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This paper analyzes odd and even higher-order moments for longitudinal velocity
increment Au(x, r), where x is the longitudinal coordinate and r is the separation distance,
based on the canonical and a modified normalization for skewness of longitudinal velocity
derivative du/0x. Two types of data were used, stably stratified turbulence data from the
nocturnal atmospheric boundary layer taken during the Mountain Terrain Atmospheric
Modeling and Observations field campaign and from the direct numerical simulation of
homogeneous and isotropic turbulence in a box at four Reynolds numbers and four dif-
ferent grid resolutions. Third moment data normalized by the same moment of third order
for modulus |Au(x, r)| representing modified skewness of the velocity increment showed a
better collapse at all Reynolds numbers in the inertial and viscous subranges than canonical
normalized skewness with normalization parameter ((Au(x, 7))?)>/2, where (--) represents
the ensemble average. The analysis also considered odd pth-order classical structure func-
tions {(Au(x, r)?) with Kolmogorov-theory based normalization (Au(x, )?)/(er)?/? for the
inertial subrange, where ¢ is the rate of dissipation, and a modulus-based structure function
{|Au(x, r)|")/(er)P/3. Both types of structure functions of order p = 1-6 were computed
using different normalizations, and corresponding scaling exponents were assessed for
the inertial and viscous subranges. Scaling for modulus-based structure functions in the
viscous subrange was identified as {|Au(x, r)|?) oc r7/9_ In the viscous subrange, the
velocity increment varied linearly with r for the classical third moment (Au(x, P’ o3
based on the velocity increment while the classical fifth moment (Au(x, r)°) did not
provide any meaningful scaling exponent. A plausible qualitative explanation linking these
effects to anisotropy of nocturnal stratified turbulence is proposed.

DOI: 10.1103/PhysRevFluids.6.084605

I. INTRODUCTION

In his seminal work, Kolmogorov [1] proposed two hypotheses or postulates on turbulence.

(1) The Kolmogorov self-similarity hypothesis (KSSH) enabled one to express, based on di-
mensionless considerations, the structure function L,(r) defined as a moment of any order p of the
velocity increment Au at a separation r as a function of ¢ [mean turbulent kinetic energy (TKE)
dissipation rate] and r as L,(r) = (Au)”  (re)?/3. This is strictly appropriate for homogeneous
isotropic turbulence (HIT), a theoretical abstraction that can be made pragmatic by introducing the
postulate of local isotropy (PLI) as below.
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(2) The PLI assumes that, far from boundaries and external forces applied at large scales,
turbulence loses memory as it cascades down from large to smaller scales, wherein turbulence
becomes locally isotropic and therefore the KSSH is applicable. This cascading region (inertial
subrange) is suitably separated from the regions of larger TKE containing scales and much smaller
viscous dissipation scales. The dissipation subrange is also locally isotropic, but viscous influence
therein engenders scaling laws different from those of the inertial subrange.

In most subsequent studies the KSSH was tested for the inertial subrange, and an anomalous ex-
ponent instead of the Kolmogorov p/3 scaling was observed. To explain and predict such anomalies,
a large number of models have been suggested, for example, extended self-similarity hypothesis,
refined KSSH (RKSH), and fractal models. Most of them included the intermittency, especially that
of . There is strong evidence from field, laboratory, and direct numerical simulation (DNS) studies
to suggest that ¢ is associated with small-scale turbulence structures distributed unevenly in space,
being confined to a smaller fraction of space determined by the size of small eddies [2,3], thus
undermining the KSSH [1]. As such, it is well known that the scaling exponents differ dramatically
from the Kolmogorov p/3 exponents, and this disparity increases with both p and r~! [4], revealing
non-Gaussian behavior [5] in HIT. As well, real turbulent flows include anisotropic forcing and
boundary conditions, particularly in stratified fluids [6—8], and this anisotropy may penetrate to
inertial and, perhaps, dissipation or viscous subranges. This perfusion of anisotropy obviously puts
the PLI into question, as discussed below.

Literature of DNS studies on HIT at high Taylor microscale Reynolds numbers Re;, e.g., [9-11],
are voluminous. Benzi ef al. [12,13] experimentally investigated scaling laws using grid flows and at
the center of jet and wake flows. Extended self-similarity (ESS) based on the use of the third-order
structure function for normalization instead of separation r» was applied to determine anomalous
scaling exponents; significant anomalies were observed, in good agreement with peer studies.
Instead of third-order longitudinal structure function L3(r) = ((Au(x, r))*), an alternative function
Li(r) = {|Au(x, r)|3) was proposed [12—14]. As expected in the viscous subrange for very small
normalized separations r/n ~ 1, where 7 is the Kolmogorov scale, the velocity difference Au(x, r)
is regular, causing both the velocity difference and its modulus to be approximately proportional
to r. Similar results were obtained by the same group [15,16] and others [17-23]. Most efforts by
Benzi et al. [15,16] and She and Leveque [19] were focused on identifying the most appropriate
model for anomalous scaling exponents.

Sreenivasan and Dhruva’s [24] measurements in the surface layer of the atmospheric boundary
layer (ABL) reached very high Taylor microscale Reynolds numbers Re, (10 000 to 20 000), but
the PLI could not be validated, which was ascribed to the presence of mean shear. Laboratory ex-
periments with homogeneous shear flow by Warhaft and coworkers [25-27] showed unambiguously
that return to isotropy expected at small scales does not occur either at lower Re; ~ O(100) [25]
or at higher Re; ~ O(1000) numbers [26], which again was ascribed to shear. To quote [26] “The
results show that PLI is untenable, both at the dissipation and inertial scales, at least to R; ~ 1000,
and suggest it is unlikely to be so even at higher Reynolds numbers.” In grid flows without shear
[30], however, the isotropy at small scales could be realized, and thus the expected praxis of zero
odd transversal structure functions was manifested.

