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Abstract. The rate of human-induced environmental change continues to accelerate, stimulating the
need for rapid and science-based decision making. The recent availability of cyberinfrastructure,
open-source data and novel techniques has increased opportunities to use ecological forecasts to predict
environmental change. But to effectively inform environmental decision making, forecasts should not only
be reliable, but should also be designed to address the needs of decision makers with their assumptions,
uncertainties, and results clearly communicated. To help researchers better integrate forecasting into deci-
sion making, we outline ten practical guidelines to help navigate the interdisciplinary and collaborative
nature of forecasting in social–ecological systems. Some guidelines focus on improving forecasting skills,
including how to build better models, account for uncertainties and use technologies to improve their util-
ity, while others are developed to facilitate the integration of forecasts with decision making, including
how to form effective partnerships and how to design forecasts relevant to the specific decision being
addressed. We hope these guidelines help researchers make forecasts more accurate, precise, transparent,
and most pressingly, useful for informing environmental decisions.
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INTRODUCTION

The Anthropocene is characterized by an accel-
erated rate of human-induced environmental
change, forcing decision makers to respond
quickly to unprecedented circumstances (Foley
et al. 2005). Ecological forecasting, the process of
predicting changes in ecosystem components
and environmental conditions with specified
uncertainties, can help decision makers operate
on shorter time scales and respond to environ-
mental issues even in uncertain conditions (Clark
et al. 2001, Dietze 2017a). In particular, ecological
forecasting can play an essential role in inform-
ing responses to a variety of key environmental
issues, including zoonotic and vector-borne dis-
eases, insect outbreaks, invasive species, biodi-
versity decline, and natural disturbances (e.g.,
droughts, fires and floods; Dietze et al. 2018). As
climate change and other human-mediated
impacts will likely continue to exacerbate these
environmental issues, the need for ecological
forecasting will only grow.

Nowadays, the increased availability of cyber-
infrastructure, open-source data, and novel tech-
niques provides greater opportunities to create
forecasts than in previous decades. However,
forecasts that effectively inform environmental
decisions require more than new technologies
and a diverse forecasting toolbox; they must also
be informed by an understanding of the specific
environmental challenges decision makers (e.g.,
managers, landowners, politicians, community
members) are seeking to address and the consid-
erations and constraints of potential decisions
(e.g., policies, mandates, management options).
As the urgency for science-based decision grows,
the ecological forecasting community needs to
start addressing these challenges now.

Here, we outline ten brief guidelines to help
researchers integrate ecological forecasting into
environmental decision making. We developed
these guidelines as part of a working group on
forecasting for decision making, drawing on our

experiences across academia, government, and
industry. We are scientists, most from affluent
countries, and acknowledge that this common
background limits our perspective. But our
guidelines come from a variety of career trajecto-
ries and should provide practical advice to
researchers on how to produce ecological fore-
casts that are more applicable to decision makers.
The ten guidelines outlined are designed for

researchers who have some familiarity with eco-
logical forecasting but are less versed in integrat-
ing models into decision making. We recognize
that engagement in decision making is not a bin-
ary state, but a stepwise process associated with
a range of participatory actions (Fig. 1). Thus,
our guidelines are designed to account for
researchers’ different levels of engagement, with
some guidelines intended to improve forecasting
skills (e.g., guidelines 4 and 5; Fig. 1a), and
others intended to facilitate the inclusion of deci-
sion makers and decision-relevant issues into the
forecasting process (e.g., guidelines 2 and 3;
Fig. 1c, d). Our guidelines also vary in novelty
and theme: Some pertain to novel forecasting
topics (e.g., developing updatable forecasts with
cyberinfrastructure) and others focus on estab-
lished ideas about integrating science into deci-
sion making (e.g., building effective dialogue
with different audiences). We hope these guideli-
nes encourage researchers to make their forecasts
more accurate, reliable, transparent, and most
importantly, useful to environmental decision
making.

1) Build diverse teams that are flexible, cohesive,
and supportive
A modeler alone can develop a simple forecast.

