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Non-reciprocal phase transitions

Michel Fruchart1,5, Ryo Hanai1,2,3,5, Peter B. Littlewood1 & Vincenzo Vitelli1,4 ✉

Out of equilibrium, a lack of reciprocity is the rule rather than the exception. 
Non-reciprocity occurs, for instance, in active matter1–6, non-equilibrium systems7–9, 
networks of neurons10,11, social groups with conformist and contrarian members12, 
directional interface growth phenomena13–15 and metamaterials16–20. Although wave 
propagation in non-reciprocal media has recently been closely studied1,16–20, less is 
known about the consequences of non-reciprocity on the collective behaviour of 
many-body systems. Here we show that non-reciprocity leads to time-dependent 
phases in which spontaneously broken continuous symmetries are dynamically 
restored. We illustrate this mechanism with simple robotic demonstrations. The 
resulting phase transitions are controlled by spectral singularities called 
exceptional points21. We describe the emergence of these phases using insights from 
bifurcation theory22,23 and non-Hermitian quantum mechanics24,25. Our approach 
captures non-reciprocal generalizations of three archetypal classes of 
self-organization out of equilibrium: synchronization, !ocking and pattern 
formation. Collective phenomena in these systems range from active time-(quasi)
crystals to exceptional-point-enforced pattern formation and hysteresis. Our work 
lays the foundation for a general theory of critical phenomena in systems whose 
dynamics is not governed by an optimization principle.

To explore how non-reciprocity affects phase transitions, consider mul-
tiple species or fields with asymmetric interactions that are modelled by 
vector order parameters va(t, x), for each species a. These can encode, 
for instance, the average velocities of self-propelled particles26,27, the 
average phases of coupled oscillators or the amplitude and position of 
periodic patterns (Fig. 1a–d). The va(t, x) could either be distinct fields, 
or different harmonics of the same physical field, as in interface-growth 
experiments13–15 (Fig. 1e, f). Systems with gain and loss18,20,28–31 can also 
be mapped onto non-reciprocal systems.

All such systems are described by the evolution equation

A B Ov v v v v∂ = + ( ⋅ ) + (∇), (1)t a ab b abcd b c d

where summation over repeated indices is implied. Equation (1) is (up 
to third order in va) the most general dynamical system invariant under 
rotations. In flocking, rotational symmetry arises from the isotropy of 
space, whereas in synchronization and pattern formation it arises from 
time or space translation invariance. Different symmetries or other 
representations of rotations can be similarly enforced22; see Methods 
and Supplementary Information section XI. The quantities abA  and 

abcdB  are arrays of parameters that couple different species. We have 
temporarily omitted in equation (1) terms that have spatial derivatives, 
represented by O(∇), but we have retained nonlinearities that are essen-
tial for discussing phase transitions. Here, we allow the macroscopic 
coefficients to be asymmetric, for example, A A≠ab ba. For equilibrium 
phase transitions, these coefficients would be fully symmetric because 
the dynamics v v F∂ = − ∂t a a

 is derived from a (free)  energy F. Removing 
this constraint extends the theory of critical phenomena32 to 
non-reciprocal systems.

Dynamical systems described by equation (1) arise in various forms 
of non-reciprocal matter. Consider, for instance, the Kuramoto model 
of synchronization33

∑θ ω J θ θ η t∂ = + sin( − ) + ( ), (2)t m m
n

mn n m

which describes coupled oscillators m with phases θm(t), frequencies ωm 
and couplings  Jmn, and where η(t) is a random noise. Equation (2) with 
ωm = 0 also captures the Vicsek model of flocking34,35, with the oscilla-
tors replaced by self-propelled particles moving at constant speed v0 
in the planar direction θm. Their positions rm follow
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In both models, agent m tries to align (be in phase) with agent n when 
Jmn > 0, or to antialign when  Jmn < 0. Above a critical coupling, both mod-
els exhibit a transition from incoherent motion (incoherent oscillations) 
to flocking (synchronization) heralded by a non-vanishing order param-
eter va (Fig. 1a, c). We now consider two populations with non-reciprocal 
interactions  Jmn ≠ Jnm (refs. 2–6,8,10–12,36–39). We show in Methods and Sup-
plementary Information section V that coarse-graining these micro-
scopic models leads to equation (1) with asymmetric coefficients and 
the addition of spatial derivative terms.

Equation (1), viewed as an amplitude equation, also describes 
non-reciprocal pattern formation (Fig. 1e). For example, the Swift–
Hohenberg model40,

u r u u gu∂ = − (1 + ∇ ) − , (4)t a ab b a a
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with rab ≠ rba, reduces to equation (1) by letting ua(x) = Aa(x)eikx + c.c., 
where k is a wavevector and the complex amplitude is decomposed as 
A v v≡ + ia a

x
a
y (Methods).

Let us start with two populations A and B, and parity not explicitly 
broken. When the interactions are reciprocal, we find (besides a disor-
dered phase) two static phases where vA and vB (red and blue arrows in 
Fig. 1g) are (anti)aligned in analogy with (anti)ferromagnetism. When 
the interactions are non-reciprocal, the coefficients in equation (1) 
become asymmetric (for example, A A≠ab ba) and a time-dependent 
chiral phase with no equilibrium analogue emerges between the static 
phases (Fig. 1g, h). In the chiral phase, parity is spontaneously broken: 
vA and vB rotate at a constant speed Ωss with a fixed relative angle, either 
clockwise or anticlockwise (see Supplementary Video 1 for a demon-
stration with programmable robots). Figure 1a–f illustrates the aligned–
chiral transition in synchronization, flocking and pattern formation. 
This transition also occurs in viscous fingering15,41 (Fig.  1e,  f ), 
liquid-crystal solidification42, lamellar eutectics growth43, overflowing 
fountains44, and other natural phenomena that can be modelled by 
amplitude equations with asymmetric couplings between different 
harmonics of the same field (Methods).

The chiral phase is caused by the frustration experienced by agents 
with opposite goals: agent A wants to align with agent B but not 
vice-versa. This dynamical frustration results in a chase and runaway 
motion of the order parameters va (where a = A, B). Crucially, a stable 
chiral phase hinges on a subtle interplay between noise and many-body 
effects. Consider the exactly solvable bipartite Kuramoto model in 
equation (2) with η(t) = 0 and identical frequencies within each species. 
This system can be mapped to the dynamics of only two agents 

(Supplementary Information section IX). Unless   JAB = − JBA exactly, 
agents A and B would eventually catch up with each other and reach 
alignment or anti-alignment (henceforth, (anti)alignment) (Supple-
mentary Information section VIII). However, frequency disorder or 
noise in equation (2) constantly resets the chiral motion of A/B pairs. 
The noise-activated motions of individual agents become macroscop-
ically correlated through their interactions: the chiral phase is stabi-
lized. We verified this by computing the standard deviations of the 
order parameters that decrease as N1/  with the number of agents N; 
see Extended Data Fig. 2b. In flocking too, noise enlarges the chiral 
phase region (Fig. 2b, c).

Contrast our many-body chiral phase with parity-breaking phenom-
ena occurring with only a few degrees of freedom, for instance, with  
two coupled laser ring resonators18,45 (Supplementary Information 
section XII). In the latter  case, the state of the system switches between 
clockwise and anticlockwise under the effect of noise45, destroying the 
chiral phase. This process also occurs in our systems for small N: it is 
captured by adding in equation (1) a hydrodynamic noise (Supplemen-
tary Information section X and Extended Data Fig. 2a). The average 
time τ between chirality flips follows an Arrhenius law, τ = τ0exp(∆/σ2), 
where ∆ is the height of the barrier between clockwise and anticlockwise 
states, σ is the standard deviation of the hydrodynamic noise, and τ0 is 
a microscopic constant. For large N, the central limit theorem suggests 
that σ2 ~ 1/N (where ~ indicates asymptotic behaviour; consistent with 
numerics in Supplementary Information sections VIII–X and Extended 
Data Fig. 2b) and τ ~ exp(N). The chiral phase is salvaged by many-body 
effects. In optics, this scenario could be realized in non-reciprocal 
photonic networks of many coupled lasers18,33,46–48.
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Fig. 1 | Exceptional transitions: examples and mechanism. Non-reciprocal 
interactions ( JAB ≠ JBA) between two species A and B (in blue and red) induce a 
phase transition from static alignment to a chiral motion that spontaneously 
breaks parity. a, b, Non-reciprocal synchronization. Robots (programmed as 
non-reciprocal spins) spontaneously rotate either clockwise or anticlockwise, 
despite no average natural frequency (ωm = 0 in equation (2)). (Methods, 
Supplementary Information sections IX,  XIV, Supplementary Video 1)  
c, d, Non-reciprocal flocking. Self-propelled particles run in circles despite the 
absence of external torques (Supplementary Information sections V–VII and 
Supplementary Video 3). e, f, Non-reciprocal pattern formation. A 
one-dimensional pattern starts travelling, either to the left or to the right 
(Methods). The figure represents an experimental observation of viscous 
fingering at an oil–air interface adapted with permission from ref. 15, 

