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Abstract—The key concept for safe and efficient traffic
management for Unmanned Aircraft Systems (UAS) is the
notion of operation volume (OV). An OV is a 4-dimensional
block of airspace and time, which can express an aircraft’s
intent, and can be used for planning, de-confliction, and traffic
management. While there are several high-level simulators for
UAS Traffic Management (UTM), we are lacking a frame-
work for creating, manipulating, and reasoning about OVs
for heterogeneous air vehicles. In this paper, we address
this and present SkyTrakx—a software toolkit for simulation
and verification of UTM scenarios based on OVs. First, we
illustrate a use case of SkyTrakx by presenting a specific air
traffic coordination protocol. This protocol communicates OVs
between participating aircraft and an airspace manager for
traffic routing. We show how existing formal verification tools,
Dafny and Dione, can assist in automatically checking key
properties of the protocol. Second, we show how the OVs can be
computed for heterogeneous air vehicles like quadcopters and
fixed-wing aircraft using another verification technique, namely
reachability analysis. Finally, we show that SkyTrakx can be
used to simulate complex scenarios involving heterogeneous
vehicles, for testing and performance evaluation in terms
of workload and response delays analysis. Our experiments
delineate the trade-off between performance and workload
across different strategies for generating OVs.

I. INTRODUCTION

Unmanned Aircraft Traffic Management (UTM) is an
ecosystem of technologies that aim to enable unmanned,
autonomous and human-operated, air vehicles to be used
for transportation, delivery, and surveillance. By 2024, 1.48
million recreational and 828 thousand commercial unmanned
aircraft are expected to be flying in the US national
airspace [1]. Unlike the commercial airspace, this emerging
area will have to accommodate heterogeneous and innovative
vehicles relying on real-time distributed coordination, fed-
erated enforcement of regulations, and lightweight training
for safety. NASA, FAA, and a number of corporations are
vigorously developing various UTM concepts, use cases, in-
formation architectures, and protocols towards the envisioned
future where a large number of autonomous air vehicles can
safely operate beyond visual line-of-sight.
FAA’s UTM ConOps [2] defines the basic principles for

safe coordination in UTM and the roles and responsibili-
ties for the different parties involved such as the vehicle
operator, manufacturer, the airspace service provider, and
the FAA. The building-block concept in UTM is the notion
of operation volumes (OVs) which are used to share intent
information that, in turn, enables interactive planning and

strategic de-confliction for multiple UAS [2]. Roughly, OVs
are 4D blocks of airspace with time intervals. They are used
to specify the space that UAS is allowed to occupy over
an interval of time (see Figures 1 and 2). While there have
been small-scale field tests for UTM protocols using OVs [3],
there remains a strong need for a general-purpose framework
for simulating and verifying UTM protocols based on OVs.
Such a framework will need to (i) manipulate and com-
municate OVs for traffic management protocols, (ii) reason
about dynamic OVs for establishing safety of the protocols,
(iii) compute OVs for heterogeneous air vehicles performing
different maneuvers, and (iv) evaluate UTM protocols in
different simulation environments.
In this paper, we address this need and present SkyTrakx—

an open source toolkit for simulation and verification of UTM
scenarios. The toolkit offers a framework that (i) provides
automata theory-based APIs for designing UTM protocols
that formalize the communication of OVs, (ii) integrates
existing tools, Dafny and Dione, to assist in verifying the
safety and liveness of the protocols, (iii) uses the reachability
analysis tool DryVR to compute OVs for heterogeneous
air vehicles, and (iv) expands the ROS and Gazebo-based
CyPhyHouse framework [4] to simulate and evaluate config-
urable UTM scenarios. Benefit from [4], the protocols can be
ported from simulations to hardware implementations. The
detailed contributions of SkyTrakx are as follows:

Provably safe De-conflicting using OVs: For the first
time, we show how the intention expressed as OVs can
ensure provably safe distributed de-conflicting in Sections III
and IV. As an example, we develop an automata-based
de-conflicting protocol using SkyTrakx APIs. This protocol
specifies how the participating agents, the air vehicles, should
interact with the Airspace Manager (AM). We then formally
verify the safety and liveness of this protocol. In general,
verification of distributed algorithms is challenging, but our
safety analysis shows that the use of OVs helps decompose
the global de-conflicting of the UAS into local invariant on
the AM and local real-time requirements on each agent. We
further show that Dione [5], a proof assistant for Input/Output
Automata (IOA) built with the Dafny program analyzer [6],
can prove the local invariant on the AM automatically. We
prove that the safety of the protocol is achieved when
individual agents follow their declared OVs. The liveness
analysis further shows that every agent can eventually find a
non-conflicting OV, under a stricter set of assumptions.