Yet, a forecast that is both robust and ecologically
meaningful usually requires a team of research-
ers with common interests contributing knowl-
edge from a variety of disciplines. Different parts
of the forecasting process benefit from different
types of experts: Modelers design and implement
forecasting models; data architects manage data;
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computer programmers create user-friendly
platforms; domain experts ensure environmental
forecasts build upon problem-specific
knowledge, theory, and understanding; social
scientists create better coupled socio-ecological
forecasts and provide insight into the policy
process (e.g., timing of the policy cycle); and
interdisciplinary boundary spanners facilitate
communication and integration across
disciplines (Goodrich et al. 2020).

With appropriate funding and coordination,
multi-disciplinary collaborations can be built into
networks such as the Turning Risk Into Action
for the Mountain Pine Beetle Epidemic network
(TRIA network; http://tria-net.srv.ualberta.ca/
resteam/). This network involves different

research specialists (e.g., genomicists, ecologists,
socio-ecologists) who work together to predict
mountain pine beetle dynamics and their social
impacts (James and Huber 2019). Adopting an
interdisciplinary approach is not only beneficial
for large partnerships as small collaborations can
also benefit from involving multiple academic
disciplines. For example, Moln�ar et al. (2020)
combined knowledge from climate scientists,
polar bear experts, and ecological modelers to
generate better predictions for how climate
change associated sea ice declines will affect
polar bear persistence across their circumpolar
range. Similarly, Hughes et al. (2017) collabo-
rated with ecologists, mathematicians, and doc-
tors to design disease models to understand

Fig. 1. A researcher’s engagement with using ecological forecasts to inform decision making. The level of
engagement is additive, such that maximum commitment to using forecasts to inform decision making depends
on fulfilling all ten guidelines (numbered in orange circles). The nested configuration of engagement, represented
by the concentric oval shapes, includes: (a) Researchers with little interest in becoming involved with decision
making and just focused on forecasting—the Passive researchers (yellow); (b) those who believe in the potential
utility of their research and thus believe in making the forecast accessible—the Active researchers (green); (c)
those interested in collectively building decision-relevant forecasts—the Partially engaged researchers (pink);
and (d) the forecasting teams with a strong commitment to building relationships with decision makers—the
Fully committed researchers (blue). While we encourage all researchers to strive to engage “early” and
“strongly,” we recognize that being fully-committed is not feasible for everyone. Therefore, some guidelines
require minimal effort and thus are designed to help researchers contribute to using their forecasts to inform
decision making, while others are designed for those researchers who have more interest, time, and resources to
fully commit to engaging in the decision making process.

 v www.esajournals.org 3 December 2021 v Volume 12(12) v Article e03869

INNOVATIVE VIEWPOINTS BODNER ETAL.

http://tria-net.srv.ualberta.ca/resteam/
http://tria-net.srv.ualberta.ca/resteam/


potential effect of antimicrobial de-escalation on
infection prevalence as well as its consequences
for patients.

Beyond including different academic disci-
plines within a research team, diverse teams
should also strive to include individuals who
contribute different ways of knowing and diverse
world views (Norstr€om et al. 2020). Teams that
include Traditional Knowledge Holders (e.g.,
Indigenous People) will gain expertise on envi-
ronmental and social factors largely overlooked
by the scientific community (Johnson et al. 2016)
and teams that include underrepresented groups
will likely produce novel and inclusive forecasts
(Hofstra et al. 2020). The Western Boreal Initiative
is one recent example of a collaboration that relies
on braiding (i.e., weaving, combining) of Dene
Nation Traditional Knowledge and Western
science to build models of landscape change and
conservation planning (Environment and
Climate Change Canada 2021).

While we encourage researchers to build
diverse teams, we also recognize that it can be a
challenging task. For example, in our working
group we strived to balance gender and career-
stage, and prioritized researchers with experi-
ence in both ecological forecasting and informing
environmental decision making in Canada. Yet,
our team is not representative of most minority
groups nor does it include different ways of
knowing.