copyrighted by the American Physical Society. g, Schematic bifurcation 
diagram of the exceptional transition showing the frequency of the steady 
state, Ωss. Between the static (anti)aligned phases with Ωss = 0, an intermediate 
chiral phase spontaneously breaks parity. Two equivalent steady states 
(clockwise and anticlockwise, corresponding to opposite values of Ωss) are 
present in this time-dependent phase, which can be seen as a manifestation of 
spontaneous PT-symmetry breaking. The chiral phase continuously 
interpolates between the antialigned and aligned phases, both through |Ωss| 
and through the angle between the order parameters vA and vB. h, The 
transition between (anti)aligned and chiral phases occurs through the 
coalescence of a damped (orange) and a Goldstone (green) mode at an 
exceptional point (EP, red circle). In the chiral phase, the growth rates are drawn 
in purple.
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The aligned-to-chiral transitions cannot be described by a free  
energy. This is in contrast with the familiar paramagnet-to-ferromagnet 
transition, or even mean-field descriptions of iconic non-equilibrium 
phase transitions such as directed percolation or (reciprocal)  
flocking (Supplementary Information section II). However, we can 
still identify the phases of the many-body system from the steady 
states of the corresponding dynamical system (such as equation (1)). 

Phase transitions occur when the steady state Vss becomes unsta-
ble, that is, when perturbations around it are no longer damped. We 
therefore linearize equation (1), by separating the order parameters  
V ≡ (vA, vB, …) into the steady state Vss and the fluctuations δV,  
leading to

L∂ δ = δ . (5)t V V
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Fig. 2 | Phase diagrams and active time (quasi)crystals. a–c, Phase diagrams 
of the non-reciprocal flocking model Supplementary Information equation 
S83 for different noise strengths η. The parameters  jab (entering αab and βabcd in 
equation (1)) are coarse-grained versions of the microscopic couplings  Jab. The 
red (respectively, black) lines are analytically-determined transition lines from 
the (anti)aligned phase to the chiral (respectively, disordered) phase. Red lines 
are lines of exceptional points. The analytical prediction is in excellent 
agreement with the numerical phase diagram up to tetracritical points (black 
dots in c) where new phases emerge (Supplementary Information sections  
V–VI). d, Schematic representation of one period of the chiral phase: vA and vB 
rotate in block at a constant angular velocity Ωss (Supplementary Video 2).  
e, Schematic representation of one period of the swap phase: vA and vB oscillate 

along a fixed direction (Supplementary Video 2). f, g, Plot of the frequencies 
present in the steady state as a function of  j+, for  j− = −0.25 (f) and  j− = −0.6 (g). 
In the chiral phase, a single frequency is present (at each point), corresponding 
to the solid-body rotation. In the swap phase, a single frequency accompanied 
by harmonics are present. By contrast, in the mixed chiral/swap phase, two 
independent frequencies are present (with their harmonics), leading to a 
quasiperiodic phase. The aligned phase is static (Ωss = 0). Similar behaviours 
occur around the antialigned phase. In f, a direct transition between aligned 
and chiral phases is observed. The phase diagrams are determined by solving 
Supplementary Information equation S83 numerically from random initial 
conditions, with ρA = ρB = 1, jAA = jBB = 1, and η/ηc = 1.5 (a), η/ηc = 0.99 (b), η/ηc = 0.5 
(c). Parameters in f, g are the same as in c. All units are arbitrary.
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Non-reciprocity implies that the linear operator L can be 
non-Hermitian. For a conservative system, we would have 
L F L= − ∂ ∂ =ab bab av v . This implies that L is Hermitian, that is, Lab = Lba, as 
it is real-valued. A non-reciprocal system cannot be derived from an 
energy F, hence L is generally non-Hermitian, that is, Lab ≠ Lba.

As a consequence, the eigenvectors of L need not be orthogonal. 
Its eigenvalues si = σi + iωi can be decomposed into growth rates σi and 
frequencies ωi. Here, one eigenvalue always vanishes because it corre-
sponds to a global rotation of the va (the Goldstone mode of broken rota-
tion invariance), green line in Fig. 1h. In the static (anti)aligned phases, 
the other modes are always damped (σi < 0). The aligned–chiral transi-
tions occur when the damped mode with σi closest to zero (orange line 
in Fig. 1h) coalesces with the Goldstone mode (green line) at red points. 
This mode coalescence is known as an exceptional point21. In addition to 
having the same (vanishing) eigenvalues, the two eigenmodes become 
parallel at the exceptional point. In a many-body system, the mode 
coalescence at an exceptional point defines a class of phase transitions 
that we dub exceptional transitions. Because of the non-orthogonality 
of the eigenmodes (Methods), these transitions are accompanied by 
enhanced fluctuations and distinctive critical phenomena31,49–52.

The order parameter can be pictured as a ball constantly kicked by 
noise at the bottom of a sombrero potential. In a non-reciprocal system, 
there are transverse non-conservative forces in addition to the 
potential-energy landscape (Extended Data Fig. 3). When you kick the 
ball uphill (direction 1), it also moves perpendicular to the uphill direc-
tion along the bottom of the potential (direction 2), but not vice versa. 
At the exceptional point, the ball moves only along the bottom of the 
potential irrespective of how it is kicked: this is a signature of mode 
coalescence. It may be understood from the Jordan normal form L of 
an exceptional point,

= 0 0
1 0

, (6)L  






which describes a one-way coupling between the two directions: 1 influ-
ences 2 ( ≠ 021L ), whereas 2 has no influence on 1 (L = 012 ). 
Non-reciprocity is inherent to exceptional points, irrespective of 
whether they originate from asymmetric microscopic interactions or 
gain/loss. Classical and quantum systems with gain and loss can indeed 
be mapped onto non-reciprocal ones: a non-Hermitian Hamiltonian H 
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Fig. 3 | Exceptional-point-enforced pattern formation and topological 
defects. Convective terms and exceptional points (EPs) give rise to pattern 
formation near the transition lines. a, Numerical phase diagram including the 
linear stability analysis of the (anti)aligned and chiral phases in the 
non-reciprocal Toner–Tu model (the stability of the swap and chiral+swap 
phases is not analysed). Units are arbitrary. b, The coalescence of the Goldstone 
mode with a damped mode leads to instabilities at finite momentum. The 
growth rate of transverse perturbations σ,(k) becomes positive, and has a 
maximum σ* at a finite wavevector k*. c, Normalized growth rate σ(k)/σ* as a 
function of wavevector, for different values of  j+ at fixed  j+ (along the dashed 

line in a). d–f, Fully nonlinear simulation of the pattern formation in the 
unstable aligned regime. In d, e, we show snapshots of the angle of the order 
parameters vA and vB with a fixed direction (Supplementary Video 4). 
Numerous topological defects (vortices and antivortices) are present. In f, we 
show the time evolution (arbitrary units) of the histogram of the angle between 
vA and a fixed direction (vB has identical features). Parameters are the same as in 
Fig. 2 with η/ηc = 0.5. We set v = 0.06A

0  and v = 0.01B
0 . Simulations in d–f are 

performed on a 2L × 2L box with periodic boundary conditions, and L = 0.32, 
j+ = 0.1, j− = 0.2 (see Methods).
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describing antisymmetric couplings is unitarily equivalent to a Ham-
iltonian with gain and loss as

  












⟺H UHU= 0 1
−1 0

= i 0
0 −i

, (7)−1

in which U describes the change of basis. At an exceptional point, the 
non-reciprocal representation cannot be avoided as the matrix is not 
diagonalizable (like L in equation (6); see Supplementary Information 
section I).