Fig. 1: Hector Quadrotor [8] (Left) and ROSplane [9] (Right)
models in Gazebo simulator.

Reachability Analysis for OV Conformance: The guar-
antees of our protocol rely on the assumption that the
agents do not violate their declared OVs. In Section V,
we show how to use an existing data-driven reachability
analysis tool, DryVR [7], to create OVs for heterogeneous
air vehicles with low violation probability. We apply such
analysis on a quadrotor model, Hector Quadrotor [8], and
a fixed-wing aircraft model, ROSplane [9], and incorporate
them in SkyTrakx. We show both air vehicles in Figure 1
and visualize their OVs for a landing scenario in Figure 2.

Performance Evaluation: In Section VI, we first dis-
cuss the implementation of SkyTrakx. Then, we perform
a detailed empirical analysis of our protocol in a number
of representative scenarios using SkyTrakx. We compare
two strategies for the generation of OVs with different
aggressiveness, namely CONSERVATIVE and AGGRESSIVE.
Our experiments quantify the performance and workload
on the AM, and we measure these metrics with respect to
the number of participating agents and different strategies
for generating OVs. Our results suggest that the workload
on the AM scales linearly with the number of agents, and
AGGRESSIVE provides 1.5-3X speedup but leads to 2-5X
increased workload on the AM.

II. RELATED WORK

Collision Avoidance Protocols: Prior to the develop-
ment of the UTM ecosystem, traffic management protocols
for manned aircraft include the family of Traffic Alert and
Collision Avoidance Systems (TCAS) [10]–[15]. UTM and
TCAS are complementary—the former is for long range
strategic safety against loss of separation with other aircraft
and static obstacles, weather events, and anomalous behav-
iors, while the latter is for shorter-range tactical safety. Ac-
cordingly the protocol we discuss (in Section IV) coordinates
over longer range and not only for potential collision avoid-
ance. SkyTrakx could be augmented with existing collision
avoidance protocols in the future. For instance, if an aircraft
violates its OV in our protocol, then a TCAS-like protocol
can be used to avoid collision.

Formal Approaches to UTM and Collision Avoidance:
The formal methods’ research community has engaged with
the problem of air-traffic management in a number of
different ways. There have been several works on formal
analysis of TCAS [16]–[19], ACAS X [20]–[22], and other
protocols [23], [24], [24]–[28].1 These verification efforts

1https://ti.arc.nasa.gov/news/acasx-verification-software/

(a) ROSplane reserved OVs for
loitering and descending.

(b) ROSplane loiters and waits
for Quadrotors.

(c) Quadrotors passed the run-
way before ROSplane descends.

(d) ROSplane descends.

Fig. 2: Visualization of a landing scenario with heterogeneous
air vehicles in an airport. The OVs for Hector Quadrotors are
annotated with orange and OVs for the ROSplane are shown in
green. Reserved OVs are outlined with dots, and OVs in use are
represented with solid tubes.

rely on various simplifying assumptions such as precise
state estimates, straight-line trajectories, constant velocity
of the intruder and ownership. Algorithms to synthesize
safe-by-construction plans for multiple drones flying in a
shared airspace have been developed in [4], [29]–[31]. These
approaches rely on predicting and communicating future
behavior of participating aircraft under different sources of
uncertainty [25], [29], [30].
In [32], the authors present an approach for decentralized

policy synthesis for route planning of individual vehicles
modeled as Markov decision processes. Our approach de-
couples the low-level dynamically feasible planning from the
distributed coordination, and solves the latter problem using
a centralized coordinator (Airspace Manager) via distributed
mutual exclusion over regions of the airspace (Section IV).
In [33], the authors present a framework for decentralized
controller synthesis for different managers of neighboring
airspaces. They use finite game and assume-guarantee ap-
proaches to generate decision-making mechanisms that sat-
isfy linear temporal logic specifications. An application of
their approach is to design policies for airspace managers
that enforce a maximum number of vehicles in the airspace
or maximum loitering time. Their framework assumes the
operating regions for actions such as takeoff or loitering are
predefined. Our framework is complementary to this work
as we show how a vehicle can generate an OV based on its
vehicle dynamics from infinite choices of regions and time.