Fortunately, there are steps we can all take to
help address these diversity imbalances. First,
we need to identify the diversity gap that exists
and allocate time, energy, and resources to cor-
rect it. Teams can be expanded after the onset of
a forecasting process so even if teams are lacking
in representation at first, this can still be
addressed by extending invitations throughout
the course of a project. Beyond simply providing
an invitation, however, team environments need
to be built to accommodate diverse opinions,
perspectives, and backgrounds and thus should
be flexible, encouraging, designed to counter
implicit biases, and supportive of mentorship
networks (Hansen et al. 2018). To help create
teams that foster knowledge co-production
specifically, researchers should ensure projects
are based in frameworks designed to support co-
production (e.g., “Two-Eyed Seeing”; Reid et al.
2021). Finally, researchers can refer to other

practical guidelines designed to help address
specific diversity imbalances such as remedying
gender imbalances (Tulloch 2020), improving the
representation of minority groups (Duc Bo Mas-
sey et al. 2021), and including a broader range of
values and viewpoints (Green et al. 2015). While
building diverse teams requires more effort than
many of our other proposed guidelines (Fig. 1),
the result can not only produce more innovative
research but also help reduce diversity attrition
in the ecological research community (Stokols
et al. 2008, Hansen et al. 2018).

2) Involve decision makers, stakeholders, and
rights-holders throughout the forecasting process
Forecasts that inform decisions are generally

most useful when designed in conjunction with
decision makers (those with decision power, e.g.,
a government official), stakeholders (those with
interest, e.g., resource users with economic inter-
est), and rights-holders (those with rights, e.g.,
communities with rights to the land). The TRIA
network and the Western Boreal Initiative are
both examples of how partnerships between
multiple groups including government, industry,
not-for-profit organizations, and First Nations
communities can be established and maintained
to inform and shape research agendas. For all
forecasting projects, partners should be case-
specific, whereby both large- and local-scale
interests are represented to ensure the mainte-
nance of local livelihoods and sustainability
(Berkes 2007). For example, in Bristol Bay,
Alaska, a tight feedback between models, local
data, and commercial fisheries has secured Sock-
eye Salmon sustainability for decades, benefiting
the ecological system and the regional market
that supports the livelihoods of over 8000 local
fishers (Hilborn et al. 2003, McKinley Research
Group LLC 2021).
Establishing early involvement with various

groups helps to set forecasting priorities, ensures
forecasts that are relevant to targeted environ-
mental issues, and increases forecasts’ accessibil-
ity (Clark et al. 2001). Moreover, forming
relationships early-on helps to build trust and
familiarity with each other’s languages, commu-
nication styles and ways of knowing, allowing
for better collaborations. Maintaining relation-
ships throughout the forecasting process helps
ensure forecasts are sensitive to evolving
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objectives, needs, and priorities. This mainte-
nance can be achieved if involved parties are
committed to continuously sharing updates
throughout the length of the partnership. For
example, the TRIA network hosted annual meet-
ings where researchers presented their work and
decision makers discussed their needs, which
facilitated ongoing communication and data
sharing.

Establishing and maintaining relationships
with decision makers, stakeholders, and rights-
holders may require greater investment in time
and resources if those involved have incompati-
ble interests and views, and/or differences in cul-
ture and language that make communication
difficult. Some incompatibilities can be resolved
through decision making tools, such as struc-
tured decision making (Gregory and Long 2009),
or by following frameworks designed to accom-
modate multiple perspectives. For example,
Norstr€om et al. (2020) recommended that pro-
jects engaging multiple groups be pluralistic (rec-
ognizing there are multiple ways of knowing)
and interactive (allowing for ongoing learning,
active engagement, and frequent interactions
among actors) to promote meaningful co-
productive practices. Research initiatives may
also benefit from including boundary spanners,
individuals who can mediate interactions
between partners to reconcile interests, foster
common understanding, build trust, and
enhance the co-production of actionable knowl-
edge (Goodrich et al. 2020).