Exceptional phase transitions in non-reciprocal matter (including 
many-body systems with gain and loss) can be viewed as dynamical 
restorations of a spontaneously broken continuous symmetry: the 
Goldstone mode is actuated by noise, and after the transition the system 
runs along the manifold of degenerate ground states. From the point 
of view of non-Hermitian quantum mechanics, these transitions are 
manifestations of spontaneous PT-symmetry breaking (Methods). 

From the point of view of dynamical systems, they are instances of 
Bogdanov–Takens bifurcations23, with the peculiarity that one of the 
modes involved is a Goldstone mode (Methods).

As a concrete example, consider the hydrodynamics of non-reciprocal 
flocking (Supplementary Information equation S83). (Synchronization 
and pattern formation are treated in Methods.) Figure 2a–c shows the 
phase diagrams based on Supplementary Information equation  S83 
as a function of the rescaled (non-)reciprocal interspecies interactions 
j± = ( jAB ±  jBA)/2 (Supplementary Information sections V–VI). There are 
disordered (grey), aligned (blue), antialigned (red) and chiral phases 
(purple; see also Fig. 2d). In Supplementary Information section VII, 
we prove that these phases are linearly stable against velocity fluctua-
tions over large ranges of parameters. The phase boundary between 
chiral and (anti)aligned phases is marked by exceptional points (red 
lines in Fig. 2b, c).

Besides the chiral phase, we have identified a ‘swap phase’ (green 
region in Fig. 2b, c), where vA and vB oscillate along a fixed direction. In 
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Fig. 4 | A visual procedure to identify and analyse exceptional transitions. 
First identify a system with (i) non-reciprocal interactions and (ii) a continuous 
symmetry. Write down the dynamical system for the order parameter(s) V. Find 
a time-independent steady state Vss with spontaneously broken continuous 
symmetry (SSB, green regions). Linearize around the time-independent steady 
state. The linear operator (Jacobian matrix) L(V) has a vanishing eigenvalue 
(Goldstone mode). Exceptional points (EP; red points and continuous red lines) 
of L(V) with zero eigenvalue mark the transition. We distinguish (I) parameters  
j that do not explicitly break parity and (II) parameters  j* that do. We further 
split the parameters  j into (1) parameters j− encoding the non-reciprocity and 
(2) other parameters  j+. When  j* = 0 (left panel), the exceptional points have 
codimension 1 (lines in a two-dimensional parameter space). At the exceptional 

transition, the Goldstone mode collides with a damped mode. This leads to a 
spontaneous dynamical restoration of symmetry (at the price of losing 
time-translation invariance). In the chiral phase (purple), the space of 
equivalent steady states (corresponding to the broken symmetry) is travelled 
in a direction chosen at random (clockwise or anticlockwise). When  j* ≠ 0, this 
mechanism competes with an explicit rotation of the order parameter set by  j*. 
This leads to extended regions (light red) starting at the exceptional point (red 
point, now of codimension 2) in which the (anti)clockwise states coexist, 
marked by first-order transitions and hysteresis: the complex frequencies form 
a Riemann surface (Extended Data Fig. 5). Both cases are organized in a 
three-dimensional phase diagram (bottom, middle panel).
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contrast with the chiral phase, where a continuous symmetry is restored 
on average, the swap phase restores a discrete symmetry through the 
loss of time-translation invariance. We also predict and observe a mixed 
chiral+swap phase, where swap and chiral motions occur simultane-
ously (dark green region). These phases are illustrated in Fig. 2d, e and 
Supplementary Video 2: they all break time-translation invariance in a 
way reminiscent of time (quasi)crystals53,54, Fig. 2f, g. The existence of 
all the phases in non-reciprocal flocking follows from symmetry prin-
ciples22. Hence, they transcend specific models. We also observe them 
in non-reciprocal synchronization and pattern formation (Extended 
Data Figs. 4,  6).

In the presence of a steady-state flow vss, non-reciprocal transitions 
exhibit pattern-forming instabilities around the mean-field critical 
lines (bright red and blue regions in Fig. 3a). This can be modelled by

L M D∂ δ = [ + ( ⋅ ∇) + ∇ ]δ . (8)t EP ss
2V v V

Equation (8) is a minimal extension of equation (5) valid near the 
transition. The singular matrix LEP accounts for the exceptional point, 
and M(vss ⋅ ∇) and D∇2 model convection (mixing species through M) 
and diffusion, respectively. Because the eigenvalues of a perturbed 
exceptional point typically behave as the square root of the perturba-
tion21, the complex growth rate of the momentum space behaves as 
s k v k( ) ≈ ± i i± ss  at small wavevector k (where vss = |vss|) and as −Dk2 at 
large k. This leads to a maximum in the growth rate, that is, a linear 
instability at finite momentum (Fig. 3b, c). Figure 3d–f and Supplemen-
tary Videos 4, 5 provide glimpses into the nonlinear regime of pattern 
formation. Vortex pairs continuously unbind and annihilate with dif-
ferent densities in vA and vB set by the different self-propulsion speeds 
(Fig. 3d, e). The system does not coarsen, and its nearly periodic aver-
age evolution (Fig. 3f) is a precursor of the chiral phase.

Although parity is spontaneously broken in the chiral phase, it is 
explicitly broken in, for example: (i) the Kuramoto model with nonvan-
ishing natural frequencies; (ii) the Vicsek model with external torques; 
and (iii) the Swift–Hohenberg model with broken up–down (u → −u) 
symmetry. All these systems still fit in the framework of equation (1), 
provided that the matrices Aab

µν and abcd
µνB  acting on t x( , )a

νv  are appro-
priately chosen (µ and ν denote vector components). Rotational sym-
metry determines the form of these matrices: α δ α -= + *ab

µν
ab

µν
ab

µνA  and 
B β δ β -= + *abcd

µν
abcd

µν
abcd

µν , where α, β, α* and β* are arbitrary coeffi-
cients. Here, δµν is the identity and -µν is an antisymmetric matrix that 
rotates vectors by 90°. We classify: (I) parity symmetric systems in 
which α* and β* vanish; and (II) systems in which parity is explicitly 
broken, in which α* and β* can be non-zero. Classes I and II encompass 
systems invariant under general O(2) and proper SO(2) rotations, 
respectively.

In the language of non-Hermitian quantum mechanics18,24,25, class I 
exhibits (generalized) PT symmetry, which may be spontaneously 
broken in the chiral phase; the transition has codimension one (for 
example, Fig. 2). In class II, PT symmetry is explicitly broken: (anti)
aligned phases rotate and the exceptional points have codimension 
two (Extended Data Fig. 5 and Fig. 4). In Methods, we analyse the 
non-reciprocal Kuramoto model (2) with ωm ≠ 0. Non-reciprocity and 
explicit PT-symmetry breaking lead to hysteresis and discontinuous 
transitions between regions where (i) states with opposite chiralities 
coexist and (ii) only one state exists (Extended Data Fig. 5). These results 
reveal a remarkable similarity between non-reciprocal synchronization 
and driven quantum condensates30,31, both of which are encompassed 
by equation (1) and span classes I and II.

Figure 4 summarizes a visual procedure to extend our approach 
to other systems. The key ingredients are (i) non-reciprocity mani-
fested in asymmetric macroscopic couplings and (ii) a spontaneously 
broken continuous symmetry. Non-reciprocal transitions can occur 
for any continuous group. For example, the spherical symmetry O(3) 
relevant to three-dimensional flocks is discussed in Supplementary 

Information section XI. Our analysis was illustrated with vector order 
parameters whose evolution is not the expression of a conservation law. 
This paradigmatic case is known as model A in the Hohenberg–Halperin 
classification of dynamical critical phenomena32. The same approach 
applies also to other order parameters and classes—see ref. 19 for a 
non-reciprocal active elasticity that conserves linear momentum and 
refs. 55,56 for non-reciprocal models of phase separation that conserve 
mass (both illustrate model B in the language of ref. 32).