III. A FORMAL MODEL OF OPERATION VOLUMES

In this section, we formalize the notion of OVs described
in [2] which is the fundamental building block for UTM pro-

https://ti.arc.nasa.gov/news/acasx-verification-software/


tocols. This formalization is also implemented in SkyTrakx
for creating, manipulating, and reasoning about OVs. We
refer to a UAS participating in the UTM system as an agent,
or equivalently, an air vehicle. Every agent in the system has
a unique identifier. The set of all possible identifiers is ID .
We assume that each agent has access to a common global
clock which takes non-negative real numbers. The airspace
is modeled as a compact subset X ⊆ R3. Large airspaces
may have to be divided into several smaller airspaces, and
one has to deal with hand-off across airspaces. In this paper,
we do not handle this problem of air vehicles entering and
leaving X . Other works have synthesized safe protocols for
this problem (e.g. [33]). The airspace is different from the
state space of individual air vehicles which may have many
other state components like velocity, acceleration, pitch and
yaw angles, etc. Informally, an OV is a schedule for an air
vehicle for occupying airspace.
Definition 1: An operating volume (OV) is a finite se-

quence of pairs C = (R1, T1), (R2, T2), . . . , (Rk, Tk) where
each Ri ⊆ X is a compact subset of the airspace, and Ti’s
is a monotonically increasing sequence of time points.
The total time duration Tk − T1 of the OV C is denoted

by C.dur , and the length k of C is denoted by C.len .
Further, we denote the last time point Tk by C.Tlast , the last
region Rk by C.Rlast , and the union of all regions,

!k
i=1Ri,

by C.Rall as shorthands. We denote the set of all possible
contracts as OV. An air vehicle meets an OV at real-time t
if (1) t ∈ [Ti, Ti+1) for any i < k implies that the air vehicle
is located within Ri, and (2) t ≥ Tk implies that the agent
is located within Rk ever after Tk.
Definition 2: Two OVs are time-aligned if they use the

same sequence of time points. Given two time-aligned
OVs, Ca = (Ra

1 , T1), . . . , (R
a
k, Tk) and Cb = (Rb

1, T1),
. . . , (Rb

k, Tk), and a set operation ⊕ ∈ {∩,∪, \}, we define
Ca ⊕ Cb ≜ (Ra

1 ⊕Rb
1, T1), . . . , (R

a
k ⊕Rb

k, Tk).
We can generalize the definition to OVs that are not time-
aligned, and the detailed derivation is provided in the ex-
tended version of this paper [34].
Several concepts are defined naturally as set operations

on OVs. We abuse notation sometimes and use C as the set
represented by contract C, i.e. the set

C ≜
k−1"

i=1

{(r, t) | r ∈ Ri ∧ Ti ≤ t < Ti+1}

∪ {(r, t) | r ∈ Rk ∧ Tk ≤ t}.
For example, checking if Ca refines Cb is to simply check
if Ca uses less space-time than Cb does, i.e., Ca ⊆ Cb, or
equivalently Ca \ Cb = ∅.
We will use the defined operations in our protocol in

Section IV to update OVs of individual agents and check
intersections. We will show how to create such OVs using
reachability analysis in Section V.

IV. A SIMPLE COORDINATION PROTOCOL USING OVS
We present an example protocol for safe traffic manage-

ment using OVs and its correctness argument. We further im-
plement the protocol with SkyTrakx. The protocol involves a

set of agents communicating OVs with an airspace manager
or controller (AM). The overall system is the composition of
the airspace manager (AM) and all agents (agenti):

Sys ≜ AM||{agenti}i∈ID .
In Section IV-A and IV-B, we describe the protocol by

showing the interaction between participating agents and the
AM through request, reply, and release messages. We
then analyze the safety of the protocol under instant message
delivery in Section IV-C, and its liveness in Section IV-D.

