations with non-reciprocal
interactions J,,, #/,, (refs. 2 681071236-3%) 'we show in Methods and Sup-
plementary Information section V that coarse-graining these micro-
scopic models leads to equation (1) with asymmetric coefficients and
the addition of spatial derivative terms.

Equation (1), viewed as an amplitude equation, also describes
non-reciprocal pattern formation (Fig. 1e). For example, the Swift-
Hohenberg model*,

4)

Bty =ryptty— 1+ V) 2u, - gul,
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Fig.1|Exceptional transitions: examples and mechanism. Non-reciprocal
interactions (/45 #/5,) between two species Aand B (inblueandred) inducea
phase transition from staticalignment to a chiral motion that spontaneously
breaks parity.a, b, Non-reciprocal synchronization. Robots (programmed as
non-reciprocal spins) spontaneously rotate either clockwise or anticlockwise,
despite no average natural frequency (w,,= 0 in equation (2)). (Methods,
Supplementary InformationsectionsIX, XIV, Supplementary Video1)
c,d,Non-reciprocal flocking. Self-propelled particles runin circles despite the
absence of external torques (Supplementary Information sections V-VIland
Supplementary Video 3). e, f, Non-reciprocal pattern formation. A
one-dimensional patternstartstravelling, either to the left or to the right
(Methods). The figure represents an experimental observation of viscous
fingering at an oil-air interface adapted with permission fromref. %,

with r, # r,,, reduces to equation (1) by letting u,(x) =A,(x)e® + c.c.,
where kis awavevector and the complex amplitude isdecomposed as
A, =vi+iv) (Methods).

Let us start with two populations A and B, and parity not explicitly
broken. Whentheinteractionsare reciprocal, we find (besides adisor-
dered phase) two static phases where v, and v (red and blue arrows in
Fig.1g) are (anti)aligned in analogy with (anti)ferromagnetism. When
the interactions are non-reciprocal, the coefficients in equation (1)
become asymmetric (for example, A, # A,,) and a time-dependent
chiral phase with no equilibrium analogue emerges between the static
phases (Fig.1g, h). Inthe chiral phase, parity is spontaneously broken:
v,and vgrotateataconstantspeed Q, with afixed relative angle, either
clockwise or anticlockwise (see Supplementary Video 1for ademon-
stration with programmable robots). Figure 1a-fillustrates the aligned-
chiral transition in synchronization, flocking and pattern formation.
This transition also occurs in viscous fingering* (Fig. 1e, f),
liquid-crystal solidification*?, lamellar eutectics growth*, overflowing
fountains**, and other natural phenomena that can be modelled by
amplitude equations with asymmetric couplings between different
harmonics of the same field (Methods).

The chiral phaseis caused by the frustration experienced by agents
with opposite goals: agent A wants to align with agent B but not
vice-versa. This dynamical frustration results in a chase and runaway
motion of the order parameters v, (wWhere a = A, B). Crucially, a stable
chiral phase hinges onasubtleinterplay between noise and many-body
effects. Consider the exactly solvable bipartite Kuramoto model in
equation (2) with n(¢) = 0 and identical frequencies within each species.
This system can be mapped to the dynamics of only two agents
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copyrighted by the American Physical Society. g, Schematic bifurcation
diagram of the exceptional transition showing the frequency of the steady
state, Q... Between the static (anti)aligned phases with Q.= 0, anintermediate
chiral phase spontaneously breaks parity. Two equivalent steady states
(clockwise and anticlockwise, corresponding to opposite values of Q) are
presentinthistime-dependent phase, which canbe seen as amanifestation of
spontaneous PT-symmetry breaking. The chiral phase continuously
interpolates between the antialigned and aligned phases, both through | Q|
andthroughthe angle between the order parametersv,and vy. h, The
transition between (anti)aligned and chiral phases occurs through the
coalescence ofadamped (orange) and a Goldstone (green) mode atan
exceptional point (EP, red circle). Inthe chiral phase, the growth rates are drawn
inpurple.

(Supplementary Information section IX). Unless /. = — /35 €xactly,
agents A and B would eventually catch up with each other and reach
alignment or anti-alignment (henceforth, (anti)alignment) (Supple-
mentary Information section VIII). However, frequency disorder or
noise in equation (2) constantly resets the chiral motion of A/B pairs.
Thenoise-activated motions of individual agents become macroscop-
ically correlated through their interactions: the chiral phase is stabi-
lized. We verified this by computing the standard deviations of the
order parameters that decrease as1/~/N with the number of agents N;
see Extended Data Fig. 2b. In flocking too, noise enlarges the chiral
phaseregion (Fig. 2b, c).

Contrast our many-body chiral phase with parity-breaking phenom-
ena occurring with only a few degrees of freedom, for instance, with
two coupled laser ring resonators'™®* (Supplementary Information
section XII). Inthe latter case, the state of the system switches between
clockwise and anticlockwise under the effect of noise*, destroying the
chiral phase. This process also occurs in our systems for small NV: it is
captured by addinginequation (1) ahydrodynamic noise (Supplemen-
tary Information section X and Extended Data Fig. 2a). The average
time Tbetween chirality flips follows an Arrhenius law, = 1,exp(4/0?),
where4isthe height of the barrier between clockwise and anticlockwise
states, gis the standard deviation of the hydrodynamic noise, and 7, is
amicroscopic constant. Forlarge N, the central limit theorem suggests
that 0>~ 1/N (where ~ indicates asymptotic behaviour; consistent with
numericsinSupplementary Information sections VIII-X and Extended
DataFig.2b) and 7~ exp(N). The chiral phase is salvaged by many-body
effects. In optics, this scenario could be realized in non-reciprocal
photonic networks of many coupled lasers'®3>4645,
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Fig.2|Phase diagrams and active time (quasi)crystals. a-c, Phase diagrams
ofthe non-reciprocal flocking model Supplementary Information equation
S83fordifferent noise strengths n. The parameters j,, (entering a,, and B,.,in
equation (1)) are coarse-grained versions of the microscopic couplings /,,. The
red (respectively, black) lines are analytically-determined transition lines from
the (anti)aligned phase to the chiral (respectively, disordered) phase.Red lines
arelines of exceptional points. The analytical predictionisinexcellent
agreement with the numerical phase diagramup to tetracritical points (black
dotsinc) where new phases emerge (Supplementary Information sections
V-VI).d, Schematic representation of one period of the chiral phase: v, and vy
rotateinblockataconstantangular velocity Q,, (Supplementary Video 2).

e, Schematicrepresentation of one period of the swap phase: v, and v; oscillate

The aligned-to-chiral transitions cannot be described by a free
energy.Thisisincontrastwiththe familiar paramagnet-to-ferromagnet
transition, or even mean-field descriptions of iconic non-equilibrium
phase transitions such as directed percolation or (reciprocal)
flocking (Supplementary Information section II). However, we can
still identify the phases of the many-body system from the steady
states of the corresponding dynamical system (such as equation (1)).

Reciprocal inter-species coupling, j,

alongafixed direction (Supplementary Video 2).f, g, Plot of the frequencies
presentinthesteadystateasafunctionof j,, for j.=-0.25(f)and j_=-0.6 (g).
Inthe chiral phase, asingle frequency is present (at each point), corresponding
tothe solid-body rotation. In the swap phase, asingle frequency accompanied
by harmonics are present. By contrast, in the mixed chiral/swap phase, two
independent frequencies are present (with their harmonics), leadingtoa
quasiperiodic phase. The aligned phase s static (2= 0). Similar behaviours
occuraround the antialigned phase. Inf, adirect transition between aligned
and chiral phasesis observed. The phase diagrams are determined by solving
Supplementary Information equation S83 numerically from random initial
conditions, withp,=pg=1,jsa=jsz=1,and n/n.=1.5(a),n/n.=0.99 (b),n/n.=0.5
(c). Parametersinf,garethesameasinc.Allunitsarearbitrary.

