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Abstract. Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting. Many
of these methods utilize exogenous variables as input features, but there remains the question of which atmospheric variables
provide the most predictive power, especially in handling non-linearities that lead to forecasting error. This investigation ad-
dresses this question via creation of a hybrid model that utilizes an autoregressive integrated moving average (ARIMA) model
to make an initial wind speed forecast followed by a random forest model that attempts to predict the ARIMA forecasting
error using knowledge of exogenous atmospheric variables. Variables conveying information about atmospheric stability and
turbulence as well as inertial forcing are found to be useful in dealing with non-linear error prediction. Wind direction (¢) and
temperature (71") are found to be the most beneficial individual input features. Streamwise wind speed (U), time of day (%),
turbulence intensity (7°1), turbulent heat flux (w’7”), 6, and T are found to be particularly useful when used in conjunction.
The prediction accuracy of the ARIMA-RF hybrid is compared to that of the persistence and bias-corrected ARIMA models.
The ARIMA-RF model is shown to improve upon these commonly employed modeling methods, reducing hourly forecasting

error by approximately 30% below that of the bias-corrected ARIMA model.

1 Introduction

Global wind power capacity reached almost 600 GW at the end of 2018 (GWEC, 2019), making wind energy a vital component
of international electricity markets. Unfortunately, integrating wind power into an existing electrical grid is difficult because
of wind resource intermittency and forecasting complexity. For utility companies employing wind power, it is important to
estimate the aggregated load over a period of time to better balance grid resources, including long-term (1+ days ahead), short-
term (1-3 hours ahead) and very-short term forecasts (15 minutes ahead) (Wu et al., 2012; Soman et al., 2010). Forecasting
accuracy depends on site conditions, surrounding terrain, and local meteorology. Many wind farms are built in locations which
are known to amplify winds due to surrounding terrain (such as Lake Turkana in Kenya, Tehachapi Pass in California etc.),
requiring bespoke forecasts for accurate predictions. Numerical weather prediction models (NWPs) fail at such complex sites
due to a lack of appropriate parameterization schemes suited for local conditions (Stiperski et al., 2019; Bianco et al., 2019; Ol-

son et al., 2019; Akish et al., 2019). Therefore, statistical models and computational learning systems (such as neural networks
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and random forest) are likely better suited to provide accurate power forecasts. Since wind power production is heavily reliant
upon environmental conditions, improvements in wind speed forecasting would allow for more reliable wind power forecasts.

If we simplify our wind speed prediction process down to its core (which has no true relation to atmospheric motions), we
can imagine a system of atmospheric flow without external forcing. This would result in a constant streamwise wind speed
U (i.e. U =U,_1; U is streamwise wind speed, 7 a timestep; this assumes discrete timesteps for simplicity). In this case,
a persistence or autoregressive forecast would have zero forecasting error and uncertainty. However, uncertainty increases
once we add an external force that we may represent by some variable x;. Now future wind speed may be seen to be U, =
f(Ur—1,21,7—1). Assuming the external force is notable in strength and coupled with the inertia associated with winds, the
previous autoregressive model will now struggle to predict U, because it does not take into account our external forcing 21 -1,
resulting in an error € (&, is abbreviated to € for simplicity). We can then break down our future wind speed into two parts:
U, = ﬁT + ¢ where UT is our autoregressive forecast that is only dependent on U, _1 (i.e. ﬁT = f(U_1)). The prediction error
is thus skewed to represent the effects of the external force x; ,—1 upon U, _;.

If we continue to add external forces (z1, x3, ... T,; n is the number of external forcing variables), our atmospheric sys-
tem becomes much more complex and non-linear due to interactions between forcing mechanisms. We can again obtain our
forecasting error as € = f(U;_1,21,-—1,%2,7-1, -.. Tn,7—1), Which we can discretize as ¢ = pi. +¢’ (. is the error bias, &’
the error fluctuations about p.) given that we have a statistically significant sample size and the process is stationary. Squar-
ing this equation and taking the average gives us the discretized equation for the mean squared error £2 = ;Tg + €2, with 2
representing the error variance and overlines denoting the average over all samples (Lange, 2005). ,Tg represents the bias and
may be removed via a simple bias-correction. The true concern is the error fluctuations (¢’) which comprise the error variance.
Assuming the external forcing variables (z’s) are normally distributed, we can break down £/2 into two constituents (Ku et al.,

1966):

e\ Je Oe
2=g2 | = 204 5 — —— j 1

where Ugj is the variance of x; and o, ;, is the co-variance between x; and xy (subscript 7 removed for simplicity).
Unless external forcing (or its coupling with U,_1) is minimal, the error is likely highly non-linear and chaotic (i.e. large £'?).
Therefore, it behooves us to discover which forcing mechanisms and atmospheric variables are the best predictors of individual
fluctuations &', which we will call "exogenous error".

