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ABSTRACT: We assess impacts of the 2020 COVID-19 lockdown on ambient air
quality in Delhi, building on over three years of real-time measurements of black carbon
(BC) and nonrefractory submicrometer aerosol (NR-PM1) composition from the Delhi
Aerosol Supersite and public data from the regulatory monitoring network. We performed
source apportionment of organic aerosol (OA) and robust statistical analyses to
differentiate lockdown-related impacts from baseline seasonal and interannual variability.
The primary pollutants NOx, CO, and BC were most reduced, primarily due to lower
transportation emissions. Local and regional emissions such as agricultural burning
decreased during the lockdown. PM2.5 declined but remained well above WHO
guidelines. Despite the lockdown, NR-PM1 changed only moderately compared to prior
years. Differences in the trends of hydrocarbon-like OA and BC suggest that some sources
of primary aerosol may have increased. Despite notable reductions in some primary
pollutants, the lockdown restrictions led to rather small perturbations in the primary
fraction of NR-PM1, with secondary aerosol continuing to dominate. Overall, our results
demonstrate the impact of secondary and primary pollution on Delhi’s air quality and show that large changes in emissions within
Delhi alone are insufficient to bring about needed improvements in air quality.

■ INTRODUCTION

Delhi, India, routinely experiences particulate matter (PM)
concentrations that rank among the very highest in the world.1

However, the sources and atmospheric dynamics of PM in
Delhi remain incompletely understood. One highly policy-
relevant knowledge gap is the interplay between local
emissions in this megacity region of ∼30 million people and
the regional atmospheric chemistry of the broader Indo-
Gangetic Plain.

2,3 Numerous major primary sources of PM in
Delhi include traffic, biomass burning from cooking and
heating, waste burning, construction, emissions from both
formal and informal industries (e.g., brick kilns), and electric
power generation.4,5 The fraction of primary submicrometer
aerosol (PM1) in Delhi is high (∼30%−40%) relative to other
megacities.6 However, the generally dominant contribution of
secondary PM remains both a matter of surprise in public
discourse about air pollution and a vexing challenge for Delhi-
centric air pollution control efforts that target primary
emissions.
Restrictions in cities around the world aimed to control the

COVID-19 pandemic have provided a novel opportunity to
study how changes in human activities and their associated
emissions affect atmospheric chemistry and air quality.7−18 In
India, lockdowns in 2020 were implemented in four phases,
phase 1 (March 25−April 14), phase 2 (April 15−May 03),

phase 3 (May 04−17), and phase 4 (May 18−31), with
restrictions easing with time (Figures S1 and S2).19−23 During
phases 1 and 2, activities such as transportation and
construction were severely restricted, and several factories
and businesses were shut down.24 Power plants in several parts
in India operated at a lower capacity or were shut down owing
to lower demand.25−27 These changes offered insights on how
future emission reductions might affect air quality in Delhi.
Recent analyses of the COVID-19-related lockdown in Delhi

and other Indian cities have been generally limited to a small
number of pollutants (e.g., PM2.5, O3, NOx, CO) that are
influenced by a large number of local and regional sources,
with one study focused on the PM2.5 composition during the
lockdown.23−25,28−37 Here, we utilize a unique long-term
(∼3.5 years) measurement data set of submicrometer aerosol
(PM1) composition measured using an aerosol chemical
speciation monitor and a multichannel aethalometer as part
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of the Delhi Aerosol Supersite (DAS) study,6,38−40 coupled
with receptor modeling and pollutant data from the regulatory
monitoring sites, to investigate the impacts of the lockdown on
both primary and secondary pollutants in the Delhi megacity.

■ MATERIALS AND METHODS

DAS Instrumentation. We have been measuring non-
refractory PM1 (NR-PM1; submicrometer aerosol that flash
vaporizes at 600 °C) using an aerosol chemical speciation
monitor (ACSM, Aerodyne Research, Billerica MA)41 and
black carbon using a multichannel aethalometer (Magee
Scientific Model AE33, Berkeley, CA)42 almost continuously
since Jan 2017. The site is located at the Indian Institute of
Technology, Delhi campus, in New Delhi.6,38−40 Details on
ACSM calibration and data processing are presented in Section
S1 of the Supporting Information (SI). For the analysis
presented in this article, we used data from March−May across
four years, 2017−2020.
Positive Matrix Factorization (PMF). We conducted

positive matrix factorization (PMF) analysis for two periods,
“before lock down” (March 01−24 ) and “during lockdown”
(March 25−May 31 and March 25−April 25 for 2018) across
three years (2018−2020) using the ACSM organic aerosol
(OA) spectrum. We determined a three-factor solution
(hydrocarbon-like OA, “HOA”; oxidized biomass burning
OA, “OBBOA”; and oxidized OA, “OOA”) to best represent
the data set for all periods/years analyzed (Figures S3 and
S4).43−46 Further details on the PMF runs and factor
identification are presented in Section S2 and Figures S3−S7.
Other Data. We retrieved CO, NOx, SO2, O3, PM10 ,and