A. Airspace Manager

We design the AM as an Input/Output Automa-
ton (IOA) [35] defined in Figure 3. The AM keeps track
of all contracts and checks for conflicts before approving
new contracts. It uses a mapping contr_arr in which
contr_arr[i] records the contract held by agent i, and a
set reply_set to store the IDs of the agents whose requests
are being processed and pending reply.
Whenever the AM receives a requesti(contr) from

agent i (line 11), i is first added to reply_set. Then, contr
is checked against all contracts of other agents by checking
disjointness (line 14). Only if the check succeeds, contr is
included in contr_arr[i] via set union (line 15).
When i is in reply_set, the replyi(contr) ac-

tion is triggered to reply to agent i with the recorded
contr=contr_arr[i] (line 7). Note that the AM replies
with the recorded contract contr_arr[i] at line 7 irrespec-
tive of whether the requested contract contr in line 11
was included in contr_arr[i] or not. Finally, if the AM
receives a releasei(contr), then it removes contr from
contr_arr[i] via set difference (line 18).

B. Agent’s Protocol

The agent’s coordination protocol sits in between a plan-
ner/navigator that proposes OVs and a controller which
drives the air vehicle to its target. We will discuss ap-
proaches to estimate OVs for waypoint-based path planners
and waypoint-following controllers in Section V. Figure 4

1 automaton AirspaceManager
2

3 variables:
4 contr_arr: [ID → OV]
5 reply_set: Set〈ID〉
6

7 output replyi(contr: OV = contr_arr[i])
8 pre: i ∈ reply_set
9 eff: reply_set := reply_set \ {i}
10

11 input requesti(contr: OV)
12 eff:
13 reply_set := reply_set ∪ {i}

14 if
j∈ID!
j ∕=i

(contr ∩ contr_arr[j] = ∅):

15 contr_arr[i] := contr_arr[i]∪contr
16

17 input releasei(contr: OV)
18 eff: contr_arr[i] := contr_arr[i] \ contr

Fig. 3: Airspace Manager automaton. A model in Dione
language [5] with automated invariant checking for IOA is
available in [34].
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Fig. 4: Simplified state diagram for Agent.

shows the simplified state diagram of the agent protocol. At
a high level, agent i’s protocol starts in the idle state and
initiates when a plan action with a given contr is triggered
by the agent’s planner. Then, the protocol requests this
contract from the AM, and waits for the reply. If the requested
contract is a subset of the one replied by the AM, the agent
protocol enters the moving state. At this point, the agent’s
controller starts moving the air vehicle and ideally making
it follow the contract strictly. Once the air vehicle reaches
the last region of OV successfully, the protocol releases the
unnecessary portion of the contract and goes back to idle
state. In the case that the requested contract is not a subset
of the one replied by the AM, the protocol directly releases
and retries. If the agent violates the contract while moving,
it notifies the AM that the contract is violated. We provide
the formally specified automaton and detail explanation of
agent’s protocol in the extended version [34].

C. Protocol Correctness: Safety

We now discuss the safety property ensured by our pro-
tocol. Here, agenti.curr contr denotes the contract that
the ith agent is following. Assuming that none of the
agents triggered their violate action, then an agent always
follows its local contract curr_contr. In that case, collision
avoidance is defined naturally as the disjointness between the
curr_contrs of all agents. Our goal therefore is to show that
the following proposition is an invariant of the system:
Proposition 1 (Safety): If none of the agents triggered

their violate action, the current contracts followed by all
agents are pairwise disjoint, i.e.,#

i∈ID

#

j ∕=i,j∈ID
agenti.curr contr ∩ agentj .curr contr = ∅.

Our proof strategy is to show that first the global record
of contracts maintained by the AM are pairwise disjoint by
Lemma 1. Then, we ensure the local copy by each agent
is as restrictive as the global record and hence preserves
disjointness by Lemma 2. With Lemma 1 and Lemma 2,
Proposition 1 is derived following basic set theory. We start
from Lemma 1 for the AM.
Lemma 1: If none of the agents triggered their violate

action, all contracts recorded by the AM are pairwise disjoint,
i.e.,#

i∈ID

#

j ∕=i,j∈ID
AM.contr arr[i] ∩ AM.contr arr[j] = ∅.

Proof: This is a direct result from examining all actions
of the AM automaton. The requesti action ensures that a
contr is only included into contr_arr[i] if it is disjoint
from all other contracts contr_arr[j]. The replyi action
does not modify contr_arr at all, and releasei action only
shrinks the contracts.
Lemma 2: If none of the agents triggered their violate

action, the curr_contr of agent i is always as restrictive as
contr_arr[i], i.e.,#

i∈ID
agenti.curr contr ⊆ AM.contr arr[i].