Phase transitions occur when the steady state V,, becomes unsta-
ble, thatis, when perturbations around it are nolonger damped. We
thereforelinearize equation (1), by separating the order parameters
V = (v,, Vg, ...) into the steady state V and the fluctuations 8V,
leading to

9,6V=1L8V. (5)
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Fig.3| Exceptional-point-enforced pattern formation and topological
defects. Convective terms and exceptional points (EPs) giverise to pattern
formation near the transition lines. a, Numerical phase diagramincluding the
linear stability analysis of the (anti)aligned and chiral phasesin the
non-reciprocal Toner-Tu model (the stability of the swap and chiral+swap
phasesisnotanalysed). Units arearbitrary. b, The coalescence of the Goldstone
mode withadamped mode leads toinstabilities at finite momentum. The
growthrate of transverse perturbations o, (k) becomes positive, and has a
maximum ¢* at afinite wavevector k*. ¢, Normalized growth rate o(k)/o*as a
function of wavevector, for different values of j, at fixed j, (along the dashed

Non-reciprocity implies that the linear operator L can be
non-Hermitian. For a conservative system, we would have
Lgy == 0,0, F =Ly, Thisimplies that L is Hermitian, thatis, L, =Ly, as
itis real-valued. A non-reciprocal system cannot be derived from an
energy F, hence L is generally non-Hermitian, thatis, L ,, # L,,.

As a consequence, the eigenvectors of L need not be orthogonal.
Its eigenvalues s;= 0, + iw; can be decomposed into growth rates o;and
frequencies w;. Here, one eigenvalue always vanishes because it corre-
spondstoaglobalrotationofthe v, (the Goldstone mode of broken rota-
tioninvariance), greenlineinFig.1h. In thestatic (anti)aligned phases,
the other modes are always damped (0,< 0). The aligned-chiral transi-
tions occur when the damped mode with g;closest to zero (orange line
inFig.1h) coalesces with the Goldstone mode (green line) at red points.
This mode coalescence is known as an exceptional point?. In addition to
having the same (vanishing) eigenvalues, the two eigenmodes become
parallel at the exceptional point. In a many-body system, the mode
coalescence atan exceptional point defines a class of phase transitions
that we dub exceptional transitions. Because of the non-orthogonality
of the eigenmodes (Methods), these transitions are accompanied by
enhanced fluctuations and distinctive critical phenomena®#°-%2,
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lineina). d-f, Fully nonlinear simulation of the pattern formationin the
unstablealigned regime.Ind, e, we show snapshots of the angle of the order
parametersv, and vgywith afixed direction (Supplementary Video 4).
Numerous topological defects (vortices and antivortices) are present. Inf, we
show the time evolution (arbitrary units) of the histogram of the angle between
v,andafixed direction (vy hasidentical features). Parameters are the sameasin
Fig.2withn/n.=0.5.We setv%=0.06 and v =0.01.Simulationsind-fare
performedona2L x2L box with periodic boundary conditions,and L =0.32,
J+=0.1,j_=0.2(see Methods).

The order parameter can be pictured as a ball constantly kicked by
noise at the bottom of asombrero potential. Inanon-reciprocal system,
there are transverse non-conservative forces in addition to the
potential-energy landscape (Extended DataFig. 3). Whenyou kick the
balluphill (direction1), it also moves perpendicular to the uphill direc-
tionalongthe bottom of the potential (direction 2), but not vice versa.
At the exceptional point, the ball moves only along the bottom of the
potential irrespective of how it is kicked: this is a signature of mode
coalescence. It may be understood from the Jordan normal form L of
an exceptional point,

_[O OJ
VN
whichdescribes a one-way coupling between the two directions: 1influ-
ences 2 (L,;#0), whereas 2 has no influence on 1 (L;;=0).
Non-reciprocity is inherent to exceptional points, irrespective of
whether they originate from asymmetric microscopicinteractions or

gain/loss. Classical and quantum systems with gain and loss canindeed
be mapped onto non-reciprocal ones: anon-Hermitian Hamiltonian H

L (6)
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symmetry. Write down the dynamical system for the order parameter(s) V. Find
atime-independent steady state V,, with spontaneously broken continuous
symmetry (SSB, greenregions). Linearize around the time-independent steady
state. The linear operator (Jacobian matrix) L(V) has a vanishing eigenvalue
(Goldstone mode). Exceptional points (EP; red points and continuous red lines)
of L(V) with zero eigenvalue mark the transition. We distinguish (I) parameters
Jjthatdonotexplicitly break parity and (II) parameters j* that do. We further
splitthe parameters jinto (1) parameters;j_encodingthe non-reciprocity and
(2) other parameters j,. When j*=0 (left panel), the exceptional points have
codimension1(linesinatwo-dimensional parameter space). At the exceptional

describing antisymmetric couplings is unitarily equivalent to a Ham-
iltonian with gain and loss as

_(0
H=2,

1

o

in which Udescribes the change of basis. At an exceptional point, the
non-reciprocal representation cannot be avoided as the matrix is not
diagonalizable (like L in equation (6); see Supplementary Information
section]).

Exceptional phase transitions in non-reciprocal matter (including
many-body systems with gain and loss) can be viewed as dynamical
restorations of a spontaneously broken continuous symmetry: the
Goldstone mode is actuated by noise, and after the transition the system
runs along the manifold of degenerate ground states. From the point
of view of non-Hermitian quantum mechanics, these transitions are
manifestations of spontaneous PT-symmetry breaking (Methods).

)

a_(i 0
= UHU (0 —i)'

Dynamical restoration

Non-reciprocity, j_

transition, the Goldstone mode collides withadamped mode. Thisleadstoa
spontaneous dynamical restoration of symmetry (at the price of losing
time-translationinvariance). Inthe chiral phase (purple), the space of
equivalent steady states (correspondingto the broken symmetry) is travelled
inadirectionchosenatrandom (clockwise or anticlockwise). When j*# 0, this
mechanism competes with an explicit rotation of the order parameter set by j*
Thisleads toextended regions (light red) starting at the exceptional point (red
point, now of codimension 2) in which the (anti)clockwise states coexist,
marked by first-order transitions and hysteresis: the complex frequencies form
aRiemannsurface (Extended DataFig.5). Both casesare organizedina
three-dimensional phase diagram (bottom, middle panel).

From the point of view of dynamical systems, they are instances of
Bogdanov-Takens bifurcations?, with the peculiarity that one of the
modes involved is a Goldstone mode (Methods).

Asaconcrete example, consider the hydrodynamics of non-reciprocal
flocking (Supplementary Information equation S83). (Synchronization
and patternformation are treated in Methods.) Figure 2a-c shows the
phase diagrams based on Supplementary Information equation S83
asafunction of the rescaled (non-)reciprocalinterspecies interactions

J.=(Jast Jea)/2 (Supplementary Information sections V-VI). There are
disordered (grey), aligned (blue), antialigned (red) and chiral phases
(purple; see also Fig. 2d). In Supplementary Information section VII,
we prove that these phases are linearly stable against velocity fluctua-
tions over large ranges of parameters. The phase boundary between
chiral and (anti)aligned phases is marked by exceptional points (red
linesinFig.2b, c).

