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Refinement types enable lightweight verification of functional programs. Algorithms for statically inferring
refinement types typically work by reduction to solving systems of constrained Horn clauses extracted from
typing derivations. An example is Liquid type inference, which solves the extracted constraints using predicate
abstraction. However, the reduction to constraint solving in itself already signifies an abstraction of the
program semantics that affects the precision of the overall static analysis. To better understand this issue, we
study the type inference problem in its entirety through the lens of abstract interpretation. We propose a new
refinement type system that is parametric with the choice of the abstract domain of type refinements as well
as the degree to which it tracks context-sensitive control flow information. We then derive an accompanying
parametric inference algorithm as an abstract interpretation of a novel data flow semantics of functional
programs. We further show that the type system is sound and complete with respect to the constructed
abstract semantics. Our theoretical development reveals the key abstraction steps inherent in refinement type
inference algorithms. The trade-off between precision and efficiency of these abstraction steps is controlled by
the parameters of the type system. Existing refinement type systems and their respective inference algorithms,
such as Liquid types, are captured by concrete parameter instantiations. We have implemented our framework
in a prototype tool and evaluated it for a range of new parameter instantiations (e.g., using octagons and
polyhedra for expressing type refinements). The tool compares favorably against other existing tools. Our
evaluation indicates that our approach can be used to systematically construct new refinement type inference
algorithms that are both robust and precise.
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1 INTRODUCTION

Refinement types are at the heart of static type systems that can check a range of safety properties
of functional programs [Champion et al. 2018a; Chugh et al. 2012; Dunfield and Pfenning 2003, 2004;
Freeman and Pfenning 1991; Rondon et al. 2008; Vazou et al. 2014; Vekris et al. 2016; Xi and Pfenning
1999; Zhu and Jagannathan 2013]. Here, basic types are augmented with refinement predicates that
express relational dependencies between inputs and outputs of functions. For example, the contract
of an array read operator can be expressed using the refinement type

get:: (a:aarray) > (i: {v:int|0 < v <lengtha}) - «a .
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This type indicates that get is a function that takes an array a over some element type « and
an index i as input and returns a value of type a. The type {v : int | 0 < v < length a} of the
parameter i refines the base type int to indicate that i must be an index within the bounds of
the array a. This type can then be used to statically check the absence of erroneous array reads
in a program. However, such a check will only succeed if the index expressions used in calls to
get are also constrained by appropriate refinement types. Therefore, a number of type inference
algorithms have been proposed that relieve programmers of the burden to provide such type
annotations manually. These algorithms deploy a variety of analysis techniques ranging from
predicate abstraction [Rondon et al. 2008; Vazou et al. 2013, 2014] to interpolation [Unno and
Kobayashi 2009; Zhu and Jagannathan 2013] and machine learning [Champion et al. 2018a; Zhu
et al. 2015, 2016]. A common intermediate step of these algorithms is that they reduce the inference
problem to solving a system of constrained Horn clauses that is induced by a typing derivation
for the program to be analyzed. However, this reduction already represents an abstraction of the
program’s higher-order control flow and affects the precision of the overall static analysis.

To better understand the interplay between the various abstraction steps underlying refinement
type inference algorithms, this paper forgoes the usual reduction to constraints and instead studies
the inference problem in its entirety through the lens of abstract interpretation [Cousot and
Cousot 1977, 1979]. We start by introducing a parametric data flow refinement type system. The
type system generalizes from the specific choice of logical predicates by allowing for the use of
arbitrary relational abstract domains as type refinements (including e.g. octagons [Miné 2007],
polyhedra [Bagnara et al. 2008; Cousot and Halbwachs 1978; Singh et al. 2017] and automata-based
domains [Arceri et al. 2019; Kim and Choe 2011]). Moreover, it is parametric in the degree to
which it tracks context-sensitive control flow information. This is achieved through intersection
function types, where the granularity at which such intersections are considered is determined
by how stacks are abstracted at function call sites. Next, we propose a novel concrete data flow
semantics of functional programs that captures the program properties abstracted by refinement
type inference algorithms. From this concrete semantics we then construct an abstract semantics
through a series of Galois abstractions and show that the type system is sound and complete with
respect to this abstract semantics. Finally, we combine the abstract semantics with an appropriate
widening strategy to obtain an accompanying parametric refinement type inference algorithm
that is sound by construction. The resulting analysis framework enables the exploration of the
broader design space of refinement type inference algorithms. Existing algorithms such as Liquid
type inference [Rondon et al. 2008] represent specific points in this design space.

To demonstrate the versatility of our framework, we have implemented it in a verification tool
targeting a subset of OCaml. We have evaluated this tool for a range of new parameter instantiations
and compared it against existing verification tools for functional programs. Our evaluation shows
that the tool compares favorably against the state of the art. In particular, for the higher-order
programs over integers and lists in our benchmark suite, the tool improves over existing tools both
in terms of precision (more benchmarks solved) as well as robustness (no analysis timeouts).

Additional details, including proofs, are available in a companion technical report [Pavlinovic
et al. 2020].

2 MOTIVATION

To motivate our work, we provide an overview of common approaches to inferring refinement
types and discuss their limitations.

Refinement Type Inference. Consider the Fibonacci function defined in OCaml:

let rec fib x = if x >= 2 then fib (x - 1) + fib (x - 2) else 1
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The typical refinement type inference algorithm works as follows. First, the analysis performs a
standard Hindley-Milner type inference to infer the basic shape of the refinement type for every
subexpression of the program. For instance, the inferred type for the function fib is int — int. For
every function type 71 —72, where 77 is a base type such as int, the analysis next introduces a fresh
dependency variable x which stands for the function parameter, x : 7y —72. The scope of x is the
result type 79, i.e., type refinements inferred for 7o can express dependencies on the input value by
referring to x. Further, every base type 7 is replaced by a refinement type, {v: 7 | ¢(v, %)}, with a
placeholder refinement predicate ¢(v, ¥) that expresses a relation between the members v of 7 and
the other variables ¥ in scope of the type. For example, the augmented type for function fib is

x:{viint| ¢1(v)} = {viint | go(v,x)} .

The algorithm then derives, either explicitly or implicitly, a system of Horn clauses modeling the
subtyping constraints imposed on the refinement predicates by the program data flow. For example,
the body of fib induces the following Horn clauses over the refinement predicates in fib’s type:

P(x)Ax=22Av=x—-1= ¢1(v) 1) dx)Ax=22AVv=x—-2= @1(v) (2)
g{)l(x) AX 2> 2/\¢2(v1,x— ].) /\ng(VQ,x—Q) AV =V +Vvy = (]SQ(V,X) (3)
Pr(x)Ax<2Av=1= ga(v,x) (4) 0<v=d¢i(v) (5)

Clauses (1) and (2) model the data flow from x to the two recursive calls in the then branch of the
conditional. Clauses (3) and (4) capture the constraints on the result value returned by fib in the
then and else branch. Clause (5) captures an assumption that we make about the external calls to
fib, namely, that these calls always pass non negative values. We note that the inference algorithm
performs a whole program analysis. Hence, when one analyzes a program fragment or individual
function as in this case, one has to specify explicitly any assumptions made about the context.
The analysis then solves the obtained Horn clauses to derive the refinement predicates ¢;. For
instance, Liquid type inference uses monomial predicate abstraction for this purpose. That is, the
analysis assumes a given set of atomic predicates Q = {p1 (v, ¥X1), ..., pn(v, X,)}, which are either
provided by the programmer or derived from the program using heuristics, and then infers an
assignment for each ¢; to a conjunction over Q such that all Horn clauses are valid. This can be
done effectively and efficiently using the Houdini algorithm [Flanagan and Leino 2001; Lahiri and
Qadeer 2009]. For example, if we choose Q = {0 < v,0 > v,v < 2,v > 2}, then the final type
inferred for function fib will be: x : {v:int | 0 < v} — {v:int | 0 < v}. The meaning of this type is
tied to the current program, or in this case the assumptions made about the context of the program
fragment being analyzed. In particular, due to the assumption expressed in Clause (5) the analysis
does not infer a more general type that would leave the input parameter x of fib unconstrained.

Challenges in Inferring Precise Refinement Types. Now, suppose that we want to verify that
function fib is increasing, which can be done by inferring a refinement predicate ¢, (v, x) for the
return type of fib that implies x < v. Note that x < v itself is not inductive for the system of Horn
clauses derived above because clause (3) does not hold for x = 2, v; = 1, and vy = 0. However, if
we strengthen ¢2(v,x) tox < v A1 < v, then it is inductive.

One issue with using predicate abstraction for inferring type refinements is that the analysis
needs to guess in advance which auxiliary predicates will be needed, here 1 < v. Existing tools
based on this approach, such as DSoLvE [Rondon et al. 2008] and Liguip HASKELL [Vazou et al.
2018a], use heuristics for this purpose. However, these heuristics tend to be brittle. In fact, both
tools fail to verify that fib is increasing if the predicate 1 < v is not explicitly provided by the
user. Other tools such as R_TyPE [Champion et al. 2018a] are based on more complex analyses that
use counterexamples to inductiveness to automatically infer the necessary auxiliary predicates.
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1 let apply f x = f x and gy =2 *y and hy = -2 xy

2 let main z =

3 let v = if @ <= z then (apply; g); z else (applyx h), z in
4 assert (0 <= v)

Program 1

However, these tools no longer guarantee that the analysis terminates. Instead, our approach
enables the use of expressive numerical abstract domains such as polyhedra to infer sufficiently
precise refinement types in practice, without giving up on termination of the analysis or requiring
user annotations (see § 8).

If the goal is to improve precision, one may of course ask why it is necessary to develop a new
refinement type inference analysis from scratch. Is it not sufficient to improve the deployed Horn
clause solvers, e.g. by using better abstract domains? Unfortunately, the answer is “no” [Unno et al.
2013]. The derived Horn clause system already signifies an abstraction of the program’s semantics
and, in general, entails an inherent loss of precision for the overall analysis.

To motivate this issue, consider Program 1. You may ignore the program location labels i, j, k,
for now. Suppose that the goal is to verify that the assert statement in the last line is safe. The
templates for the refinement types of the top-level functions are as follows:

apply = (y: {v:int | d1(v)} = {viint | ¢2(v,y)}) = x : {v:int | ¢3(v)} — {v:int | da(v,x)}
guy:{viint[g5(v)} = {viint [ P(v,y)} huy:{viint|dr(v)} = {v:int|ds(v,y)}

Moreover, the key Horn clauses are:

0<zAv=z= ¢3(v) d5(y) A v =2y = ¢s(v,1y) P3(x) = $1(v)
0<zAPp1(v) = Ps5(v) 0<zAps(v,y) = Pa(v,y) P2(v,x) = ¢a(v,x)
0>zAv=z= ¢3(v) $r(y) Av=—(2y) = ¢s(v,y)

0>zAP1(v) = d7(v) 0>zAds(v,y) = p2(v,y)

Note that the least solution of these Horn clauses satisfies ¢1 (v) = ¢3(v) = ¢5(v) = ¢7(v) = true
and ¢o (v, x) = ¢a(v,x) = (v = 2x Vv = —2x). Specifically, §4 (v, x) is too weak to conclude that the
two calls to apply on line 3 always return positive integers. Hence, any analysis based on deriving
a solution to this Horn clause system will fail to infer refinement predicates that are sufficiently
strong to entail the safety of the assertion in main. The problem is that the generated Horn clauses do
not distinguish between the two functions g and h that apply is called with. All existing refinement
type inference tools that follow this approach of generating a context-insensitive Horn clause
abstraction of the program therefore fail to verify Program 1.