Proof: This is proven by examining all actions of agent
automaton regardless of the order of execution. Due to the
space limit, we only consider when actions are delivered
instantaneously. The curr_contr is only modified in reply
and release actions. In reply action, curr_contr is to
copy contr sent by the AM and thus Lemma 2 holds.
In release action, curr_contr removes contr first; then
release is delivered to the AM to remove contr. As a
result, Lemma 2 still holds. In [34], we extend the proof so
that, even under delayed communication settings, the lemma
still holds when the order of received messages is preserved.

D. Protocol Correctness: Liveness

For liveness property, we would like to see every agent
eventually reaches its target. In our protocol, this is formu-
lated as every agent eventually reaches the last region of its
OV that it proposed in plan action and triggers its succeed
action. The overall proof is to show that an agent can always
find an OV which the AM approves.
Since a newly proposed OV may be rejected, we denote

it as plan_contr to distinguish from curr_contr which
an agent always follows. It is worth noting that liveness
depends on the OV for each agent. A simple scenario where
liveness cannot be achieved is when the final destinations
of two agents are too close; thus the last region where one
agent stays at the end could block the other agent forever.
Therefore, we first require the following assumption:
Assumption 1 (Disjointness of different agents’ regions):

For any agent i ∈ ID , all regions that it plans to traverse are
disjoint from the last regions of all other agents. Formally,#

j ∕=i

plan contri.Rall ∩ AM.contr arr[j].Rlast = ∅.

Assumption 1 can be achieved by querying the AM when
planning since Lemma 2 ensures the AM’s record of OVs
includes the agents’ OVs.
Definition 3: Given an OV C = (R1, T1), . . . , (Rk, Tk)

and a time duration δ, we define reschedule(C, δ) as:
reschedule(C, δ) ≜ (R1, T1 + δ), (R2, T2 + δ), . . . , (Rk, Tk + δ)

Now we start our argument for liveness. By our protocol
design, if agent i never violates its OV, it must reach the
last region successfully. Therefore, we only have to prove
that agent i’s request to the AM must be accepted eventually.
With Assumption 1, we prove the claim that an agent i can
always reschedule a plan so that the AM approves its OV.



Proposition 2 (Liveness): If plan contri satisfies As-
sumption 1, then there is a time duration δ0 such that the
AM approves reschedule(plan contri, δ) for all δ ≥ δ0.
Formally, #

j ∕=i,j∈ID
reschedule(plan contri, δ) ∩

AM.contr arr[j] = ∅.
Proof: Following Assumption 1, we first derive the

disjointness of regions of airspace. For any j ∕= i and any δ,
reschedule(plan contri, δ).Rall

∩ AM.contr arr[j].Rlast = ∅, (1)
because reschedule does not modify the regions. Further, we
derive that any δj ≥ AM.contr arr[j].Tlast , the following
two OVs are disjoint:

reschedule(plan contri, δj) ∩ AM.contr arr[j] = ∅. (2)

The proof is to expand the definition and is skipped here.
Intuitively, this is because every agent j is expected to
reach and stay in AM.contr arr[j].Rlast ever after δj ≥
AM.contr arr[j].Tlast . Therefore, the rescheduled OV for
agent i does not overlap with OVs of any other agent j.
Finally, let δ0 ≜ max

j ∕=i
AM.contr arr[j].Tlast and it

directly leads to the proof of Proposition 2.
In addition to the manual proof presented, we have also

explored using Dione [5] with Dafny proof assistant [6] to
generate induction proof for invariants of IOA. We chose
this tool due to its support for IOA and automated SMT
solving for set operations on OVs. We discovered that these
tools can automatically prove the local invariant Lemma 1
for the AM. However, they lack support for continuous time
to model agents and communication delay; hence we cannot
use Dione to prove other lemmas and propositions directly.