Besides the chiral phase, we have identified a ‘swap phase’ (green
regioninFig.2b, c), where v, and vy oscillate along afixed direction. In
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contrast withthe chiral phase, where a continuous symmetry isrestored
onaverage, the swap phase restores a discrete symmetry through the
loss of time-translationinvariance. We also predict and observe amixed
chiral+swap phase, where swap and chiral motions occur simultane-
ously (dark greenregion). These phases areillustrated in Fig. 2d, e and
Supplementary Video 2: they all break time-translationinvarianceina
way reminiscent of time (quasi)crystals®**, Fig. 2f, g. The existence of
allthe phases in non-reciprocal flocking follows from symmetry prin-
ciples®. Hence, they transcend specific models. We also observe them
in non-reciprocal synchronization and pattern formation (Extended
DataFigs. 4, 6).

Inthe presence of a steady-state flow v, non-reciprocal transitions
exhibit pattern-forming instabilities around the mean-field critical
lines (bright red and blue regions in Fig. 3a). This can be modelled by

0,8V =[Lgp + M(vy- V) + DVZISV. (8

Equation (8) is a minimal extension of equation (5) valid near the
transition. The singular matrix L, accounts for the exceptional point,
and M(v,, - V) and DV> model convection (mixing species through M)
and diffusion, respectively. Because the eigenvalues of a perturbed
exceptional point typically behave as the square root of the perturba-
tion?, the complex growth rate of the momentum space behaves as
s.(k) = +i. /v, k at small wavevector k (where v, = |v,|) and as —Dk* at
large k. This leads to a maximum in the growth rate, that is, a linear
instability at finite momentum (Fig. 3b, ¢). Figure 3d-f and Supplemen-
tary Videos 4, 5 provide glimpses into the nonlinear regime of pattern
formation. Vortex pairs continuously unbind and annihilate with dif-
ferentdensitiesinv, and vy set by the different self-propulsion speeds
(Fig.3d, e). The system does not coarsen, and its nearly periodic aver-
age evolution (Fig. 3f) is a precursor of the chiral phase.

Although parity is spontaneously broken in the chiral phase, it is
explicitly brokenin, for example: (i) the Kuramoto model with nonvan-
ishing natural frequencies; (ii) the Vicsek model with external torques;
and (iii) the Swift-Hohenberg model with broken up-down (u > -u)
symmetry. All these systems still fit in the framework of equation (1),
provided that the matrices A%} and B/} ; acting on v}(¢, x) are appro-
priately chosen (zand vdenote vector components). Rotational sym-
metry determines the form of these matrices: A%} = a,,6"" + a’;,€**and
Bhbed = Bpea®” + Brpes€™ » Where a, B, a* and B*are arbitrary coeffi-
cients. Here, §"is the identity and €" is an antisymmetric matrix that
rotates vectors by 90°. We classify: (I) parity symmetric systems in
which a* and f* vanish; and (II) systems in which parity is explicitly
broken, in whicha*and *canbe non-zero. Classes 1 and Il encompass
systems invariant under general O(2) and proper SO(2) rotations,
respectively.

In the language of non-Hermitian quantum mechanics ,class|
exhibits (generalized) PT symmetry, which may be spontaneously
broken in the chiral phase; the transition has codimension one (for
example, Fig. 2). In class II, PT symmetry is explicitly broken: (anti)
aligned phases rotate and the exceptional points have codimension
two (Extended Data Fig. 5 and Fig. 4). In Methods, we analyse the
non-reciprocal Kuramoto model (2) with w,, # 0. Non-reciprocity and
explicit PT-symmetry breaking lead to hysteresis and discontinuous
transitions between regions where (i) states with opposite chiralities
coexistand (ii) only one state exists (Extended Data Fig. 5). These results
reveal aremarkable similarity between non-reciprocal synchronization
and driven quantum condensates®***, both of which are encompassed
by equation (1) and span classes 1and II.

Figure 4 summarizes a visual procedure to extend our approach
to other systems. The key ingredients are (i) non-reciprocity mani-
fested in asymmetric macroscopic couplings and (ii) aspontaneously
broken continuous symmetry. Non-reciprocal transitions can occur
for any continuous group. For example, the spherical symmetry O(3)
relevant to three-dimensional flocks is discussed in Supplementary

18,24,25
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Information section XI. Our analysis was illustrated with vector order
parameters whose evolutionis not the expression of aconservation law.
This paradigmatic caseisknown asmodel Ainthe Hohenberg-Halperin
classification of dynamical critical phenomena®. The same approach
applies also to other order parameters and classes—see ref. " for a
non-reciprocal active elasticity that conserves linear momentum and
refs.>*¢ for non-reciprocal models of phase separation that conserve
mass (bothillustrate model B in the language of ref. *?).

Ourwork lays the foundation forageneral theory of critical phenom-
enain non-reciprocal matter, from driven quantum condensates to
biological and artificial neural networks. These systems are marked by
theinterplay betweennon-reciprocal enhancement of fluctuations and
rigidity bestowed by many-body effects. Our field-theoretical approach
captures these effects and builds new bridges between many-body
physics and bifurcation theory.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Phase transitions and bifurcations of dynamical systems

Equilibrium phase transitions are usually described in terms of a free
energy. The minimum of the free energy corresponds to the current
phase, and a phase transition occurs whenit ceases to be aglobal mini-
mum, or aminimum at all. Although this landscape picture s static, it
relies on an underlying dynamics that shepherds the systeminto the
global minimum in a way or another®**%5%° The simplest dynamics
is relaxational. In this case, the dynamical system that describes the

time evolution of the order parameter ¢ near its equilibrium value
r.eads.“>2,40,57,60,61

op _ &F
FT (9)

for a system described by the Ginzburg-Landau free energy F{¢] (or
a Ginzburg-Landau-Wilson Hamiltonian obtained from microscop-
ics)®"%2, Phase transitions can be seen as bifurcations of this dynamical
system® %, (See also refs. **¢*¢¢” on non-equilibrium pattern forma-
tion. Werefer toref.*°, sectionll.A.5 for adiscussion on the difference
between bifurcations and thermodynamic phase transitions; here, we
willliberally use the term ‘phase transition’ to describe both situations.)

Instead of starting with afree energy, one can take ageneral (possibly
spatially extended) dynamical system

0.p=f(9) (10)

asastarting point, generalizing equation (9). (Here, fcanbe a functional
of thefield ¢.) This approach extends the Landau theory of phase transi-
tions to non-equilibrium systems not described by a free energy. The
dynamical systemin equation (10) can be constructed from symmetry
arguments, in the same way as a Landau-Ginzburg free energy, using
the methods of equivariant dynamical systems?¢7,

We emphasize that the exceptional transition defined in the main text
cannotbe described by afree energy even at the mean-field level, put-
tingit apartfromequlibrium phase transitions, but also from standard
non-equilibrium phase transitions’ 7 such as the flocking transition®”’
or the directed percolation transition”. These can be described by a
free-energy at the mean field level (their non-equilibrium character is
contained elsewhere, for example, in the noise).

More generally, there are bifurcations possible within the relaxa-
tional dynamics of equation (10) that cannot occur when the form
of the dynamical system is restricted to equation (9). In the context
of amany-body system, these correspond to phase transitions that
are forbidden at equilibrium (within a relaxational dynamics). The
exceptional transitions described in the main text are an example of
this phenomenon.