To obtain a better understanding where existing refinement type inference algorithms lose
precision, we take a fresh look at this problem through the lens of abstract interpretation.

3 PRELIMINARIES
We introduce a few notations and basic definitions that we use throughout the paper.

Notation. We often use meta-level let x = t; in ty and conditional if ty then t; else t5 constructs
in mathematical definitions. We compress consecutive let bindings letx; = t; in ...letx, =
t, intg as letxy = t1; ...; x, = t, inty. We use capital lambda notation (Ax. ...) for defining
mathematical functions. For a function f : X - Y, x € X, and y € Y, we write f[x > y] to denote
a function that maps x to y and otherwise agrees with f on every element of X \ {x}. We use the
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notation f.x: y instead of f[x + y] if f is an environment mapping variables x to their bindings
y. For a set X we denote its powerset by ¢(X). For a relation R € X X Y over sets X, Y and a
natural number n > 0, we use R, to refer to the point-wise lifting of R to a relation on n-tuples
X" x Y™ Thatis ((x1,...,%n), (Y1,---,Yn)) € R, iff (x;, y;) € Rforall 1 < i < n. Similarly, for any
nonempty set Z we denote by R the point-wise lifting of R to a relation over (Z — X) x (Z — Y).
More precisely, if fi : Z —- X and fo : Z — Y, then (f1, f2) € Ry iffVz € Z. (fi(z), f2(2)) € R.
Typically, we drop the subscripts from these lifted relations when they are clear from the context.

For sets X, Y and a function d : X — ¢(Y), we use the notation ITx € X.d(x) to refer to the set
{f:X > Y|VxeX. f(x)ed(x)} of all dependent functions with respect to d. Similarly, for
given sets X and Y we use the notation ¥x € X.d(x) to refer to the set { (x,y) : X XY | y € d(x) }
of all dependent pairs with respect to d. We use the operators 7 and 75 to project to the first, resp.,
second component of a pair.

Abstract interpretation. A partially ordered set (poset) is a pair (L, C) consisting of a set L and a
binary relation E on L that is reflexive, transitive, and antisymmetric. Let (L1, ;) and (L2, o) be
two posets. We say that two functions « € L1 — Ly and y € Ly — L; form a Galois connection iff

VxeLi,Vyels. a(x) Eay &< xC;1y(y) .

We call L; the concrete domain and Lo the abstract domain of the Galois connection. Similarly,
a is called abstraction function (or left adjoint) and y concretization function (or right adjoint).
Intuitively, a(x) is the most precise approximation of x € L; in Ly while y(y) is the least precise
element of L; that can be approximated by y € Lo.

A complete lattice is a tuple (L,C, L, T, U, M) where (L,C) is a poset such that for any X C L,
the least upper bound LIX (join) and greatest lower bound MX (meet) with respect to C exist. In
particular, we have L =ML and T = UL. We often identify a complete lattice with its carrier set L.

Let (L1,E4, L1, T1,U35,M1) and (Lg, B9, Lo, Ta, L2, M2) be two complete lattices and let (a, y)
be a Galois connection between L, and Lo. Each of these functions uniquely determines the other:

a(x) =My € Lo | x Ty y(y)} y(@) =hi{x e L; | alx) C2 y)

Also, « is a complete join-morphism VS C Li. a(L1S) = Uo{a(x) | x € S},a(L1) = Lo andyisa
complete meet-morphism VS C Lo. y(M2S) = Mi{y(x) | x € S},y(T2) = T1. A similar result holds
in the other direction: if « is a complete join-morphism and y is defined as above, then («,y) is a
Galois connection between L; and Lo. Likewise, if y is a complete meet-morphism and « is defined
as above, then (a, y) is a Galois connection [Cousot and Cousot 1979].

4 PARAMETRIC DATA FLOW REFINEMENT TYPES

We now introduce our parametric data flow refinement type system. The purpose of this section
is primarily to build intuition. The remainder of the paper will then formally construct the type
system as an abstract interpretation of our new data flow semantics. As a reward, we will also obtain
a parametric algorithm for inferring data flow refinement types that is sound by construction.

Language. Our formal presentation considers a simple untyped lambda calculus:
ecFxpu=c | x| etes | Ax.e

The language supports constants ¢ € Cons (e.g. integers and Booleans), variables x € Var, lambda
abstractions, and function applications. An expression e is closed if all using occurrences of variables
within e are bound in lambda abstractions Ax. e’. A program is a closed expression.

Let e be an expression. Each subexpression of e is uniquely annotated with a location drawn
from the set Loc. We denote locations by ¢, i, j and use subscript notation to indicate the location
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identifying a (sub)expression as in (e; ;) and (Ax.e;)¢. The location annotations are omitted
whenever possible to avoid notational clutter. Variables are also locations, i.e. Var C Loc.

In our example programs we often use let constructs. Note that these can be expressed using
lambda abstraction and function application as usual:

letx=e ines = (Ax.ez)er .
Types. Our data flow refinement type system takes two parameters: (1) a finite set of abstract stacks
S, and (2) a (possibly infinite) complete lattice of basic refinement types (R", cb,1b b b mby.
We will discuss the purpose of abstract stacks in a moment. A basic refinement type b € R* comes
equipped with an implicit scope X C Var. Intuitively, b represents a relation between primitive
constant values (e.g. integers) and other values bound to the variables in X. The partial order C? is

an abstraction of subset inclusion on such relations. We will make this intuition formally precise
later. For X C Var, we denote by R}, the set of all basic refinement types with scope X.

Example 4.1. Let ¢(X) stand for a convex linear constraint over (integer) variables in X U {v}.
Then define the set of basic refinement types

Ri2 = 1P| T8 (v it | ¢(X))

An example of a basic type in R""? with scope {x} is {v : int | x < v A 1 < v}. The order Cb on R'2
is obtained by lifting the entailment ordering on linear constraints to R'™ in the expected way. If
we identify linear constraints up to equivalence, then C? induces a complete lattice on R'2.

The basic refinement types are extended to data flow refinement types as follows:
teVyu=1" T b|x:t b e R x:te‘];(tdéfoEVar\X.Sﬁ(V;XV;(U{x]
A data flow refinement type ¢t € Vy also has an implicit scope X. We denote by V* = Uxcvar Vi
the set of all such types for all scopes. There are four kinds of types. First, the type L' should be
interpreted as unreachable or nontermination and the type T* stands for a type error. We introduce
these types explicitly so that we can later endow V* with a partial order to form a complete lattice.
In addition to L* and T*, we have basic refinement types b and (dependent) function types x : ¢.
The latter are pairs consisting of a dependency variable x € Var \ X and a type table t that maps
abstract stack S € S to pairs of types t(§) = (t;, to). That is, x : t can be understood as capturing
a separate dependent function type x : t; — t, per abstract stack S. Abstract stacks represent
abstractions of concrete call stacks, enabling function types to case split on different calling contexts
of the represented functions. In this sense, function types resemble intersection types with ad hoc
polymorphism on contexts. Note that the scope of the output type ¢, includes the dependency

variable x, thus enabling the output type to capture input/output dependencies.

Let t = x : t be a function type and S € S such that t(§) = (t;, t,) for some t; and t,. We denote
t; by t(g);n and t, by t(§)out. We say that t has been called at S, denoted S € t, if l‘(SA)in is not L.
We denote by ¢, the empty type table that maps every abstract stack to the pair (L%, L*) and write
[§ <t; = t,] as a short hand for the singleton type table t | [§ — (t;,1,)]. We extend this notation to
tables obtained by explicit enumeration of table entries. Finally, we denote by t|4 the function type
x : [S<t; = t,] obtained from ¢ by restricting it to the singleton table for S.

Example 4.2. Consider again the set R from Example 4.1. In what follows, we write int for
{v:int| true} and {v | ¢(X)} for {v : int | #(X)}. Let further SO = {€} be a trivial set of abstract
stacks. We then instantiate V't with R'™ and S°. Since tables only have a single entry, we use the
more familiar notation x : t; — t, for function types, instead of x : [e <t; — #,]. We can then
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represent the type of fib in § 2 by the data flow refinement type
x:{v|0<svi-o{v|x<vAl<LSv}.
The most precise type that we can infer for function apply in Program 1 is
f:(y:int > int) > x:int > int .

Here, the variables f, x, and y refer to the corresponding parameters of the function apply, re-
spectively, the functions g and h that are passed to parameter f of apply. Now, define the set of
abstract stacks S = Loc U {e}. Intuitively, we can use the elements of St to distinguish table
entries in function types based on the program locations where the represented functions are called.
Instantiating our set of types V't with R and S!, we can infer a more precise type for function
apply in Program 1:

filiy:[jafv|0<svio{v|v=2y}l] - x:[j<{v]|0<v} > {v|v=2x}],
kay:[Ca{v|0>vio{v|v=="2y) o x:[f<{v]|0>v}>{v|v=-2x}] .

Note that the type provides sufficient information to distinguish between the calls to apply with
functions g and h at call sites i and k, respectively. This information is sufficient to guarantee the
correctness of the assertion on line 4.

Typing environments and operations on types. Before we can define the typing rules, we first
need to introduce a few operations for constructing and manipulating types. We here only provide
the intuition for these operations through examples. In § 7 we will then explain how to define these
operations in terms of a few simple primitive operations provided by the domain R*.

First, the (basic) refinement type abstracting a single constant ¢ € Cons is denoted by [v=c]".
For instance, for our basic type domain R"" from Example 4.1 and an integer constant ¢ € Z, we
define [v=c|* = {v | v = c}. Next, given a type t over scope X and a type ¢’ over scope X’ C X \ {x},
we denote by t[x « t’] the type obtained from t by strengthening the relation to x with the
information provided by type t’. Returning to Example 4.1, for two basic types b = {v | $(X)} and
b’ ={v| ¢ (X")}, we have b[x « b'] = {v | #(X) A ¢’(X’)[x/v]}. Finally, for a variable x € X and
t € V5, we assume an operation t[v = x|* that strengthens t by enforcing equality between the
value bound to x and the value represented by ¢. For instance, for a base type b = {v | ¢(X)} from
Example 4.1 we have b[v=x]' = {v | $(X) A v = x}.