V. REACHABILITY ANALYSIS AND OPERATION
VOLUMES

In Section IV, we show that the protocol ensures safety
and liveness. However, the proof assumes that the air vehicle
does not violate its OV. In this section, we discuss how
to use existing reachability analyses to over-approximate
regions of space-time that an air vehicle may visit. This
over-approximation can be used to (i) generate OVs that are
unlikely to be violated, or (ii) monitor air vehicles at runtime
to predict and avoid possible violations.
Formally, given a dynamical system with state space

D, a set of initial states Q0 ⊆ D, and a time horizon
[T0, T1), reachability analysis tools can compute reachtube,
a set of states Q1 reachable within [T0, T1). We further
require a function π̂ : P(D) ,→ P(X ) to transform state
space to air-space. Then, one can build an OV Creach =
(−∞, π̂(Q0)), (T0, π̂(Q1)), (T1,X ). This means that when
air vehicle stays within π̂(Q0) before T0, it will then stay
within π̂(Q1) between T0 and T1, and it can be anywhere
after T1. We then can merge Creach for different time
horizons to propose OVs.
In this work, we use DryVR [7] to compute reachtubes

from simulation traces. DryVR uses collected traces to
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Fig. 5: Simulation traces in Black and boundary of the
reachtube computed by DryVR in Gray for Hector Quadrotor
going to the waypoint at (0, 0, 2.5). The reachtube is
projected to xy-plane (Left) and z-axis over time (Right).

learn the sensitivity of the trajectories of the air vehicle,
and generates reachtubes for a new simulation trace with
probabilistic guarantees. We use DryVR to generate OVs for
a quadcoptor model, Hector Quadrotor [8] and a fixed-wing
model, ROSplane [9], using the Gazebo simulator.

a) Hector Quadrotor: The state variables for Hector
Quadrotor already include x, y, and z for its position. They
also include other variables for orientation and velocity.
Hence, π̂ for this model is to simply apply projections to the
x, y, and z axes. We compute Creach for a scenario where
the air vehicle follows the waypoint (0, 0, 2.5). Figure 5
shows the projection of Creach as hyper-rectangles to the
xy-plane (left) and to the z-axis against time (right). We can
generate OVs using a CONSERVATIVE strategy that covers
Creach for the entire time horizon with a bounding rectangle,
or an AGGRESSIVE strategy to use the gray rectangles as an
OV with short time intervals. In general, we can generate
a spectrum of OVs from Creach between CONSERVATIVE
and AGGRESSIVE strategies, and all OVs in this spectrum
can guarantee, using reachability analysis, a low probability
of violations. We further explore the performance trade-off
between the two strategies in Section VI.

b) ROSplane: Similarly, the state variables for ROS-
plane include x, y, and z representing its position but
in North-East-Down (NED) coordinates. Hence, π̂ for this
model is to apply projections to x, y, and z axes and
transform to the coordinates used by the Airspace Manager.
We simulate some of its traces and then divide them into
segments to analyze several path primitives denoted as modes
for ROSplane [9]. In Figure 6, we show the reachtubes for
two modes, namely loiter and descend. Unsurprisingly, the
plane may not maintain the desired altitude (z-axis) precisely
while loitering, and thus it is important to reserve enough
range of altitude in OVs for ROSplane.
In summary, we are able to derive useful, i.e., not overly

conservative, OVs using DryVR, even with noisy simula-
tions, as shown in Figure 6. The main engineering difficulty
we faced using DryVR is to divide traces into proper
segments that are from the same mode for ROSplane. This
requires domain knowledge on each air vehicle model, for
which we refer the readers to [8] and [9].
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Fig. 6: Reachtube by DryVR in 3D (Left) for ROSplane
to loiter and then descend. The traces and reachtube for
loiter (Top Row) and descent (Bottom Row) are projected
to xy-plane (1st column) and z-axis over time (2nd column).

VI. SKYTRAKX IMPLEMENTATION AND EVALUATION

Our experiments are conducted using SkyTrakx. SkyTrakx
and all simulation scripts are available at our GitHub reposi-
tory.2 To better present our results within the page limits,
we only include experiments with the Hector Quadrotor
model [8] with its default waypoint-following controller.
We first describe SkyTrakx, then the scenarios, then the
experimental results followed by a brief discussion.

A. SkyTrakx: System Details

SkyTrakx consists of four major components: (1) Dione
verification discussed in Section IV, (2) reachability anal-
ysis and reachtubes from DryVR described in Section V,
(3) an executable reference UTM protocol implemented in
Python of Section IV, and (4) UTM protocol simulation and
visualization with CyPhyHouse [4]. Here we focus on the
executable UTM protocol and its simulation.
To faithfully follow the semantics of our example UTM

protocol, we first provide a data structure to represent
and easily manipulate rectangular OVs. We provide APIs
for designing executable (timed) input/output automata that
can interact with simulated vehicles in CyPhyHouse, and
implement an execution engine to simulate the input/out-
put automata alongside CyPhyHouse. To reuse reachtube
from DryVR, we also design APIs to load pre-computed
reachtubes for estimating OVs. Finally, we also provide
several scripts to setup desired scenarios and environments
in CyPhyHouse, and implement a plugin to better visualize
OVs in the Gazebo simulation backend of CyPhyHouse.