Our work lays the foundation for a general theory of critical phenom-
ena in non-reciprocal matter, from driven quantum condensates to 
biological and artificial neural networks. These systems are marked by 
the interplay between non-reciprocal enhancement of fluctuations and 
rigidity bestowed by many-body effects. Our field-theoretical approach 
captures these effects and builds new bridges between many-body 
physics and bifurcation theory.
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Article
Methods
Phase transitions and bifurcations of dynamical systems
Equilibrium phase transitions are usually described in terms of a free 
energy. The minimum of the free energy corresponds to the current 
phase, and a phase transition occurs when it ceases to be a global mini-
mum, or a minimum at all. Although this landscape picture is static, it 
relies on an underlying dynamics that shepherds the system into the 
global minimum in a way or another32,40,57–59. The simplest dynamics 
is relaxational. In this case, the dynamical system that describes the 
time evolution of the order parameter φ near its equilibrium value 
reads32,40,57,60,61

φ
t

F
φ

∂
∂

= −
δ
δ

(9)

for a system described by the Ginzburg–Landau free energy F[φ] (or 
a Ginzburg–Landau–Wilson Hamiltonian obtained from microscop-
ics)61,62. Phase transitions can be seen as bifurcations of this dynamical 
system63–65. (See also refs. 40,61,66,67 on non-equilibrium pattern forma-
tion. We refer to ref. 40, section III.A.5 for a discussion on the difference 
between bifurcations and thermodynamic phase transitions; here, we 
will liberally use the term ‘phase transition’ to describe both situations.)

Instead of starting with a free energy, one can take a general (possibly 
spatially extended) dynamical system

φ f φ∂ = ( ) (10)t

as a starting point, generalizing equation (9). (Here, f can be a functional 
of the field φ.) This approach extends the Landau theory of phase transi-
tions to non-equilibrium systems not described by a free energy. The 
dynamical system in equation (10) can be constructed from symmetry 
arguments, in the same way as a Landau–Ginzburg free energy, using 
the methods of equivariant dynamical systems22,68–71.

We emphasize that the exceptional transition defined in the main text 
cannot be described by a free energy even at the mean-field level, put-
ting it apart from equlibrium phase transitions, but also from standard 
non-equilibrium phase transitions72–76 such as the flocking transition35,77 
or the directed percolation transition73. These can be described by a 
free-energy at the mean field level (their non-equilibrium character is 
contained elsewhere, for example, in the noise).

More generally, there are bifurcations possible within the relaxa-
tional dynamics of equation (10) that cannot occur when the form 
of the dynamical system is restricted to equation (9). In the context 
of a many-body system, these correspond to phase transitions that 
are forbidden at equilibrium (within a relaxational dynamics). The 
exceptional transitions described in the main text are an example of 
this phenomenon.

Non-reciprocity out of equilibrium
In this section, we discuss the relations between non-reciprocity, the 
non-Hermitian (non-normal) character of the Jacobian of a dynami-
cal system, which allows it to exhibit an exceptional point, and the 
non-equilibrium character of the system.

A dynamical system ∂tX = f(X) is said to be conservative when it derives 
from some potential F (for example, a free energy), such that 
f X F( ) = − ∂a Xa

. (Here, we assume that X is real.) The Jacobian of the 
dynamical system is defined as the real matrix L f= ∂ab X ab

. When the 
dynamical system is conservative, L F L= − ∂ ∂ =ab X X bab a

 is symmetric, 
and hence it is a normal operator. When the dynamical system is not 
conservative, it is possible to have Lab ≠ Lba, that is, L is not symmetric. 
This is our operational definition of non-reciprocity. In the language 
of quantum mechanics, we would say that the operator is non-Hermitian 
(because it could be complex-valued). The key point is that L is not a 
normal operator (a matrix N is normal when it is unitarily 

diagonalizable; equivalently, N†N = NN†, where † indicates the conjugate 
transpose; see ref. 78). Deviations from normality allow the eigenvectors 
of L not to be orthogonal, leading to a variety of physical consequences 
related to transient growths and an enhanced sensitivity to fluctuations, 
in hydrodynamics52,79–87, (general and neural) networks88–94, ecological 
systems51,95–99, photonics18,100,101, and quantum systems24,25,31,49,102–105. In 
particular, the presence of exceptional points requires a non-normal 
operator.

Note that the notion of normality depends on the choice of the sca-
lar product and the associated norm (this is also true for symmetry 
and Hermiticity). Equivalently, these notions are not invariant under 
a generic invertible change of basis (see Supplementary Information 
section I for an example), although a certain scalar product might 
be selected by physical considerations. By contrast, the presence of 
an exceptional point and the notions of spontaneously/explicitly/
not-broken generalized PT symmetry (see Supplementary Informa-
tion section III for a discussion of generalized PT symmetry in this con-
text, including refs. 25,106–115) are independent of the choice of the basis. 
Indeed, exceptional points represent an ultimate, unavoidable form of 
non-reciprocity (and non-normality). As equation (6) highlights, they 
describe a one-way coupling between the two degrees of freedom in 
which the Jordan normal-form matrix is written.

Non-reciprocity is also related to the breaking of detailed balance 
(that is, microscopic reversibility). The notion of detailed balance deals 
with stochastic processes, hence we have to consider a stochastic 
dynamical system ∂t X  = f ( X) + η(t), where η(t) is a noise. This can either 
represent a microscopic system or a fluctuating hydrodynamic equa-
tion. Assuming that the noise is scalar, detailed balance implies (that 
is, requires) that f f∂ = ∂X b X aa b

 (that is, Lab = Lba). (See Supplementary 
Information section IV and references therein, including refs. 116–120. 
When the noise is not scalar, this equality is weighted by the correspond-
ing diffusion constants.)

The concepts of ‘non-conservative dynamical systems’ and 
‘non-conserved order parameters’ discussed in the main text are com-
pletely unrelated. (Their names are borrowed from conservative forces 
and conserved quantities.) Following the classification of ref. 32, we talk 
about a conserved order parameter (‘model B’ in ref. 32) when its dynam-
ics is the expression of a conservation law (for example, conservation of 
mass). When this is not the case, we say that the order parameter is not con-
served (‘model A’ in ref. 32). In parallel, a dynamical system is conservative 
when it derives from a potential, as discussed in the previous paragraph.

Let us now discuss connections between the notions discussed above 
and more general notions of non-reciprocity. Broadly, non-reciprocity 
occurs when A does not have the same effect on B as does B on A. This 
can often lead to a non-conservative dynamical system as defined 
above, but the connection is not systematic.

Newton’s third law121 states that the force fij that an object i exerts 
on an object j is exactly opposite to the force fji than  j exerts on i (that 
is, fij = −fji). This symmetry between action and reaction can be vio-
lated when the interaction between the objects is mediated by an 
non-equilibrium environment. Such non-reciprocal interactions can 
arise in various contexts: particles in fluids9,87,122–124, non-equilibrium 
plasma8,125, chemically and biologically active matter2,3,126,127, optical 
matter128–130, networks of neurons10,11,90,131–134, social groups12,135,136, and 
so on. The symmetry between action and reaction has no particular 
reason to occur in complex systems in which the interactions sum-
marize the decisions of agents/algorithms: it is explicitly violated in 
active matter5,9,137–142, for example, for biological reasons such as a 
limited vision cone6,143,144 or hierarchical relationships4, as well as in 
systems with synthetic physical interactions3,8,19,125,126,145 or programma-
ble robotic interactions17,146–149. The non-equilibrium character of such 
non-conservative forces leads to diverse but crucial consequences on 
the behaviour of the corresponding systems8,38,139,150–154.

In condensed matter, in particular in the context of topological insu-
lators, non-symmetric tight-binding Hamiltonians H ≠ HT (where  



T indicates the transpose) with non-symmetric hopping terms (leading 
to non-Hermitian Hamiltonians in momentum space) are called 
non-reciprocal; see refs. 20,24,96,155–161. In an elastic network, the Hamil-
tonian is replaced by a dynamical matrix D such that the force Fi

µ on 
the particle i is F D u= −i

µ
ij
µν

j
ν  (with u j

ν the displacement of the particle  
j with respect to its equilibrium position). The overdamped dynamics 
of such a system is ruled by an equation of the form γ u D u∂ =t i

µ
ij
µν

j
ν. In 

this case, the symmetry of the dynamical matrix indeed corresponds 
to reciprocity as we have defined in the first paragraph, and is associ-
ated with a non-conservative dynamical system. Non-reciprocity 
(D ≠ DT) can occur through a violation of Newton’s third law by which 
Dij ≠ Dji (see for example, ref. 17), or through ‘odd springs’ with transverse 
responses by which Dµν ≠ Dνµ (see ref. 19). In both cases, some degree of 
activity is required (energy is not conserved), and the noisy over-
damped dynamics again exhibits broken detailed balance.

