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Abstract— Programming languages, libraries, and develop-
ment tools have transformed the application development
processes for mobile computing and machine learning. This
paper introduces CyPhyHouse—a toolchain that aims to provide
similar programming, debugging, and deployment benefits for
distributed mobile robotic applications. Users can develop
hardware-agnostic, distributed applications using the high-level,
event driven Koord programming language, without requiring
expertise in controller design or distributed network protocols.
The modular, platform-independent middleware of CyPhyHouse
implements these functionalities using standard algorithms for
path planning (RRT), control (MPC), mutual exclusion, etc.
A high-fidelity, scalable, multi-threaded simulator for Koord
applications is developed to simulate the same application code
for dozens of heterogeneous agents. The same compiled code
can also be deployed on heterogeneous mobile platforms. The
effectiveness of CyPhyHouse in improving the design cycles is
explicitly illustrated in a robotic testbed through development,
simulation, and deployment of a distributed task allocation
application on in-house ground and aerial vehicles.

I. INTRODUCTION

Programming languages like C#, Swift, Python, and de-
velopment tools like LLVM [1] have helped make millions
of people with diverse backgrounds, into mobile application
developers. Open source software libraries like Caffe [2],
PyTorch [3] and Tensorflow [4] have propelled the surge
in machine learning research and development. To a lesser
degree, similar efforts are afoot in democratizing robotics.
Most prominently, ROS [5] provides hardware abstrac-
tions, device drivers, messaging protocols, many common
library functions and has become prevalent. Libraries such
as PyRobot [6] and PythonRobotics [7] provide hardware-
independent implementations of common functions for phys-
ical manipulation and navigation of individual robots.

Nevertheless, it requires significant effort and time (of
the order of weeks) to develop, simulate, and debug a new
application for a single mobile robot—not including the
effort to build the robot hardware. The required effort grows
quickly for distributed and heterogeneous systems, as none
of the existing robotics libraries provide either (a) support
for distributed coordination, or (b) easy portability of code
across different platforms.
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With the aim of simplifying application development for
distributed and heterogeneous systems, we introduce CyPhy-
House1—an open source software toolchain for program-
ming, simulating, and deploying mobile robotic applications.

In this work, we target distributed coordination applica-
tions such as collaborative mapping [8], surveillance, de-
livery, formation-flight, etc. with aerial drones and ground
vehicles. We believe that for these applications, low-level
motion control for the individual robots is standard but
tedious, and coordination across distributed (and possibly
heterogeneous) robots is particularly difficult and error-
prone. This motivates the two key abstractions provided
by CyPhyHouse: (a) portability of high-level coordination
code across different platforms; and (b) shared variable
communication across robots.

The first of the several software components of CyPhy-
House is a high-level programming language called Koord
that enables users to write distributed coordination appli-
cations without being encumbered by socket programming,
ROS message handling, and thread management. Our Koord
compiler generates code that can be and has been directly
deployed on aerial and ground vehicle platforms as well
as simulated with the CyPhyHouse simulator. Koord lan-
guage abstractions for path planning, localization, and shared
memory make application programs succinct, portable, and
readable (see Section III). We have built the CyPhyHouse
middleware with a modular structure to make it easy for
roboticists to add support for new hardware. In summary,
the three main contributions of this paper are as follows.

1) An end-to-end distributed application for robotic vehi-
cles and drones developed and deployed using CyPhyHouse
toolchain This Task application requires that the participating
robots mutually exclusively visit a common list of points,
while avoiding collisions. Our program written in Koord is
shorter than 50 lines (see Figure 2). Our compiler generates
executables for both the drone and the vehicle platforms,
linking the platform independent parts of the application with
the platform-specific path planners and controller. We ran
more than 100 experiments with a set of tasks running on
different combinations of ground and aerial vehicles, all with
few edits in the configuration file (see Figure 2).

2) A high-fidelity, scalable, and flexible simulator for
distributed heterogeneous systems The simulator executes
instances of the application code generated by the Koord
compiler—one for each robot in the scenario. Within the

1https://cyphyhouse.github.io
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Fig. 1. Right: Annotated snapshot of a distributed task allocation application deployed on four cars and drones using CyPhyHouse in our test arena. The
red tasks are incomplete, and the green are completed. Left bottom: different robotic platforms: F1/10 Car and quadcopter. Left top: Visualization of the
same application running in CyPhyHouse simulator which interfaces with Gazebo.

simulator, individual robots communicate with each other
over a wired or a wireless network and with their own
simulated sensors and actuators through ROS topics. For
example, a simulation with 16 drones can spawn over 1.4K
ROS topics and 1.6K threads, yet, our simulator is engineered
to execute and visualize such scenarios in Gazebo running on
standard workstations and laptops. In Section V, we present
detailed performance analysis of the simulator.