B. Evaluation Scenarios

Following the protocol defined in Section IV, a scenario
for evaluation is specified by (1) the set of agents ID
which we consider #A = |ID | (2) the world map and the
predefined sequence of waypoints for each agent denoted
as the map, and (3) the strategy that the agents use to
generate OVs from their waypoints. For example, the Left
figure in Figure 7 shows a scenario with #A = 6 drones
in the CORRIDOR map. It uses the AGGRESSIVE strategy

2https://github.com/cyphyhouse/CyPhyHouseExperiments

to generate OVs, which are visualized in the red and blue
frames.
We evaluate our protocol in the following maps shown

in Figure 7:
(1) CORRIDOR simulates two sets of drones on the opposite

sides of a tight air corridor trying to pass through. This
may happen in a garage-like space where a fleet of air
vehicles enter or leave.

(2) LOOP simulates each drone following the vertices of
the same closed polygonal chain. This models common
segments in the routes of air vehicles such as pickup
packages or return to bases’ routes.

(3) CITYSIM is a more realistic scenario which simulates
drones flying in a city block.

(4) RANDOMN are scenarios where each drone follows a
sequence of N random waypoints inside a 25m× 25m
arena. This is to validate our protocol via random testing.

In addition, a designated landing spot for each drone is
specified as the last waypoint in all maps to ensure the
liveness property. This avoids the situation where a landed
drone blocks other air vehicles.

CONSERVATIVE and AGGRESSIVE OVs: We imple-
mented two strategies, namely CONSERVATIVE and AG-
GRESSIVE, to generate OVs from given waypoints and posi-
tions. Both strategies are deterministic and use only hyper-
rectangles for specifying regions in OVs. As discussed in
Section V, CONSERVATIVE reserves large rectangles cov-
ering consecutive waypoints with longer durations between
time points. Thus, it acquires unnecessarily large volumes
and may obstruct other agents. In contrast, AGGRESSIVE
heuristically selects smaller rectangles and shorter durations.
Therefore, AGGRESSIVE is less likely to block other agents
but increases the workload of the AM because the OVs
(numbers of rectangles) are more complex.

C. Experimental Results

Setup: Our simulation experiments were conducted
on a machine with 4 CPUs at 3.40GHz, 8GB memory,
and an Nvidia GeForce GTX 1060 3GB video card. The
software platform is Ubuntu 16.04 LTS with ROS Kinetic
and Gazebo 9. For the time usage, we report the simulation
time from Gazebo (time elapsed in the simulated world),
instead of wall clock time to help reduce the variations in the
results due to irrelevant workload on our machine. To address
the nondeterminism arising from concurrency in simulating
multiple agents, we simulate each scenario three times, and
report the average value of each metric.

Response Time and Workload: Figure 8 shows the
response time for each drone starting from sending the first
request to finish traversing all waypoints using the CONSER-
VATIVE strategy in the CORRIDOR, LOOP, and RANDOMN
maps. As expected, the maximum response time per agent
grows linearly against the number of participating agents
because, in the worst case, all agents are accessing the shared
narrow air-corridor, and the last agent has to wait until all
other agents finish. The average response time shows that it
is possible to finish faster if agents can execute concurrently

https://github.com/cyphyhouse/CyPhyHouseExperiments


Fig. 7: Maps: CORRIDOR (Left), LOOP (Mid), and CITYSIM (Right)
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Fig. 8: Response time per agent (Left), #emptiness queries per second (Mid), and #rectangles checked by the AM per
second (Right) for each map using CONSERVATIVE strategy. Max is in Solid marks and lines and Avg. is in Hollow marks
and dotted lines

TABLE I: Comparison of simulation time between CON-
SERVATIVE and AGGRESSIVE. #A is the number of agents,
Time(s) is the total time for simulation according to the sim-
ulated clock in seconds, #Rect/s is the number of rectangles
per second in the disjointness query of OVs by the AM.