Many studies that use machine learning (ML) techniques for wind speed or power forecasting utilize a handful of unadulter-
ated atmospheric variables such as wind speed, pressure, and temperature as input features (Mohandes et al., 2004; Ramasamy
et al., 2015; Lazarevska, 2018; Chen et al., 2019). Recently, a handful of investigations have begun to determine which vari-
ables may be most useful for these models. Vassallo et al. (2019) showed that turbulence intensity (7'I) can vastly improve
vertical wind speed extrapolation accuracy. Similarly, Li et al. (2019) showed that 7' improves wind speed forecasting on mul-
tiple timescales, while Optis and Perr-Sauer (2019) showed that both atmospheric stability and turbulence levels are important

indicators for wind power forecasting. Markedly, it has been shown by Cadenas et al. (2016) that multivariate statistical models
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consistently outperform univariate models for wind speed forecasting. However, to the authors’ knowledge, the question of
which atmospheric variables are most useful in predicting exogenous error has not been addressed in the literature.

This investigation aims to determine if exogenous error may be, at least in part, predicted via a list of common meteorolog-
ical measurements by following a similar methodology as that performed by Cadenas and Rivera (2010). The autoregressive
integrated moving average (ARIMA) model first obtains an autoregressive forecast, and the forecasting error is extracted and
bias-corrected. A random forest model is then utilized to discover patterns in the exogenous variables (and their relations to
the endogenous variable U) that are predictive of exogenous error. The ARIMA-random forest hybrid model so constructed is
referred to as the ARIMA-RF model.

This study is not intended to provide a catch-all list of input features that should or should not be used for every future study.
Rather, it aims to inform future researchers and industry professionals as to what types of meteorological information must be
used as ML inputs to predict the non-linear interactions between various atmospheric forces. Section 2 provides an overview
of the models utilized, testing process, and feature extraction/selection methodology. Section 3 describes the Perdigédo field
campaign (the data source for the work), site characteristics, and instrumentation used for data collection. Section 4 provides

testing results and Section 5 includes a brief discussion of the obtained results. Finally, conclusions can be found in Section 6.

2 Methodology

This investigation utilizes two modeling methods, ARIMA and random forest regression, to create a hybrid model (ARIMA-
RF) wherein the ARIMA model is first used to get a linear, univariate wind speed forecast. The ARIMA forecast is bias-
corrected and the exogenous error is then extracted and used as the target variable for the random forest. The random forest’s
goal (and the goal of the study) is to determine which atmospheric variables and forcing categories are useful for the prediction
of exogenous error. After the most important individual variables have been established, combinations of these input features
are tested in an effort to determine whether multiple variables and/or informational categories can be coupled to improve
exogenous error prediction. Finally, the ARIMA-RF results are compared with those of the persistence method and bias-
corrected ARIMA model. 75% of the data (the training set) is randomly selected and used for model construction and bias
calculation. The final 25% of the data is set aside for testing to enable a direct, blind comparison between all models. Section
2.1 details the ARIMA model, while Section 2.2 describes random forest regression. Sections 2.3 and 2.4 provide more detail

on the feature extraction and selection methodology as well as the tests performed.
2.1 ARIMA

ARIMA (Box et al., 2015) is a univariate statistical model that is often used for time series forecasting. It is predicated on the

combination of three functions: an autoregressive function that uses lagged values as inputs, a moving average function that
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uses past forecasting errors as inputs, and a differencing function used to make a time series stationary. In its simplest form,

the next term in a time series sequence, ¥, is given by

p q
Yr = bitrit Y Oje, jter 2)
i=1 j=1

where p and ¢ are the orders of the autoregressive and moving average functions, respectively, ¢; and ©; the ith autoregres-
sive and 5" moving average parameters, respectively, 4/, _; the i lagged value, ¢, _ ;j the 4" past prediction error, and ¢, the
error term at time 7. The order of differencing is given by the parameter d and does not show up directly in Eqn. 2.