Effects of shear on similarity laws, scaling laws, intermittency, and anisotropy of small scales
have been further studied in laboratory experiments and DNS of channel flow turbulence, wall
bounded turbulence, homogeneous shear flows, and nonhomogeneous turbulence [28-34]. With
regards to similarity laws, in HIT the celebrated KSSH was replaced by the RKSH [5] to account
for intermittency of &, which was found appropriate and sound away from the wall (logarithmic)
region of the boundary layer. Near the wall, where shear is strong, the classical RKSH was not
valid, and an “alternative RKSH” [29] has been proposed to account for stronger intermittency.
Therein, the PLI at small scales was violated as anisotropy penetrated the smallest scales, scaling
anomalies became pronounced, and scaling exponents deviated from the Kolmogorov counterpart
p/3 more remarkably than in HIT. At intermediate distances from the wall, double scaling could be
obtained where both RKSH and alternative RKSH anomalous exponents appear to coexist.
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In [35-40], SO(3) formalism was used for systematic decomposition of structure and/or corre-
lation functions in spherical harmonics to separate isotropic and anisotropic contributions. This
decomposition enables the determination of scaling exponents in the isotropic and anisotropic
sectors in the presence of strong and weak shear, thus following possible decay of anisotropic
contributions at small scales. Interestingly, measurements in homogeneous shear flow by Casciola,
Gualtieri, Jacob, and Piva [36,37] found that anisotropic contributions in weak shear waning at a
relatively fast rate while under strong shear the anisotropy keep a significant presence up to viscous
scales, thus violating the PLI [37]. The latter fine-scale anisotropy is accompanied by stronger
intermittency and stronger deviation of scaling exponents from HIT. These authors [37] conclude:
“It has always been believed that turbulence in fluids can achieve a universal state at small scales
with fluctuations that, becoming statistically isotropic, are characterized by universal scaling laws.
In fact, in different branches of physics it is common to find conditions such that statistical isotropy
is never recovered and the anisotropy induced by large scale shear contaminates the entire range of
scales up to velocity gradients.”

Arad et al. [41] conducted ABL surface layer measurements at very high Re; (10 000-20 000),
and SO(3) rotation groups were employed to determine scaling exponents in different isotropic and
anisotropic sectors. The contributions of anisotropic sectors were small, indicating weak effects of
shear. Nevertheless, the accounting for these anisotropic contributions significantly improved the
correspondence between experimental data and the analytic fit. A general theory explaining the
decomposition of structure and correlation functions (by projections on the spherical harmonics)
as well as determination of scaling exponents in isotropic and anisotropic sectors are presented in
[42-45].

Notwithstanding the above advancements with regard to shear flows, studies on possible pen-
etration of anisotropy into small scales of stable stratified flows are far fewer. A few high-quality
experimental studies [46-49] augmented by DNS [50] unambiguously show that, much the same
way as for shear, strong stable stratification begets large anisotropies in the mean-square strain rates
0v/0x and Ow/Ox relative to Ou/Ox. Studies of stably stratified grid-generated HIT [46,47] report
“an unexpected rapid onset of anisotropy in the small scales,” which is true for uniformly sheared
thermally stratified turbulent flow [48,49]. A combination of shear and stratification, especially for
decaying turbulence, is expected to increase the propensity for small-scale anisotropy compared due
to either shear or stratification alone.

The outcomes of past research discussed above will be used in Sec. III to argue that the anoma-
lous scaling for structure functions obtained during fine-scale hot-film measurements of turbulence
in the nocturnal ABL during the field campaigns of the Mountain Terrain Atmospheric Modeling
and Observations (MATERHORN) program [51,52] is possibly due to stratification effects and not
due to shear (since the measurements were conducted well away from the wall layer). An intriguing
observation of MATERHORN was the intermittent appearance of strong bursts at nighttime (stably
stratified conditions) at smaller scales characterized by ephemeral rise of velocity fluctuations and
simultaneous increase of ¢ by orders of magnitude. The separation of data into “burst” and “no-
burst” time intervals based on a chosen threshold of ¢ enabled processing of both burst and no-burst
datasets independently. The dataset without bursts can follow classical Kolmogorov turbulence if the
effects of stratification can be considered insignificant. The datasets with bursts behaved differently
in that the TKE spectral shape exhibited bumps in the inertial subrange [53].

This paper concerns a modified normalization for higher odd moments of longitudinal velocity
increment Au(x, r) built upon the normalization proposed in [52] for skewness of the longitudinal
velocity derivative du/dx. No-burst datasets from MATERHORN were used along with those from
limited DNS computations of HIT.

II. METHODOLOGY

An intriguing effect observed in the nocturnal ABL is the appearance of episodic but puissant
turbulence or bursts. Arguably, this may occur either in HIT or anisotropic turbulent flows subject to
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external forcing such as stratification, rotation, or electromagnetic forces that promote anisotropy.
These factors may magnify the deviation of the probability density functions (PDFs) from Gaussian,
but not necessarily increase its asymmetry present in HIT due to nonlinearity. It is well known that
the PDF of velocity derivatives in HIT is skewed, leading to a considerable negative third moment
(vis-a-vis zero for the Gaussian distribution) of the longitudinal velocity derivative; this explains the
appearance of the generation term in the vorticity equation that causes production of enstrophy [54].