Non-reciprocity out of equilibrium

In this section, we discuss the relations between non-reciprocity, the
non-Hermitian (non-normal) character of the Jacobian of a dynami-
cal system, which allows it to exhibit an exceptional point, and the
non-equilibrium character of the system.

Adynamical system 0.X=£(X) is said to be conservative when it derives
from some potential F (for example, a free energy), such that
L0=- 6XaF . (Here, we assume that X'is real.) The Jacobian of the
dynamical system is defined as the real matrix L, =0, f,. When the
dynamical system is conservative, L,, =— 0y 0y F =Ly, Is symmetric,
and hence it is a normal operator. When the dynamical system is not
conservative, itis possible tohave L, #L,,, thatis, L is not symmetric.
This is our operational definition of non-reciprocity. In the language
of quantum mechanics, we would say that the operator is non-Hermitian
(because it could be complex-valued). The key point is that L isnot a
normal operator (a matrix N is normal when it is unitarily

diagonalizable; equivalently, N'N = NN', where T indicates the conjugate
transpose; see ref. ”®). Deviations from normality allow the eigenvectors
of L notto be orthogonal, leading to a variety of physical consequences
related totransient growths and anenhanced sensitivity to fluctuations,
in hydrodynamics®”°¥, (general and neural) networks®*, ecological
systems®*>*°, photonics'®°%1%! and quantum systems?*2>3149102°105 |
particular, the presence of exceptional points requires a non-normal
operator.

Note that the notion of normality depends on the choice of the sca-
lar product and the associated norm (this is also true for symmetry
and Hermiticity). Equivalently, these notions are not invariant under
ageneric invertible change of basis (see Supplementary Information
section I for an example), although a certain scalar product might
be selected by physical considerations. By contrast, the presence of
an exceptional point and the notions of spontaneously/explicitly/
not-broken generalized PT symmetry (see Supplementary Informa-
tionsectionlllforadiscussion of generalized PT symmetry in this con-
text, including refs. >1°¢%%) are independent of the choice of the basis.
Indeed, exceptional points represent an ultimate, unavoidable form of
non-reciprocity (and non-normality). As equation (6) highlights, they
describe a one-way coupling between the two degrees of freedom in
which the Jordan normal-form matrix is written.

Non-reciprocity is also related to the breaking of detailed balance
(thatis, microscopic reversibility). The notion of detailed balance deals
with stochastic processes, hence we have to consider a stochastic
dynamical system 0,X =f(X) +n(¢t), where n(t) isanoise. This can either
represent a microscopic system or a fluctuating hydrodynamic equa-
tion. Assuming that the noise is scalar, detailed balance implies (that
is, requires) that Ox S, =0x,f, (thatis, L,,=L,,). (See Supplementary
Information section IV and references therein, including refs. ™62,
When the noise is not scalar, this equality is weighted by the correspond-
ing diffusion constants.)

The concepts of ‘non-conservative dynamical systems’ and
‘non-conserved order parameters’ discussed in the main text are com-
pletely unrelated. (Their names are borrowed from conservative forces
and conserved quantities.) Following the classification of ref. *2, we talk
aboutaconserved order parameter (‘model B’ inref. *?) when its dynam-
icsisthe expression ofa conservation law (for example, conservation of
mass). When thisis not the case, we say that the order parameterisnot con-
served (‘model A’ inref.?). In parallel, adynamical system is conservative
whenitderivesfromapotential, as discussed in the previous paragraph.

Let us now discuss connections between the notions discussed above
and more general notions of non-reciprocity. Broadly, non-reciprocity
occurs when A does not have the same effect on B as does B on A. This
can often lead to a non-conservative dynamical system as defined
above, but the connection is not systematic.

Newton’s third law' states that the force f; that an object i exerts
onanobjectjis exactly opposite to the force f; than jexerts oni(that
is, f;=-f;). This symmetry between action and reaction can be vio-
lated when the interaction between the objects is mediated by an
non-equilibrium environment. Such non-reciprocal interactions can
arise in various contexts: particles in fluids®®”'?**, non-equilibrium
plasma®?, chemically and biologically active matter>*¢?7, optical
matter'?° networks of neurons'©?%B 3 social groups™'***¢, and
so on. The symmetry between action and reaction has no particular
reason to occur in complex systems in which the interactions sum-
marize the decisions of agents/algorithms: it is explicitly violated in
active matter>>* 2 for example, for biological reasons such as a
limited vision cone®***** or hierarchical relationships*, as well as in
systems with synthetic physical interactions®>31*1212614 or programma-
bleroboticinteractions”*¢*°, The non-equilibrium character of such
non-conservative forces leads to diverse but crucial consequences on
the behaviour of the corresponding systems®3813910-15¢,

Incondensed matter, in particular in the context of topological insu-
lators, non-symmetric tight-binding Hamiltonians H # H" (where



Tindicates the transpose) with non-symmetric hopping terms (leading
to non-Hermitian Hamiltonians in momentum space) are called
non-reciprocal; see refs, 2024961557161 | an elastic network, the Hamil-
tonian is replaced by a dynamical matrix D such that the force F¥ on
the particle iis F'=- D}"u’; (with u’ the displacement of the particle
Jjwithrespecttoits equilibrium position). The overdamped dynamics
of such a systemis ruled by an equation of the form yo,u = D}"u%. In
this case, the symmetry of the dynamical matrix indeed corresponds
to reciprocity as we have defined in the first paragraph, and is associ-
ated with a non-conservative dynamical system. Non-reciprocity
(D #D") can occur through a violation of Newton’s third law by which
D;# D, (see for example, ref.”), or through ‘odd springs’ with transverse
responses by which D = D (see ref.’). Inboth cases, some degree of
activity is required (energy is not conserved), and the noisy over-
damped dynamics again exhibits broken detailed balance.

Atthelevel of responses, reciprocity is captured by various notions
that share many similarities, such as Maxwell-Betti reciprocity in
elasticity and acoustics'®'®?'%*, Lorentz reciprocity in optics'®* ¢,
Similar relations appear also in fluid dynamics and other fields'’.
For instance, the non-reciprocal elastic networks (with D # D") in
refs, 7149168169 yio|ate Maxwell-Betti reciprocity. A similar notion exists
in non-equilibrium thermodynamics: Onsager reciprocal relations
are the statement that the matrix of response coefficients L relating
thermodynamic fluxes J;and forces &, through J;= L, F is symmet-
ric (more precisely, the Onsager—Casimir relations state that L, (B) =
€L (—B) where ¢;= 1 depending on whether the quantity i is even/
odd withrespect to time reversal, and where Brepresents all external
time-reversal breaking fields such as magnetic fields and rotations)*""",
Thisrelationis also a consequence of microscopic reversibility. Depend-
ing on the system, L contains the diffusion coefficients, electric con-
ductivities, viscosities, and so on. For example, Hall conductivity and
odd viscosity7*7?7 are instances of antisymmetric components that
require broken detailed balance.