3) A programming language and middleware for het-
erogeneous platforms supporting application development,
simulation, deployment, as well as verification. Koord comes
with well-defined semantics which makes it possible to
reason about the correctness of the distributed applications
using formal techniques. 2 Koord provides abstractions for
distributed applications running on possibly heterogeneous
platforms. For example, Koord enables easy coordination
across robots: a single line of code like

x[pid ] = (x[pid − 1] + x[pid + 1])/2
assigns to a shared variable x[pid ] of a robot with the
unique integer identifier pid , the average of the values
of x[pid − 1] and x[pid + 1] which are the values held
respectively by robots pid − 1 and pid + 1. This makes
Koord implementations of consensus-like protocols read
almost like their textbook counterparts [10]. These statements
are implemented using message-passing in the middleware.

II. RELATED WORK

Several frameworks and tools address the challenges in
development of distributed robotic applications. Table I
summarizes a comparision of these works along the fol-
lowing dimensions: (a) whether the framework has been
tested with hardware deployments, (b) availability of support
for networked and distributed robotic systems, (c) support
for heterogeneous platforms, (d) availability of special-
ized programming language, (e) availability of a simulator
and compiler, and (f) support for formal verification and
validation.

Drona is a framework for multi-robot motion planning
and to our knowledge, has so far been deployed only on
drones. CyPhyHouse aims to be more general, and multiple

2Formal semantics of the language and the automatic verification tools
are not part of this paper. Some of the details of the formal aspects of
Koord were presented in an earlier workshop paper [9].

applications have been deployed on cars and drones in both
simulations and hardware.

Buzz, the programming language used by ROSBuzz [11]
doesn’t provide abstractions like CyPhyHouse does with
Koord, for path planning, de-conflicting, and shared vari-
ables. Additionally, ROSBuzz specifically requires the Buzz
Virtual Machine to be deployed on each robot platform
whereas with CyPhyHouse, deploying Koord only requires
standard ROS and Python packages.

It should also be mentioned, that “Correct-by-
construction” synthesis from high-level temporal logic
specifications have been widely discussed in the context
of mobile robotics (see, for example [12], [13], [14],
[15], [16]). CyPhyHouse differs in the basic assumption
that roboticist’s (programmer’s) creativity and efforts will
be necessary well beyond writing high-level specs in
solving distributed robotics problems; consequently only the
tedious parts of coordination and control are automated and
abstracted in the Koord language and compiler.

TABLE I
HW Dist. Hetero- Sim Prog. Comp. V&V

Name Depl. Sys. geneous Lang.
ROS [5] X X X C++/Python/...
ROSBuzz [11] X X X X Buzz X
PythonRobotics X X Python
PyRobot [6] X X X Python
MRPT [17] X X C++
Robotarium [18] X X X X Matlab/Python
Drona [19] X X X P [20] X X
Live [21] X X LPR X
CyPhyHouse X X X X Koord X X

Other open and portable languages that raise the level of
abstraction for robotic systems include [22], [23], [24]. 3

VeriPhy [22] also has some commonality with CyPhyHouse;
however, instead of a programming language, the starting
point is differential dynamic logic [26].

III. A DISTRIBUTED TASK ALLOCATION APPLICATION

In this section, we introduce the distributed task allocation
problem (Task) that we will use throughout the paper to
illustrate the capabilities of CyPhyHouse.

Given a robot G, and a point x in R3, we say that G has
visited x if the position of G stays within an εv-ball x for

3For an earlier survey see [25]. Most of these older languages are
proprietary and platform-specific.

6655

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2020 at 22:47:03 UTC from IEEE Xplore.  Restrictions apply. 



δv amount of time, for some fixed εv > 0 and δv > 0. The
distributed task allocation problem requires a set of robots
to visit a sequence of points mutually exclusively:

Task: Given a set of (possibly heterogeneous) robots, a
safety distance ds > 0, and a sequence of points (tasks)
list = x1, x2, . . . ∈ R3, it is required that: (a) every
unvisited xi in the sequence is visited exactly by one
robot; and (b) no two robots ever get closer than ds.

We view visiting points as an abstraction for location-
based objectives like package delivery, mapping, surveil-
lance, or fire-fighting.