Enstrophy production and intermittency in turbulent flows occur due to two independent effects:
in the HIT case, turbulence is skewed at the intermediate (inertial subrange) and small (dissipation
range) scales, thus magnifying the enstrophy flux to small scales. In addition to the presence of
stretched vortex sheets and vortex tubes that is associated with strong intermittency at very small
scales of HIT, breaking of small-scale random internal gravity waves in (anisotropic) stably stratified
turbulence may also lead to enstrophy generation and intermittency. The range of scales at which
such breaking occurs and associated dynamics are yet to be understood (and the separation of
internal waves from turbulence continues to be a vexing problem).

The nocturnal ABL is a case where stability evolves overnight due to radiative cooling at a
pace slower than the time scale of turbulence, leading to a myriad of turbulence-related phenomena
that were studied during MATERHORN (2011-2016) field experiments. A probing system was
deployed for this purpose, the details of which are given in [52,55]. The finer scales therein were
captured with a sonic- and hot-film anemometer dyad (dubbed the “combo” probe) placed on a
horizontal pole at 6-m height of a 32-m-high tower (labeled ES-2) equipped with an array of
sonics and thermocouples at various levels. This system is described in [52] and the MATERHORN
experiment is described in [S1]. The data encompassed a variety of flow types that appear over
different phases of the diurnal cycle, but careful winnowing could identify data that fit the rubric
of stratified shear flows, which emerged from a katabatic flow draining from the nearby Granite
Mountain.

After careful processing of sonic records of ES-2, the 90-min period of katabatic flow starting
from 22:00 MDT!on October 19, 2012 was selected for stratified shear flow studies. Prior to the
selected time interval, the wind speed rapidly increased from ~1 to ~4 m/s at the height of the
combo probe. The wind direction changed from its usual oscillations before 22:00 MDT to a
nearly constant direction, resembling a stratified parallel shear flow. Thereafter, the winds changed
quite rapidly between 23:30 MDT and midnight [52]. Although mean quantities were quasisteady
during the selected period 22:00-23:30 MDT, careful inspection of turbulence statistics showed
considerable variability. An analysis for identification of approximately homogeneous subintervals
enabled focusing on structure function analysis in the subinterval Slgeyq )22 : 50-23 : 10 MDT). This
subinterval was considered as fully developed turbulence since flow variations were modest and
appearance of bursting events was very limited (less than 2% of the time). More details can be
found in [52,56].

To augment, three-dimensional homogeneous and stationary turbulence was studied using high-
resolution DNS in a periodic box with up to 1024 grid points. A pseudospectral code with
large-scale random forcing and triply periodic boundary conditions was used. The white-in-time
Gaussian forcing was placed in the range of scales 1 < k < +/6. The DNS was carried out at four
grid resolutions, yielding Re;, = 139, 201, 264, and 383. Details of the numerical scheme are given
in[11].

III. RESULTS

A. Datasets from field campaign and DNS

The datasets revealed strong bursts characterized by short-term increase of velocity fluctuations
and simultaneous increase of ¢ by orders of magnitude. The separation between burst and no-burst

"Mountain daylight time (local time).
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time intervals was based on a threshold for &, as in [52]. The data without bursts followed the
Kolmogorov —5/3 law whereas those with bursts showed bumps in the TKE spectra. Since no-burst
periods resembled Kolmogorov turbulence, it was decided to test various features of intermittency
using no-burst field data sets and DNS of HIT turbulence. The analysis focused, inter alia, on
the modified normalization suggested in [53], the effects of varying Reynolds number, and the
scaling exponents in various subranges, e.g., inertial and viscous. The modified normalization is

based on [53], where the second-order denominator ((du/dx)?)*/? of the canonical skewness of the
longitudinal velocity derivative du/dx is replaced by the same third-order moment of its modulus

|u/dx|? to define an alternative descriptor for intermittency studies. In our work described below,
modulus based normalizations are extended for odd structure functions of higher orders p = 3, 5,
and 7.

B. Normalized odd structure functions in DNS

The following discussion deals with longitudinal structure function Lp(r) of order p; L;f(r) is
the same function based on the absolute values of the longitudinal velocity increment Au(x, r) =
u(x + r) — u(x), where r is the separation distance:

Ly(r) = ((Au(x,r))")  L,(r) = (|Aulx, r)|"). (1
The moments of the velocity increment in the canonical form are
Hy(r) = Ly(r)/[La()1P?, Hi(r) = Liy(r)/[La(r)]>. 2)

We dealt mostly with odd moments, p = 3, 5, and 7, and, following [53], considered modified
moments 1-7,,(1") = L,,(r)/L;(r) = H,,(r)/H;(r) along with the moments obtained using canonical
normalization presented in (2). Note that, at small separations 7 the normalized structure-function
based velocity increments become the moments of the velocity derivative. For example, at p = 3,
velocity derivative skewness can be retrieved as H; = S = ((du/ 8x)3) /((Qu/ 8x)2)3/ 2. which was
the focus in [53].

The normalized canonical moments for p = 3, 5, and 7 at all four Re; numbers in DNS are given
in Fig. 1, and the modified moments I-7,,(r) for p = 3, 5, and 7 are presented for comparison in Fig. 2
where the separation scale r is normalized by the Kolmogorov length scale 7.