Exceptional transitions and Bogdanov-Takens bifurcations
Inthis section, we discuss our results from the point of view of bifurca-
tion theory?*2*689971177 The exceptional transitions analysed in the main
textare closely related to Bogdanov-Takens (BT) bifurcations?"781%° A
difference compared to usual BT bifurcationsis that exceptional tran-
sitions are secondary bifurcations from a state with a spontaneously
broken continuous symmetry. In both cases, the linearized dynamics
(theJacobian of the dynamical system) has a vanishing eigenvalue of
algebraic multiplicity two A, =1, = 0 associated with aJordan block
of size two, that is, an exceptional point. In the case of exceptional
transitions, the Goldstone theorem™'® guarantees that a so-called
Nambu-Goldstone mode with vanishing frequency and growth rate
at large wavelength always exists because of the spontaneously bro-
ken continuous symmetry, corresponding to a vanishing eigenvalue
A, =0inatime-independent state. (Note that the Goldstone theorem
applies to dynamical systems, not only Hamiltonian systems; see
refs, 1851887190 ) Ag 3 consequence, the codimension of exceptional
transitions (the number of parameters typically required to get to the
bifurcation) is onein class I (in the Supplementary Information, we
show that this occurs generically when O(2) symmetry is preserved).
This should be contrasted with the codimension two of standard BT
bifurcations, whichis here reduced by one because of the presence of
the Goldstone mode. In class I, time-independent states do not form
asubmanifold of codimension zero, and the codimension of the bifur-
cation s increased again. Correspondingly, exceptional transitions
occuralonglinesin the two-dimensional phase diagram Fig. 2b, ¢, but
at points in Extended Data Fig. 5.

More precisely, the degeneracy A,=1,=0 can occur in two ways (see
refs.””** and Extended DataFig.1on the problem of the codimension
of subspaces withequal eigenvalues): at an exceptional point where the
eigenvectorsbecome collinear, or atadiabolic/Dirac point (DP) where

the eigenvectorsstay linearly independent. DPs have a higher codimen-
sion than exceptional points (so they can essentially be ignored), and
donotcorrespondto the BT bifurcation (see, for example, refs.*>*¢ for
the corresponding codimension-4 bifurcation). For real matrices, the
codimension of exceptional pointsis one. Along with the condition that
the degenerate eigenvalue must vanish, this gives acodimension two to
BT bifurcations. The presence of the Goldstone mode fixes one eigen-
value A, tozero, reducing the codimension by one (strictly speaking, to
the codimension of exceptional pointsin the space of matrices with at
least one zero eigenvalue, and this corresponds to areduction by one).

We note that exceptional transitions are not BT bifurcations with O(2)
symmetry in the sense of refs. 7% as the stable eigenvalues 0 <A, #A,
aregenerally different. This is because we consider the departure from
anordered state with spontaneous symmetry breaking (aligned phase),
not from a fully symmetric state (disordered phase). (This could be
analysed as a secondary bifurcation through mode interactions?%%°
or with the formalism of refs. 1°%20.)

Hydrodynamic theory for non-reciprocal flocking

We have derived hydrodynamic equations for the densities p (¢, X)
and polarizations P (¢, x) (or equivalently the velocities v (¢, x); in the
main text, we denote the polarization fields by v,(¢, x) for simplicity)
of an arbitrary number of populations from equations (2), (3). For a
single population, the microscopic model reduces to the Vicsek model
and the hydrodynamic theory to the Toner-Tu field theory, both of
which describe flocking?6%73+35201-203 Qur derivation, presented in Sup-
plementary Information section V, follows the methods described in
refs. 577204208 More elaborate methods of coarse-graining
exist?03206209210 Kyt current state-of-the-art procedures only provide a
qualitative agreement with the microscopic starting point***?"", Hence,
we use the the easiest method, along with several simplifying approxi-
mations (see Supplementary Information section V), to highlight the
key features of anon-reciprocal multi-component fluid, without look-
ing for a quantitative agreement (in the sense that the values of the
coefficients might beinaccurate). The set of hydrodynamic equations
obtained generalize the Toner-Tu equations®?°! to any number of
populations with non-reciprocalinteractions, and are the basis of the
analysis in the main text.

Our results for two populations also generalize the situation con-
sidered in ref. 3, which considers aligners A (standard Vicsek-like
self-propelling particles) and dissenters B that do not align at all with
anyone (neither Anor B), but with which the population A aligns. With
our notations, this corresponds to ja, jas > O but jps =jpa = 0.

The full hydrodynamic equations for two populationsa=A, B are
given in Supplementary Information equation S83 (Supplementary
Information section V.C.2). For uniform fields, gradient terms can be
removed and equation S83 reduces to

at[PAJ [P BT [PAJ, a1
l:’B JBA pB VB[PA: PB] l:’B
where
. 1, o . o
yA _-IAA pA -n- E”’AA l:’A +-IAB PB” (12)

and similarly for B, and where j = %éjab. Here, R, is a characteristic
length scale of the interaction. (The polarizations denoted by P, and
P; here and in the Supplementary Information are called v, and v in
the maintext.) This equationis used to construct the phase diagrams
of Fig. 2; see Supplementary Information section VI. We find (a) a dis-
ordered regime where the order parameter vanishes, (b) a flocking
regime where the order parameters are parallel, (c) an antiflocking
regime where the order parameters are antiparellel (sharing some
similarities with refs. 222*), (d) a periodic chiral regime where the
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order parameter have circular trajectories (sharing similarities with
chiral active matter7>"76215218) (e) a periodic swap regime where the
order parameter oscillate along a fixed direction, (f) a quasiperiodic
chiral+swap regime in which the order parameter oscillates along a
rotating direction. The full Supplementary Information equation S83
including gradient terms is thenlinearized above the uniform solution
of equation (11) to obtain the stability diagram of Fig. 3 (see Supple-
mentary Information section VIl for details on the computations). We
perform numerical simulation of the same Supplementary Information
equation S83 using the open-source pseudospectral solver Dedalus®’
toanalyse the pattern formation regime in Fig. 3d-f (see Supplemen-
tary Information section XV for details). In all cases, the densities p,
are assumed to be constant (this occurs, for instance, in the incom-
pressible limit); when this is not the case, other instabilities can
occur26,220*223.

Non-reciprocal Kuramoto model

Inthis section, we provide details on the analysis of the non-reciprocal
Kuramoto model>'2%33637135224-235 Depending on whether the system
isinclasslorin class Il (respectively, PT symmetric and non-PT sym-
metric), we find codimension-1or codimension-2 exceptional points,
respectively, around which the phase diagram is organized. Inclass|,
the exceptionalline (inatwo-dimensional phase diagram) separates the
static (aligned or antialigned) phases from a chiral phase where parity
(equivalenthere to PT symmetry) is spontaneously broken. (See Supple-
mentary Information section Ill for a discussion of generalized PT sym-
metry inthe equivariant dynamical systems considered here.) InclassllI,
an exceptional point structures the phase diagram: the stable steady
states are organized on a truncated version of the Riemann surface
of the square root. This leads to discontinuous transitions marked by
hysteresis between regions where two stable states coexist and regions
where only one state exists, in a similar manner to driven-dissipative
quantum fluids®>*, We first present analytic self-consistency arguments
inwhich the existence of a static or harmonic steady state is assumed.
We thenresort to numerical simulations of areduced dynamical system
to confirmour analytic predictions and explore the full phase diagram,
including non-harmonic time-dependent phases.