The dataset was tested for non-stationarity using the Augmented Dickey Fuller Test (Dickey and Fuller, 1979) which, to a
statistically significant degree, proved that the data is stationary. Therefore, the differencing parameter d was set to O (This turns
the ARIMA model into an ARMA model, but we stick with the term ARIMA for uniformity). The autoregressive and moving
average parameters used, p =2 and ¢ = 1, were determined via minimization of the Akaike information criterion (Shibata,
1976) and empirical testing. Increasing parameters beyond this point did not lead to improved ARIMA accuracy. Although
the wind speed data is stationary, general atmospheric seasonality (Ramana et al., 2004; Chervin, 1986) is expected to have an

impact on multiple input features, requiring training and testing data to be randomly shuffled.
2.2 Random Forest Regression

Random forest regression (Breiman, 2001) is an ensemble method that is made up of a population of decision trees. Bootstrap
aggregation (bagging) is used so that each tree can randomly sample from the dataset with replacement, while only a random
subset of the total feature set is given to each individual tree. The trees can be pruned (truncated) to add further diversification.
After construction, the population’s individual predictions are averaged to give a final prediction of the target variable. Ideally,
this process results in a diversified and decorrelated set of trees whose predictive errors cancel out, producing a more robust
final prediction.

An advantage of random forests is their ability to determine the importance of all input features for the predictive process.
This is done by calculating the mean decrease impurity, or the decrease in variance that is achieved during a given split in each
decision tree. The decrease in impurity for each input feature can be averaged over the entire forest, providing an approximation
of the feature’s importance for the prediction (feature importance estimates sum to 100% to ease interpretability). However,
if two input variables are highly correlated (as is expected when testing atmospheric forcing), it is highly unlikely that the
reported importance values will accurately represent each variable’s significance (Breiman, 2001). Therefore, each variable
is first tested individually to determine its individual benefits prior to coupling with other exogenous variables. To assist the
random forest in representing the dynamic nature of atmospheric processes, input variables are taken from the previous two
timesteps (i.e. input feature U comprises U, _1 and U, _»).

The constructed random forest model contains 1,000 trees for tests of individual variables and 1,500 trees for tests of variable
combinations. This was found to be sufficiently large to ensure prediction stability (to within a root mean square error of £0.001

m s~ 1), and the inclusion of additional trees does not result in higher prediction accuracy. To ease concerns of overfitting, each
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internal node was required have at least 100 samples in order to split (this truncation is a form of regularization). The random

forest model was built using the scikit-learn Python library (Pedregosa et al., 2011).
2.3 Feature Extraction and Selection

In an effort to ensure that the findings are applicable to real-world campaigns, we limit our sources of information to those
which may be measured by a typical meteorological mast containing sonic anemometers alongside temperature sensors. Using
this information, we can write our future wind speed U.- as a function of the following variables, which were broken down into

their mean and fluctuating values:

UT = f(UHeZaWHTutuul 0, wl T/) (3)

1771 1Y

where U; and 6; are the mean streamwise wind speed and direction, respectively, W; the mean vertical wind speed, 7; the
mean temperature, t; the time of day, u/ the fluctuating horizontal velocity, 6/ the fluctuating wind direction, w/, the fluctuating
vertical velocity, and 77 the fluctuating temperature at each previous timestep ¢. Unfortunately, 8’ was not available within the
dataset utilized (which had already been 5-minute averaged) and is therefore ignored for this study. Previous analysis, however,
has shown that ¢’ varies inversely with U in complex terrain (Papadopoulos et al., 1992), and we may therefore assume its
influence is largely captured by U.

Although these unadulterated features give us an idea as to how the system is working at the moment, they may not explicitly
represent the relevant atmospheric forcing mechanisms. Our list of measurements allows us to break down our system into two
principal forcing components: buoyancy and inertial forcing. Each of these forces can be further discretized into large and
small scales (also called mean and fluctuating values; typically separated by at least one order of magnitude).

Fig. 1 shows an illustrative breakdown of the two main forcing mechanisms alongside a list of extracted descriptor variables.
The definitions and formulations of all non-obvious extracted variables used in this study can be found in Appendix A. From
this figure, it is clear that the variables in Eqn. 3, when manipulated, are able to describe both the inertial and buoyant forces
at multiple scales. Large-scale inertial forcing can be described by the local mean wind speed and direction (U and ) or
vertical velocity W, while small-scale inertial forcing can be described by variables such as the fluctuating (standard deviation
of) velocity o, friction velocity u*, and the turbulence kinetic energy T'K E. Likewise, large-scale buoyancy forcing can be
described by the squared buoyancy frequency N2, the temperature gradient 27 /&2, or by proxy values such as the time of day
t or temperature 71" (which, on average, is higher during the day and lower at night). Small-scale buoyancy can be described by
the turbulent heat flux w’T”. The interactions between forces and scales can also be described by non-dimensional variables
such as the gradient Richardson number Riy4, flux Richardson number Riy, turbulence intensity 7', and normalized friction
velocity ** /¢7. These derived non-dimensional variables, or extracted features, are typically ignored by current ML models in
lieu of raw features such as those listed in Eqn. 3.