At the level of responses, reciprocity is captured by various notions 
that share many similarities, such as Maxwell–Betti reciprocity in 
elasticity and acoustics16,162,163, Lorentz reciprocity in optics164–166. 
Similar relations appear also in fluid dynamics and other fields167. 
For instance, the non-reciprocal elastic networks (with D ≠ DT) in  
refs. 17,19,149,168,169 violate Maxwell–Betti reciprocity. A similar notion exists 
in non-equilibrium thermodynamics: Onsager reciprocal relations 
are the statement that the matrix of response coefficients L relating 
thermodynamic fluxes  Ji and forces 0k through  Ji = Lik0k is symmet-
ric (more precisely, the Onsager–Casimir relations state that Lik(B) = 
-i-kLki(−B) where -i = ±1 depending on whether the quantity i is even/
odd with respect to time reversal, and where B represents all external 
time-reversal breaking fields such as magnetic fields and rotations)170,171. 
This relation is also a consequence of microscopic reversibility. Depend-
ing on the system, L contains the diffusion coefficients, electric con-
ductivities, viscosities, and so on. For example, Hall conductivity and 
odd viscosity170,172–176 are instances of antisymmetric components that 
require broken detailed balance.

Exceptional transitions and Bogdanov–Takens bifurcations
In this section, we discuss our results from the point of view of bifurca-
tion theory22,23,68,69,71,177. The exceptional transitions analysed in the main 
text are closely related to Bogdanov–Takens (BT) bifurcations23,178–180. A 
difference compared to usual BT bifurcations is that exceptional tran-
sitions are secondary bifurcations from a state with a spontaneously 
broken continuous symmetry. In both cases, the linearized dynamics 
(the Jacobian of the dynamical system) has a vanishing eigenvalue of 
algebraic multiplicity two λ1 = λ2 = 0 associated with a Jordan block 
of size two, that is, an exceptional point. In the case of exceptional 
transitions, the Goldstone theorem181–187 guarantees that a so-called 
Nambu–Goldstone mode with vanishing frequency and growth rate 
at large wavelength always exists because of the spontaneously bro-
ken continuous symmetry, corresponding to a vanishing eigenvalue 
λ1 = 0 in a time-independent state. (Note that the Goldstone theorem 
applies to dynamical systems, not only Hamiltonian systems; see  
refs. 185,188–190.) As a consequence, the codimension of exceptional 
transitions (the number of parameters typically required to get to the 
bifurcation) is one in class I (in the Supplementary Information, we 
show that this occurs generically when O(2) symmetry is preserved). 
This should be contrasted with the codimension two of standard BT 
bifurcations, which is here reduced by one because of the presence of 
the Goldstone mode. In class II, time-independent states do not form 
a submanifold of codimension zero, and the codimension of the bifur-
cation is increased again. Correspondingly, exceptional transitions 
occur along lines in the two-dimensional phase diagram Fig. 2b, c, but 
at points in Extended Data Fig. 5.

More precisely, the degeneracy λ1 = λ2 = 0 can occur in two ways (see 
refs. 191–194 and Extended Data Fig. 1 on the problem of the codimension 
of subspaces with equal eigenvalues): at an exceptional point where the 
eigenvectors become collinear, or at a diabolic/Dirac point (DP) where 

the eigenvectors stay linearly independent. DPs have a higher codimen-
sion than exceptional points (so they can essentially be ignored), and 
do not correspond to the BT bifurcation (see, for example, refs. 195,196 for 
the corresponding codimension-4 bifurcation). For real matrices, the 
codimension of exceptional points is one. Along with the condition that 
the degenerate eigenvalue must vanish, this gives a codimension two to 
BT bifurcations. The presence of the Goldstone mode fixes one eigen-
value λ1 to zero, reducing the codimension by one (strictly speaking, to 
the codimension of exceptional points in the space of matrices with at 
least one zero eigenvalue, and this corresponds to a reduction by one).

We note that exceptional transitions are not BT bifurcations with O(2) 
symmetry in the sense of refs. 197,198, as the stable eigenvalues 0 < λ3 ≠ λ4 
are generally different. This is because we consider the departure from 
an ordered state with spontaneous symmetry breaking (aligned phase), 
not from a fully symmetric state (disordered phase). (This could be 
analysed as a secondary bifurcation through mode interactions22,68,69 
or with the formalism of refs. 199,200.)

Hydrodynamic theory for non-reciprocal flocking
We have derived hydrodynamic equations for the densities ρa(t, x) 
and polarizations Pa(t, x) (or equivalently the velocities va(t, x); in the 
main text, we denote the polarization fields by va(t, x) for simplicity) 
of an arbitrary number of populations from equations (2), (3). For a 
single population, the microscopic model reduces to the Vicsek model 
and the hydrodynamic theory to the Toner–Tu field theory, both of 
which describe flocking26,27,34,35,201–203. Our derivation, presented in Sup-
plementary Information section V, follows the methods described in  
refs. 5,77,204–208. More elaborate methods of coarse-graining 
exist205,206,209,210, but current state-of-the-art procedures only provide a 
qualitative agreement with the microscopic starting point208,211. Hence, 
we use the the easiest method, along with several simplifying approxi-
mations (see Supplementary Information section V), to highlight the 
key features of a non-reciprocal multi-component fluid, without look-
ing for a quantitative agreement (in the sense that the values of the 
coefficients might be inaccurate). The set of hydrodynamic equations 
obtained generalize the Toner–Tu equations35,201 to any number of 
populations with non-reciprocal interactions, and are the basis of the 
analysis in the main text.

Our results for two populations also generalize the situation con-
sidered in ref. 5, which considers aligners A (standard Vicsek-like 
self-propelling particles) and dissenters B that do not align at all with 
anyone (neither A nor B), but with which the population A aligns. With 
our notations, this corresponds to  jAA,  jAB > 0 but  jBB = jBA = 0.

The full hydrodynamic equations for two populations a = A, B are 
given in Supplementary Information equation S83 (Supplementary 
Information section V.C.2). For uniform fields, gradient terms can be 
removed and equation  S83 reduces to

γ j ρ

j ρ γ
∂ =

[ , ]

[ , ]
, (11)t
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B
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and similarly for B, and where j J=ab
R

ab2
0
2

. Here, R0 is a characteristic 
length scale of the interaction. (The polarizations denoted by PA and 
PB here and in the Supplementary Information are called vA and vB in 
the main text.) This equation is used to construct the phase diagrams 
of Fig. 2; see Supplementary Information section VI. We find (a) a dis-
ordered regime where the order parameter vanishes, (b) a flocking 
regime where the order parameters are parallel, (c) an antiflocking 
regime where the order parameters are antiparellel (sharing some 
similarities with refs. 212–214), (d) a periodic chiral regime where the 
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order parameter have circular trajectories (sharing similarities with 
chiral active matter173–176,215–218), (e) a periodic swap regime where the 
order parameter oscillate along a fixed direction, (f) a quasiperiodic 
chiral+swap regime in which the order parameter oscillates along a 
rotating direction. The full Supplementary Information equation S83 
including gradient terms is then linearized above the uniform solution 
of equation (11) to obtain the stability diagram of Fig. 3 (see Supple-
mentary Information section VII for details on the computations). We 
perform numerical simulation of the same Supplementary Information 
equation  S83 using the open-source pseudospectral solver Dedalus219 
to analyse the pattern formation regime in Fig. 3d–f (see Supplemen-
tary Information section XV for details). In all cases, the densities ρa 
are assumed to be constant (this occurs, for instance, in the incom-
pressible limit); when this is not the case, other instabilities can 
occur26,220–223.