We start from equation (2), in which we consider globally coupled
(all-to-all) oscillators and neglect the noise n(t) = 0, as in the original
Kuramoto model. The oscillators are separated into two communities
(species) A and B and their phases follow

Np
0,6%=ws+Y Y J . sin(65-6%), 13)

b n=1

wherea, b=A, Brepresent the two communities and m labels the oscil-
lators. The coupling constants J,,,canbe J,4, Jas, Joar Jos depending
on which populations the oscillators m and n belong to, and the con-
ventional Kuramoto model***** is recovered by setting the coupling
strengths to be identical, that is, /i, =/ =/pa =/gs. In Supplementary
Information section IX, we derive a self-consistency equation for the
steady state, which ends up being very similar to equation (11) (with
d,~i0). To analyse the dynamics of the system and the stability of the
solutions, we now focus on the (exact) mean-field dynamics in the case
of Lorentzian frequency distributions for each community.

Thedynamics of the generalized Kuramoto modelinequation (13) can
exactly be captured by asmallnumber of coupled differential equations
in the limit of a large number of oscillators; see refs, 12135229230232.236-242
and the review ref. >, In Supplementary Information section IX, we
confirmthat this mean-field dynamics is quantitatively consistent with
direct simulations of the microscopic model equation (2).

Following Kuramoto®*, we introduce the order parameters

1 Y
Z0= Y &,

a m=1

(14)

whichbecome finite when the oscillators synchronize. The amplitude
and the phase of z,(t) characterize, respectively, the phase coherence
and the average phase of the component a.

Through the mean-field reduction, the evolution of the complex
order parameter z,(t) for each community a is described by**°

. 1 . -
atZa = (Iwa - Aa)za + E Zjab (zb - Zizb)' 15)
b

where Z, is the complex conjugate of z,, and where we have defined
Ja=JaNs- We have assumed that the natural frequencies of the oscilla-
tors in the community a follow a Lorentzian distribution
g,(w) =1 "[(w-w,)* + 471" The term iw,z, in equation (15) explicitly
breaks the mirror symmetry z, -z, (and hence parity, which here
corresponds to the generalized PT symmetry), but is invariant under
rotations z,~> e'%,.

When w,= 0 for all the communities, the system has a full O(2) sym-
metry, and one observes phases with spontaneously broken parity. In
this paragraph, we focus on this situation. Tomirror the analysis in the
main text, we define j, = (js £ jsa)/2 and determine a numerical phase
diagram of the systemin the (j_, j,) plane; see Extended Data Fig. 4.
This phase diagram shares several qualitative features with the flocking
phase diagraminFig. 2. In particular, we find that the phase boundaries
betweenthe (anti)synchronized state (labelled coherent and tstatein
Extended Data Fig. 4) and the chiral state (labelled travelling wave in
Extended Data Fig. 4) are marked by exceptional points in the Jacobian
L ofthe dynamical system equation (15). Writing the right-hand side of
equation (15) as f,(z,), the 4 x 4 Jacobian matrix L has blocks

of, /02, o, /0z,

| s (16)
o, 10z, o, [0z,

ab

for a, b=A, B, where the derivatives are evaluated at the steady state.
A direct numerical evaluation of this matrix shows that the two most
unstable eigenvalues indeed coalesce (that is, form an exceptional
point) at the transition; see Extended Data Fig. 4 for an example.

Thesimilarity between Extended Data Fig. 4 and Fig. 2 can be antici-
pated: the Vicsek model is, in essence, an extension of the Kuramoto
modelin which the oscillators move (besides several differences in their
most common incarnations). A finite natural frequency w,=ws=w, %0
common to all communities can be removed by a transformation of
the degrees of freedom (where the oscillators are observed in arotat-
ing frame).

Toanalyse the situation with explicitly broken PT symmetry (class II),
we introduce a finite detuning Aw = w, — w; between the natural fre-
quencies of the two communities (we keep w, + wy = 0 for simplicity).
In this case, exceptional points occur at points in a two-dimensional
parameter space (their codimension is two). This is consistent with
the occurrence of Bogdanov-Takens points in generalized Kuramoto
models??8233235244.245 in which hysteresis can be present?*2%,

The numerical simulation of equation (15) shows that there are regions
ofthe phase diagramin which two states (clockwise and anticlockwise)
coexist, as well as regions in which a single state is present. This can
be understood as the result between the spontaneous PT-symmetry
breakingat Aw=0 (in which the two states are equivalent, and mapped
to each other by PT symmetry) and the detuning that explicitly breaks
PT symmetry (see Supplementary Information section Ill for a discus-
sion on PT symmetry). At the boundary between these regions, the
properties of the steady states (such as their frequency Q. =Q) change
inadiscontinuous way (such as in a first-order phase transition). This
isillustrated in Extended Data Fig. 5. In Extended Data Fig. 5a, we show
the manifold of stable steady states obtained from numerical simula-
tions, whichisatruncated version of the Riemann surface of the square
root characteristic of exceptional points. There is coexistence between



two states (blue and red dots) in the red region in parameter space. In
Extended Data Fig. 5b, we show hysteresis curves corresponding to
slices of the manifold represented in Extended Data Fig. 5a.

This behaviour shares some features with the dynamical encircling of
anexceptional pointinalinear system?¢2* However, a crucial differ-
enceisthathere, we are dealing with the steady state (thatis, many-body
phase) of the system, which s possible only because of the nonlinearity
(similar situations occur in refs. 3050259255 In addition, the breakdown
ofthe adiabatic theorem plays a crucial rolein the situations analysed
in refs. *¢2*, but it is not the case in the first-order-like transitions
and hysteretic behaviour described here. In particular, the hysteresis
observedinExtended DataFig. 5 does not depend onthe speed at which
the parameters are changed (Aw in Extended Data Fig. 5b), provided
that the changeis slow enough (so that the system s alwaysin a steady
state). The hysteresis curveis thenindependent of the arbitrarily small
rate of change. Thisis in sharp contrast with the situations analysed in
refs. 2*2¥ These are ruled by a linear dynamical system, in which the
most unstable state (that is, the one with the largest positive growth
rate) always eventually dominates given enough time. In this situation,
thereisno hysteresisin the limit of an arbitrarily small rate of change.

Non-reciprocal pattern-forming instabilities

Inthis section, we apply our general strategy to pattern-forming insta-
bilities within the formalism of amplitude equations*®¢¢”%¢258 These
describe a variety of physical systems ranging from fluid convection
and lasers to ecological and chemical reaction-diffusion systems.

Toclear any misunderstanding, let uswarnthe reader: this sectionis
notabout the exceptional-point-enforced pattern formationin Fig. 3.
Instead, we consider non-reciprocal pattern formation, in which two
fields are coupledinanon-reciprocal way. Here, the pattern formation
is the spontaneous symmetry breaking (the Euclidean group E(d) of
isometries of space is broken by the appearance of the pattern), and
the pattern starts travelling at the (anti)aligned-chiral transition.

We first reinterpret equation (1) as an amplitude equation for the
complexamplitude A, = v} +iv). Correspondingly, we performdirect
simulations of the toy model equation (4), describing two coupled
copies of the Swift—-Hohenberg equation®°, asimple model of pattern
formation.

We thendiscuss aslightly more complicated situation, in which asin-
gle physicalfieldis present, but two Fourier modes with non-reciprocal
couplings are relevant (the non-reciprocity occurs between the har-
monics), in which patterns with spontaneously broken parity also
occur>1*260°264 (see also refs. 2°52¢%), This situation has several experi-
mental realizations in directional solidification of liquid crystals*>*%%",
directional solidification of lamellar eutectics***>?™, directional vis-
cous fingering™>*#>%¢ and in overflowing fountains***’. We show that
in this situation too, the transition is marked by an exceptional point
where the Goldstone mode of the spontaneously broken translation
symmetry (phase diffusion) coalesces with adamped mode.