Extracted variables like those in Fig. 1 may not provide any more information than the raw variables in Eqn. 3. However,

they may ease the burden on the model by discretizing (or directly relating) informational categories, therefore reducing
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Figure 1. Illustrative breakdown of the scales and variables related to inertial and buoyant forcing. 6’ is not shown as it is not utilized in the

analysis.

informational overlap and noise, providing more periodic/predictive power, and more accurately describing the underlying
system. Further, such well-conceived meteorological variables have been seen to be useful for atmospheric prediction (Li
et al., 2019; Kronebach, 1964). In theory, given enough data, the model should be able to decipher and interpret these extracted
features on its own. Unfortunately there often isn’t enough collected data for this to happen organically. Instead, by providing
better information we can create a simpler, cheaper, more robust model that requires less training data and construction time.
Selected features will ideally represent the underlying system as accurately as possible without providing noisy or redundant

information.
2.4 Testing

In an effort to understand the predictive capabilities of each variable, initial tests only include individual atmospheric input
features. Once each input feature has been tested separately, a feature set is tested that utilizes all input features. Feature
importance estimates are then extracted from the random forest model and various user-selected combinations of the most
important input features are tested. It must be noted that only select input feature sets were tested in this investigation due to
the sheer multitude of potential feature sets.

In order to relieve any timescale bias, forecasts are made across multiple timescales. Typically, wind power utility operators
require single-step short range power forecasts run hour-by-hour for a few days to reduce unit commitment costs. The forecast
skill of observation-based methods generally reduces with forecast lead time within an hour, and numerical models have higher
skill in forecasting larger time leads (> 3 hours) (Haupt et al., 2014). Statistical learning methods have proved to be particularly

effective from about 30 minutes to approximately three hours ahead (Mellit, 2008; Wang et al., 2012; Yang et al., 2012; Morf,
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2014), and roughly this time frame is thus the focus for this study. The shortest forecast predicts wind speeds 10 minutes
ahead, roughly within the turbulent spectral band (Van der Hoven, 1957). Forecasts are also made one and three hours ahead,
which are within the spectral gap between the turbulent and synoptic spectra and approach the 6-hour period wherein NWP
models become particularly useful (Dupré et al., 2019). These are all single-step forecasts, which is to say that the averaging
timescale increases with the forecasting timescale (e.g. a 10-minute forecast predicts 10-minute averaged wind speed, whereas
a three-hour forecast predicts three-hour averaged wind speed). Each test is performed 10 times to ensure forecasting stability.

Two metrics are utilized to determine how well the random forest predicts exogenous error. The root mean squared error
(RMSE) of the bias-corrected ARIMA model is found, giving a metric of the true exogenous error. The random forest model is
then trained to predict the exogenous error and the RMSE of the ARIMA-RF model is found. The reduction in RMSE (which
comes exclusively from the random forest’s prediction of exogenous error) is then found for the test set. The coefficient of
determination (R?) between the true and predicted exogenous error is used to determine the amount of error variability captured
by the random forest model. Eqn. 4 and Eqn. 5 describe both metrics, wherein U, is the target wind speed, U, the predicted
wind speed, €/, the true exogenous error, ¢ m the predicted exogenous error, ¢’ the mean exogenous error (approximately zero),

m each individual sample, and M the sample size.

1 M
RMSE = > (U = Unm)? 4)

&)

3 Site, Data, & Instrumentation

Data for this study were taken from the Perdigdo campaign, a multinational project located in central Portugal that took place
in the spring of 2017 (Fernando et al., 2019). The project site is characterized by two parallel ridges, both about 5 km in length
with a 1.5 km wide valley between them. These ridges, which may be seen in Fig. 2a, run northwest to southeast and rise about
250 m above the surrounding topography, making the site highly complex and increasing forecasting difficulty. The ridges will
be referred to as the northern and southern ridge.