PM2.5 data from the Central Pollution Control Board (CPCB)
with additional processing steps summarized in Section S3.
Details on the supporting meteorological, fire count, and
electricity production data are also presented in Section S3.
Data Analysis. In core analyses, we used the method of

“robust differences” (D-value, eq 1) to compare the
concentrations in 2020 to recent trends (2017−2019 average,
henceforth referred to as historical concentrations).47

D C C I( )/i i i i2020, h, h,= − (1)

where C2020,i is the weekly median concentration of the daily
averaged data in week i, Ch,i is the historical median
concentration (based on years 2017−2019; 2018−2019 for
PMF factors) for i ± 2 weeks, and Ih,i is the historical
interquartile range (IQR) for i ± 2 weeks. The use of median
concentration makes it robust to the presence of outliers, and
the use of ±2 weeks (i.e., ∼28 days) of data allows for the
smoothing of unusual weeks in the observational record. The
D-value metric compares conditions at one time of year over
multiple years, thereby assessing the degree to which
concentrations are typical or atypical for a given period. For
example, a D-value of −2 indicates that concentrations in week
i in 2020 were lower than historical concentrations by a factor
of 2 IQR, indicating an influence of reduced emissions during
the lockdown.
As a supplemental and complementary analysis technique

(“percent difference”, Figure S8), we computed the percentage
difference between concentrations in each phase of the
lockdown and the baseline pre-lockdown period (March 01−
24). We compared this seasonal evolution in air pollutants for
2020 with that for prior years (Figure S8). Further, we
conducted statistical tests to determine significance of the

difference in concentrations relative to historical concen-
trations and concentrations before the lockdown (Figure S9).
Overall, the test results compare well with our interpretation of
D-values and percentage differences. Thus, while year-to-year
differences in meteorology and emissions do provide a degree
of irreducible uncertainty in our analyses, the consistency of
our results among multiple analytical techniques suggest that
they are robust. We focus on D-values in the Results and
Discussion and use percent difference data and associated p-
values as Supporting Information to complement the D-value
method.

■ RESULTS AND DISCUSSION
As shown in Figure 1a and b, with the onset of the lockdown,
ambient PM2.5, NR-PM1, CO, NOx, and BC reduced. SO2 did

not change much, and O3 increased (see average concen-
trations in Table S2 and Figure S10a). Notably, most species
concentrations were lowest during the first phase (P1) of the
lockdown (relative to other phases). While the lockdown
restrictions likely had an impact, it is important to note that
Delhi experienced rains during that period (Figure 1d) which
also contributed to the improvement in air quality. Further, the
ventilation and temperature increased during the lockdown
(Figure 1d), which can partly explain the observed trend.
Concentrations of all particle species are expected to decrease
with increased ventilation, and the concentrations of volatile
particle-phase species, especially ammonium nitrate and

Figure 1. (a) Weekly moving averages of pollutants NR-PM1, PM2.5,
BC, CO, NOx, SO2, and O3 before and during the lockdown. P1−P4
correspond to the four phases of lockdown. Weekly moving averages
of (b) NR-PM1 species, (c) OA PMF factors, and (d) meteorological
parameters: 1/VC (VC = ventilation coefficient), 1/T (T in °C). The
parameters have been normalized to 02/16−02/28 averages; the PMF
factors have been normalized to average concentrations during the
pre-lockdown period. Weekly moving averages help smoothen out the
day-to-day variability and capture the longer-term trends. Normal-
ization helps understand the relative deviation from early spring
concentrations. Precipitation is shown in terms of precipitation flux
(Kgm−2 s−1). (e) Wind speed in ms−1. Colors represents the wind
direction.
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ammonium chloride, are also expected to further decrease with
increasing temperature (see average NR-PM1 species concen-
trations in Table S3 and Figure S10b).48 Figure S11 shows the
evolution of PM1 (= NR − PM1 + BC) species during the
lockdown in 2020 and compares it to the average historical
trends during those periods. The trend of the PM1
concentration was different in 2020. It was lowest during P1
in 2020, while its decrease was more gradual in the previous
years, reaching lowest values during P2, before increasing in
P3. Concentrations of all PM1 species decreased during the
initial phases of the lockdown, and the ratio of primary to
secondary aerosols did not decrease due to lockdown
restrictions (Figure S12d), which mostly impacted emissions
of primary pollutants. This is a further testament to the rapid
photochemical processing of primary pollutants and impor-
tance of secondary aerosol in Delhi.6,39 Below, we discuss and
present explanations for the variability of PM1 species and
other pollutants.
The concentrations of NOx, CO, and BC were significantly