A typing environment for scope X is a function I'* € (TIx € X. (V)t(\!x}). We lift t[x « t'] to an
operation ¢[I'*] that strengthens t with the constraints on variables in X imposed by the types
bound to these variables in T*. R

We additionally assume that abstract stacks S come equipped with an abstract concatenation
operation - : Loc X S — S that prepends a call site location i onto an abstract stack S, denoted i * S.
For instance, consider again the sets of abstract stacks 89 and S* introduced in Example 4.2. We
define“on S € S%asi‘S = eand on S € S we define it as i*S = i. The general specification of
is given in § 6.2.

Typing rules. Typing judgements take the form I't, S + e : t and rely on the subtype relation t <: t’
defined in Fig.1. The rule s-BOT states that L* is a subtype of all other types except T*. Since T*
denotes a type error, the rules must ensure that we do not have ¢ <: T* for any type ¢. The rule
s-BASE defines subtyping on basic refinement types, which simply defers to the partial order C% on
R*. Finally, the rule s-FUN is reminiscent of the familiar contravariant subtyping rule for dependent
function types, except that it quantifies over all entries in the type tables. In § 7.2, we will establish
a formal correspondence between subtyping and the propagation of values along data flow paths.
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$-BOT S-BASE t1(S) = (ti1, to1) t2(S) = (ti2, to2)

t# Tt bl Eb bg tio <: ti1 tol[x «— l’ig] <: tog[x «— tiQ} R .
T _— S-FUN VSeS

1t <t b1 <: by Xt <:x:tg

Fig. 1. Data flow refinement subtyping rules

T-VAR T-APP . .
T (x) [v=x]*[T"] <: t[v=x]"[T" I Ste:t; TLSke:t ti<ix:[i*S<t; > 1
l"t,gl-x:t Ft,ﬁl-eiej:t
T-CONST T-ABS X R
[v=c]'lY] <: t F=T'x:ity  ILSvetti xi[S<te—>t]<itly
= = S’ et
It S+te:t IYSHAx.e; i ¢t

Fig. 2. Data flow refinement typing rules

The rules defining the typing relation I't, S + e : t are shown in Fig. 2. We implicitly require
that all free variables of e are in the scope of I'*. The rule T-consT for typing constants requires
that [v=c|" is a subtype of the type ¢, after strengthening it with all constraints on the variables
in scope obtained from I'*. That is, we push all environmental assumptions into the types. This
way, subtyping can be defined without tracking explicit typing environments. We note that this
formalization does not preclude an implementation of basic refinement types that tracks typing
environments explicitly. The rule T-vaAR for typing variable expressions x is similar to the rule
T-CONST. That is, we require that the type I'*(x) bound to x is a subtype of ¢, modulo strengthening
with the equality constraint v = x and all environmental constraints. Note that we here strengthen
both sides of the subtype relation, which is necessary for completeness of the rules, due to the
bidirectional nature of subtyping for function types.

The rule T-aPP for typing function applications e; ej requires that the type ¢; of ¢; must be a
subtype of the function type x : [i*S : t; — t] where t; is the type of the argument expression e;
and t is the result type of the function application. Note that the rule extends the abstract stack S
with the call site location i identifying e;. The subtype relation then forces ¢; to have an appropriate
entry for the abstract call stack i * S. The rule T-aBs for typing lambda abstraction is as usual, except
that it universally quantifies over all abstract stacks S’ at which ¢ has been called. The side condition
VS’ € t implicitly constrains ¢ to be a function type.

5 DATA FLOW SEMANTICS

Our goal is to construct our type system from a concrete semantics of functional programs, following
the usual calculational approach taken in abstract interpretation. This imposes some constraints on
our development. In particular, given that the typing rules are defined by structural recursion over
the syntax of the evaluated expression, the same should be true for the concrete semantics that
we take as the starting point of our construction. This requirement rules out standard operational
semantics for higher-order programs (e.g. based on function closures) because they evaluate function
bodies at call sites rather than definition sites, making these semantics nonstructural. A more natural
choice is a standard denotational semantics (e.g. one that interprets lambda terms by mathematical
functions). However, the problem with denotational semantics is that it is inherently compositional;
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functions are given meaning irrespective of the context in which they appear. However, as we have
discussed in § 2, the function types inferred by algorithms such as Liquid types only consider the
inputs to functions that are observed in the program under consideration. Denotational semantics
are therefore ill-suited for capturing the program properties abstracted by these type systems.

Hence, we introduce a new data flow refinement type semantics. Like standard denotational
semantics, it is fully structural in the program syntax but without being compositional. That is, it
captures the intuition behind refinement type inference algorithms that view a function value as a
table that records all inputs the function will receive from this point onwards as it continues to flow
through the program.

5.1 Semantic Domains

We start with the semantic domains used for giving meaning to expressions e € Exp:

ne N = N,UN; N. = Locx & Ne Z Varx&xS
SeS = Loc* EeSdéfVar—\ﬁan MeM EN >V
veV =1|T|c|o veT ESS5VXV

Nodes, stacks, and environments. Every intermediate point of a program’s execution is uniquely
identified by an (execution) node, n € N, a concept which we adapt from [Jagannathan and Weeks
1995]. We distinguish expression nodes N, and variable nodes N. An expression node (¢, E), denoted
{oE, captures the execution point where a subexpression e, is evaluated in the environment E. An
environment E is a (finite) partial map binding variables to variable nodes. A variable node (x, E, S),
denoted xoE¢S, is created at each execution point where an argument value is bound to a formal
parameter x of a function at a call site. Here, E is the environment at the point where the function is
defined and S is the call site stack® of the variable node. Note that we define nodes and environments
using mutual recursion where the base cases are defined using the empty environment €. The
call site stack captures the sequence of program locations of all pending function calls before this
variable node was created. That is, intuitively, S can be thought of as recording the return addresses
of these pending calls. We write ¢ - S to denote the stack obtained from S by prepending ¢. Call site
stacks are used to uniquely identify each variable binding.

We explain the role of expression and variable nodes in more detail later. For any node n, we
denote by loc(n) the location of n and by env(n) its environment. If n is a variable node, we denote
its stack component by stack(n). A pair (e, E) is called well-formed if E(x) is defined for every
variable x that occurs free in e.

Values and execution maps. Similar to our data flow refinement types, there are four kinds
of (data flow) values v € V. First, every constant c is also a value. The value L stands for non-
termination or unreachability of a node, and the value T models execution errors. Functions are
represented by tables. A table v maintains an input/output value pair T(S) = (v;, v,) for each call
site stack S. We adapt similar notation for concrete function tables as we introduced for type tables
in § 4. In particular, we denote by v, the table that maps every call site stack to the pair (L, L). We
say that a value v is safe, denoted safe(v), if T does not occur anywhere in v, i.e,, v # T and if
v € T then for all S, both v(S);, and v(S)oyt are safe.

The data flow semantics computes execution maps M € M, which map nodes to values. We write
M, (M+) for the execution map that assigns L (T) to every node.

As a precursor to defining the data flow semantics, we define a computational order C on values.
In this order, L is the smallest element, T is the largest element, and tables are ordered recursively

Ireferred to as contour in [Jagannathan and Weeks 1995]
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on the pairs of values for each call site:

def
VCuoye vy =1LV =TV (v,v3 € Cons Avy =v3) V

(01,’02 €T AVS. 01(5) C UQ(S))

Defining the error value as the largest element of the order is nonessential but simplifies the
presentation. This definition ensures that the least upper bounds (lub) of arbitrary sets of values
exist, denoted by the join operator LI. In fact, E is a partial order that induces a complete lattice on
values which can be lifted point-wise to execution maps.

Example 5.1. Let us provide intuition for the execution maps through an example. To this end,
consider Program 2. The middle shows the corresponding expression in our simple language with
each subexpression annotated with its unique location. E.g., the using occurrence of x on line 1 is
annotated with location k.

The program’s execution map is given on the right. We abbreviate call stacks occurring in
table entries by the last location pushed onto the stack (e.g. writing just a instead of adh). This
simplification preserves the uniqueness of call stacks for this specific program. We similarly denote
a node just by its location if this already uniquely identifies the node. During the execution of
Program 2, the lambda abstraction at location o is called twice whereas all other functions are
called once. Due to the two calls to the function at o (which is later bound to id), the variable x is
bound twice and the subexpression at location k is also evaluated two times. This is reflected in
the execution map by entries for two distinct variable nodes associated with x and two distinct
expression nodes associated with k. We use superscript notation to indicate the environment
associated with these nodes. For instance, k9 is the expression node that records the value obtained
from the subexpression at location k when it is evaluated in the environment binding x to the
variable node x9. In turn, x4 records the binding of x for the function call at location gq.

The cumulative entry u, f, g, x?,k? — 1 in the execution map indicates that the result computed
atnodes u, f, g, and k7 is 1, respectively, that x is bound to 1 for the call at location q. Some of the
nodes are mapped to function values. The function id is represented by the table [g<1 — 1, a<2 — 2]
that stores input-output values for the two calls to id at g and a. The nodes corresponding to the
two usages of id are also mapped to tables. However, these tables only have a single entry each.
Intuitively, id takes two separate data flow paths in the program starting from its definition at o.
For each node on these two paths, the associated table captures how id will be used at the nodes on
any data flow path that continues from that point onward. The tables stored at nodes g and a thus
only contain information about the input and output for the respective call site whereas the table
stored at id captures both call sites because the node for the definition of id occurs on both paths.

Some additional examples involving higher-order functions and recursion can be found in the
companion report [Pavlinovic et al. 2020, § A] .

5.2 Concrete Semantics

We define the data flow semantics of a higher-order program e formally as the least fixpoint of a
concrete transformer, step, on execution maps.

Concrete Transformer. The idea is that we start with the map M, and then use step to consecu-
tively update the map with new values as more and more nodes are reached during the execution
of e. The signature of step is as follows:

step: Bagp > EXS > M > VM

It takes an expression ey, an environment E, and a stack S, and returns a transformer step[e,](E, S) :
M — V x M on execution maps. Given an input map M, the transformer step[e/](E, S) returns
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1 let id x = xi in ((Aid. (Au. (idg 2p)c)g  h[h<lg<l—>1, a<2—> 2] 2]
2 let u = (idg 1f)g in (idqlf)g)h idor [gel—>1, a<2-52] de[d<l—>2]
3 (idg 2p)e (Ax-xk)o)p g [g<l—>1] av[a<2-> 2]

u,f,g, x4, k91 b,c,d, hx* k% p—2

Program 2. The right side shows the program’s execution map

h [h<v; — 1] id— o) gr [g<l—> 1]
O @it @D o eIl

ide [g<al > 1] k- 1

) hes [halgal>1]— 1] G)xT 1 (6) o [qel—1] (7 ide [gel-1]
o [gel > 1] h [hagel > 1] - 1]
g gl - 1] ur 1 id [g<l > 1l,a<2 —> 1]

B)gm 1 9) b 2 (10) h [h<fgel > 1l,a<2 > 1] > 1] (11)x% > 2
de [dal > 1] ar [a<2 - 1] o [gel > 1,a42 > 1]
k% 2 g:p > 2

(12) o+ [g<l > La<2—> 2] (13) id > [ge1 > Laa2—>2 (14 97 <22

de [dal > 2]

h [ha]...,a<2 > 2] - 1]

he [h<]...] > 2]

Program 3. Fixpoint iterates of the data flow semantics for Program 2

the new value v’ computed at node {oF together with the updated execution map M’. That is,
we always have M’(£E) = v’. We could have defined the transformer so that it returns only
the updated map M’, but returning v’ in addition yields a more concise definition: observe that
M — V x M is the type of the computation of a state monad [Wadler 1990]. We exploit this
observation and define step using monadic composition of primitive state transformers. This allows
us to hide the stateful nature of the definition and make it easier to see the connection to the type
system later.