A variety of remote and in situ sensors were positioned in and around the valley to provide an accurate and thorough
description of the surrounding flow field. Foremost among these sensors was a grid of meteorological towers which ran both
parallel and normal to the ridges. One 100 m tower located on top of the northern ridge (black marker in Fig. 2a) is utilized
in this study. This tower had sonic anemometers at 10, 20, 30, 40, 60, 80, and 100 m above ground level (AGL) as well as
temperature sensors at 2, 10, 20, 40, 60, 80, and 100 m AGL. The tower data was quality controlled; sonic winds have been
corrected for boom orientation and tilt and are thus rotated into a geographic coordinate system. Further details about the
data and quality control techniques can be found in NCAR/UCAR (2019). The combination of sensors on this tower provided

sufficient information to measure both the inertial and buoyant forcing for flow passing over this location on the northern ridge.
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Figure 2. a) shows the campaign topography as seen from above. The black marker represents the 100 m tower location on the northern
ridge. Map data © 2020 Inst. Geogr. Nacional. b) illustrates the 100 m tower along with the sensors and elevations used. Yellow boxes denote

sonic anemometers, while red boxes denote temperature sensors.

Sensors at 20 and 100 m AGL were chosen based on data availability. The data utilized spans three months, running from
10 March — 16 June 2017. Data at 100 m were correlated with that at 20 m, and missing data were filled using the variance
ratio measure-correlate-predict method (Rogers et al., 2005). Any periods unavailable at both heights were filled using linear
interpolation with Gaussian noise. Manually filled periods (all periods are required for proper functionality and assessment
of the ARIMA model) account for less than 1% of the total periods in the study and are not expected to make a noticeable
difference in the findings. All data were calculated at a 5-minute moving average in order to create a robust dataset (over
28,000 samples). To ease concerns of the model overfitting the overlapping dataset, each internal node in the random forest
model (which already has built-in mechanisms that severely hinder overfitting, as described by Breiman (2001) and James et al.
(2013)) was required to contain at least 100 samples in order to split (i.e. each branch of every decision tree stops splitting once
there are less than 100 samples).

The target streamwise wind speed, or that to be forecasted, is located at 100 m AGL. N2, Rig, Riy, and oT /. were
calculated between 100-20 m AGL. u* was found at 20 m, just above surface roughness height (Fernando et al., 2019). All

other input variables utilized were found only at 100 m AGL.

4 Results

Fig. 3 shows the reduction (or increase) in forecasting RMSE obtained via the random forest model when given each individual
input feature. Specific RMSE and R? values obtained for these cases may be found in Table B1 in Appendix B. The variables
are broken down into three distinct categories: inertial (large scale dimensional variables signifying inertial forces in Fig. 1),

stability (blue and purple regions in Fig. 1 which are akin to atmospheric stability), and turbulence variables (small scale
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Figure 3. Percent reduction (or increase) in RMSE obtained by the random forest model when given select meteorological inputs. Blue,

orange, and grey bars represent inertial, stability, and turbulence input features, respectively.

and non-dimensional inertial variables in Fig. 1). It is immediately clear that there is a distinction between the results for the
10-minute forecast and those for the hourly and three-hour forecasts. Each random forest prediction of 10-minute exogenous
error using individual input features resulted in an increase in RMSE (or negative RMSE reduction; Fig. 3a), indicating that
exogenous error at such small timescales is highly chaotic and unpredictable based off of the information from any single atmo-
spheric variable. In fact, these tests show that any correlative patterns observed between the utilized meteorological variables
and exogenous error are likely circumstantial and lead to deleterious predictions.

Fig. 3b and ¢ show reduction in RMSE for hourly and three-hour forecasts, respectively. Both 6 and T" appear to be the most
beneficial individual input features at these timescales, while ¢ and Ri, are the least helpful. T'I, o, and TK E are the most
beneficial turbulence variables and provide very similar levels of improvement at both the hourly and three-hour timescales. In-
terestingly, turbulence variables as a group continue to provide valuable information even for multi-hour forecasting timesteps.
The heterogeneity of improvement (over all individual input features) increases with prediction timescale, with 6 reducing
exogenous error by over 12% for the three-hour forecast.

Utilizing all input features within the random forest resulted in drastic improvements in exogenous error prediction. Fig. 4
shows a comparison of the RMSE obtained by the ARIMA-RF model to that obtained by the persistence and bias-corrected
ARIMA models. The bias-corrected ARIMA model’s RMSE amounted to 0.523, 0.852, and 1.251 m s~ for the 10-minute,
hourly, and three-hour forecasts, respectively. The random forest model, utilizing all input features, reduced these RMSE values

by 7%, 32%, and 56%, respectively (Table B2, Appendix B). The correlation between true and predicted exogenous error can
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Figure 4. Comparison of RMSE obtained by the persistence, bias-corrected ARIMA, and ARIMA-RF with all meteorological inputs for all

forecasting timescales.
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Figure 5. Correlation between true and predicted exogenous error using all input features. a) shows correlation for the 10-minute prediction,
b) for the hourly prediction, and c) for the three-hour prediction. Black line denotes the best-fit line, an equation for which is given above

each plot. Corresponding R? values are given in the bottom row of Table B2.

be seen in Fig. 5. It is clear that, as prediction timescale increases, the correlation between true and predicted exogenous error
increases, with the three-hour prediction having an R? value of 0.801.