Note the two striking differences between Figs. 1 and 2. Plots for two highest Re; practically
collapse in Fig. 2 in both viscous (#/n <10) and inertial (50-200) subranges while they obviously
differ systematically in Fig. 1 in all subranges. The upper boundary of the inertial subrange (Fig. 1)
depends significantly on Re; and is about 300 for the highest Re; = 383, and it reduces remarkably
at lower Re, due to the reduction of separation between large and dissipating scales. At larger
scales, universal scaling is not expected given their dependence on boundary conditions and details
of large-scale forcing. In the inertial subrange, all modified moments (Fig. 2) remain approximately
constant, while canonical moments (Fig. 1) decline with an approximately constant slope. The slope
increases with the order p of moments, as was observed by [12].

C. Comparisons of various structure function moments in experiments and simulations

The results of Sec. III B for odd moments led us to conduct a detailed comparison of normalized
(canonical and modified) moments obtained via DNS and field experiments. We started with
the third moment due to its relation to the corresponding structure function, for which classical
theoretical results based on the Kolmogorov equation [5] are available. All meaningful field results
were obtained for the no-burst events. Events with burst did not provide sensible plots for interpre-
tation.

In Figs. 3 and 4, respectively, the results are presented for third- and thfifth-order canonical and
modified structure functions; see Eqgs. (1) and (2) for definitions. Obviously, the modified moments
make sense only for odd moments. It is worth noting that canonical moments can be sensitive to
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FIG. 1. Canonical odd moments for all four datasets obtained in DNS: (a) third, (b) fifth, and (c) seventh
moments.
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107
10

FIG. 2. Modified moments for all four DNS datasets. Color coding is the same as in Fig. 1.

intermittency, as it may affect differently the moments in the numerator and denominator, which are
of different order. It is noted in [53] that odd moments of the same order L,(r) and L;(r) depend
similarly on the intermittency and, therefore, normalization using L} (r) can significantly decrease
the influence of intermittency on the scaling exponent.

Figure 3(a) indicates almost perfect agreement between the experimental and DNS canonical
moments in the inertial range, which decay as Hy = L3/(L,)*? ~ (r/n)"!. Since this appealing
result was obtained in two physically different systems, at notably different characteristic Re;, it
was necessary to analyze these outcomes with care to elicit the similarity of turbulence structures.

In the viscous subrange, at small normalized separations r/n < 10, the results of Fig. 3(a) show
different behavior, and the scaling exponents are even of different sign for field and DNS data.

The DNS-field H; comparisons shown in Fig. 3(b) indicate that in the inertial subrange the
structure functions are qualitatively in very good agreement. The scaling exponents at the highest
Re;,, in spite of being very low (3.6%), are practically the same for DNS and field data. The
quantitative agreement is less satisfactory compared to the canonical third moment. In contrast to
scaling exponents in the inertial subrange, Fig. 3(a) shows that in the viscous subrange the scaling
exponents for the third canonical moments are different for the field and DNS data. Similar trends
are evident in Fig. 3(b), again indicating exponents of different signs for field and DNS data in the
viscous subrange.

Increasing the rank of the moments inevitably decreases the accuracy since the effect of greater
velocity increments becomes more substantial and the resolution worsens due to their lower proba-
bility. Therefore, employing odd moments higher than the fifth seemed unreasonable. The canonical
and modified fifth moments calculated for field and DNS data are presented in Figs. 4(a) and 4(b),
respectively. In the inertial range, they are in almost perfect agreement with regard to slope (-0.25)
but not the amplitude. For example, in Fig. 4(a), at r/n = 100, the amplitude is 4.3 for field and 3
for DNS data. In the viscous subrange (#/n < 10), however, the slope is negative (=0.35) in DNS
[Fig. 4(a)] and fluctuating in the field data; this contrasts field observations for the third canonical
moment, wherein a slope of about 0.5 was noted [Fig. 3(a)].

In the inertial subrange, for fifth-order modified moments obtained using field and DNS data
[Fig. 4(b)], the slope is slightly positive (*1.5% for both). In the viscous subrange, the slope is
moderately negative (—9.5%) for DNS, but is fluctuating for field data as in the case of fifth canonical
moments in Fig. 4(a).
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FIG. 3. Comparison of the third canonical (a) and modified (b) moments obtained in the field campaign
[51,52] with Re; = 1200 and DNS conducted for the two highest Re;, = 264 and 383. The periods indicated
in the legends are for time periods without bursts, determined according to the methodology of [52].

Let us first consider modified structure functions of the odd third- and fifth-order moments since
their expressions include the moments of the same order in numerator and denominator. It has been
widely assumed [11-14,20-22] that third-order moments based on the velocity increment and its
modulus have very similar scaling in the inertial and viscous subranges, and in each the exponents
differ only by a few percent. Our (nearly HIT) DNS data confirm this assumption, but field data
(stratified turbulence in the nocturnal boundary layer) show this trend only in the inertial subrange;
in the viscous subrange, the scaling exponents differ substantially to the extent that even the sign of
the slope can be different between DNS and field. Since the expectation for the viscous subrange
was a linear dependence of velocity increment on separation , this result was highly unexpected.
The results for the fifth-order modified structure function in the viscous subrange was even more
puzzling since the moments were randomly fluctuating without a firm dependence on separation r.
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FIG. 4. Comparison of fifth canonical moments (a) and modified moments (b) obtained in the field and
DNS.