The primitive state transformers and composition operations are defined in Fig. 3. For instance,
the transformer !n reads the value at node n in the current execution map M and returns that value
together with the unchanged map. Similarly, the transformer n := v updates the entry at node n in
the current map M by taking the join of the current value at n with v, returning the obtained new
value v’ and the updated map. We compress a sequence of update operations ny := vy, ..., n, 1= vy,
by using the shorter notation ny,...,n, := vy, ..., v, to reduce clutter. We point out that the result
of this sequenced update operation is the result of the last update n, := v,.

The operation bind(F, G) defines the usual composition of stateful computations F and G in the
state monad, where F e M - a x M and G € @ > M — f x M for some « and f. Note that the
composition is short-circuiting in the case where the intermediate value u produced by F is T (i.e. an
error occurred). We use Haskell-style monad comprehension syntax for applications of bind at the
meta-level. That is, we write do x « F; G for bind(F, Ax. G). We similarly write dox « Fif P; G
for bind(F, Ax. if Pthen G else return L) and we shorten do x « F; G to just do F; G in cases
where x does not occur free in G. Moreover, we write dox; <« Fy; ...; x, « F,; G for the
comprehension sequence dox; « Fy; (...; (dox, « F,; G)...). We also freely mix the monad
comprehension syntax with standard let binding syntax and omit the semicolons whenever this
causes no confusion.
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The definition of step[e](E, S) is given in Fig. 4 using induction over the structure of e. As we
discussed earlier, the structural definition of the transformer enables an easier formal connection
to the data flow refinement typing rules. Note that in the definition we implicitly assume that e, E)
is well-formed. We discuss the cases of the definition one at a time using Program 2 as our running
example. Figure 3 shows the fixpoint iterates of step[e](e, €) starting from the execution map M,
where e is Program 2 and € refers to both the empty environment and empty stack. For each iterate
(i), we only show the entries in the execution map that change in that iteration. We will refer to
this figure throughout our discussion below.

Constant e = c’. Here, we simply set the current node n to the join of its current value M(n) and the
value c. For example, in Fig. 3, when execution reaches the subexpression at location f in iteration
(2), the corresponding entry for the node n identified by f is updatedto M(n) U1 =1L U1 =1.

Variable e = x;. This case implements the data flow propagation between the variable node n,
binding x and the current expression node n where x is used. This is realized using the propagation
function =. Let vy = I'(x) = M(n,) and v = M(n) be the current values stored at the two nodes in
M. The function i takes these values as input and propagates information between them, returning
two new values v, and v’ which are then stored back into M. The propagation function is defined
in Fig. 5 and works as follows. If v, is a constant or the error value and v is still L, then we simply
propagate v, forward, replacing v and leaving v, unchanged. The interesting cases are when we
propagate information between tables. The idea is that inputs in a table v flow backward to v,
whereas outputs for these inputs flow forward from v, to v. For example, consider the evaluation
of the occurrence of variable id at location a in step (10) of Fig. 3. Here, the expression node n is
identified by a and the variable node n, by id. Moreover, we have v = [a <2 — 1] from step (9)
and vy = [g<1 — 1] from step (7). We then obtain

vyxto=[gel - 1= [a<2 > 1] =([g<l > 1,a<2 > 1],[a<2 — 1])

That is, the propagation causes the entry in the execution map for the node identified by id to be
updatedto [g<1 — 1,a<2 — 1].

In general, if vy is a table but v is still 1, we initialize v to the empty table v, and leave v,
unchanged (because we have not yet accumulated any inputs in v). If both v, and v are tables,
vy <" v propagates inputs and outputs as described above by calling  recursively for every call site
S € v. Note how the recursive call for the propagation of the inputs vy; < v1; inverts the direction
of the propagation. This has the affect that information about argument values propagate from the
call site to the definition site of the function being called, as is the case for the input value 2 at call
site a in our example above. Conversely, output values are propagated in the other direction from
function definition sites to call sites. For example, in step (14) of Fig. 3, the occurrence of id at
location a is evaluated again, but now we have v, = [g<1 — 1,a <2 — 2] from step (13) whereas
v is as before. In this case, the propagation yields

vextv=[gel 5 La<2 5 2= [a<2 > L] =(g<l > 1,a<2 > 2],[a<2 > 2])

That is, the information about the output value 2 for the input value 2 has finally arrived at the call
site a. As we shall see, the dataflow propagation between tables closely relates to contravariant
subtyping of function types (cf. Lemma 7.5).

Function application e = (e; ej)¢. We first evaluate e; to obtain the updated map and extract the
new value v; stored at the corresponding expression node n;. If v; is not a table, then we must be
attempting an unsafe call, in which case the monadic operations return the error map M+.If v; isa
table, we continue evaluation of e; obtaining the new value v; at the associated expression node n;.
We next need to propagate the information between this call site n; and v;. To this end, we use
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def

1 AM. (M(n), M)
n:=v = AM.letv’ = M(n) Uvinif safe(v’) then (v, M[n — v']) else (T, M+)
env(E) £ AM. (M o E, M)

assert(P) = <" AM. if Pthen (L, M)else({T, M)

for vdoF = AM. I_I F(S
returnv = AM. (v, M)
bind(F,G) = AM. let(u, M’y = F(M) in if u = T then (T, M) else G(u)(M’)

Fig. 3. Primitive transformers on state monad for computations over execution maps

step[ce](E. S) = step[(Ax.e;)¢[ (E.S) =
don=1{(0E; v’ « n:=c; returnv’ don=0E; ve—n:=v,
. " f do body(x, e;, E,
step[xc[(E, S) def v”<— or v ,0 ody(x, e;, E, v)
don =(oE;v «!n; ny = E(x); T < env(E) voeon=vo
”
v — ny, ni=T(x)xv returnov
’
returnv body(x. e, E, v) (5')
step[[(e; e;)] (E. S) = def don, = x0EoS’; E; = Ex:ny; n; = ioE;
don ={oE; n;=ioE; nj = joE; v<«!n Uy« Iny
v; « step[e;](E,S) ifv; # L v; « step[e;](E;,S")
assert(v; € T) [S" <0, = v,v" =[S <vx = v xvls
vj « step[e;](E,S) Ny, N = VY, U]
v, [i-5<rv]’.—>v’}—vi [i-S<v; = v return o’
v”  nj, nj, n:= v, v], v’
return v”’
Fig. 4. Transformer for the concrete data flow semantics
dﬁf def
v xwy = oL (v,0,)
letv’ = AS.
if S ¢ vy then (v1(S), v2(S)) else
let (017, v10) = v1(S); (v2i, V20) = D2(S) v T (T, T)

(v, v];) = V21 < U135 (1, Vh,) = Vlo < V2o
in ((v],,0],), (v};,v5,)) y |
in (AS. 1 (2'(S)), AS. m2(v’(S))) v1 < vy = (vy,v; Uvg)  (otherwise)

Fig. 5. Value propagation in the concrete data flow semantics
the return value v for the node n of e computed thus far and create a singleton table [S" <v; — 2]
where S’ =i - S is the extended call stack that will be used for the evaluation of this function call.
We then propagate between v; and this table to obtain the new value v; and table v’. Note that

this propagation boils down to (1) the propagation between v; and the input of v; at S” and (2) the
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propagation between the output of v; at S’ and the return value v. The updated table »” hence
contains the updated input and output values v} and v at §’. All of these values are stored back into
the execution map. Intuitively, v] contains the information that the corresponding function received
an input coming from the call site identified by S’. This information is ultimately propagated back
to the function definition where the call is actually evaluated.

As an example, consider the evaluation of the function application at location g in step (3) of
Fig. 3. That is, node n is identified by g and we have i = ¢q, j = f, S = h, and v = L. Moreover,
we initially have M(n;) = L and M(n;) = L. The recursive evaluation of e; will propagate the
information that id is a table to location g, i.e., the recursive call to step returns v; = v, . Since v;
is a table, we proceed with the recursive evaluation of 1, after which we obtain M(ns) = v; = 1.
Next we compute

vix[i-S<ev; s> v]=v; x[gheal - 1] =([gh<1l— 1],[gh<1 — 1])

That is, M(n;) is updated to v} = [gh <1 — L|*. Note that we still have v’ = L at this point. The
final value 1 at location g is obtained later when this subexpression is reevaluated in step (8).

Lambda abstraction e = (Ax.e;),. We first extract the table v computed for the function thus far.
Then, for every call stack S’ for which an input has already been back-propagated to v, we analyze
the body by evaluating body(x, €;, E, v)(S’), as follows. First, we create a variable node n, that
will store the input value that was recorded for the call site stack S’. Note that if this value is
a table, indicating that the function being evaluated was called with another function as input,
then any inputs to the argument function that will be seen while evaluating the body e; will be
back-propagated to the table stored at ny and then further to the node generating the call stack S’.
By incorporating S’ into variable nodes, we guarantee that there is a unique node for each call.

We next evaluate the function body e; with the input associated with stack S’. To this end,
we extend the environment E to E; by binding x to the variable node n,. We then propagate the
information between the values stored at the node n;, i.e., the result of evaluating the body e;, the
nodes ny for the bound variable, and the table ». That is, we propagate information from (1) the
input of v at §” and the value at node n,, and (2) the value assigned to the function body under the
updated environment E; and ©(S”)oyt, the output value at ©(S’). Finally, the updated tables v’ for
all call site stacks S’ are joined together and stored back at node n.