Non-reciprocal Kuramoto model
In this section, we provide details on the analysis of the non-reciprocal 
Kuramoto model2,12,33,36,37,135,224–235. Depending on whether the system 
is in class I or in class II (respectively, PT symmetric and non-PT sym-
metric), we find codimension-1 or codimension-2 exceptional points, 
respectively, around which the phase diagram is organized. In class I, 
the exceptional line (in a two-dimensional phase diagram) separates the 
static (aligned or antialigned) phases from a chiral phase where parity 
(equivalent here to PT symmetry) is spontaneously broken. (See Supple-
mentary Information section III for a discussion of generalized PT sym-
metry in the equivariant dynamical systems considered here.) In class II, 
an exceptional point structures the phase diagram: the stable steady 
states are organized on a truncated version of the Riemann surface 
of the square root. This leads to discontinuous transitions marked by 
hysteresis between regions where two stable states coexist and regions 
where only one state exists, in a similar manner to driven-dissipative 
quantum fluids30,31. We first present analytic self-consistency arguments 
in which the existence of a static or harmonic steady state is assumed. 
We then resort to numerical simulations of a reduced dynamical system 
to confirm our analytic predictions and explore the full phase diagram, 
including non-harmonic time-dependent phases.

We start from equation (2), in which we consider globally coupled 
(all-to-all) oscillators and neglect the noise η(t) ≡ 0, as in the original 
Kuramoto model. The oscillators are separated into two communities 
(species) A and B and their phases follow

∑ ∑θ ω J θ θ∂ = + sin( − ), (13)t m
a

m
a

b n

N

ab n
b

m
a

=1

b

where a, b = A, B represent the two communities and m labels the oscil-
lators. The coupling constants  Jmn can be  JAA,  JAB,  JBA,  JBB depending 
on which populations the oscillators m and n belong to, and the con-
ventional Kuramoto model33,224 is recovered by setting the coupling 
strengths to be identical, that is,  JAA = JAB = JBA = JBB. In Supplementary 
Information section IX, we derive a self-consistency equation for the 
steady state, which ends up being very similar to equation (11) (with 
∂t → iΩ). To analyse the dynamics of the system and the stability of the 
solutions, we now focus on the (exact) mean-field dynamics in the case 
of Lorentzian frequency distributions for each community.

The dynamics of the generalized Kuramoto model in equation (13) can 
exactly be captured by a small number of coupled differential equations 
in the limit of a large number of oscillators; see refs. 12,135,229,230,232,236–242  
and the review ref. 243. In Supplementary Information section IX, we 
confirm that this mean-field dynamics is quantitatively consistent with 
direct simulations of the microscopic model equation (2).

Following Kuramoto224, we introduce the order parameters

∑z t
N

( ) =
1

e , (14)a
a m

N
θ t

=1

i ( )
a

m
a

which become finite when the oscillators synchronize. The amplitude 
and the phase of za(t) characterize, respectively, the phase coherence 
and the average phase of the component a.

Through the mean-field reduction, the evolution of the complex 
order parameter za(t) for each community a is described by230

∑z ω ∆ z j z z z∂ = (i − ) +
1
2

( − ¯ ), (15)t a a a a
b

ab b a b
2

where zb is the complex conjugate of zb, and where we have defined 
jab = JabNb. We have assumed that the natural frequencies of the oscilla-
tors in the community  a follow a Lorentzian distribution 
g ω ω ω ∆( ) = π [( − ) + ]a a a

−1 2 2 −1. The term iωaza in equation (15) explicitly 
breaks the mirror symmetry z z→a a  (and hence parity, which here  
corresponds to the generalized PT symmetry), but is invariant under 
rotations za → eiθza.

When ωa = 0 for all the communities, the system has a full O(2) sym-
metry, and one observes phases with spontaneously broken parity. In 
this paragraph, we focus on this situation. To mirror the analysis in the 
main text, we define  j± = ( jAB ±  jBA)/2 and determine a numerical phase 
diagram of the system in the ( j−,  j+) plane; see Extended Data Fig. 4. 
This phase diagram shares several qualitative features with the flocking 
phase diagram in Fig. 2. In particular, we find that the phase boundaries 
between the (anti)synchronized state (labelled coherent and π state in 
Extended Data Fig. 4) and the chiral state (labelled travelling wave in 
Extended Data Fig. 4) are marked by exceptional points in the Jacobian 
L of the dynamical system equation (15). Writing the right-hand side of 
equation (15) as fa(zb), the 4 × 4 Jacobian matrix L has blocks

L
f z f z

f z f z
=

∂ /∂ ∂ /∂

∂ /∂ ∂ /∂
(16)ab

b a b a

b a b a











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for a, b = A, B, where the derivatives are evaluated at the steady state. 
A direct numerical evaluation of this matrix shows that the two most 
unstable eigenvalues indeed coalesce (that is, form an exceptional 
point) at the transition; see Extended Data Fig. 4 for an example.

The similarity between Extended Data Fig. 4 and Fig. 2 can be antici-
pated: the Vicsek model is, in essence, an extension of the Kuramoto 
model in which the oscillators move (besides several differences in their 
most common incarnations). A finite natural frequency ωA = ωB ≡ ω0 ≠ 0 
common to all communities can be removed by a transformation of 
the degrees of freedom (where the oscillators are observed in a rotat-
ing frame).

To analyse the situation with explicitly broken PT symmetry (class II),  
we introduce a finite detuning ∆ω = ωA − ωB between the natural fre-
quencies of the two communities (we keep ωA + ωB = 0 for simplicity). 
In this case, exceptional points occur at points in a two-dimensional 
parameter space (their codimension is two). This is consistent with 
the occurrence of Bogdanov–Takens points in generalized Kuramoto 
models228,233–235,244,245, in which hysteresis can be present244,245.

The numerical simulation of equation (15) shows that there are regions 
of the phase diagram in which two states (clockwise and anticlockwise) 
coexist, as well as regions in which a single state is present. This can 
be understood as the result between the spontaneous PT-symmetry 
breaking at ∆ω = 0 (in which the two states are equivalent, and mapped 
to each other by PT symmetry) and the detuning that explicitly breaks 
PT symmetry (see Supplementary Information section III for a discus-
sion on PT symmetry). At the boundary between these regions, the 
properties of the steady states (such as their frequency Ωss ≡ Ω) change 
in a discontinuous way (such as in a first-order phase transition). This 
is illustrated in Extended Data Fig. 5. In Extended Data Fig. 5a, we show 
the manifold of stable steady states obtained from numerical simula-
tions, which is a truncated version of the Riemann surface of the square 
root characteristic of exceptional points. There is coexistence between 



two states (blue and red dots) in the red region in parameter space. In 
Extended Data Fig. 5b, we show hysteresis curves corresponding to 
slices of the manifold represented in Extended Data Fig. 5a.

This behaviour shares some features with the dynamical encircling of 
an exceptional point in a linear system246–249. However, a crucial differ-
ence is that here, we are dealing with the steady state (that is, many-body 
phase) of the system, which is possible only because of the nonlinearity 
(similar situations occur in refs. 30,50,250–255). In addition, the breakdown 
of the adiabatic theorem plays a crucial role in the situations analysed 
in refs. 246–249, but it is not the case in the first-order-like transitions 
and hysteretic behaviour described here. In particular, the hysteresis 
observed in Extended Data Fig. 5 does not depend on the speed at which 
the parameters are changed (∆ω in Extended Data Fig. 5b), provided 
that the change is slow enough (so that the system is always in a steady 
state). The hysteresis curve is then independent of the arbitrarily small 
rate of change. This is in sharp contrast with the situations analysed in 
refs. 246–249. These are ruled by a linear dynamical system, in which the 
most unstable state (that is, the one with the largest positive growth 
rate) always eventually dominates given enough time. In this situation, 
there is no hysteresis in the limit of an arbitrarily small rate of change.

Non-reciprocal pattern-forming instabilities
In this section, we apply our general strategy to pattern-forming insta-
bilities within the formalism of amplitude equations40,66,67,256–258. These 
describe a variety of physical systems ranging from fluid convection 
and lasers to ecological and chemical reaction-diffusion systems.