In general when working with multiple differ-
ent partners, researchers need to recognize the
limitations of quantitative scientific knowledge
and the validity of other perspectives (e.g., Reid
et al. 2021). Fostering these relationships requires
building an ethical space “for knowledge sys-
tems to interact with mutual respect, kindness,
[and] generosity” (The Indigenous Circle of
Experts 2018), elevating the voices of historically
underrepresented groups in science and gover-
nance (e.g., Indigenous Peoples), and consciously
working to halt the perpetuation of harm and
structural racism (Chaudhury and Colla 2020,
Miriti 2020, Wong et al. 2020). Even if researchers
are not engaged in partnerships when designing
and implementing their forecasts, it is important
to realize that the forecast may still inform a deci-
sion that directly impacts people’s lives and

therefore should always be built with the aware-
ness of their potential consequences.

3) Design decision-relevant forecasts
Forecasts are useful to decision makers when

they are decision-relevant. Relevance arises from
understanding the current and future environ-
mental priorities of decision makers, stakehold-
ers, and rights-holders and by knowing the
potential strategies being considered by these
groups to manage an environmental issue. This
understanding can be gained through formal
partnerships, such as the Haida Gwaii Strategic
Land Use Agreement (British Columbia,
Canada), which brought together researchers,
government officials, and First Nation represen-
tatives to model the effects of current and alter-
native management practices on timber supply
(Government of British Columbia n.d.). Alterna-
tively, if partnerships (guideline 2) are not possi-
ble, researchers can still identify the priorities
and strategies of different groups by referencing
content produced by them, such as reports, poli-
cies, or data provided on online portals (e.g.,
Open Government Portal Canada). While design-
ing models in partnerships with other groups
may limit the scope and usage of the model,
designing models to be nimble can help ensure
they are adaptable to other forecasting challenges
(e.g., SpaDES; Chubaty and McIntire 2021).
Ultimately, to be decision-relevant, researchers

should know the context of the decision-of-
interest, its temporal and spatial scales, and the
alternative targets and/or decision options being
considered. First, the context of the decision can
guide which model structures, drivers, and
parameters to incorporate to best capture the
environmental effects and the management
options. For example, forecasts in fisheries for
harvest management may explicitly incorporate
climatic variability as well as fishing quotas (e.g.,
Shelton and Mangel 2011) to capture important
environmental influences and the effects of
human regulation. Next, accounting for the tem-
poral and spatial scales of a decision ensures
forecasts are relevant to the time horizons and
spatial extent (e.g., jurisdictions) of interest to
decision makers. Forecasts mismatched with the
scales of decisions will likely be unusable, such
as using forecasts built on 100-yr climate projec-
tions for seasonal decision making. Finally,
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incorporating different targets or strategies as
alternative plausible futures into forecasts can
help evaluate which decision option performs
best under uncertainty (Schindler and Hilborn
2015). Decision options included in forecasts
may be general goals (e.g., maintain fisheries sus-
tainability and biodiversity) and may include
specific management targets (e.g., catch and size
limits). This approach can lead to a best “static”
decision, where the strategy performing best
under many plausible futures is selected, or
preferably lead to “adaptive” approaches, where
the optimal strategies might switch given an
updated forecast (Maier et al. 2016). Remember,
even in situations with high uncertainty, a fore-
cast can often predict whether a management
action will have a negative or positive impact,
still providing sufficient information for decision
makers to act on (Adams et al. 2020). Hollowed
et al. (2020) provided an excellent example of
how decision-relevant forecasts can be imple-
mented in a marine social–ecological system
impacted by climate change, where iterative
engagement with managers and fishery-
dependent communities continues to ensure that
forecasts are built upon policy-relevant scenarios
and realistic decision options.

Making forecasts decision-relevant does not
guarantee that forecasts will be used for decision
making. Opportunities for informing decisions
come and go and learning about the timing of
the decision making process can help understand
opportunity windows. By designing forecasts
that complement the context, scales, and decision
options, forecasts are available for whenever
opportunities arise and, in the meantime, can be
used to shape the decision making agenda.

4) Identify uncertainties and account for those
deemed most important

Uncertainty persists even in the most realistic,
well-parameterized models (Schindler and
Hilborn 2015) and if ignored can instill decision
makers and researchers with a false confidence
in the forecast’s skill. Instead, identifying and
accounting for uncertainties can lead to appro-
priate risk-benefit policy assessments, and
inform future data collection and monitoring
needs, resulting in better future forecasts. How-
ever, not all uncertainties are equivalent in mag-
nitude or are of equal interest to decision makers.