lower than historical concentrations during the initial phases
(P1−P3) of the lockdown (Figure 2a−c; D-values ∼ −2 or

lower; low p-values in tests (1) in Figure S9), likely due to
reduced vehicular emissions, which is their dominant
contributor. In fact, their D-values (and those of PM10 and
PM2.5) became negative a few weeks before the lockdown
(Figure 2), indicating some reduction in activity before March
25, consistent with the mobility trends in Figure S13 and the
nationwide curfew on March 22.23 While the D-values of NOx
remained low through P1−P3, those of CO and BC increased
gradually after P1, possibly due to contributions from
residential activities such as cooking and biomass burning
which contribute relatively less to NOx, as also indicated by
Delhi emission inventories.49 The ratios of BC/CO and BC/
PM2.5 (Figure S12) were lowest during P1 and increased

gradually, while NOx/CO kept decreasing until P3, consistent
with a change in source mix during the lockdown and
increased contribution from residential activities. Historically,
NOx and CO concentrations increased during P3/P4 (Figure
S8a, b), despite increased ventilation, likely due to contribution
from agricultural burning (the lockdown coincided with the
rabi crop burning season from mid April−May50), which was
significantly reduced this year (see fire counts in Figure S14).
Thus, in addition to reduced vehicular emissions, reduced crop
burning likely also impacted the concentrations of NOx and
CO in 2020. By P4, the D-values of NOx, CO, and BC
returned to near baseline values observed before the lockdown,
consistent with high p-values in test (2) (Figure S9) and low
percentage differences (Figure S8).
During the lockdown, the decrease in NOx concentration

was accompanied by an increase in O3 concentration (Figure
2a, d). However, in P1 and P2, the O3 concentration was not
substantially higher than in previous years (D-value < 1)
(Figure 2d). Further, the increase in O3 concentration going
from March to April was also observed in previous years (see
temporal trend in Figure S15), In P3, O3 was higher relative to
prior years (D-value ∼ 3), and the weekly moving averages
(Figure S15) indicate that it continued to increase despite the
relatively small temporal changes in NOx during that period.
While this is consistent with VOC-limited conditions,51 it can
also be due to enhanced photochemical processing, given the
increase in photochemical activity during that time of the year
and the concurrent increases in O3, organic aerosol (Org), and
sulfate (SO4

2−) during the period (Figure 2 and Figure S8).
Future VOC measurements are needed to understand ozone
formation in the city.
PM2.5 and PM10 concentrations during the lockdown were

lower relative to previous years (D-values ∼ −4 to −2) (Figure
2 f, g). While daily averaged PM2.5 decreased to less than 60
μgm−3 (Indian National Ambient Air Quality standard for 24-h
average52), on many days it remained higher than the World
Health Organization guideline of 25 μgm−3 (Figure S16).53

The relative increase in D-value in P4 (consistent with
increased p-value in Figure S9) was likely due to the influence
of crop burning and photochemical processing during that
period since the temperature/ventilation favored lower
concentrations (Figure 1d). Historically, PM2.5 did not change
significantly, while PM10 increased during the summer (April−
May) period (Figure S8f, g), despite increased ventilation and
temperature. This may be due to agricultural burning,
photochemical processing, and the influence of dust events
in summer.54 Overall, the reduced PM2.5 concentrations during
the lockdown in 2020 were likely due to decreases in local and
regional sources during the period. NR-PM1 during the
lockdown was lower than the historical concentrations only
during P1 (D-value ∼ −2 to −1 in Figure 2h; high p-values in
tests (1) in Figure S9 after P1). The different influences of the
lockdown on PM2.5 and NR-PM1 could be due to an increased
influence of regional transport of crop burning and dust events
on larger particles54,55 and the different locations where these
were measured (NR-PM1 inside the IIT-D campus, PM2.5
averaged across several sites in the city).
Among the NR-PM1 species, ammonium (NH4

+) and
chloride (Cl−) concentrations during the lockdown (Figure
2j, k) did not differ significantly from historical concentrations
(D-value ∼ −1 to 1; high p-values in tests (1) in Figure S9).
This is likely due to the relatively high vapor pressure of
ammonium chloride making temperature the most important