To clear any misunderstanding, let us warn the reader: this section is 
not about the exceptional-point-enforced pattern formation in Fig. 3. 
Instead, we consider non-reciprocal pattern formation, in which two 
fields are coupled in a non-reciprocal way. Here, the pattern formation 
is the spontaneous symmetry breaking (the Euclidean group E(d) of 
isometries of space is broken by the appearance of the pattern), and 
the pattern starts travelling at the (anti)aligned–chiral transition.

We first reinterpret equation (1) as an amplitude equation for the 
complex amplitude A v v≡ + ia a

x
a
y. Correspondingly, we perform direct 

simulations of the toy model equation (4), describing two coupled 
copies of the Swift–Hohenberg equation259, a simple model of pattern 
formation.

We then discuss a slightly more complicated situation, in which a sin-
gle physical field is present, but two Fourier modes with non-reciprocal 
couplings are relevant (the non-reciprocity occurs between the har-
monics), in which patterns with spontaneously broken parity also 
occur13,14,260–264 (see also refs. 265–268). This situation has several experi-
mental realizations in directional solidification of liquid crystals42,269–271, 
directional solidification of lamellar eutectics43,272–274, directional vis-
cous fingering15,41,275,276 and in overflowing fountains44,277. We show that 
in this situation too, the transition is marked by an exceptional point 
where the Goldstone mode of the spontaneously broken translation 
symmetry (phase diffusion) coalesces with a damped mode.

Without any attempt at completeness, we also refer to refs. 278–291 on 
binary convection and to refs. 292–299 on the visual cortex, and to refs. 300–308  
on Taylor–Couette/Dean flows.

Coupled amplitude equations. Let us first consider the 
one-dimensional Ginzburg–Landau amplitude equation

A -A g A A D A∂ = − | | + ∂ , (17)t x
2 2

where A is a complex amplitude. This equation describes, for instance, 
rolls in Rayleigh–Bénard convection. The physical field u (such as veloc-
ity or temperature) reads u t x A t x( , ) = ( , )e + c.c.q xi( )c , where qc is the 
wavenumber of the convection rolls, and A(t, x) is a slowly varying 
envelope. The apparition of a pattern is marked by A ≠ 0, and corre-
sponds to the spontaneous breaking of translation symmetry. The 
amplitude equation (17) satisfies translation symmetry by which 

A → Aeiφ, corresponding to a translation of the pattern by a distance 
φ/qc in the x direction; as well as inversion symmetry x → −x by which 
A A→  (overbar is complex conjugation). The reflection does not com-
mute with the translations, so overall we do not have the direct product 
of these groups, but instead the semidirect product U(1) ⋊ Z2 ≅ O(2) 
(where ≅ indicates a group isomorphism). This symmetry prohibits 
terms such as A2 in the right-hand side of equation (17), and guarantees 
that the coefficients are real.

Let us now introduce non-reciprocity: to do so, we consider two cou-
pled amplitudes A1 and A2 (describing two different coupled fields), 
and write the most general equation of motion compatible with the 
symmetry, up to third order (like in equation (17)). The only terms 
allowed are first order terms, as well as third order terms of the form 
A A A A A( + )b c c b d, in both cases with real coefficients. Hence, our ampli-

tude equation reads

A - A g A A A A A D A∂ = − ( + ) + ∂ , (18)t a ab b abcd b c c b d ab x b
2

where all the coefficients are real. Focusing on spatially uniform ampli-
tudes and ignoring diffusive terms in equation (18), we recognize equa-
tion (1) upon representing the complex amplitude Aa as a two-dimensional 
va = (ReAa, ImAa), owing to the fact that the symmetry groups are iso-
morphic. We note, however, that the physical interpretation of the sym-
metries are different in both cases. Having identified equation (18) with 
equation (1) (in the uniform case), we can immediately predict that all 
the phases described in the main text for flocking should exist here (see 
Extended Data Fig. 6 for their interpretation in this context).

Our analysis focused on the mean-field (k = 0) transitions, and our 
conclusions remain valid as long as the growth rates are negative at 
finite k (this is, in particular, the case where Dab = Dδab, where δab is the 
Kronecker delta, so the growth rates are of the form σi(k) = σi(0) − Dk2; 
but this is especially not guaranteed when Dab is not symmetric). We 
emphasize that we did not assume non-reciprocal cross-diffusion, in 
contrast with refs. 55,56 (another difference with these references is that 
we consider a non-conserved order parameter in the language of ref. 32).

We also mention that upon lifting the constraint put upon equa-
tion (18) by reflection symmetry, one is left with a U(1)-equivariant 
system with explicitly broken PT symmetry (see Supplementary 
Information section III for definitions and discussions, including  
refs. 25,106–115), and equation (18) becomes a complex Ginzburg–Landau 
equation. We expect the analysis of Methods section ‘Non-reciprocal 
Kuramoto model’ to apply in this case.

Coupled Swift–Hohenberg equations. To further support our claims 
and illustrate the phases described above, we consider two coupled 
Swift–Hohenberg equations in equation (4) describing the dynamics 
of the real fields ua(t, x), with a = 1, 2 (we also define r± = (r12 ± r21)/2). An 
explicit version of the amplitude equations (18) (obtained from sym-
metry considerations) could be derived from equation (4), following 
for example, ref. 66. Instead, we solve equation (4) numerically on a 
one-dimensional domain of size 2L with periodic boundary conditions 
using the open-source pseudospectral solver Dedalus219, starting from 
random initial conditions. The results confirm our predictions based on 
the coupled amplitude equations (18). In Extended Data Fig. 6, we show 
snapshots of the numerical results, in which all the phases described 
above appear. In this case, equation (4) has the full Euclidean group 
E(1) as a symmetry group, which is broken by pattern formation. (The 
O(2) symmetry of equation (18) pertains to the amplitude equation 
description, in which additional knowledge about the pattern is taken 
into account.)

Directional interface growth. Following refs. 13,14,262–264, we now con-
sider a single scalar field decomposed as

u t x A t x A t x( , ) = ( , )e + ( , )e + c.c. (19)q x q x
1

i( )
2

i2( )c c
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As in the previous case, the transition and reflection symmetry of 

the underlying system endows the amplitude equation with O(2) sym-
metry. However, note that while A1 transforms as A1 → A1eiθ when the 
field u is translated in space, A2 transforms as A2 → A2e2iθ. This is a dif-
ferent representation of the SO(2) group compared to the previous 
paragraph. (The 42 part is unchanged, and still corresponds to A A→1 1 
and A A→2 2.) Because the representation is different, the general form 
of the amplitude is different, and reads13,14,262–264

A µ A A A α A A β A A

A µ A A γ A A δ A A

∂ = − ¯ − | | − | | ,

∂ = + 5 − | | − | | .
(20)

t

t

1 1 1 1 2 1
2

1 2
2

1

2 2 2 1
2

1
2

2 2
2

2

The coefficients α, β, γ and δ are usually assumed to be positive to 
ensure stability, and the coefficient of A A1 2 is set to −1 by rescaling. The 
non-reciprocity is then captured by the coefficient - being positive, 
which is necessary for the apparition of travelling patterns262. As the 
amplitudes A r= e φ

1 1
i 1 and A r= e φ

2 2
i 2 correspond to different Fourier 

components, the relevant phase difference between them is  
∆φ = 2φ1 − φ2.

In Extended Data Fig. 7, we show the spectrum of the operator L 
obtained by linearizing equation (20) around its steady state (see 
equation (16) for the definition of L, with the replacement za → Aa). At 
the transition between a static solution (representing a static pattern) 
and a travelling-wave solution (representing a travelling pattern), we 
observe the coalescence of the Goldstone mode with a damped mode 
at an exceptional point (red circle in the figure). We also note that the 
presence of exceptional points away from zero in the spectrum of L 
does not mark a phase transition (bifurcation).

Data availability
No data were generated during the course of this study.
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Extended Data Fig. 1 | Codimensions of eigenvalue degeneracies. This graph 
gives the codimension (codim) of twofold degeneracies of eigenvalues in 
different matrix spaces; see ref. 194. These degeneracies can be exceptional 
points (EP) or diabolic points (DP, also known as Dirac points). An identical 
graph can be drawn by replacing ‘real symmetric’ with ‘purely imaginary 
symmetric’, ‘Hermitian’ with ‘anti-Hermitian’ and ‘real’ with ‘imaginary’.