Unexpectedly, in the viscous subrange, the canonical third- and fifth-order moments [Figs. 3(a)
and 4(a)] normalized by the power p/2 of the second moment (that lineages to KSSH) behaved
very similarly to the modified moments of the same order [Figs. 3(b) and 4(b)]. In particular, the
scaling exponents of the third-order moment were practically the same (0.50 for modified and 0.52
for canonical moments) and the fifth-order canonical moment fluctuated randomly similarly to the
case of the fifth-order modified moment. Recall that the modified normalization was suggested
in [53] to ameliorate intermittency effects by using moments of the same order in the numerator
and denominator. Therefore, the expectation was that due to different normalization the canonical
and modified moments will behave differently in the viscous subrange. To clarify these findings,
the structure functions L,(r) normalized using Kolmogorov inertial subrange scaling (r&)?/* were
investigated.

The second- and third-order structure functions, which are directly related to turbulence dynam-
ics and appear in the Kolmogorov equation [1], are considered first. In Fig. 5, the KSSH-normalized
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FIG. 5. Normalized according to KSSH third-order (a) and second-order (b) structure functions in field
experiments computed using longitudinal velocity increment Au(x, r).

third- and second-order structure functions obtained in the field campaign are presented. As ex-
pected from the Kolmogorov equation, for the no-burst case, the normalized third-order longitudinal
structure function approximately satisfied 4/5 law [Fig. 5(a)], with an approximately zero slope in
the inertial subrange. In the viscous subrange, the slope of the normalized third longitudinal structure
function is 2, or Ly o 13, indicating that Au(x, r) o r. Figure 5(b) shows, however, for the same
viscous subrange, L, /(re)*/? o« r or L, o /3, indicating that Au(x, ) o< /¢ and not the expected
Au(x,r) «<r.

While the above discussion concerned the no-burst case, it is noteworthy that in the viscous
subrange similar slopes were obtained for the second-order structure function for the case with
bursts [Fig. 5(b)]. No clear scaling was observed in the inertial subrange for datasets with bursts.
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For the third-order structure functions, no clear scaling was observed either in the viscous or inertial
subranges for the burst cases.

The near-zero negative (—0.13) slope of the canonical third-order structure in DNS [Fig. 3(a)]
attests to similar dependence of second and third structure functions on r /1 in the viscous subrange.
Such behavior is expected, and has been observed in laboratory experiments with homogeneous
flows (developed turbulence in a jet and past a cylinder) [13]; however, in the field data (Fig. 5)
the dependences of second and third structure functions on r/n differ in the viscous subrange. This
results in a slope of ~0.5 in the viscous subrange for the third-order canonical structure function
[Fig. 3(a)].

In the inertial subrange, the slope of the normalized second-order structure function is ~0.073
[Fig. 5(b)], yielding a scaling exponent of 0.74, i.e., Ly(r) o r>7*, instead of 0.667 expected from
KSSH, L,(r) (re)P3. This explains the slope —0.1 in Fig. 3(a) of the third canonical structure
function. From Eq. (2), it follows that H3(r) = L3(r)/[L2(r)]*/? o« r=%1! (i.e., the exponent yielding
1-0.74 x 1.5 = -0.11, which is very close to —0.1). Similar results are found in the literature
[11,12].

The above observations prompted investigations into all other (viable) even and odd structure
functions for Au(x,r) and |Au(x, r)|. Note that even moments are identical for both types of
velocity increments. In the following, additional results are presented for the third- and first-order
structure functions for modulus |Au(x, r)| (Fig. 6) and fourth- and sixth-order (Fig. 7) structure
functions. The first-order structure function for Au(x, r) is identically zero. The third-order structure
function for Au(x, r) was presented in Fig. 4(a).

It follows from Fig. 6 that the shapes in the viscous subrange (r/n < 10) are L} o r°/ ¢ for the
first-order and L3 r13/6 for the third-order structure functions, suggesting |Au(x, r)| ~ r>/¢ as
observed with second-order structure functions [Fig. 5(b)] and not to the separation r as observed
with the third-order structure function for Au(x, r). In the inertial subrange, structure functions
for both |Au(x, r)| and Au(x, r) almost follow Kolmogorov scaling, although a slight deviation
was evident. As established earlier, in the viscous subrange, both third- and first-order structure
functions evaluated for |Au(x, r)| with all datasets, including those with bursting events, have the
same scaling [Figs. 6(a) and 6(b)]. In the inertial subrange, when bursting is present, the structure
function is randomly varying and no definite scaling is observed.

The fourth- and sixth-order canonical structure functions in Fig. 7 confirm the same trend as
observed above for first, second, and third structure functions for | Au(x, r)|. In the viscous subrange,
the velocity increment |Au(x, r)| is found to be proportional to 77/® for both datasets with and
without bursts. This power law is also clearly confirmed for the fourth order and is nearly valid
for the sixth-order structure function. In the inertial subrange, the fourth-order structure function
approximately adheres to Kolmogorov scaling, and an anomaly becomes noticeable only when the
sixth-order structure function is considered.

In particular, the slope of the fourth-order structure function in the inertial subrange is very
small [Fig. 7(a)], about 3%, but unexpectedly positive, marginally exceeding KSSH prediction.
The slope of the sixth-order structure function [Fig. 7(b)] in the same inertial subrange is negative,
thus confirming the well-known anomaly [13—17] that the scaling exponent is lower than p/3 for
high-order structure functions, which for our field experiments is p > 5. The deviation from the
Kolmogorov scaling exponent noted in the literature [13—17] either obtained in the laboratory or
DNS, however, is notably greater than that evaluated from our field data.