The flowchart in Figure 2 shows a simple idea for solving
this problem for a single robot: Robot A looks for an
unassigned task τ from list ; if there is a clear path to τ
then A assigns itself the task τ . Then A visits τ following
the path; once done it repeats. Of course, converting this to a
working solution for a distributed system is challenging as it
involves combining distributed mutual exclusion ([27], [28])
for assigning a task τ exclusively to a robot A from the list
(step 1), dynamic conflict-free path planning (step 2), and
low-level motion control (step 3).

Our Koord language implementation of this flowchart is
shown in Figure 2. It has two events: Assign and Complete.
The semantics of Koord is such that execution of the
application programs in the distributed system advances in
rounds of duration δ4, and in each round, each robot executes
at most one event. A robot can only execute the statements
in the event’s effect (eff) if its precondition (pre) is satisfied.
If no event is enabled, the robot does nothing. In between the
rounds, the robots may continue to move as driven by their
local controllers. The CyPhyHouse middleware (Section IV)
ensures that the robot program executions adhere to this
schedule even if local clocks are not precisely synchronized.

In our example, the Assign event uses a single atomic
update to assign a task to robot i from the shared list of
tasks called list in a mutually exclusive fashion.5 The route
variable shares paths and positions among all robots, and
is used by each robot in computing a collision-free path to
an unassigned task.6 To access variables, e.g., route, shared
by a certain robot, each robot program also has access to
its unique integer identifier pid and knows the pids of all
participating robots.

The low-level control of the robot platform is abstracted
from the programmers in Koord, with certain assurances
about the controllers from the platform developers (discussed
in Section IV and Section VI). The Task program uses a
controller called Motion to drive the robots through a route,
as directed by the position value set at its actuator port
Motion.route . The sensor ports used by the Task program
are: (a) Motion.psn: the robot position in a fixed coordinate

4δ is a parameter set by the user, with a default value of 0.1 second.
5We provide several library functions associated with abstract data types

(assign, allAssigned) and path planners (findPath, pathIsClear). Users can
also write functions permitted by Koord syntax.

6Platform specific path-planners can ensure that ground vehicles do not
find paths to points above the plane, and aerial vehicles do not find paths
to points on the ground.

system. (b) Motion.reached : a flag indicating whether the
robot has reached its waypoint.

Here the motion module implements vehicle models for
the robots. In the next section, we discuss the CyPhyHouse
middleware, which implements a modular design of this run-
time system to allow a high degree of flexibility concerning
these modules in deployment and simulation.

IV. CYPHYHOUSE ARCHITECTURE

A system running a Koord application has three parts: an
application program, a controller, and a plant. At runtime,
the Koord program executes within the runtime system of a
single agent, or a collection of programs execute on different
agents that communicate using shared variables. The plant
consists of the hardware platforms of the participating agents.
The controller receives inputs from the program (through
actuator ports), sends outputs back to the program (through
sensor ports), and interfaces with the plant. We developed
a software-hardware interface (middleware) in Python 3.5 to
support the three-plane architecture comprising the Koord
runtime system.

Fig. 3. Each compiled Koord program interacts with CyPhyHouse
middleware simply via variables. The middleware implements distributed
shared memory(DSM) across agents and the language abstractions over
platform-specific controllers through actuator ROS topics, and obtain (real or
simulated) information such as device positions through sensor ROS topics.

A. Compilation

The Koord compiler included with CyPhyHouse generates
Python code for the application using all the supported
libraries, such as the implementation of distributed shared
variables using message passing over WiFi, motion automata
of the robots, high-level collision and obstacle avoidance
strategies, etc. The application then runs with the Python
middleware for CyPhyHouse. The Koord compiler is written
using Antlr (Antlr 4.7.2) in Java [29].7 We use ROS to handle
the low-level interfaces with hardware. To communicate
between the high-level programs and low-level controllers,
we use Rospy, a Python client library for ROS which enables
the (Python) middleware to interface with ROS Topics and
Services used for deployment or simulation.

7Details of the grammar, AST, and IR design of the Koord compiler
are beyond the scope of this paper; however, description of the language
and its full grammar are provided in [30] for the interested reader.
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1 using Motion:
2 actuators:
3 pos[ ] path
4 sensors:
5 pos psn
6 boolean reached
7 local:
8 boolean isOnTask
9 Task myTask

10 pos[ ] tstRoute
11 int i
12
13 allread:
14 pos[ ] route
15 allwrite:
16 Task[ ] tasks
17
18 Assign:
19 pre: isOnTask== false
20 eff: if allAsgned(tasks):
21 stop