As an example, consider the evaluation of the lambda abstraction at location o in step (5) of
Fig. 3. Here, n is identified by o and we initially have M(n) = v = [gh <1 — L]. Thus, we evaluate
a single call to body for e; = x4 and S’ = gh. In this call we initially have M(n,) = M(x9) = L.
Hence, the recursive evaluation of e; does not yet have any effect and we still obtain v; = L at this
point. However, the final propagation step in body yields:

[S"<vy D vl xov(S’)=[gheal - L]x[gh<l > 1] =([gh<1l > 1],[gh<1l > L])

and we then update M(ny) to v} = 1. In step (6), when the lambda abstraction at o is once more
evaluated, we now have initially M(n,) = M(x?) = 1 and the recursive evaluation of e; = xx
will update the entry for k9 in the execution map to 1. Thus, we also obtain v; = 1. The final
propagation step in body now yields:

[S"<vxy m vl xv(S')=[gh<l > 1] x[gh<]l > L] =([gh<1l - 1],[gh<1 - 1])

which will cause the execution map entry for n (identified by o) to be updated to [gh <1 — 1].
Observe that the evaluation of a lambda abstraction for a new input value always takes at least
two iterations of step. This can be optimized by performing the propagation in body both before

Recall that in Fig. 3 we abbreviate the call stack gh by just q.
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and after the recursive evaluation of e;. However, we omit this optimization here for the sake of
maintaining a closer resemblance to the typing rule for lambda abstractions.

LEMMA 5.2. The function < is monotone and increasing.

LEMMA 5.3. Foreverye € Exp, E € &, and S € S such that (e, E) is well-formed, step[e](E, S) is
monotone and increasing.

We define the semantics S[e] of a program e as the least fixpoint of step over the complete lattice
of execution maps:

S[e] = lfp%hAM. let(_,M’) = step[e] (e, €)(M) in M’

Lemma 5.3 guarantees that S[e] is well-defined by Knaster-Tarski. We note that the above
semantics does not precisely model certain non-terminating programs where tables grow infinitely
deep. The semantics of such programs is simply M+. A more precise semantics can be defined using
step-indexing [Appel and McAllester 2001]. However, we omit this for ease of presentation and
note that our semantics is adequate for capturing refinement type systems and inference algorithms
d la Liquid types, which do not support infinitely nested function types.

Properties and collecting semantics. As we shall see, data flow refinement types abstract
programs by properties P € P, which are sets of execution maps: P = p(M). Properties form
the concrete lattice of our abstract interpretation and are ordered by subset inclusion. That is, the
concrete semantics of our abstract interpretation is the collecting semantics C : Fxp — P that
maps programs to properties: Ce] = {S[e]}. An example of a property is safety: let Pefe consist
of all execution maps that map all nodes to safe values. Then a program e is safe if C[e] C Pate.

6 INTERMEDIATE ABSTRACT SEMANTICS

We next present two abstract semantics that represent crucial abstraction steps when calculating
our data flow refinement type system from the concrete data flow semantics. Our formal exposition
focuses mostly on the aspects of these semantics that are instrumental in understanding the loss of
precision introduced by these intermediate abstractions. Other technical details can be found in
the designated appendices of the companion report [Pavlinovic et al. 2020] .

6.1 Relational Semantics

A critical abstraction step performed by the type system is to conflate the information in tables that
are propagated back from different call sites to function definitions. That is, a pair of input/output
values that has been collected from one call site will also be considered as a possible input/output
pair at other call sites to which that function flows. To circumvent a catastrophic loss of precision
caused by this abstraction step, we first introduce an intermediate semantics that explicitly captures
the relational dependencies between input and output values of functions. We refer to this semantics
as the relational data flow semantics.

Abstract domains. The definitions of nodes, stacks, and environments in the relational semantics
are the same as in the concrete semantics. Similar to data flow refinement types, the relational
abstractions of values, constants, and tables are defined with respect to scopes X Cp,, Var. The
variables in scopes are used to track how a value computed at a specific node in the execution
map relates to the other values bound in the current environment. We also use scopes to capture
how function output values depend on the input values, similar to the way input-output relations
are captured in dependent function types. The scope of a node n, denoted X,, is the domain of n’s
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environment: X, = dom(env(n)). The new semantic domains are defined as follows:
ueVgu= L"| T |r|lx:u dEZ);(défXU{V}—)CO’nSU{F}

def

reRy = o(D%) xiue Ty < Sxe(Var\X).8 > Vi x Vi
M e M = Tne N. Vg,

Relational values u € Vi model how concrete values, stored at some node, depend on the concrete
values of nodes in the current scope X. The relational value L" again models nontermination or
unreachability and imposes no constraints on the values in its scope. The relational value T" models
every possible concrete value, including T. Concrete constant values are abstracted by relations
r, which are sets of dependency vectors d. A dependency vector tracks the dependency between a
constant value associated with the special symbol v, and the values bound to the variables in scope
X. Here, we assume that v is never contained in X.

We only track dependencies between constant values precisely: if a node in the scope stores
a table, we abstract it by the symbol F which stands for an arbitrary concrete table. We assume
F to be distinct from all other constants Cons. We also require that for all d € r, d(v) € Cons.
Relational tables (x, u), denoted x : u, are defined analogously to concrete tables except that u now
maps call site stacks S to pairs of relational values (u;, u,). As for dependent function types, we
add a dependency variable x to every relational table to track input-output dependencies. Note
that we consider relational tables to be equal up to ¢-renaming of dependency variables. Relational
execution maps M" assign each node n a relational value with scope X,.

The relational semantics of a program is the relational execution map obtained as the least
fixpoint of a Galois abstraction of the concrete transformer step. The formal definition is mostly
straightforward, so we delegate it to the companion report [Pavlinovic et al. 2020, § B] .

Example 6.1. The relational execution map obtained for Program 2 is as follows (we only show
the entries for the nodes id, g, and a):

id x:[gaf{(v: 1)} > {(x: Lv: 1)}, a<{(v: 2)} - {(x: 2,v: 2)}]
g x:[g<{(id: F,v: 1)} - {(id: F,x: 1,v: 1)}]
ar x:fa<{(id: F,u: 1,v: 2)} - {(id: F,u: 1,x: 2,v: 2)}]

Each concrete value v in the concrete execution map shown to the right of Program 2 is abstracted
by a relational value that relates v with the values bound to the variables that are in the scope
of the node where v was observed. Consider the entry for node id. As expected, this entry is a
table that has seen inputs at call site stacks identified with g and a. The actual input stored for call
site stack ¢ is now a relation consisting of the single row (v : 1), and similarly for call site stack a.
As the node id has no other variables in its scope, these input relations are simply representing
the original concrete input values 1 and 2. We associate these original values with the symbol v.
The output relation for g consists of the single row (x : 1, v : 1), stating that for the input value 1
(associated with x), the output value is also 1 (associated with v). Observe how we use x to capture
explicitly the dependencies between the input and output values.

The entry in the relational execution map for the node identified by q is similar to the one for id,
except that the relation also has an additional entry id : F. This is because id is in the scope of g.
The value of id in the execution map is a table, which the relational values abstract by the symbolic
value F. That is, the relational semantics only tracks relational dependencies between primitive
values precisely whereas function values are abstracted by F. The relational table stored at node a
is similar, except that we now also have the variable u which is bound to value 1. As in the concrete
execution map, the relational tables for g and a contain fewer entries than the table stored at id.
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Abstraction. We formalize the meaning of relational execution maps in terms of a Galois connec-
tion between M" and the complete lattice of sets of concrete execution maps (M). The details of
this construction and the resulting abstract transformer of the relational semantics can be found
in [Pavlinovic et al. 2020, § B] . We here focus on the key idea of the abstraction by formalizing the
intuitive meaning of relational values given above. Our formalization uses a family of concretization
functions y§, : Vi — 9((X — V) x V), parameterized by scopes X, that map relational values to
sets of pairs (I', v) where I maps the variables in scope X to values in V:

Yr(L) E (X - V) x {1} (M E X > V)xV
YR (r) € (T, ¢y | der Ad(v) = ¢ AVx€EX. T(x) € y4(d(x))} U yk (L")
yi(x s u) E T, o) | VS, v(S) = (v, Vo) A u(S) = (us, o)A
(T, v;) € yx (i) A(T[x 5 0], 00) € Yy (U0)} U ¥ (L)

Here, the function y9, which we use to give meaning to dependency relations, is defined by
y4(c) = {c} and y9(F) = 7. The meaning of relational execution maps is then given by the function
def

y' (M) = {M|V¥neN.(T,v) €yy (M'(n)) AT = Moenv(n) Av=M(n)}

6.2 Collapsed Semantics
We now describe a key abstraction step in the construction of our data flow refinement type seman-
tics. We formalize this step in terms of a collapsed (relational data flow) semantics, which collapses
function tables to a bounded number of entries while controlling how much stack information is
being lost, thereby allowing for different notions of call-site context sensitivity.
Abstract domains. The collapsed semantics is parameterized by a finite set of abstract stacks
S e S, a stack abstraction function p : § — 3, and an abstract stack concatenation operation
2: Loc x 8 — S. Stack abstraction must be homomorphic with respect to concatenation: for all
feLlocand S € S, p(€-S) =1C("p(S).

Abstract stacks induce sets of abstract nodes and abstract environments following the same
structure as in the concrete semantics

AeN = N, UN; N. = Locx & Ne € VarxEx S Ec&E Vm’éﬁan

We lift p from stacks to nodes and environments in the expected way. In particular, for variable
nodes n, = £oEoS, we recursively define p(n,) El {o(p o E)op(S). Analogous to concrete nodes,
we define the scope of an abstract node as X;; = dom(env(#)).

The definition of values and execution maps remains largely unchanged. In particular, dependency
vectors and relational values are inherited from the relational semantics. Only the definition of
tables changes, which now range over abstract stacks rather than concrete stacks:

itE‘V;( c= LT T rx:a x:lAlE'T?d;fZXE(Var\X).Sﬁ(V;X(V;U{x}
M e MM ETThe N. Vi
Example 6.2. We use Program 2 again to provide intuition for the new semantics. To this end,
we first define a family of sets of abstract stacks which we can use to instantiate the collapsed
semantics. Let k € N and define S¥ = Lock where Loc* is the set of all sequences of locations of
length at most k. Moreover, for § € S¥ define £28 = (£ - $)[0, k] where (£; ... £,)[0,k] is € if k = 0,
€1...0if0 <k <n,and ¢; ..., otherwise. Note that this definition generalizes the definitions

of S° and S from Example 4.2. An abstract stack in Sk only maintains the return locations of the
k most recent pending calls, thus yielding a k-context-sensitive analysis. In particular, instantiating
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our collapsed semantics with SO yields a context-insensitive analysis. Applying this analysis to
Program 2, we obtain the following collapsed execution map, which abstracts the relational execution
map for this program shown in Example 6.1:

idex: {(v:1),(v:2)} > {(x: 1,v: 1), (x:2,v: 2)}
q— x:{(id: F,v: 1)} = {(id: F,x: 1,v: 1)}
a x: {(id: Fu: L,v: 2)} > {(id: F,u: 1,x: 2,v: 2)}

Again, we only show some of the entries and for economy of notation, we omit the abstract stack e
in the singleton tables. Since the semantics does not maintain any stack information, the collapsed
tables no longer track where functions are being called in the program. For instance, the entry
for id indicates that id is a function called at some concrete call sites with inputs 1 and 2. While
the precise call site stack information of id is no longer maintained, the symbolic variable x still
captures the relational dependency between the input and output values for all the calls to id.