The normalized fifth-order structure functions based on the KSSH for Au(x, r) and |Au(x, r)|
were calculated and are presented in Figs. 8(a) and 8(b). In the inertial subrange (around »/n = 100)
the normalized fifth-order structure function [Fig. 8(a)] is undulating about the KSSH-predicted
zero slope, however in the viscous subrange the structure function fluctuates randomly without a
clear trend. No linear dependence between velocity increment Au(x, r) and separation r exists for
the fifth-order structure function in contrast to that observed for the third-order structure function
[Fig. 5(a)].

084605-11



ELIEZER KIT, ELI BARAMI, AND H. J. S. FERNANDO

1071 T T T T 7 ; T

——STievdno—burst
—SLievd purst

10
: 107 10°
r/n
(a)
e SIde vd,no—burst
10,05 —STievd purst

10_] I . | 1
10° 10! r/n 107 10°

(b)

FIG. 6. Normalized odd third-order (a) and first-order (b) structure functions in field experiments computed
using the modulus of the velocity increment.

The fifth-order normalized structure function for |Au(x,r)| behaves essentially different
[Fig. 8(b)] from its Au(x, r) counterpart, with very smooth curves both in the inertial (around
r/n = 100) and viscous subranges. The slope in the inertial subrange is approximately zero for
the no-burst case, but a slight negative slope (*-3%) is evident. The shape of this structure function
in the viscous subrange (r/n < 10) is about L¥ o r*>/®, corresponding to |Au(x, r)| o r*/®, the
same as that observed for odd first- and third-order structure functions [Figs. 6(a) and 6(b)] and for
all even structure functions studied here (second, fourth, and sixth). The same slope of 25/6 was
observed in the viscous subrange for both burst and no-burst cases. In the inertial subrange, no clear
scaling was observed with bursts.

The scaling exponents in the inertial and viscous subrange structure functions of different orders
varying from first to sixth are summarized in Fig. 9. Although our field results in the inertial
subrange do not contradict with those previously reported for HIT [11,19-23], there are modest
qualitative discrepancies. The significant differences are in the small values of separation /7 in the
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FIG. 7. Normalized according to KSSH even fourth-order (a) and sixth-order (b) structure functions in field
experiments computed using the longitudinal velocity increment.

viscous subrange. A widely used assumption is that in the viscous subrange (which has received
less attention in the past) both Au(x, ) and |Au(x, r)| vary similarly and nearly linearly with r
[13,14]. This assumption is of practical interest for ESS, which suggests replacing er of Kolmogorov
normalization with the third-order structure function for |Au(x, r)|.

According to our field results, the third-order structure functions in the viscous subrange behave
as Au(x, r) o< r and |Au(x, r)| o< /%, revealing appreciably different behavior between the two.
Only the last relation, | Au(x, )| o r*/%, is confirmed for the fifth-order modulus structure function
[Fig. 8(b)]; instead of linear dependence with 7, the fifth-order conventional structure function for
Au(x, r) [Fig. 8(a)] fluctuates randomly in the viscous subrange.

A surprising result is that in the viscous subrange all structure functions of the modulus of
the velocity increment in our paper are described by the unique equation (|Au(x, r)|”) oc r>P/% for
p € (1-6) (Fig. 9). The odd structure functions (p = 1, 3, and 5) are definitely different for Au(x, r)
than for |Au(x, r)|. In particular, the first-order structure function for Au(x, r) is identically zero.
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FIG. 8. Normalized fifth-order structure functions in field experiments computed using longitudinal veloc-
ity increment Au(x, r) (a) and its modulus (b).

The fifth-order structure function [Fig. 8(a)] in the viscous subrange did not allow determining
the scaling exponent unambiguously. One could expect it to behave similarly to the third-order
structure function (i.e., vary linearly with r). However, in our field experiments, disparities exist
between third- and fifth-order structure functions, and it is highly probable that they are due to
stable-stratification effects of the nocturnal ABL, as discussed below.

In our DNS of HIT, all scaling exponents of odd structure functions (p = 3,5, and 7) are
approximately the same (Fig. 2) for Au(x, r) and | Au(x, r)|. Additionally, in contrast to field results
[Fig. 4(a)], the shape of the fifth-order structure function for Au(x, r) is smooth. Interestingly, in
the viscous subrange calculations with field data, similar scaling exponents are also obtained for all
structure functions for | Au(x, r)|, including for data containing bursts. Conversely, for datasets with
bursts, no definite scaling exponents are obtained in the inertial subrange with any type of velocity
increment, including |Au(x, r)|. This indicates that bursts mostly affect scales larger than those of
the viscous subrange.
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FIG. 9. Scaling exponents of the structure functions in the inertial and viscous subranges for the velocity
increment and its modulus evaluated for field data. Stars indicate that different scaling exponents of structure
functions (exp-str-fun) were obtained with odd third and fifth structure functions for velocity increments and
their modulus.

The results for scaling exponents obtained in the present case of the stratified ABL (dubbed str)
are presented in Table I along with their HIT counterparts (dubbed hom), with strong shear near the
boundary (sh), theoretical predictions in accordance to the KSSH (kssh) in the inertial subrange,
and linear dependence on r (/in) in the viscous subrange. As mentioned, it is commonly accepted
that scaling exponents for the velocity increment and its modulus are practically the same across
all subranges, and this claim has been partially verified in studies dealing with ESS of HIT [11,13].
Our results cast doubts on the general validity of this statement and, therefore, detailed results
were presented for structure functions based on Au(x, r) and |Au(x, r)| for inertial and viscous
subranges.