Therefore, besides prioritizing uncertainties
related to current decision making considera-
tions (guideline 3), researchers should also
attempt to identify and account for the uncertain-
ties that have the strongest effects on the fore-
casted outcome.
Identifying uncertainties requires identifying

both their location in the model (e.g., initial con-
ditions, covariates, parameters, structure) and
their qualities (e.g., degree, type). For example,
uncertainties arise either due to a lack of human
knowledge (i.e., epistemic uncertainty) and thus
are reducible, or arise due to natural variation
(i.e., aleatory uncertainty) and thus are irre-
ducible. Uncertainty analysis and sensitivity
analysis can identify which uncertainties have
the largest effect on a forecast (Bodner et al.
2021), and value of information analysis
(Schlaifer and Raiffa 1961) can determine when
collecting additional information is worth the cost
(Canessa et al. 2015). By identifying uncertainties
and their relative contributions, researchers can
help decision makers understand uncertainty
sources and how best to reduce them.
Accounting for uncertainties involves quanti-

fying the uncertainties in different inputs and
alternate models, propagating them into the fore-
cast, and partitioning their impact on overall
forecast uncertainty (Dietze 2017a). By account-
ing for important uncertainties, decision makers
can better understand the risks when evaluating
a forecast. In cases of high uncertainty, some-
times just doing better than chance is sufficient
as the decision sciences provide frameworks for
making decisions under uncertainty and translat-
ing uncertainty into risk (Winkler 2010, Gregory
et al. 2012). Yet, researchers should not forget
about the “unknown unknowns,” which if
ignored can end up greatly misguiding manage-
ment actions (Milner-Gulland and Shea 2017).
While it is infeasible to fully identify and account
for all uncertainties, by prioritizing important
ones, and seeking to address those that are redu-
cible, decision making will be increasingly
informed by more reliable forecasts.

5) Create models with forecasting in mind
While in-depth reviews on best forecasting/

predicting practices can be found in Mouquet
et al. (2015), Dietze (2017a), and Bodner et al.
(2020), here we highlight two often overlooked
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but important considerations for creating accu-
rate and reliable forecasts: (1) only include fore-
castable covariates within models and (2)
prioritize forecasting evaluation techniques over
traditional methods when evaluating models.

First, the covariates that go into a forecast must
be forecastable. If the covariates of a given model
cannot be projected into the future for the
period-of-interest, an alternative model with
forecastable inputs needs to be developed, even
if it has lower performance. For example, ungu-
late distribution models often include the nor-
malized difference vegetation index (NDVI), an
index measuring the “greenness” of live vegeta-
tion, as a covariate. As forecasts of NDVI are not
as readily available, the leaf area index may be
preferable as it is not only readily available from
historical remote sensing, but is also part of the
output of most Earth System Model climate pro-
jections and some seasonal forecasts. In the
future, we should hopefully have more fore-
casted covariates, providing more input options
for forecasting models.

Second, even if forecastable covariates are
available, this does not guarantee that the model
that fits best against historical data will make the
best predictions. Besides having forecastable
covariates, researchers should evaluate models
and variables using appropriate forecasting eval-
uation methods. The underlying issue is that
forecast uncertainties for different covariates are
generally larger than hindcast observation errors,
causing traditional metrics such as AIC and
probability values (P-values) to systematically
select for overly complex forecast models (Dietze
2017b). Moreover, as different uncertainties can
propagate forward at different rates, the “best”
model structure and covariates may change
depending on forecast lead time (Lofton et al.
n.d.). Therefore, to account for this additional
uncertainty when evaluating forecasting models,
adopting alternative model selection metrics,
such as predictive loss (Gelfand and Ghosh 1998)
or predictive validation (Power 1993), is recom-
mended. When evaluating at the variable-level,
instead of focusing on significant P-values to pro-
vide a baseline of each variable potential value,
focus on effect sizes, which convey a variable’s
effect on a forecast. Even if variables are statisti-
cally significant, they might not be kept if fore-
casts of that variable are uncertain, as they may

increase the uncertainty in the model without
improving the prediction. By adopting these
forecasting practices, forecasts are immediately
improved allowing researchers to focus on the
other pressing challenges of forecasting (Fig. 1).