Without any attempt at completeness, we also refer to refs.
binary convectionand torefs.?*>?° onthevisual cortex,andtorefs.
on Taylor-Couette/Dean flows.
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Coupled amplitude equations. Let us first consider the
one-dimensional Ginzburg-Landau amplitude equation

d,A= eA-glAIPA+DO2A, 17
where Aisacomplex amplitude. This equation describes, for instance,
rollsin Rayleigh-Bénard convection. The physicalfield u (such as veloc-
ity or temperature) reads u(t, x) = A(t, x)e'% + c.c. , where g is the
wavenumber of the convection rolls, and A(t, x) is a slowly varying
envelope. The apparition of a pattern is marked by A # 0, and corre-
sponds to the spontaneous breaking of translation symmetry. The
amplitude equation (17) satisfies translation symmetry by which

A~ Ae'?, corresponding to a translation of the pattern by a distance
¢/q.in the x direction; as well as inversion symmetry x > —-x by which
A~ A (overbaris complex conjugation). The reflection does not com-
mute with the translations, so overall we do not have the direct product
of these groups, but instead the semidirect product U(1) X Z, ~ O(2)
(where =~ indicates a group isomorphism). This symmetry prohibits
termssuchas A%inthe right-hand side of equation (17), and guarantees
that the coefficients are real.

Let us now introduce non-reciprocity: to do so, we consider two cou-
pled amplitudes A, and A, (describing two different coupled fields),
and write the most general equation of motion compatible with the
symmetry, up to third order (like in equation (17)). The only terms
allowed are first order terms, as well as third order terms of the form
(ApA. +A.A,)A, inboth cases with real coefficients. Hence, our ampli-
tude equation reads

0Aq = €Ay = Bupoq Ao Ac + AcAp)Ag + Dap03Ay, (18)
where all the coefficients are real. Focusing on spatially uniform ampli-
tudes and ignoring diffusive termsin equation (18), we recognize equa-
tion (1) uponrepresenting the complexamplitude A, as atwo-dimensional
v,=(ReA, ImA,), owing to the fact that the symmetry groups are iso-
morphic. We note, however, that the physical interpretation of the sym-
metries are differentinboth cases. Having identified equation (18) with
equation (1) (in the uniform case), we can immediately predict that all
the phases described in the main text for flocking should exist here (see
Extended DataFig. 6 for their interpretation in this context).

Our analysis focused on the mean-field (k = 0) transitions, and our
conclusions remain valid as long as the growth rates are negative at
finite k (this s, in particular, the case where D, = D§,,, where 6, is the
Kronecker delta, so the growth rates are of the form o,(k) = 6,(0) - DK?;
but this is especially not guaranteed when D, is not symmetric). We
emphasize that we did not assume non-reciprocal cross-diffusion, in
contrast withrefs.**¢ (another difference with these references is that
we consider anon-conserved order parameter in the language of ref. ?).

We also mention that upon lifting the constraint put upon equa-
tion (18) by reflection symmetry, one is left with a U(1)-equivariant
system with explicitly broken PT symmetry (see Supplementary
Information section Il for definitions and discussions, including
refs.2519715) and equation (18) becomes acomplex Ginzburg-Landau
equation. We expect the analysis of Methods section ‘Non-reciprocal
Kuramoto model’ to apply in this case.

Coupled Swift-Hohenberg equations. To further support our claims
and illustrate the phases described above, we consider two coupled
Swift-Hohenberg equations in equation (4) describing the dynamics
of therealfields u,(t, x), witha=1, 2 (we also define r, = (r,, £ r,,)/2). An
explicit version of the amplitude equations (18) (obtained from sym-
metry considerations) could be derived from equation (4), following
for example, ref. . Instead, we solve equation (4) numerically on a
one-dimensional domain of'size 2L with periodic boundary conditions
using the open-source pseudospectral solver Dedalus®®, starting from
randominitial conditions. The results confirm our predictions based on
the coupled amplitude equations (18). In Extended Data Fig. 6, we show
snapshots of the numerical results, in which all the phases described
above appear. In this case, equation (4) has the full Euclidean group
E(1) as asymmetry group, whichis broken by pattern formation. (The
0(2) symmetry of equation (18) pertains to the amplitude equation
description, in which additional knowledge about the patternis taken
intoaccount.)

13,14,262-264

Directional interface growth. Following refs. , We now con-
sider asingle scalar field decomposed as
u(t, x) = A (t, X)e'99 + A, (£, x) €29 + c.c. 19)
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Asin the previous case, the transition and reflection symmetry of
the underlying system endows the amplitude equation with O(2) sym-
metry. However, note that while A, transforms as A, > A, when the
field uis translated in space, A, transforms as A, > A,e*. This is a dif-
ferent representation of the SO(2) group compared to the previous
paragraph. (The Z, partis unchanged, and still corresponds to 4, > A,
and A, > A,.) Because the representation is different, the general form
of the amplitude is different, and reads'>*262-264

0, A = A -AA; - a|A1|2A1 - BlA, |2A1,

(20)
0,A; = 1A, + AT —YIA,PA, — 614, A, .

The coefficients a, B, y and 6 are usually assumed to be positive to
ensure stability, and the coefficient of A;A,is set to-1by rescaling. The
non-reciprocity is then captured by the coefficient € being positive,
which is necessary for the apparition of travelling patterns®?. As the
amplitudes A; = ,e'?1 and A, =r,€'?2 correspond to different Fourier
components, the relevant phase difference between them is

Ap=2¢,-,.

In Extended Data Fig. 7, we show the spectrum of the operator L
obtained by linearizing equation (20) around its steady state (see
equation (16) for the definition of L, with the replacement z, > A,). At
the transitionbetween astatic solution (representing a static pattern)
and a travelling-wave solution (representing a travelling pattern), we
observethe coalescence of the Goldstone mode witha damped mode
at an exceptional point (red circle in the figure). We also note that the
presence of exceptional points away from zero in the spectrum of L
does not mark a phase transition (bifurcation).

Data availability
No data were generated during the course of this study.
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complex
codim EP = 2
codim DP = 6
e v N
real symmetric Hermitian
H=H HT = H Hf = H
codim EP =1 codim EP = 2 no EP
codim DP = 3 codim DP = 4 codim DP = 3

NV T

real symmetric
no EP
codim DP = 2

Extended DataFig.1|Codimensions of eigenvalue degeneracies. Thisgraph
gives the codimension (codim) of twofold degeneracies of eigenvaluesin
different matrix spaces; see ref.’*. These degeneracies can be exceptional
points (EP) or diabolic points (DP, also known as Dirac points). Anidentical
graph canbedrawnby replacing ‘real symmetric’ with ‘purely imaginary
symmetric’, ‘Hermitian’ with ‘anti-Hermitian’and ‘real’ with ‘imaginary’.



u(a
(a) (‘ ?)

-
o]
A¢
\KZSS v\£2$S
'\<1A¢ T/’
clockwise counterclockwise
counter fli
clockwise clockwise clockwise P

I

| : |
A | A
| Vv |
1 1 1
B — L !