Feature importance estimates were also obtained from the all-input test cases and can be seen in Fig. 6. A handful of

variables, namely 0, U, T1, t, T, and w'T", are particularly useful for the hourly and three-hour predictions. Because U, 0,
and ¢ are all variables that can be obtained from a simple cup anemometer and wind vane, they are used as the "base variables"
when testing discriminate input feature combinations. The results of these tests, which may be found in Table B2 in Appendix

B, prove that a large majority of the model’s predictive power (i.e. a majority of the relevant input information) is contained

within these six variables.

10
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Figure 6. Feature importance for the prediction of exogenous error when all input features are given to the random forest model. a) shows
importance for the 10-minute prediction, b) for the hourly prediction, and c) for the three-hour prediction. Blue bars denote inertial variables,

orange denote stability variables, and grey bars denote turbulence variables. Importance values for each test sum to 100%.

5 Discussion

There is a clear distinction between the results obtained for the 10-minute exogenous error predictions and those obtained
for the hourly and three-hour predictions. All atmospheric input features, when used individually for the 10-minute forecasts,
resulted in a faulty prediction of error. This is likely due to the turbulent nature of wind speeds at the 10 minute timescale.
Typically the large-eddy turnover timescale for the lower atmosphere is 10-20 minutes, and averaging timescales approaching
or less than this timescale exclude information on more stable and deterministic large eddies, thus making predictions more
prone to random errors. This is exemplified by the work of Van der Hoven (1957), who shows that a 10-minute average is within
the turbulent peak of the wind speed spectrum. The lack of large eddy influence results in a wind speed signal that is replete
with random fluctuations originating in the inertial subrange, adding substantial noise to the prediction. These fluctuations
overwhelm the ML model’s pattern recognition capabilities, reducing the random forest prediction to a noisy guess. Such ML
models will always make predictions based on patterns in the training data, even when those patterns are erroneous and do not
hold for the testing dataset. This results in error predictions that are not correlated with the true exogenous error (as indicated
by 10-minute R? values in Table B1).

As the forecasting timescales increase, smaller-scale turbulent fluctuations average out and the random forest model can
recognize predictive patterns between atmospheric input features and the non-linear exogenous error. Tests involving individual
atmospheric variables effectively represent the magnitude of the first term on the right side of Eqn. 1. These tests show that
predictions involving individual variables (or at least those tested) can only reduce exogenous error by approximately 4% and
12% for the hourly and three-hour predictions, respectively. While this is a considerable error reduction, the meteorological

variables are most beneficial when combined.
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A list of feature importance estimates, as determined by a test incorporating all input features, is shown in Fig. 6. Many of
the features are correlated, meaning that exact importance values are likely misleading. Nevertheless, the reported importance
estimates are likely a good indicator as to which features, when used in combination with others, are most useful in predicting
exogenous error. 6 is both the best individual predictor and the most important feature for all tests, likely because our measure-
ments are taken atop an asymmetric ridge in complex terrain. As is detailed in Fernando et al. (2019), the complex terrain leads
to an ensemble of topographically induced ridge-top flow features such as jetting, mountain waves, and reversed flows which
have a large impact at the measurement location. Hence, local atmospheric conditions are some of the principal variables which
improve predictability of the exogenous error. The relative importance (and even the order of importance) of these variables
are expected to be highly site-specific.

The six most important features for the hourly and three-hour predictions are identical (although scrambled), and were
therefore used to test discriminate feature set combinations. All tests with multiple input features contained U, 6, and t.
There are two reasons for prioritizing these three variables: they prove to be some of the most important input features for
all timescales (Fig. 6) and they can all be captured by a simple cup anemometer and wind vane rather than a more expensive
sonic anemometer. These three features, when used in conjunction, were able to capture about 66% of the maximum error
reduction seen for all timescales. Discriminate input sets incorporating only U, @, t, T1, w'T’, and T are able to capture
over 90% of the exogenous error caught by the tests incorporating all input features, indicating that almost all of the relevant
information in our inputs can be retrieved from these six variables. Notably, many of the most important input features (U,
0, t, and W) are directly measurable and need not be extracted (although W cannot be captured by a cup anemometer).
The most important variables that require extraction (i.e. values that are not direct measurements), 7'/, T K E, and w!T’, all
contain small-scale (fluctuating) forcing components, indicating that small-scale processes may be more easily captured by
ML models after domain-specific interpretation. These small-scale variables provide significant predictive power, even at a
multi-hour timescale. The testing results from the study show that, in order to achieve an optimal forecast of exogenous error,
these small scales must be included as an input for the predictive model.