If we chose to maintain more information in S, the collapsed semantics is also more precise.
For instance, a 1-context-sensitive analysis is obtained by instantiating the collapsed semantics
with S!. Analyzing Program 2 using this instantiation of the collapsed semantics yields a collapsed
execution map that is isomorphic to the relational execution map shown in Example 6.1 (i.e., the
analysis does not lose precision in this case).

Abstraction. Similar to the relational semantics, we formalize the meaning of the collapsed
semantics in terms of a Galois connection between the complete lattices of relational execution
maps M" and collapsed execution maps M. Again, we only provide the definition of the right
adjoint y* : M" — M here. Similar to the relational semantics, y is defined in terms of a family
of concretization functions y; : (V;( — Vg mapping collapsed values to relational values:

def

=10y

Yi(e i) = x: AS € S.let (i, o) = (it 0 p)(S) in (Y (i), Y, ) (o))

def

V(M) = AneN.(k,, oM op)m)  yx(L) =T (M E

More details on the collapsed semantics including its abstract transformer are provided in the
companion report [Pavlinovic et al. 2020, § C] .

7 PARAMETRIC DATA FLOW REFINEMENT TYPE SEMANTICS

At last, we obtain our parametric data flow refinement type semantics from the collapsed relational
semantics by abstracting dependency relations over concrete constants by abstract relations drawn
from some relational abstract domain. In § 7.2, we will then show that our data flow refinement type
system introduced in § 4 is sound and complete with respect to this abstract semantics. Finally, in
§ 7.3 we obtain a generic type inference algorithm from our abstract semantics by using widening
to enforce finite convergence of the fixpoint iteration sequence.

7.1 Type Semantics

Abstract domains. The abstract domains of our data flow refinement type semantics build on
the set of types Vy, defined in § 4. Recall that VY, is parametric with a set of abstract stacks S
and a complete lattice of basic refinement types (R", cb o1t b b, I‘Ib>, which can be viewed as a
union of sets R, for each scope X. We require that each R}, forms a complete sublattice of R* and
that there exists a family of Galois connections® (afp y)b() between R, and the complete lattice of

3In fact, we can relax this condition and only require a concretization function, thus supporting abstract refinement domains
such as polyhedra [Cousot and Halbwachs 1978].
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dependency relations (R, €, 0, D5, U, N). For instance, for the domain Rlia from Example 4.1, the
concretization function y)b( is naturally obtained from the satisfaction relation for linear integer
constraints.

We lift the partial order C? on basic refinement types to a preorder C* on types as follows:

def ~ ~ . ~
hC't & Hh=1'"Vi=T V(b e REAH CP 1) V (f1. 12 € TEAVS. 1(S) T 12(5))

By implicitly taking the quotient of types modulo a@-renaming of dependency variables in function
types we obtain a partial order that induces a complete lattice ('VE,Ct, LY, T, LUt M*). We lift this

partial order point-wise to refinement type maps M" = MaeN. (V)t(n and obtain a complete
lattice (M®,CF, M, ML, L, ).

Galois connection. The meaning of refinement types is given by a function y§, : Vy — (V)'( that
extends y? on basic refinement types. This function is then lifted to type maps as before:

YD E T (T E Ty ) T ox AS et (1, ko) = H(S) in (yk (1), Vi) (o))

def t

yE (M) = An. (yy, o MY)(#)

Abstract domain operations. We briefly revisit the abstract domain operations on types introduced
in § 4 and provide their formal specifications needed for the correctness of our data flow refinement
type semantics.

We define these operations in terms of three simpler operations on basic refinement types. First,
for x,y € X U {v} and b € R}, let b[x = y] be an abstraction of the concrete operation that
strengthens the dependency relations described by b with an equality constraint x = y. That is,
we require y)”((b[x =y))2({de y)l;(b) | d(x) = d(y)}. Similarly, for ¢ € Cons U {F} we assume
that b[x = c] is an abstraction of the concrete operation that strengthens b with the equality x = c,
i.e. we require y)lg(b[x =c]) 21{de y)l;(b) | d(x) = c}. Lastly, we assume an abstract variable
substitution operation, b[x/v], which must be an abstraction of variable substitution on dependency
relations: y)l;(b[x/v]) 2{dlv e, x> dW)] | de y)lz(b),c € Cons}. We lift these operations to
general refinement types t in the expected way. For instance, we define

tx = ¢] ifteR
tx=c] = z:AS. ES)n[x =c|,tS)outlx =¢]) ift=z:tAx#vV
t otherwise

Note that in the second case of the definition, the fact that x is in the scope of ¢ implies x # z.

We then define the function that yields the abstraction of a constant ¢ € Cons as [v =] =
TP[v = ¢]. The strengthening operation t[x « t'] is defined recursively over the structure of types
as follows:

1t if /= 1"

t[x = F] elseif /' e 7t
tx — '] = {tmb ¢[x/v] elseif t € R

z: AS. (t(S)infx — t'],£(S)out[x — t']) elseift=z:t

t otherwise

Finally, we lift ¢[x « t’] to the operation ¢[I'*] that strengthens ¢ with respect to a type environment
def

I'* by defining ¢[I'*] = H;edom(rt) tlx « I'(x)].
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def

x ity <t x ity = lett = AS.
let (1, t1o) = £1(S); (taistao) = £2(S) | x:#t LE = (x:t,x:8,)

(thyo 11, = toi < X bt TEE(TE T
def

(] t5,) = tio[x = to;] <" too[x ¢ to;] | t1 ="t = (t1, 1 LU 1)

in ((t;, t1o LS 8] ,), (th;, tao LIV 5 )) (otherwise)

in{(x: AS. ﬂl(t(ﬁ)),x : AS. 712(t(§)))

Fig. 6. Abstract value propagation in the data flow refinement type semantics

step*[e](E, S) = step[(x.e;)e] (B, §) <
dofi = (oE; Tt « env(E);t' « fi:= [v=c]*[T"] dofi=(oE;t —h:=x:t,
return ¢’ t’ « for t dobody'(x, e;, E, t)
" Loy §
stept[x/](E,S) = t7 ,’,l =t
don = [oE; t « 'fl; ﬁx — E(x) ; I“t — enV(E) returnt

t' i, A =T [v=x]" [T <" ty=x]"["] | body*(x, e;, E, 1)($") &

! A ~ A A ~
return do Ay = x0E0S"; E; = E.x:fiy; f; = iok;

step'[(e; e/)c[ (E,S) = te < iy t; — step*[e;](E:,S")
dofi = (oE;fi; = ioE; fij = joE; t « i x:[SM et -t =
t; « step[e;](E,S); assert(t; € T*) X [S’ Aty o b <t
tj « step[e;](E,S) Ay, Ay = 1, 1]
tlf,x:[iTSA<tJf—>t’]=ti><tx:[i7§<tj—>t returnt’

17 ~ ~ Y By )
1" & nj, nj, n:= tl., tj, t
returnt”

Fig. 7. Abstract transformer for the data flow refinement type semantics

Abstract propagation and transformer. The propagation operation <" on refinement types,
shown in Fig. 6, is then obtained from x in Fig. 5 by replacing all operations on concrete values
with their counterparts on types. In a similar fashion, we obtain the new abstract transformer step®
for the refinement type semantics from the concrete transformer step. We again use a state monad
to hide the manipulation of type execution maps. The corresponding operations are variants of
those used in the concrete transformer, which are summarized in Fig. 7. The abstract transformer
closely resembles the concrete one. The only major differences are in the cases for constant values
and variables. Here, we strengthen the computed types with the relational information about the
variables in scope obtained from the current environment I't = Mt o E.

Abstract semantics. We identify abstract properties " in the data flow refinement type semantics
with type maps, P* = M and define y : Pt — P, which maps abstract properties to concrete
propertiesby y = y" oy" o yt.

LEMMA 7.1. The function y is a complete meet-morphism between P* and P.
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It follows that y induces a Galois connection between concrete and abstract properties. The data
flow refinement semantics C*[-] : Fzp — " is then defined as the least fixpoint of step®:

Cte] = lprtAMt let (_, M) = step*[e] (¢, €)(M*) in M*’
THEOREM 7.2. The refinement type semantics is sound, i.e. C[e] C y(C*[e]).

The soundness proof follows from the calculational design of our abstraction and the properties
of the involved Galois connections. .

We say that a type t is safe if it does not contain Tt i.e.t # Ttand if t = x : f then forall S € S,
£(S)in and #(S)oy: are safe. Similarly, a type map M is safe if all its entries are safe. The next lemma
states that safe type maps yield safe properties. It follows immediately from the definitions of the
concretizations.

LEMMA 7.3. For all safe type maps M, y (M) C Pgyfe.

A direct corollary of this lemma and the soundness theorems for our abstract semantics is that
any safe approximation of the refinement type semantics can be used to prove program safety.

COROLLARY 7.4. For all programs e and safe type maps M, if Ct[e] C* MY, then e is safe.

7.2 Soundness and Completeness of Type System

It is worth to pause for a moment and appreciate the resemblance between the subtyping and
typing rules introduced in § 4 on one hand, and the abstract propagation operator <" and abstract
transformer step® on the other hand. We now make this resemblance formally precise by showing
that the type system exactly captures the safe fixpoints of the abstract transformer. This implies
the soundness and completeness of our type system with respect to the abstract semantics.

We start by formally relating the subtype relation and type propagation. The following lemma
states that subtyping precisely captures the safe fixpoints of type propagation.

LEMMA 7.5. Forallty,ty € (V;(, t1 <:to iff (t1, t2) = t; <" to and t1, t2 are safe.

We use this fact to show that any derivation of a typing judgment T*, S+ e : t represents a safe
fixpoint of step® on e, and vice versa, for any safe fixpoint of step® on e, we can obtain a typing
derivation. To state the soundness theorem we need one more definition: we say that a typing
environment is valid if it does not map any variable to L* or T*.

THEOREM 7.6 (SOUNDNESS). Let e be an expression, I't a valid typing environment, S an abstract
stack, andt € V' IfTYS v+ e : t, then there exist M*, E such that M* is safe, T* = M" o E and
(t, M*) = step*[e] (E, S)(M").

THEOREM 7.7 (COMPLETENESS) Let e be an expression, E an environment, S € S, Mta type map,
and t € V*. If stept[e] (E, S)(M?) = (t, M) and M* is safe, thenT*,S k- e : t where T = M o E.