Figure 2. Weekly robust difference D-value of pollutants from 02/01
to 05/31 2020, reflecting the changes in air pollutants in 2020 relative
to multiyear observational baselines. Data for panels (a) and (b) and
(d)−(g) reflect pollutants monitored by the official regulatory
network in Delhi, while other panels result from our observations at
the Delhi Aerosol Supersite. P1−P4 and associated shaded regions
correspond to the four phases of lockdown.
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factor controlling its concentrations (Figure S8k). Further,
potential chloride sources such as steel processing plants and
trash burning38 likely did not “turn off” during the lockdown
period. Nitrate (NO3

−) was slightly lower than historical
concentrations (D-value < −1) during the first week of P1 but
not after that (Figure 2l; consistent with the lower p-value in
P1 in tests (1) in Figure S9). The lower reduction in nitrate
compared to NOx is indicative of the complex nitrate
chemistry in Delhi and is similar to the observations by Sun
et al.56 in Beijing, China, where particulate nitrate decreased
less than NOx during the lockdown. In Delhi, the temperatures
during the latter phases of the lockdown were higher
(summer) than the temperatures observed during the
lockdown in Beijing (winter). At the higher summer
temperatures, little inorganic nitrate is present in the particle
phase, which may explain the similarity to historical trends for
nitrate in Delhi. Sulfate was lower than previous years during
P1 and P2 (D-value ∼ −2 in Figure 2i; low p-values in P1 and
P2 in test (1) in Figure S9) and relative to the March 01−24
average (by ∼50%−60%; Figure S8i). This could partly be due
to reduced coal-based electricity generation in India during the
lockdown period (see temporal trend in Figure S17). However,
SO2 was not significantly impacted, indicated by the low
percent changes during the lockdown (Figure S8e; consistent
with high p-values in test (2) Figure S9) and comparably low
D-values before and during the lockdown (Figure 2e). The
differences between the trends of SO2 and sulfate could be due
to the fact that that SO2 hotspots (e.g., coal-fired power plants)
are outside of Delhi,27 and sulfate is more regional than
SO2.

51,57 This contrasts with Beijing, which observed increases
in the concentrations of particulate sulfate during the initial
period of the lockdown despite reduced SO2, due to higher
relative humidity during this period.56 The larger excursions in
sulfate and nitrate relative to ammonium during the initial
phases of the lockdown in Delhi are consistent with higher
particle pH during these phases.
Organic aerosol concentrations were lower than previous

years during P1 but not after that (Figure 2m; consistent with
low p-value in P1 in test (1) in Figure S9). PMF factors offer
more detailed insights. The reductions in HOA were lower
than those in BC (lower drops in D-value in Figure 2c, n;
higher p-values during P2 onward in Figure S9), pointing to
the influence of sources other than traffic on HOA, such as
diesel-based electricity generators58 and/or residential cooking
which likely increased during the lockdown, as also indicated
by the MS of HOA (enhanced m/z 55/57, Section S2). The
OBBOA D-value decreased during P1 (Figure 2o) but
increased during P2 and P3 due to the influence of agricultural
burning. OOA experienced a greater reduction (more negative
D-values) than HOA and OBBOA (Figure 2n−p; lower p-
values for more phases than HOA/OBBOA in Figure S9),
consistent with its fast photochemical production from local
primary sources, which were reduced during the lockdown, and
regional transport.6,39 This is also consistent with recent VOC
measurements in Delhi, which demonstrated a role of local
oxidation of primary emissions on secondary OA formation.59

The increase in the OOA D-value in P3 was likely due to
photochemical processing of emissions from agricultural
burning. Thus, unlike Beijing, where the overall OOA
contribution increased during the lockdown,56 in Delhi, it
decreased during the initial phases of the lockdown and
increased during the latter phases.

Overall, strict activity restrictions helped reduce the
emissions from some major sources: transportation, con-
struction, some industries, power plants, and agricultural
burning. However, even these strict restrictions did not reduce
PM2.5 levels to the WHO 24-h air quality guideline of 25 μg
m−3. The lower reductions in HOA relative to BC suggest that
certain primary aerosol sources such as residential cooking and
diesel generators may have increased. The ratio of primary to
secondary aerosol did not decrease due to lockdown
restrictions, and secondary aerosol continued to dominate.
While it is true that emissions and concentrations of primary
pollutants including primary aerosol are high in Delhi, rapid
photochemical processing as well as regional transport results
in even higher concentrations of secondary aerosol. To better
understand the formation and processing of secondary PM60

and O3, it is important for future studies to include gas phase
measurements to characterize VOC emissions.
To address the major air pollution challenge in Delhi, there

is an urgent need for integrative, multiscale, and multisectoral
policies, which include tackling multiple sources simulta-
neously (such as local and regional biomass burning,
transportation, power plants, diesel generator sets, industrial
emissions) and formulating a regional action plan, including
but not limited to Delhi.3
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