Naturally, only odd structure functions are relevant, since even functions are identical for
Au(x,r) and |Au(x,r)| cases. The small differences between scaling exponents of third- and

TABLE I. Scaling exponents of the (structure) functions in the inertial and viscous sub-ranges for velocity
increment and its modulus for datasets without bursts. kssh and lin are theoretical exponents p/3 in inertial and
p in viscous subranges [18], hom and sh are experimental and DNS values in HIT and shear flows [28], str is
for current field data measured under stratified conditions in nocturnal ABL. In viscous subrange, exponents
for modulus of velocity increment yield 5p/6 (NA: Not available from experiments or DNS).

Au(x, r) [Au(x, r)| Au(x,r) [Au(x, r)|
Structure Scaling exponents Scaling exponents Scaling exponents Scaling exponents
functions inertial subrange Inertial subrange viscous subrange Viscous subrange
of order p kssh, hom, str, sh kssh, hom, str, sh lin, hom, str, sh lin, hom, str, sh
1 Function identically 0  0.333, 0.36, 0.38, 0.44  Function identically 0 1.0, NA, 0.833, NA
2 0.667, 0.70, 0.74, 0.77 2.0, NA, 1.667, NA
3 1.0, 1.0, 1.0, 1.0 1.0, NA, 1.06, NA 3.0, NA, 3.0, NA 3.0, NA, 2.50, NA
4 1.333,1.28,1.334, 1.17 4.0, NA, 3.333, NA
5 1.667, NA, 1.667, NA  1.667, 1.54, 1.635, 1.31 5.0, NA, fluct, NA 5.0, NA, 4.1667, NA
6 2.0, 1.78, 1.867, 1.44 6.0, NA, 4.87 NA
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fifth-order structure functions in the inertial subrange are within the uncertainty of the analysis,
but in the viscous subrange the differences are substantial (Table I). In the inertial subrange,
scaling exponents of the fourth-, fifth-, and sixth-order structure functions are considerably closer
to Kolmogorov scaling (than their counterparts in flows with strong shear). The scaling exponent of
the second-order structure functions, however, shows greater deviation from Kolmogorov scaling,
thus contradicting the assumption of possible decrease of intermittency due to stable stratification.

The assumption of increased intermittency in strong shear flow seems plausible since the
scaling exponents of all orders (first, second, fourth, fifth, and sixth) in the inertial subrange show
an increased deviation from the KSSH-based scaling exponent obtained in HIT simulations and
experiments. The exponent of the third-order structure function is 1 in all cases, in agreement
with the Kolmogorov equation. In the viscous subrange, direct results for scaling exponents are not
reported in published papers, but indirect results, including our DNS, where canonical and modified
moments were calculated, show that the exponents for Au(x, ) and |Au(x, r)| for HIT are nearly
the same.

The situation is different for stratified nocturnal ABL turbulence. The third structure function for
the velocity increment in the viscous subrange shows predicted linear dependence, but the fifth-order
structure function shows strong fluctuations thus precluding the determination of a scaling exponent.
All structure functions for the modulus of the velocity increment, except the sixth order where a
slight deviation was present, are yielding the scaling exponent 5p/6.

The above results call for a plausible physical explanation. Note that the flow arriving at the
ES-2 tower (equipped with the combo probe [52]) originated at the Granite Mountain slope [51,52]
as a nocturnal katabatic flow. As it drains under stably stratified conditions, turbulence generated
within is also advected and evolved, possibly becoming nearly HIT at ES2 [52,56], much the same
way as in wind-tunnel stratified flows [46]. When stratification is very weak, the turbulence remains
HIT type, but when stratification becomes stronger turbulence is buoyancy dominated, causing the
PDF to be almost symmetrical. Our initial attempts to qualitatively assess the effect of moderate
stratification on structure functions based on previous laboratory results by blending fluctuations
from isotropic and anisotropic sectors at fine scales appear to explain the linear dependence between
velocity increment and separation for the third-order normalized structure function (according to
the KSSH) in the viscous subrange and why such dependence does not hold for the fifth-order
normalized structure function. Such decomposition also allows obtaining different behavior for
structure functions constructed for the absolute velocity increment |Au(x, r)|. Presentation of this
assessment is left for a future publication.

When laboratory grid generated HIT [46] is subjected to thermally generated stable stratification,
turbulence becomes anisotropic, and the relevant controlling parameter of overall flow is the inverse
of internal or turbulent Froude numbers, Fr = ¢/N u"? where i’ is the rms of the velocity component,
N is the buoyancy frequency, and ¢ is the rate of dissipation. The typical inverse Froude numbers
assessed in our field experiments were 2—5 [56], coincidentally in the same range as that observed in
laboratory flows of [46], thus providing peripheral support for the notion of anisotropic turbulence
at ES-2. Also note that the controlled laboratory results of [46] were obtained at relatively low
Re; ~ 20-40 and that Fr does not specifically address the nuances of stratification effects, such
as their penetration to viscous scales. As such, the observed in the field peculiar behavior of third
canonical and modified structure functions and their departure from the HIT data results following
from DNS need further investigation.