7.3 Type Inference

The idea for the generic type inference algorithm is to iteratively compute C*[e], which captures the
most precise typing for e as we have established above. Unfortunately, there is no guarantee that the
fixpoint iterates of step® converge towards C*[e] in finitely many steps. The reasons are two-fold.
First, the domain R* may not satisfy the ascending chain condition (i.e. it may have infinite height).
To solve this first issue, we simply assume that R* comes equipped with a family of widening
operators v§ : R} X R}, — R for its scoped sublattices. Recall that a widening operator for a
complete lattice (L,C, L, T, LI, M) is a function v : L X L — L such that: (1) v is an upper bound
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operator, i.e., for all x,y € L, x Uy £ x Vy, and (2) for all infinite ascending chains xo C x; C . ..
in L, the chain yp E y; C ... eventually stabilizes, where yg = xo and y; = y;—1 V x; for all
i > 0 [Cousot and Cousot 1977].

The second issue is that there is in general no bound on the depth of function tables recorded in

the fixpoint iterates. This phenomenon can be observed, e.g., in the following program*:

1 let rec hungry x = hungry and loop f = loop (f ()) in

2 loop hungry

To solve this second issue, we introduce a shape widening operator that enforces a bound on the
depth of tables. The two widening operators will then be combined to yield a widening operator
for V. In order to define shape widening, we first define the shape of a type using the function
sh: Vi — Vy defined as follows:

sh(Lt) € 1t sh(TH) € Tt sh(rt) = L' sh(x:t) = x: AS. (sh(#(S)in), sh(#(S)out))

A shape widening operator is a function v§f : VE X V& — VL such that (1) v$ is an upper
bound operator and (2) for every infinite ascending chain ty C}, #; T, ..., the chain sh(z)) C},

sh(t]) CY ... stabilizes, where #; < 4y and t! El t, Vi? t; fori > 0.

Example 7.8. The occurs check performed when unifying type variables in type inference for
Hindley-Milner-style type systems serves a similar purpose as shape widening. In fact, we can
define a shape widening operator that mimics the occurs check. To this end, suppose that each
dependency variable x is tagged with a finite set of pairs (£, S). We denote this set by tag(x).
Moreover, when computing joins over function types x : f and y : t, first a-rename x, respectively,
y by some fresh z such that tag(z) = tag(x) U tag(y). We proceed similarly when applying =*
to function types. Finally, assume that each fresh dependency variable x generated by step® for
the function type at a call expression e; e; has tag(x) = {(i, S)} where S is the abstract call stack
at this point. Then to obtain #; Vi? to, first define t = t; I_IE( to. If t contains two distinct bindings
of dependency variables x and y such that tag(x) = tag(y), define #; V§? ts = Tt and otherwise
21 Vi? ty = t. Clearly this is a shape widening operator if we only consider the finitely many tag
sets that can be constructed from the locations in the analyzed program.

In what follows, let Vi? be a shape widening operator. First, we lift the v, on R* to an upper
bound operator v on Vy:

A ift,t’ € R*
pora e | ox AS. let(ti,to) = t(S); (t,t}y =t'(S) ift=x:tAt' =x:¢t
X in (4 V1o VR 1)
e otherwise

We then hdeﬁne v o VE X VE — V& as the composition of V5 and V7, that is, t V& ¢/ =
tvR(Evyt).
LEmMmA 7.9. VE( is a widening operator.

We lift the widening operators v%; pointwise to an upper bound operator ¥*: M! x M* — M*
and define a widened data flow refinement semantics CL[-] : Exp — P* as the least fixpoint of the
widened iterates of step®:

Ctle] = lfpj%;t AM®. let (_,M""y = step*[e] (e, €)(M*) in (M* V' M) 1)

4We here assume that recursive functions are encoded using the ¥ combinator.
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The following theorem then follows directly from Lemma 7.9 and [Cousot and Cousot 1977].

THEOREM 7.10. The widened refinement type semantics is sound and terminating, i.e., for all
programs e, Ct[[e] converges in finitely many iterations. Moreover, Ct[e] = C% [e].

Our parametric type inference algorithm thus computes C¥ [e] iteratively according to (1). By
Theorem 7.10 and Corollary 7.4, if the resulting type map is safe, then so is e.

8 IMPLEMENTATION AND EVALUATION

We have implemented a prototype of our parametric data flow refinement type inference analysis in
a tool called DrirT’. The tool is written in OCaml and builds on top of the APrON library [Jeannet
and Miné 2009] to support various numerical abstract domains of type refinements. We have
implemented two versions of the analysis: a context-insensitive version in which all entries in
tables are collapsed to a single one (as in Liquid type inference) and a 1-context-sensitive analysis
that distinguishes table entries based on the most recent call site locations. For the widening on basic
refinement types, we consider two variants: plain widening and widening with thresholds [Blanchet
et al. 2007]. Both variants use APRON’s widening operators for the individual refinement domains.

The tool takes programs written in a subset of OCaml as input. This subset supports higher-order
recursive functions, operations on primitive types such as integers and Booleans, as well as lists
and arrays. We note that the abstract and concrete transformers of our semantics can be easily
extended to handle recursive function definitions directly. As of now, the tool does not yet support
user-defined algebraic data types. DRIFT automatically checks whether all array accesses are within
bounds. In addition, the tool supports the verification of user-provided assertions. Type refinements
for lists can express constraints on both the list’s length and its elements.

To evaluate DRIFT we conducted two experiments that aim to answer the following questions:

1) What is the trade-off between efficiency and precision for different instantiations of our
34 p
parametric analysis framework?
2) How does our new analysis compare with other state-of-the-art automated verification tools
y p
for higher-order programs?

Benchmarks and Setup. We collected a benchmark suite of OCaml programs by combining several
sources of programs from prior work and augmenting it with our own new programs. Specifically,
we included the programs used in the evaluation of the DORDER [Zhu et al. 2016] and R_TyPE [Cham-
pion et al. 2018a] tools, excluding only those programs that involve algebraic data types or certain
OCaml standard library functions that our tool currently does not yet support. We generated a few
additional variations of some of these programs by adding or modifying user-provided assertions,
or by replacing concrete test inputs for the program’s main function by unconstrained parameters.
In general, the programs are small (up to 86 lines) but intricate. We partitioned the programs
into five categories: first-order arithmetic programs (FO), higher-order arithmetic programs (HO),
higher-order programs that were obtained by reducing program termination to safety checking
(T), array programs (A), and list programs (L). All programs except two in the T category are safe.
We separated these two erroneous programs out into a sixth category (E) which we augmented by
additional unsafe programs obtained by modifying safe programs so that they contain implementa-
tion bugs or faulty specifications. The benchmark suite is available in the tool’s Github repository.
All our experiments were conducted on a desktop computer with an Intel(R) Core(TM) i7-4770
CPU and 16 GB memory running Linux.

Shttps://github.com/nyu-acsys/drift/
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Table 1. Summary of Experiment 1. For each benchmark category, we provide the number of programs
within that category in parentheses. For each benchmark category and configuration, we list: the number
of programs successfully analyzed (succ) and the total accumulated running time across all benchmarks in
seconds (total). In the E category, an analysis run is considered successful if it flags the type error/assertion
violation present in the benchmark. The numbers given in parenthesis in the total rows indicate the number
of benchmarks that failed due to timeouts (if any). These benchmarks are excluded from the calculation of
the cumulative running times. The timeout threshold was 300s per benchmark.

Configuration
Benchmark Version context-insensitive 1-context-sensitive
category Domain Oct [ Polkastrict [ Polkaloose Oct I Polka strict I Polka loose
Widening w [tw | w [ tw | w [ tw w | tw | w | tw | w | tw

FO (73) succ 25 39 39 51 39 51 33 46 47 58 47 59
loc: 11 total 10.40 46.94 17.37 | 46.42(1) | 15.82 | 42.88(1) 67.38 129.80 92.37 138.00(1) 87.27 138.33

HO (62) succ 33 48 42 55 42 55 42 51 48 60 48 60
loc: 10 total 8.53 49.97 14.97 60.67 14.03 54.71 83.56 282.57 119.10 345.03 112.05 316.18
T (80) succ 72 72 72 72 72 72 79 79 78 79 78 79
loc: 44 total | 806.24 | 842.70 | 952.53 | 994.52 | 882.21 | 924.00 | 1297.13(1) | 1398.25(1) | 1467.09(1) | 1566.11(1) | 1397.71(1) | 1497.28(1)
A (13) succ 6 6 8 8 8 8 8 8 11 11 11 11
loc: 17 total 4.30 23.43 7.66 25.04 7.19 23.38 17.99 41.66 28.07 47.77 26.84 45.94
L (20) succ 8 14 10 14 10 14 11 18 10 18 10 18
loc: 16 total 1.62 12.02 4.00 12.52 3.45 10.97 5.73 27.01 11.46 29.01 10.32 26.43
E(17) succ 17 17 17 17 17 17 17 17 17 17 17 17
loc: 21 total 8.04 14.89 | 12.72 19.44 12.01 18.28 17.90 28.76 24.96 34.24 23.75 32.71

Experiment 1: Comparing different configurations of DriFT. We consider the two versions of our
tool (context-insensitive and 1-context-sensitive) and instantiate each with two different relational
abstract domains implemented in AproON: Octagons [Miné 2007] (Oct), and Convex Polyhedra and
Linear Equalities [Cousot and Halbwachs 1978] (Polka). For the Polka domain we consider both its
loose configuration, which only captures non-strict inequalities, as well as its strict configuration
which can also represent strict inequalities. We note that the analysis of function calls critically
relies on the abstract domain’s ability to handle equality constraints precisely. We therefore do
not consider the interval domain as it cannot express such relational constraints. For each abstract
domain, we further consider two different widening configurations: standard widening (w) and
widening with thresholds (tw). For widening with thresholds [Blanchet et al. 2007], we use a simple
heuristic that chooses the conditional expressions in the analyzed program as well as pair-wise
inequalities between the variables and numerical constants in scope as threshold constraints.

Table 1 summarizes the results of the experiment. First, note that all configurations successfully
flag all erroneous benchmarks (as one should expect from a sound analysis). Moreover, the context-
sensitive version of the analysis is in general more precise than the context-insensitive one. The
extra precision comes at the cost of an increase in the analysis time by a factor of 1.8 on average. The
1-context-sensitive version with Polka loose/tw performed best, solving 244 out of 265 benchmarks.
There are two programs for which some of the configurations produced timeouts. However, each
of these programs can be successfully verified by at least one configuration. As expected, using
Octagon is more efficient than using loose polyhedra, which in turn is more efficient than strict
polyhedra. We anticipate that the differences in running times for the different domains will be
more pronounced on larger programs. In general, one can use different domains for different parts
of the program as is common practice in static analyzers such as ASTREE [Cousot et al. 2009].