Tests combining multiple atmospheric variables are particularly useful because they incorporate the second term on the right
side of Eqn. 1, an indication of how the exogenous error changes depending on the input features’ co-variance. This is especially
true for the testing case incorporating all input features. As expected, this case provided the best predictions of exogenous error.
The correlation between the predicted and true exogenous error (Fig. 5) dramatically increases with increasing timescales, with
the best three-hour random forest prediction capturing 80% of exogenous error variability. As Fig. 4 shows, the best ARIMA-
RF error is roughly 0.5 m s~ for all timescales even though both the persistence and bias-corrected ARIMA models get worse
as timescales increase. This is an encouraging result, in that meteorological forecasting models need not necessarily get worse
with time (although the averaging timescales likely must increase proportionately). Exogenous error prediction gets far better
with increasing timescales, with the best random forest prediction reducing forecasting RMSE by over 50%. There appears to
be a floor (0.5 m s~1) on the predictability of exogenous error, indicating that there may be certain atmospheric information
missing from the set of input features. This information could come from other external forces or could be a result of forcing

at scales that have not been captured by our current input feature set.
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6 Conclusions

Exogenous error arises from atmospheric forcing that is ignored or misrepresented in the modeling process. It has been shown
that this error, or a portion thereof, can be predicted by an ML model given relevant atmospheric information. § and 7" were
found to be particularly beneficial as individual inputs, while the combination of U, 6, and ¢, features which may be derived
from a simple cup anemometer and weather vane, were able to provide a majority of the maximum error reduction seen at every
timescale. Domain-specific feature extraction was found to be particularly useful for input features relating small-scale forcing,
and these turbulence variables were found to have significant predictive power even for multi-hour forecasts. The lowest RMSE
value was relatively constant at all prediction timescales, indicating that there is additional relevant atmospheric information
that this list of inputs does not capture. The results are promising, however, in that they illustrate that forecasting accuracy need
not decrease at large timescales. In fact, at large timescales turbulent fluctuations average out, allowing mesoscale and synoptic
forces to provide a clearer signal for exogenous error prediction.

While the exact results of this investigation are site-specific, many of the findings are expected to be generally applicable to
numerous wind projects, especially those located in complex terrain. Accurate implementation of atmospheric forcing informa-
tion, particularly that which is non-linear or derived via coupling of multiple forces, is crucial for the prediction of exogenous
error and must be addressed to obtain optimal forecasting results. This study supports the supposition that a hybrid model using
ML techniques to correct a simpler statistical predictor (such as an ARIMA model) can be effective for wind speed forecasting.

Further improvements are still required to more accurately represent atmospheric forcing. Gridded meso or synoptic-scale
information would allow the model to predict transitional periods including weather fronts and drastic wind ramp events. Mul-
tiple scales of forcing should also be incorporated to improve the pattern recognition capabilities of ML techniques. Additional
information about microscale, mesoscale, and synoptic events would better depict atmospheric forcing and momentum, and
the effects of seasonality must be accounted for when possible. It is also worth exploring the model’s capabilities when the
dataset is not randomly shuffled (i.e. whether a model trained on past years’ data can accurately predict exogenous error over
an entire year). Hopefully, this study will be used as a forerunner for the improved incorporation of atmospheric physics within

ML modeling.

Code and data availability. Data from the Perdigdo campaign may be found at https://perdigao.fe.up.pt/. Due to the multiplicity of cases

analyzed in this study, example processing and modeling codes can be found at https://github.com/dvassall/.

Appendix A: Input Features

Atmospheric variables were measured using sonic anemometers and temperature sensors along a single 100 m tower. When
possible, missing data from the 100 m sensors were filled via correlation with the 20 m sensors using the variance ratio measure-
correlate-predict method (Rogers et al., 2005). There were no periods with functional 100 m sensors and nonfunctional 20 m

sensors. All periods without any measurements from both sets of sensors (15 5-minute periods) were filled using a linear
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regression with Gaussian white noise. Many of the input features used in the study required derivation. A description of
necessary derivations are given below.