6) Build updatable models and iterate them when
feasible
Given the accelerating pace of environmental

change, it is increasingly important for forecasts
to be iteratively updated as new information
becomes available and the goals of decision mak-
ers change (Dietze et al. 2018). Thus, the forecast-
ing community needs flexible and updatable
models. It is advantageous if models can be
updated by other users without further input
from the original developers (see guideline 9),
and even better still if models can be automated
to produce forecasts as new information becomes
available.
At the most basic-level, researchers should

build updatable forecasting models using ver-
sion control (e.g., GitHub; Perez-Riverol et al.
2016) and include a recommended protocol for
continual validation as well as updating (see
Zwart et al. (2020) on how to create reproducible
forecasting protocols). As many forecasts use
increasingly complex methods and data, fore-
casting tools (e.g., models, modeling platforms,
databases, dashboards) should also be scalable
and leverage existing models as well as cyberin-
frastructure. When first designing a forecasting
system, surveying existing tools can help deter-
mine if any are reusable for a given purpose.
Connecting to community cyberinfrastructure
can help lower the barriers to entry when setting
up new forecast pipelines (and long-term mainte-
nance costs) and reduce time lags between
model-data integration and fast-paced decision
makers (Fer et al. 2021).
Once models are set up to be easily updatable,

the next step is determining when the model
should be updated. The basic answer is to update
a model when useful information becomes avail-
able, particularly information that reduces
important uncertainties (guideline 5). In general,
researchers should update the model outputs
when drivers are updated; state variables when
new observations are generated (e.g., through
data assimilation; Lewis et al. 2006, Dietze
2017a); and the model structure as more is
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learned about the built-in processes, including
the discovery of new ones (but making sure to
apply a fairly strong correction during iterative
model selection to avoid a very high false posi-
tive rate). By leveraging open access portals (e.g.,
Nature Map Explorer, NEON, Sentinel Online),
forecasts can be automatically updated and
made publicly available once new data become
available on the platform. Importantly, planning
ensures updates are done regularly and reliably,
ideally through a standardized continuous inte-
gration and deployment (CI/CD) pipeline (White
et al. 2019). While the effort required to make
forecasting models updatable may seem burden-
some, taking these steps will reduce costs for the
future, increasing forecast utility, value, and
longevity.

7) Realize that ecological forecasts influence and
are influenced by social systems

Despite researchers often addressing environ-
mental issues in isolation, environmental and
social factors are highly interdependent. For
instance, fire suppression in natural systems may
unintendedly increase forest flammability to
future wildfires and impair human health and
safety (Steel et al. 2015). To account for such
social–ecological interdependencies in ecological
forecasts, models can be built to include social–
ecological drivers, interactions, and feedback
(e.g., Cooper and Dearing 2019).

Forecasting in social–ecological systems also
requires that researchers account for increased
uncertainties that arise due to social components.
The uncertainties prioritized in the modeling
framework will depend on which uncertainties
are deemed most relevant to the specific context.
For example, the Alaska Climate Integrated
Modeling framework, which forecasts the eco-
logical impact of climate change on the Bering
Sea species and fisheries, quantifies the contribu-
tion of management and fishing scenarios uncer-
tainties as these are both regulated by decision
makers and are expected to influence coastal sus-
tainability (Hollowed et al. 2020). When model-
ing diseases such as COVID-19, forecasts may
focus instead on accounting for the uncertainties
surrounding people’s perception of risk (e.g.,
willingness to social distance, wear masks) as it
has been shown to have a large influence on out-
break dynamics (Duong et al. 2021).