Extended Data Fig. 2 | Many-body suppression of noise-activated chirality 
inversions. a, A change in the sign of the angle ∆φ between the order 
parameters vA and vB (in blue and red) flips the chirality (clockwise or 
anticlockwise) of the chiral phase. Qualitatively, the two steady-state values 
±∆φc towards which the system relax correspond to the minima of an effective 
potential U(∆φ), with a barrier ∆U separating these minima. The lifetime of the 
chiral phase is the average time τ separating two flips of chirality (represented 
in green), namely the Kramers escape time required to jump from one 

minimum to the other under the effect of noise. b, The standard deviations 
quantifying the fluctuations of the order parameters va in the chiral phase 
decrease approximately as N1/  with the number of agents N. The grey lines are 
equally spaced N1/  curves and are meant as a guide to the eye (not a fit). The 
data are obtained from simulations of the Kuramoto model equation (2) with 
JAA = JBB = 1,  JAB = 1,  JBA = −1.1, η = 8 × 10−2 and all-to-all couplings. The total duration 
is Tsim/δt = 4,000 with δt = 0.5, over which the standard deviation is computed.
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Extended Data Fig. 3 | Effect of non-conservative forces. In this simplified 
pictorial representation, the order parameter (represented by a ball) evolves in 
a potential-energy landscape shaped like a sombrero. In a conservative system, 
the order parameter would relax straight to the bottom of the potential 
(dashed blue line). Here, transverse non-conservative forces push the order 
parameter in the direction defined by the bottom of the potential, leading to a 
curved trajectory (red continuous line) starting from the same initial 
condition. In the systems we considered, the non-conservative forces arise 
from the non-reciprocal coupling between two order parameters. This aspect 
is not captured by this simplified picture.
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Extended Data Fig. 4 | Phase diagram of the PT-symmetric non-reciprocal 
Kuramoto model and exceptional point in the spectrum of the Jacobian.  
a, Phase diagram computed numerically from equation (15). The states are 
defined in Extended Data Table 1. b, The two most unstable eigenvalues  
λi = σi + iωi of L coalesce at  j+ ≈ 0.007. This value coincides with the transition 
from travelling waves (TW) to coherent states, marked by a red dashed line. 

Note that this coalescence occurs at λ = 0 (not at finite frequency nor at finite 
growth rate). The corresponding eigenvectors become collinear (this can be 
verified, for instance, by computing the determinant of the matrix of 
eigenvectors, that vanishes at the exceptional point). The imaginary parts ωi 
(not shown) are all zero. We have set  jAA = jBB = 1, ∆A = ∆B = 0.25 and ωA = ωB = 0.  
In b,  j− = 0.1 (a similar behaviour is observed for neighbouring values of  j−).
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Extended Data Fig. 5 | Hysteresis in the chiral Kuramoto model. When 
chirality is explicitly broken, exceptional points have codimension two, that is, 
they are typically points in a two-dimensional parameter space. a, We plot the 
frequency Ω of the steady state of the Kuramoto model with explicitly broken 
PT symmetry as a function of the difference ∆ω = ωA − ωB between the two 
communities (also called detuning) and the deviation j j jδ = −− − −

EP of the 
non-reciprocal part  j− of the coupling between the communities from its value 
j−

EP at the exceptional point. The system exhibits a region where two possible 
steady states with different properties coexist (the two steady states are the 
continuation of the clockwise and anticlockwise chiral phases present in the 
PT-symmetric case ∆ω = 0). This region (red triangle) starts at the exceptional 
point (red point) and its size increases with the amount of non-reciprocity (here 
j ≈ 0.2915 > 0−

EP ). The system exhibits hysteresis in the coexistence region (red 

points). b–e, Slices from a at fixed δj− (marked by green dotted lines in a). After 
the exceptional point, there is hysteresis/first-order (discontinuous) 
behaviour. In d, the hysteresis curve bends outwards near the transition. This is 
due to the oscillation of the norm of the order parameter (which we refer to as 
swap or periodic synchronization elsewhere) for large enough δj−. This 
additional complication does not occur for moderate values of δj−, such as in c. 
The solution of the dynamical system equation (15) were computed along lines 
at fixed δj−, starting at large |δω| (in a region without phase coexistence) from a 
random initial condition. The solution (after convergence) was used as an 
initial value for the next point in the line with fixed δj−. This procedure was 
carried out two times, starting from positive and negative large |δω|. We have 
set  j+ = 0.08,  jAA = jBB = 1, ∆A = ∆B = 0.25, ωA = ωB = ∆ω/2.



Extended Data Fig. 6 | Non-reciprocal pattern formation. We show a 
space-time density plot of the field u1(x, t) in different phases, as well as 
snapshots of the fields u1(x, t) and u2(x, t) at time t = 200. a, We observe a 
disordered phase where both field vanish. b, An aligned phase where both 
patterns are static and in phase (superimposed). c, An antialigned phase where 
the patterns are static and completely out of phase. d, A chiral phase where the 
patterns move at constant velocity, either to the left or to the right 
(spontaneously breaking parity), and in which the fields have a finite phase 
difference, usually neither zero nor π. e, A swap phase where the patterns 
essentially jump by a phase π every period. f, A mix of the chiral and swap 
behaviours (as in the chiral phase (d), there is a spontaneously broken 
symmetry between left and right movers). The fields are obtained by direct 
numerical simulation of the coupled Swift–Hohenberg equations on a 
one-dimensional domain of size 2L with periodic boundary conditions, 
starting from random initial conditions. The simulations are performed using 
the open-source pseudospectral solver Dedalus219. We have used g = 0.25 in all 
cases. In a, r11 = r22 = −0.5 and r+ = r− = 0.00. In the other cases, we have set r11 = 
r22 = 0.5 (b–f) and r+ = 0.50, r− = 0.00 (b); r+ = −0.50, r− = 0.00 (c); r+ = 0.00, 
r− = 0.25 (d); r+ = 0.87, r− = 1.00 (e); r+ = 0.85, r− = 1.00 (f).
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Extended Data Fig. 7 | Exceptional point in directional interface growth. 
The spectrum of the Jacobian L corresponding to equation (20) exhibits an 
exceptional point at the transition between static patterns and travelling 
patterns with spontaneous parity breaking (that is, the patterns travel with 
equal probability to the left or to the right). The two most unstable eigenvalues 
λi = σi + iωi of L coalesce at µ1 ≈ 0.064 (red circle). This value coincides with the 
transition from a constant solution to travelling waves, marked by a red dashed 
line. The coalescence occurs at λ = 0 (not at finite frequency nor at finite growth 
rate), and the corresponding eigenvectors become collinear. Note that another 
exceptional point occurs near µ1 ≈ 0.014 (green circle), but with a strictly 
negative growth rate: this does not correspond to a bifurcation. We also show 
the dephasing ∆φ = 2φ1 − φ2 between the amplitudes, which undergoes a 
pitchfork bifurcation; the direction of motion of the pattern is set by ∆φ. We 
have set α = β = γ = δ = 1, ε = +1 and µ2 = −0.1.



Extended Data Table 1 | An O(2) ‘Rosetta stone’

state flocking synchronization patterns ra φB − φA

trivial disordered incoherent none 0 n/a
aligned flocking coherent in-phase constant "= 0 0

antialigned antiflocking π-state anti-phase constant "= 0 π
chiral chiral traveling wave state traveling constant "= 0 constant "= 0,π
swap swap periodic synchronization modulated time-dependent constant mod π

swap+chiral swap+chiral PS+TW traveling modulated time-dependent time-dependent

Definitions of the states in the different systems. The complex order parameters za = raeiф are decomposed in amplitude ra = |za| and phase =φ z ze /| |a a a
i . The label ‘PS+TW’ corresponds to ‘periodic 

synchronization + traveling wave’. For synchronization, we mostly followed the nomenclature of refs. 12,33,135,229,234,309,310 and we do not distinguish fully coherent states (r = 1) from partially 
coherent ones (0 ≠ r < 1), both are called ‘coherent’. These different states can be understood from symmetries; see refs. 22,68,69,199,200,311. The chiral, swap and swap+chiral states/phases break 
time-translation invariance in a way reminiscent of time crystals53,54,312–315 and quasicrystals316,317, as illustrated in Supplementary Video 2.
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