Friction velocity is defined as u* = (u’ M + v'w’ 2)1/4 and was measured at 20 m AGL, just above canopy height (Fer-

w2 +’U’2 +w/2
2

nando et al., 2019). Turbulence kinetic energy is defined as TK E = and was measured at both heights. Buoyancy

frequency squared is typically defined as (see Kaimal and Finnigan (1994) for details of all parameters that appear below)

g 0p g 0Ty

N?=2 T —
po 0z  Tpyo Oz

(AD)

where g is the gravitational force, p the air density, z the height AGL, T}, the virtual potential temperature, z the vertical
coordinate, and subscript O indicates reference variables in using the Boussinesq approximation. The gradient Richardson

number is defined as

N2
Rig = 52 202 (A2)
(52)"+(32)
where u and v are the two horizontal wind speed components. The flux Richardson number is defined as
4T
Rij = T (A3)

W (3) v ()

where T), is the virtual temperature while u/w’ and v/w’ are the Reynolds stresses that indicate the flow’s vertical momentum
flux. Riy is typically used in conjunction with a stably stratified atmosphere. However, it is used here in the general sense as it
is a measure of the ratio between buoyant energy production and mechanical energy production (associated with inertial forces)
related to Fig. 1. Negative N2 values, corresponding to convective atmospheric conditions, are made to be 0. Rig and Riy are
limited to a maximum of 5 and minimum values of 0 and —5, respectively, to remove extremes in both variables. Turbulence
intensity is the ratio of fluctuating to the mean wind speed, or 7'I = o« /u. Both hour of the day and wind speed were broken

into two oscillating components in order to eliminate any temporal or directional inconsistency.

Appendix B: Testing Results

Table B1 presents the RMSE and R? obtained by the bias-corrected ARIMA model (total exogenous error) and that obtained
by the ARIMA-RF using individual features. Features are separated into inertial, stability, and turbulence inputs as described in
Section 4. Table B2 presents the RMSE and R? values obtained by the persistence and bias-corrected ARIMA models alongside
that obtained by the ARIMA-RF while utilizing input feature combinations that are of interest. The final row in Table B2 shows
the results of the ARIMA-RF when all input features are utilized.
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10 Minute Hourly 3 Hour

Model/Input RMSE R? RMSE R? RMSE R?
Bias-corrected ARIMA 0.523 - 0.852 - 1.251 -

U 0.526 -0.005 0.837 0.033 1.162 0.129
6 0.527 -0.004 0.816 0.075 1.094 0.220
w 0.527 -0.007 0.842 0.022 1.179 0.093
t 0.527 -0.013 0.855 0.003 1.240 0.021
N? 0.526 -0.008 0.838 0.034 1.186 0.097
T [ 0.527 -0.012 0.831 0.040 1.162 0.129
T 0.527 -0.005 0.817 0.078 1.126 0.174
w'T” 0.525 -0.006 0.836 0.035 1.162 0.137
Rig 0.526 -0.008 0.849 0.012 1.202 0.082
Ri, 0.524 0 0.847 0.010 1.238 0.025
ou 0.526 -0.016 0.837 0.027 1.160 0.143
u* 0.528 -0.017 0.849 0.014 1.188 0.081
TKE 0.526 -0.014 0.834 0.039 1.157 0.149
TI 0.527 -0.008 0.836 0.038 1.156 0.160
w*fu 0.528 -0.008 0.845 0.023 1.174 0.109

Table B1. The top row shows RMSE obtained by the bias-corrected ARIMA model. Below are the resulting RMSE and R? (between true

and predicted exogenous error) values from ARIMA-RF predictions utilizing individual inputs for all forecasting timescales. Input features

are separated into inertial, stability, and turbulence variables, as described in Section 4.
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10 Minute Hourly 3 Hour

Model RMSE R? RMSE R? RMSE R?
Persistence 0.525 - 0.873 - 1.326 -
Bias-corrected ARIMA 0.523 - 0.852 - 1.251 -
Input Features RMSE R? RMSE R? RMSE R?
U,6,t 0.501 0.076 0.672 0.369 0.750 0.618
U,6,t,T 0.496 0.096 0.628 0.453 0.657 0.711
U,0,t, TI 0.495 0.099 0.643 0.424 0.694 0.681
U,0,t,wT" 0.497 0.087 0.651 0.404 0.704 0.665
U,0,t, TI, T, T 0.490 0.116 0.606 0.491 0.610 0.755
All input features 0.489 0.116 0.581 0.533 0.549 0.801

Table B2. RMSE obtained by the persistence and bias-corrected ARIMA models (exogenous error is defined as the bias-corrected ARIMA
error) as well as the RMSE obtained by the ARIMA-RF when utilizing select input feature combinations. R? values between true and

predicted exogenous error is also reported for each test case. The final row shows the final test which uses all input features.
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