We conducted a detailed analysis of the 20 benchmarks that DRIFT could not solve using any
of the configurations that we have considered. To verify the 16 failing benchmarks in the FO and
HO categories, one needs to infer type refinements that involve either non-linear or non-convex
constraints, neither of which is currently supported by the tool. This can be addressed e.g. by further
increasing context-sensitivity, by using more expressive domains such as interval polyhedra [Chen
et al. 2009], or by incorporating techniques such as trace partitioning to reduce loss of precision due
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to joins [Mauborgne and Rival 2005]. The two failing benchmarks in the array category require the
analysis to capture universally quantified invariants about the elements stored in arrays. However,
our implementation currently only tracks array length constraints. It is relatively straightforward to
extend the analysis in order to capture constraints on elements as has been proposed e.g. in [Vazou
et al. 2013].

We further conducted a more detailed analysis of the running times by profiling the execution of
the tool. This analysis determined that most of the time is spent in the strengthening of output
types with input types when propagating recursively between function types in x'. This happens
particularly often when analyzing programs that involve applications of curried functions, which
are currently handled rather naively, causing a quadratic blowup that can be avoided with a more
careful implementation. Notably, the programs in the T category involve deeply curried functions.
This appears to be the primary reason why the tool is considerably slower on these programs.
Moreover, the implementation of the fixpoint loop is still rather naive as it calls x* even if the
arguments have not changed since the previous fixpoint iteration. We believe that by avoiding
redundant calls to x* the running times can be notably improved.

Experiment 2: Comparing with other Tools. Overall, the results of Experiment 1 suggest that the
1-context-sensitive version of DRIFT instantiated with the loose Polka domain and threshold
widening provides a good balance between precision and efficiency. In our second experiment, we
compare this configuration with several other existing tools. We consider three other automated
verification tools: DSoLvE, R_TYPE, and MoCHi. DSoLVE is the original implementation of the
Liquid type inference algorithm proposed in [Rondon et al. 2008] (cf. § 2). R_TypPE [Champion
et al. 2018a] improves upon DSOLVE by replacing the Houdini-based fixpoint algorithm of [Rondon
et al. 2008] with the Horn clause solver HoIce [Champion et al. 2018b]. HoIcE uses an ICE-style
machine learning algorithm [Garg et al. 2014] that, unlike Houdini, can also infer disjunctive
refinement predicates. We note that R_TYPE does not support arrays or lists and hence we omit it
from these categories. Finally, MoCHI [Kobayashi et al. 2011] is a software model checker based on
higher-order recursion schemes, which also uses HoIcE as its default back-end Horn clause solver.
We used the most recent version of each tool at the time when the experiments were conducted
and we ran all tools in their default configurations. More precise information about the specific
tool versions used can be found in the tools’ Github repository.

We initially also considered DORDER [Zhu et al. 2016] in our comparison. This tool builds on
the same basic algorithm as DSOLVE but also learns candidate predicates from concrete program
executions via machine learning. However, the tool primarily targets programs that manipulate
algebraic data types. Moreover, DORDER relies on user-provided test inputs for its predicate inference.
As our benchmarks work with unconstrained input parameters and we explicitly exclude programs
manipulating ADTs from our benchmark set, this puts DORDER decidedly at a disadvantage. To
keep the comparison fair, we therefore excluded DORDER from the experiment.

Table 2 summarizes the results of our comparison. DRIrT and MoCHI perform similarly overall
and significantly better than the other two tools. In particular, we note that only DrirT and MoCHI
can verify the second program discussed in § 2. The evaluation also indicates complementary
strengths of these tools. In terms of number of verified benchmarks, DRIFT performs best in the
HO, A, and L categories with MoCHI scoring a close second place. For the FO and T categories the
roles are reversed. In the FO category, MOCHI benefits from its ability to infer non-convex type
refinements, which are needed to verify some of the benchmarks in this category. Nevertheless there
are five programs in this category that only DRIFT can verify. Unlike our current implementation,
MoCHI does not appear to suffer from inefficient handling of deeply curried functions, which leads
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Table 2. Summary of Experiment 2. In addition to the cumulative running time for each category, we provide
the average (avg) and median (med) running time per benchmark (in s). Timeouts are reported as in Table 1.
The timeout threshold was 300s per benchmark across all tools. In the (succ) column, we additionally provide
in parentheses the number of benchmarks that were only solved by that tool (if any).

Bench- DRIFT R_TyrE DSoLve MoCHi1 ‘

‘ mark cat. |["suce | full | avg | med [succ | full [ avg [ med |succ | full [ avg [ med |succ| full | avg | med |
FO (73) 59(5) 138.33 1.89 | 0.26 44 | 5.78(15) | 0.08 | 0.06 49 |16.27 | 0.22 | 0.12 | 62 | 332.39(9) | 4.55 | 21.50
HO (62) 60 316.18 5.10 | 1.77 49 9.19(5) | 0.15 | 0.03 41 9.76 | 0.16 | 0.24 58 | 276.37(4) | 4.46 | 15.18
T (80) 79 1497.28(1) | 18.72 | 0.00 73 13.18 0.16 | 0.04 30 | 26.26 | 0.33 | 0.45 80 41.56 0.52 | 0.11
A (13) 11 4594 | 353 | 370 | - - - 8 | 7.15 | 055 ] 077 | 9(0) | 244 | 0.19 | 0.10
L (20) 18(2) 26.43 132 | 1.23 - - - - 8 6.10 | 0.30 | 0.26 17 | 455.28(3) | 22.76 | 19.81
E (17) 17 32.71 1.92 | 0.39 17 1.22 0.07 | 0.05 14 8.22 | 0.48 | 0.17 14 95.95(3) 5.64 | 4341

to significantly better cumulative running times in the T category. On the other hand, DRIFT is
faster than MoCHI in the L category.

We note that there are two benchmarks in the FO category and four benchmarks in the A
category for which MoCHI produces false alarms. However, this appears to be due to the use of
certain language features that are unsupported by the tool (such as OCaml’s mod operator).

None of the tools produced unsound results in the E category. The failing benchmarks for MoCH1
are due to timeouts and the ones for DSOLVE are due to crashes. The considered timeout was 300
seconds per benchmark for all tools. Across all benchmarks, R_TYPE timed out on 20 and MoCHI1
on 19 programs. DRIFT timed out on only one benchmark in the T category. We attribute the good
responsiveness of DRIFT to the use of infinite refinement domains with widening in favor of the
counterexample-guided abstraction refinement approach used by R_TypE and MoCHI, which does
not guarantee termination of the analysis.

9 RELATED WORK

Refinement type inference. Early work on refinement type systems supported dependent types
with unions and intersections based on a modular bidirectional type checking algorithm [Dun-
field and Pfenning 2003, 2004; Freeman and Pfenning 1991]. These algorithms require some type
annotations. Instead, the focus of this paper is on fully automated refinement type inference algo-
rithms that perform a whole program analysis. Many existing algorithms in this category can be
obtained by instantiating our parametric framework. Specifically, Liquid type inference [Rondon
et al. 2008; Vazou et al. 2015, 2013, 2014] performs a context-insensitive analysis over a mono-
mial predicate abstraction domain of type refinements. Similarly, Zhu and Jagannathan [2013]
propose a 1-context sensitive analysis with predicate abstraction, augmented with an additional
counterexample-guided refinement loop, an idea that has also inspired recent techniques for ana-
lyzing pointer programs [Toman et al. 2020]. Our work generalizes these algorithms to arbitrary
abstract domains of type refinements (including domains of infinite height) and provides parametric
and constructive soundness and completeness results for the obtained type systems. Orthogonal
to our work are extensions of static inference algorithms with data-driven approaches for infer-
ring refinement predicates [Champion et al. 2018a; Zhu et al. 2015, 2016]. Gradual Liquid type
inference [Vazou et al. 2018b] addresses the issue of how to apply whole program analysis to infer
modular specifications and improve error reporting. Our framework is in principle compatible with
this approach. We note that Galois connections are used in [Garcia et al. 2016; Kazerounian et al.
2018; Lehmann and Tanter 2017; Vazou et al. 2018b; Vekris et al. 2016] to relate dynamic gradual
refinement types and static refinement types. However, the resulting gradual type systems are not
calculationally constructed as abstract interpretations of concrete program semantics.
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Semantics of higher-order programs. The techniques introduced in [Jagannathan and Weeks
1995] and [Plevyak and Chien 1995] use flow graphs to assign concrete meaning to higher-order
programs. Nodes in these graphs closely relate to the nodes in our data flow semantics. Their
semantics represents functions as expression nodes storing the location of the function expression.
Hence, these semantics have to make non-local changes when analyzing function applications. Our
data flow semantics treats functions as tables and the concrete transformer is defined structurally
on program syntax, which is more suitable for deriving type inference analyses. The idea of
modeling functions as tables that only track inputs observed during program execution was first
explored in the minimal function graph semantics [Jones and Mycroft 1986; Jones and Rosendahl
1997]. However, that semantics does not explicitly model data flow in a program, and is hence
not well suited for constructing refinement type inference algorithms. There is a large body of
work on control and data flow analysis of higher-order programs and the concrete semantics
they overapproximate [Cousot and Cousot 1994; Horn and Might 2011; Jones and Andersen 2007;
Midtgaard 2012; Mossin 1998; Nielson and Nielson 1997]. However, these semantics either do
not capture data flow properties or rely on non-structural concrete transformers. An interesting
direction for future work is to reconcile our collapsed semantics with control flow analyses that
enjoy pushdown precision such as [Gilray et al. 2016; Reps 1998; Vardoulakis and Shivers 2011a,b].

Temporal logic for higher-order programs [Okuyama et al. 2019] and higher-order recursion
schemes [Kobayashi et al. 2011; Ong 2015] provide alternative bases for verifying functional
programs. Unlike our framework, these approaches use finite state abstractions and model checking.
In particular, they rely on abstraction refinement to support infinite height data domains, giving up
on guaranteed termination of the analysis. On the other hand, they are not restricted to proving
safety properties.

Types as abstract interpretations. The formal connection between types and abstract interpreta-
tion is studied by Cousot [1997]. The paper shows how to construct standard (modular) polymorphic
type systems via a sequence of abstractions of denotational call-by-value semantics. Similarly,
Monsuez [1992, 1993, 1995a,b] uses abstract interpretation to design polymorphic type systems for
call-by-name semantics and model advanced type systems such as System F. Gori and Levi [2002,
2003] use abstract interpretation to design new type inference algorithms for ML-like languages
by incorporating more precise widening operators for analyzing recursive functions. None of
these works address refinement type inference. Harper introduces a framework for constructing
dependent type systems from operational semantics based on the PER model of types [Harper 1992].
Although this work does not use abstract interpretation, it views types as an overapproximation of
program behaviors derived using a suitable notion of abstraction.

10  CONCLUSION

In this work, we systematically develop a parametric refinement type systems as an abstract
interpretation of a new concrete data flow semantics. This development unveils the design space of
refinement type analyses that infer data flow invariants for functional programs. Our prototype
implementation and experimental evaluation indicate that our framework can be used to implement
new refinement type inference algorithms that are both robust and precise.
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