To account for human behavior in ecological
forecasting, social components can be either
directly incorporated into ecological forecasting
models or can be used to contextualize ecological
forecasts. When social components are included
in models, their influence on inputs, parameters
or processes can be explored through techniques
such as scenario analyses (Maier et al. 2016). If
the data are available, sub-models of human
behavioral change could be incorporated into
forecasting models to more explicitly account for
human behavior. While collecting this type of
data can be challenging, the ongoing growth of
publicly available data on human mobility and
social networks provides novel opportunities to
build these models in new ways (e.g., Ilin et al.
2021). When social components cannot be explic-
itly built into forecasting models, social informa-
tion can still be used to interpret and
contextualize outputs of ecological forecasts. For
example, Maina et al. (2016) used social surveys
to assess the ability of coastal communities to
adapt to future climate given their forecasted
changes. If social components cannot be incorpo-
rated into the forecasting process at all, at a mini-
mum, researchers should recognize the potential
for these factors to affect both the accuracy and
reliability of their forecasts.

8) Communicate forecasts and aspire to do so
effectively
A forecast is only a “forecast” when communi-

cated prior to the dates being predicted and is
most useful to decision makers if its correspond-
ing assumptions and uncertainties are also com-
municated. Communication can help a
stakeholder understand forecasts and their
uncertainties (e.g., van der Bles et al. 2019) as
well as teach them that forecasts can still be use-
ful even if stakeholder actions cause a forecast to
be inaccurate (guideline 7). A key step toward
effective communication is understanding the
audience and accounting for their level of fore-
casting knowledge, priorities, and interests
related to the forecast. Communication with
diverse audiences can be facilitated by adopting
common language (e.g., plain language sum-
maries of research papers), by linking the science
to direct human needs, and emphasizing the con-
sequences of adopting different actions (e.g.,
McDonald et al. 2019). The use of analogies can
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also facilitate the understanding of more com-
plex biological processes when communicating
to the general public (e.g., disease dynamics;
Archer et al. 2021). For decision makers, Grimm
et al. (2020) proposed that effective communica-
tion arises from addressing three main questions:
“What is the model’s purpose?” “How is the
model organized?” and “What evidence is there
that the model works?”.

When attempting to reach a broader audience,
researchers should present and discuss forecasts
in a more culturally relevant or practical way.
For example, instead of focusing on the forecast’s
methodology, communicating how fish size lim-
its are established based on the age structure of
harvested fish can offer a more practical
explanation of fishing limits to communities of
fishers. However, more active involvement may
be necessary to communicate more complex
topics. For example, leading participatory
workshops where simple models are developed
and implemented can help participants
understand model behavior and limitations. For
other considerations on effective active commu-
nication and training resources, see Baron (2010)
and Cooke et al. (2017).

Visualizations can also help non-modelers
intuitively understand the process of forecasting
and its outputs in non-verbal and non-
mathematical ways. Uncertainty visualizations
are particularly important for forecasts (e.g., hur-
ricane forecasts; Ruginski et al. 2016) as they can
help increase the awareness of uncertainties (e.g.,
https://xkcd.com/1885/; Munroe n.d.) and explain
how uncertainty may limit the ability to forecast
reliably (guideline 4). Visualizations such as info-
graphics can also help convey how human
behavior may impact outcomes-of-interest (e.g.,
swiss cheese infographic; Mackay 2020) and can
be tailored to specific audiences (Norstr€om et al.
2020). Additionally, non-traditional and inclusive
visualization techniques (e.g., Tekwa 2021) can
help increase communication to new audiences.
Overall, effective communication translates a
technical forecast into an understandable
forecast, empowering individuals to incorporate
measured risk when making decisions. Taking
steps to better communicate forecasts will go a
long way in making forecasts broadly accepted
and more often used in the decision making
process.