CONSERVATIVE AGGRESSIVE Increased

Map #A Time(s) #Rect/s Time(s) #Rect/s Speedup #Rect/s

2 27.52 0.00 21.30 0.00 1.29X N/A

4 39.78 2.99 27.24 6.16 1.46X 2.71X

CORRIDOR 6 51.63 7.02 34.14 14.10 1.51X 2.06X

8 64.18 10.68 37.91 22.13 1.69X 2.01X

10 95.47 12.97 41.94 35.14 2.28X 2.07X

2 91.05 1.91 37.63 6.85 2.42X 3.59X

4 184.88 5.77 70.89 23.33 2.61X 4.04X

LOOP 6 280.51 10.26 103.28 40.52 2.72X 3.95X

8 379.53 14.28 134.62 63.71 2.82X 4.46X

10 485.58 18.26 169.25 90.94 2.87X 4.98X

CITYSIM 2 77.42 1.77 49.92 4.48 1.55X 2.53X

in disjoint airspaces. For example, the average time for 10
agents is smaller than the time for 8 agents in RANDOM6.

In Figure 8, we consider the number of emptiness/dis-
jointness queries (denoted as #Qe) and of hyper-rectangles
to check (denoted as #Rect) per second for the AM. #Rect
provides a finer estimation of computation resources needed
by the AM than #Qe. The growth of #Qe as expected is
roughly quadratic against #A in the worst scenario due
to checking pairwise disjointness. However, the growth of
#Rect is not as fast and is seemingly linear to #A in the
worst scenario. Therefore, it is very likely that the workload
increases only linearly instead of quadratically when we use
a simple representation of OVs such as hyper-rectangles.

CONSERVATIVE vs. AGGRESSIVE.: We compare the
time between the CONSERVATIVE and AGGRESSIVE strate-
gies in the CORRIDOR, LOOP, and CITYSIM maps. Due to
the heavier demand for computational resources required, we
only simulated two drones in CITYSIM. Table I shows that
the AGGRESSIVE strategy can reduce the overall response
time and provides a 1.3-2.8X speedup with larger number
of participating agents. This experiment shows that our
framework is suitable for comparing and quantifying the
trade-offs between performance, safety, and workload under
different OVs’ generation strategies.

VII. DISCUSSIONS AND CONCLUSIONS

There is a strong need for a toolkit for formal safety
analysis and larger scale empirical evaluations of different
UTM concepts and protocols. In this paper, we present
SkyTrakx, a toolkit with an executable formal model of UTM
operations and study its safety, scalability, and performance.
Our toolkit SkyTrakx offers open and flexible reference

implementation of a UTM coordination protocol using ROS
and Gazebo. Our formal analyses in SkyTrakx illustrate how
formal reasoning can be applied to the family of UTM de-
conflicting protocols. We discovered the capability but also
the lack of features of Dione [5] and Dafny [6] for providing
automated proofs, and to our knowledge, there is no other
proof assistant for IOA that also supports the modeling of
OVs. We further studied the connection between OVs and
reachabilty analysis, and we showcased how to use DryVR
to over-approximate the reachable regions of airspace using
simulation traces. The simulator also makes it possible to
study different strategies for reserving OVs.
Some of the simplifying assumptions made can be re-

moved with careful engineering, while others require brand



new ideas. Handling timing and positioning inaccuracies and
heterogeneous vehicles fall in the former category. We have
partly addressed this category using existing reachability
analyses in Section V. In the latter category, a major concern
is when there are unavoidable violations of OVs due to,
for example, hardware failures. Possible solutions include
integration with existing predictive failure detection or failure
mitigation strategies and collision avoidance protocols, incor-
poration of human operators, or generation of notifications to
other participating agents for collision avoidance. Finally, an
important extension is the design of a coordination protocol
for multiple airspace managers having the same guarantees.
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Cham: Springer International Publishing, 2017, pp. 97–117.

[23] T. Johnson and S. Mitra, “A small model theorem for rectangular
hybrid automata networks,” 2012.

[24] P. S. Duggirala, L. Wang, S. Mitra, C. Munoz, and M. Viswanathan,
“Temporal precedence checking for switched models and its applica-
tion to a parallel landing protocol,” in International Conference on
Formal Methods (FM 2014), Singapore, 2014.

[25] H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. John-
son, “Decentralized real-time safety verification for distributed cyber-
physical systems,” in Formal Techniques for Distributed Objects,
Components, and Systems, J. A. Pérez and N. Yoshida, Eds. Cham:
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