A rigorous attempt to separate isotropic and anisotropic contributions can be made in the frame-
work of SO(3) formalism by conducting the decomposition of appropriately measured structure
or correlation functions into spherical harmonics [44,45,57]. However, this requires simultaneous
multipoint measurement of high-frequency oscillating velocities and velocity derivatives and is left
for future work.
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IV. SUMMARY

The nocturnal stable boundary layer data acquired during the MATERHORN field program [51]
were separated into no-bursts and bursts periods as in [52]. The no-burst field dataset as well as DNS
datasets of HIT were used to study the structure functions of various order of the velocity increment
Au(x, r) and its modulus |Au(x, r)|.

The canonical structure function is obtained by normalizing higher-order structure functions of
order p by the second-order structure function in power p/2 [Eq. (2)]. When structure functions
of different orders are involved, this normalization can result in significant variation of the scaling
exponent, for example, due to different anomalies caused by intermittency. Such effects are expected
to magnify if the contributions from anisotropic sectors are accounted for [38,41], as in the case of
shear and/or stratification. The computation of odd higher-order structure functions (third, fifth, and
seventh) for Au(x, r) using four DNS datasets of HIT showed that although scaling exponents do
not depend substantially on Re; the data are not collapsing in the inertial and viscous subranges,
indicating that scaling used is unsatisfactory.

A modified normalization proposed for skewness of longitudinal velocity derivative du/dx by
[53] involves the replacement of the second moment in the denominator of the canonical scaling
with the same order third moment of the modulus |du/dx|. This modified scaling was adopted for
odd higher-order structure functions (third, fifth, and seventh) of Au(x, r), which were computed
using DNS datasets of HIT. The results were striking: for all moments, a conspicuous collapse was
achieved in the viscous and inertial subranges at all Re, used in the study, suggesting the efficacy
of modified scaling for all moments. The collapse does not occur at larger scales, which is due to
computational box boundaries and turbulence forcing at larger scales.

Detailed comparison of odd third- and fifth-order canonical and modified moments evaluated
using field data without bursts with their DNS counterparts indicated a very good agreement in the
inertial subrange 50 < r/n < 200; for example, at r/n = 100, both field and DNS simulations at
the highest Re; yield the same scaling exponents. In the viscous subrange, the third canonical and
modified structure functions at small separations vary with separation as ~(r /)% in contrast to the
approximately constant value exhibited by DNS.

The structure functions (of order p) in the nocturnal ABL are normalized according to the
KSSH as L,(r)/ (er)P/3, and for the third moment it yielded the predicted linear dependence
(Au(x, r)*) o< r for smaller separations in the viscous subrange. In contrast, the second moment in
the viscous subrange does not support the predicted 7> dependence, but yielded (Au(x, r)*) o< /3.
This explains the surprising scaling exponent of ~0.5 for the canonical third-order structure function
in the viscous subrange.

Since even moments are identical for the velocity increment and its modulus, in the viscous
subrange the r dependence for the second moment could be extended for a general p-order moment
as (|Au(x, r)|P) oc rP/%, which was (at least approximately) supported by our field data for all
p(1-6) used.

As implied from Fig. 5(a) and Fig. 6(a) above, in the viscous subrange of the stratified turbulence
measured in the field the third-order structure functions of the velocity increment Au(x, r) and its
modulus |Au(x, r)|, normalized according to the KSSH, behave differently. The same data pro-
cessing approximately confirmed 4/5 Kolmogorov law for the inertial subrange. The canonical and
modified third-order structure functions computed for the same data showed very good agreement
with their counterparts obtained in DNS for the inertial subrange; however, a substantial disparity
was observed in the viscous subrange.

In the viscous subrange of DNS, the scaling exponent of the modified third-order structure
function is close to zero, indicating that, in contrast to field observations, the scaling exponents
for velocity increment Au(x, r) and for its modulus |Au(x, r)| for HIT are nearly the same.

As in the case of third order, the canonical and modified fifth-order structure functions computed
using field data showed very good agreement with their DNS counterparts for the inertial subrange.
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In the viscous subrange, both the canonical and modified fifth-order structure functions for field
data were oscillating, and the scaling exponents could not be determined.

The field data set represents stratification-affected high Reynolds number turbulence in a kata-
batic flow in the nocturnal ABL [56]. An attempt was made to isolate stratification effects from the
total turbulence field using a simple-minded assumption that the measured turbulence at 6 m above
the ground is contributed by two uncorrelated effects: roughly HIT generated within the katabatic
flow arriving from a nearby Granite mountain and motions due to stable temperature stratification
at the measurement location (i.e., ES-2 tower). In the ABL, shear effects are substantial near the
ground; however, at larger distances (e.g., 6-m height) turbulence tends toward HIT which can be
affected by anisotropic tendency of stratification [46,47] that may even penetrate to fine scales.
A simplified model based on blending of fluctuation contributions from isotropic and anisotropic
sectors at fine scales appear to explain the linear dependence between velocity increment and
separation for the third-order normalized structure function in the viscous subrange and why such
dependence does not hold for the fifth-order normalized structure function (which is deferred to a
future paper). In addition, such decomposition allows obtaining of different behavior for structure
functions constructed for the absolute velocity increment |Au(x, r)|. Considering all, we suggest
that the more sophisticated SO(3) formalism [57] developed for decomposition of structure and/or
correlation functions to separate contributions of isotropic and anisotropic sectors be attempted in
future studies of anisotropy at small scales introduced by large scale effects such as stratification.
Studies on small and viscous scales have become one of our foci because of the interest in
understanding fog formation mechanisms, where spawning of water droplets occurs at Kolmogorov
and sub-Kolmogorov scales of the ABL. We hope that this paper provides an entrée for future such
work.
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