9) Share the recipe, not just the end product
Striving to be open with the methodological

steps, materials, and assumptions of forecasts is
essential for a multitude of reasons: It helps build
the forecasting community; ensures accountabil-
ity; reduces duplication of effort; encourages
innovation; allows scrutiny; builds credibility;
and reduces barriers to participate in forecasting
by making tools easier to find, less costly, and
easier to access, modify, and apply. Furthermore,
in the context of decision making, open and
transparent forecasts also help build trust
between researchers and decision makers—an
essential aspect of fruitful collaborations. Addi-
tionally, sharing forecasting “recipes” (including
the data, model assumptions, and code) also ben-
efits other applied researchers (including those in
the private sector, the public sector, and nonprof-
its), who often act as intermediaries between the
academic and policymaking world, and can
more easily integrate existing research into
policy-relevant forecasts when models and code
are readily available. We respect that for some
researchers this is not feasible due to private data
and sensitive forecasts; however, for those with
the capability to do so, we advocate for making
all components of the forecasting process as open
as feasible.
As a scientific community, we should strive to

make the software pipelines that run forecasts
reproducible following Open Science best prac-
tices (Roche et al. 2020). In particular, proper
documentation of models, including complete
meta-data following meta-data standards for
data and outputs (e.g., Feng et al. 2019), should
accompany raw data and well-annotated code
(Balaban et al. 2021) that is shared on open access
version control platforms (e.g., GitHub; Perez-
Riverol et al. 2016). Containerization approaches
also allow whole forecast pipelines to be easily
achieved and shared (e.g., DockerHub). When-
ever using open access data, it is essential to pro-
vide explicit links to the download source and
information on the data-processing. Complemen-
tary to increased openness, archiving forecasts
and forecast meta-data following community
standards (e.g., Ecological Forecasting Initiative
n.d.) can make forecasts more transparent for
stakeholders and researchers, encourage the
greater development of community cyberinfras-
tructure (guideline 6), and facilitate synthesis
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efforts. Finally, if the forecast leads to a published
paper that is behind a paywall, making the pre-
print of the published article freely accessible
allows for all interested parties to read about the
forecast’s context, study design, and methods.
Achieving the highest standards of openness and
transparency requires a high degree of effort but
every step toward more open forecasting is a
step toward producing better science and ulti-
mately, better decision making.

10) Practice, and then practice some more
Practice makes better forecasting models and

more effective teams to address decision making
priorities (Fig. 1). New forecasting models are
often inaccurate, but consistent practice and
feedback about performance (guideline 6) can
result in continually refined understanding of
the system and of the processes built-in to fore-
casts. The weather-forecasting community is a
great source of inspiration, where with contin-
ued repetition and wide accessibility to the
public, modelers transformed poor performing
forecasts into relatively reliable and useful ones
(Shuman 1989, Dietze et al. 2018). By practicing,
researchers can develop better metrics for evalu-
ating efforts such as establishing appropriate
concrete benchmarks of success (e.g., threshold
of acceptable model accuracy) and can gain
knowledge and skill sets tailored to specific
forecasts and applicable to improving general
forecasts. The worry of creating models that are
not “good enough” should not prevent anyone
from forecasting. So long as uncertainties and
assumptions are clearly stated and are
accounted for (guideline 5), progress is not
hindered by failure, but instead by the unwill-
ingness to adapt and try again.

The act of “practicing” should not only be lim-
ited to creating forecasting models but also
applies to building collaborative teams. Forecast-
ing for decision making requires consistent col-
laboration with diverse groups of researchers and
decision makers (guidelines 1 and 2), and there-
fore benefits from the good management of
diverse skill sets, interests, and expectations.
Practicing project management, and more specifi-
cally, developing skills in active listening and
compromise, and mastering tangible and intangi-
ble technologies that foster collaborations, can
lead to vast improvements in the collaborative

process, translating to faster and better forecasts.
While it may be overwhelming to consider the
many skills to hone and strategies to develop,
these worries should not prevent researchers
from getting together with others and creating
forecasts.

CONCLUSION

Here, we have provided ten guidelines to help
researchers build forecasts for environmental
decision making. We hope that these guidelines
serve as practical suggestions to help those inter-
ested in informing decision making get started or
become more involved with the process (Fig. 1).
As researchers, we are often acutely aware of
how much we do not know and therefore get
stuck at “more research is required.” However,
environmental changes are increasingly affecting
our world and decisions are made whether or
not we are involved. So, get out there, form part-
nerships, connect with decision makers, build
forecasts, be honest about the strengths and limi-
tations of models, and accept that this is an itera-
tive and adaptive process with many
opportunities for learning along the way.
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