T

Extended DataFig.2|Many-body suppression of noise-activated chirality
inversions. a, Achangeinthesign oftheangle A¢ between the order
parametersv, and vy (inblue and red) flips the chirality (clockwise or
anticlockwise) of the chiral phase. Qualitatively, the two steady-state values
+A¢. towards which the systemrelax correspond to the minima of an effective
potential U(A¢), withabarrier AUseparating these minima. The lifetime of the
chiral phaseis the average time rseparating two flips of chirality (represented
ingreen), namely the Kramers escape time required tojump from one
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minimum to the other under the effect of noise. b, The standard deviations
quantifying the fluctuations of the order parametersv,in the chiral phase
decrease approximately as1/~/N with the number of agents N. The grey lines are
equally spaced 1/J/N curves and are meant asaguide to the eye (notafit). The
dataare obtained from simulations of the Kuramoto model equation (2) with
Jaa=Jes=1, Jas=1, Jsa=-1.1,n=8 x102and all-to-all couplings. The total duration
is Tym/6t=4,000 with 6¢=0.5, over which the standard deviation is computed.
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Extended DataFig. 3| Effect of non-conservative forces. In this simplified
pictorial representation, the order parameter (represented by aball) evolvesin
apotential-energy landscape shaped like asombrero.Inaconservative system,
the order parameter would relax straight to the bottom of the potential
(dashedblueline). Here, transverse non-conservative forces push the order
parameterinthe direction defined by the bottom of the potential, leadingtoa
curved trajectory (red continuous line) starting from the same initial
condition. In the systems we considered, the non-conservative forces arise
fromthe non-reciprocal coupling between two order parameters. This aspect

isnot captured by this simplified picture.
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Extended DataFig. 4 |Phase diagram of the PT-symmetric non-reciprocal
Kuramoto model and exceptional pointinthe spectrum ofthe Jacobian.
a, Phase diagram computed numerically from equation (15). The statesare
definedin Extended Data Table1.b, The two most unstable eigenvalues
A;=0;+iw;0f L coalesceat j, =0.007. This value coincides with the transition
fromtravelling waves (TW) to coherent states, marked by ared dashed line.
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Note that this coalescence occurs at =0 (notat finite frequency nor at finite
growthrate). The corresponding eigenvectors become collinear (this can be
verified, forinstance, by computing the determinant of the matrix of
eigenvectors, that vanishes at the exceptional point). The imaginary parts w;
(notshown) areallzero. We have set jj,,=jps=1,4,=45=0.25and w,=wz=0.
Inb, j_=0.1(asimilar behaviouris observed for neighbouring values of j_).
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Extended DataFig. 5| Hysteresis in the chiral Kuramoto model. When
chirality is explicitly broken, exceptional points have codimension two, that is,
they are typically points inatwo-dimensional parameter space. a, We plot the
frequency Q of the steady state of the Kuramoto model with explicitly broken
PTsymmetry asafunction of the difference Aw = w, — w; between the two
communities (also called detuning) and the deviation8j_ = -/t ofthe
non-reciprocal part j_ofthe coupling between the communities fromits value
Jj¥ atthe exceptional point. The system exhibits aregion where two possible
steady states with different properties coexist (the two steady states are the
continuation of the clockwise and anticlockwise chiral phases presentinthe
PT-symmetric case Aw=0). Thisregion (red triangle) starts at the exceptional
point (red point) and its size increases with the amount of non-reciprocity (here
¥ =0.2915> 0). The system exhibits hysteresisin the coexistence region (red
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points).b-e, Slices fromaat fixed §_(marked by green dotted linesin a). After
the exceptional point, thereis hysteresis/first-order (discontinuous)
behaviour.Ind, the hysteresis curve bends outwards near the transition. This is
duetothe oscillation of the norm of the order parameter (whichwerefer to as
swap or periodic synchronization elsewhere) for large enough &;_. This
additional complication does not occur for moderate values of §j_, suchasinc.
Thesolution of the dynamical system equation (15) were computed along lines
atfixed §/_, startingatlarge |8w| (inaregion without phase coexistence) froma
random initial condition. The solution (after convergence) was used as an
initial value for the next pointin the line with fixed §_. This procedure was
carried out two times, starting from positive and negative large |dw|. We have
set j,=0.08, jaa=/jps=1,4,=45=0.25, 0, = wz=Aw/2.
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Extended DataFig. 6 | Non-reciprocal patternformation. Weshowa
space-time density plot of the field u,(x, t) in different phases, as well as
snapshots ofthe fields u;(x, ) and u,(x, t) at time t=200.a, We observe a
disordered phase where both field vanish. b, Analigned phase where both
patternsarestaticandin phase (superimposed). ¢, An antialigned phase where
the patternsare staticand completely out of phase. d, A chiral phase where the
patterns move at constant velocity, either to the left or to the right
(spontaneously breaking parity), and in which the fields have a finite phase
difference, usually neither zero nor . e, Aswap phase where the patterns
essentially jump by aphase mevery period.f, Amix of the chiral and swap
behaviours (asin thechiral phase (d), thereisaspontaneously broken
symmetry between left and right movers). The fields are obtained by direct
numerical simulation of the coupled Swift-Hohenberg equationsona
one-dimensional domain of size 2L with periodic boundary conditions,
starting fromrandom initial conditions. The simulations are performed using
the open-source pseudospectral solver Dedalus®®. We have used g=0.25in all
cases.Ina,r;=r,,=-0.5andr,=r_=0.00.Inthe other cases, we havesetr;=
r»=0.5(b-f)andr,=0.50,r.=0.00 (b); r,=-0.50,r.=0.00 (c); r,=0.00,
r-=0.25(d);r.=0.87,r.=1.00(e);r.=0.85,r-=1.00 (f).
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Extended DataFig.7|Exceptional pointindirectional interfacegrowth.
The spectrum of the Jacobian L corresponding to equation (20) exhibits an
exceptional point at the transition between static patterns and travelling
patterns with spontaneous parity breaking (thatis, the patterns travel with
equal probability to the left or to the right). The two most unstable eigenvalues
A;=0;+iw;0f L coalesceat y1,=0.064 (red circle). This value coincides with the
transition from a constant solution to travelling waves, marked by ared dashed
line. The coalescence occursatA=0 (not at finite frequency nor at finite growth
rate), and the corresponding eigenvectors become collinear. Note that another
exceptional point occurs near u, = 0.014 (greencircle), but with astrictly
negative growth rate: this does not correspond to abifurcation. We also show
thedephasing A¢p=2¢, - ¢, between the amplitudes, which undergoes a
pitchfork bifurcation; the direction of motion of the patternis set by Ag¢. We
haveseta=f=y=6=1,e=+landu,=-0.1.



Extended Data Table 1| An O(2) ‘Rosetta stone’

state flocking synchronization patterns Tq OB — da
trivial disordered incoherent none 0 n/a
aligned flocking coherent in-phase constant # 0 0
antialigned  antiflocking m-state anti-phase constant # 0 s
chiral chiral traveling wave state traveling constant #£ 0 constant # 0,7
swap swap periodic synchronization modulated time-dependent  constant mod 7w

swap+-chiral swap-+chiral PS+TW traveling modulated time-dependent time-dependent

Definitions of the states in the different systems. The complex order parameters z, =r.e' are decomposed in amplitude r, = |z,| and phase ei?s =2,/1z4l. The label ‘PS+TW’ corresponds to ‘periodic

synchronization + traveling wave'. For synchronization, we mostly followed the nomenclature of refs, '%3313220234:309310 and we do not distinguish fully coherent states (r = 1) from partially

coherent ones (0 #r < 1), both are called ‘coherent’. These different states can be understood from symmetries; see refs, 2268691920031 The chiral, swap and swap+chiral states/phases break

time-translation invariance in a way reminiscent of time crystals®****">*" and quasicrystals*"®*”, as illustrated in Supplementary Video 2.
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