22 else: atomic:
23 for i= 0, length(tasks):
24 if task.assigned==false:
25 myTask=tasks[i ]
26 tstRoute=\
27 findPath(Motion.psn, myTask.loc)
28 if pathIsClear(route, tstRoute, pid):
29 isOnTask=true
30 assign(myTask, pid)
31 tasks[i ]=myTask
32 route[pid ]=tstRoute
33 Motion.path=tstRoute
34 else:
35 isOnTask=false
36 route[pid ]=[Motion.psn ]
37
38 Complete:
39 pre: isOnTask and Motion.reached
40 eff: isOnTask=false
41 route[pid ]=[Motion.psn ]

robot:
pid: 0
on_device: hotdec_car
motion_automaton: MoatTestCar
...

device:
bot_name: hotdec_car
bot_type: CAR
planner: RRT_CAR
positioning_topic:

topic: vrpn_client_node/
type: PoseStamped

reached_topic:
topic: reached
type: String

waypoint_topic:
topic: waypoint
type: String

default_leader_pid = 0
...

num_robots: 3

Fig. 2. Left shows the flowchart for a simple solution to Task application. Middle shows the Task program implemented in Koord language for robots
with identifier pid to solve distributed task allocation problem. Right shows snippet of a sample configuration. It includes platform-agnostic settings for
the robot, e.g., robot id (pid), device to run on (on_device), and the number of robots (num_robots), as well as platform specific settings, e.g., path
planners (planner) and position systems (positioning_topic).

B. Shared memory and Communication

At a high level, updates to a shared variable by one agent
are propagated by the CyPhyHouse middleware, and become
visible to other agents in the next round. The correctness
of a program relies on agents having consistent values of
shared variables. When an agent updates a shared variable,
the middleware uses message passing to inform the other
agents of the change. These changes should occur before
the next round of computations.

CyPhyHouse implements the shared memory between
robots through UDP messaging over Wi-Fi. Any shared
memory update translates to an update message which the
agent broadcasts over WiFi.8 The agents running a single
distributed Koord application are assumed to be running on
a single network node, with little to no packet loss. However,
the communication component of the middleware can be
easily extended to support multi-hop networks as well.

C. Dynamics

If an application requires the agents to move, each agent
uses an abstract class, Motion automaton, which must be
implemented for each hardware model (either in deployment
or simulation). This automaton subscribes to the required
ROS Topics for positioning information of an agent, updates
the reached flag of the motion module, and publishes to ROS
topics for motion-related commands, such as waypoint or
path following. It also provides the user the ability to use
different path planning modules as long as they support the
interface functions. Figure 4 shows two agents executing the
same application using different path planners.

D. Portability

Apart from the dynamics, all aforementioned components
of the CyPhyHouse middleware are platform-agnostic. Our
implementation allows any agent or system simulating or
deploying a Koord program to use a configuration file (as

8The interested reader is referred to [30] for more details on the shared
memory model, and its formal semantics.

shown in Figure 2) to specify the system configuration, and
the runtime modules for each agent, including the dynamics-
related modules, while using the same application code.

V. CYPHYHOUSE MULTI-ROBOT SIMULATOR

We have built a high-fidelity simulator for testing dis-
tributed Koord applications with large number of heteroge-
neous robots in different scenarios. Our middleware design
allows us to separate the simulation of Koord applications
and communications from the physical models for different
platforms. Consequently, the compiled Koord applications
together with the communication modules can run directly in
the simulator—one instance for each participating robot, and
only the physical dynamics and the robot sensors are replaced
by their simulated counterparts. This flexibility enables users
to test their Koord applications under different scenarios
and with various robot hardware platforms. Simpler physical
models can be used for early debugging; and the same code
can be used later with more accurate models. The simulator
can be used to test different scenarios, with different numbers
of (possibly heterogeneous) robots, with no modifications
to the application code itself, rather simply modifying a
configuration file as shown in Figure 5. To our knowledge,
this is the only simulator for distributed robotics providing
such fidelity and flexibility.

A. Simulator Design

Simulating Koord and communication: To faithfully
simulate the communication, our simulator spawns a process
for each robot which encompasses all middleware threads.
The communication handling threads in these processes can
then send messages to each other through broadcasts within
the local network. To simulate robots on a single machine,
we support specifying distinct network ports for robots in the
configuration file. Since the communication is through actual
network interfaces, our work can be extended to simulate
different network conditions with existing tools in the future.
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Fig. 4. Different planners can work with the same code. Left shows the xy plots of concurrently available paths during a round of the Task application
using an RRT planner for two quadcopters. Middle shows the same configuration, where paths computed are not viable to be traversed concurrently. The
green markers are current quadcopter positions, The black path is a fixed path, and the red points are unassigned task locations. Right shows the same
scenarios under which paths cannot be traversed concurrently, except that a different RRT-based planner (with path smoothing) is used.

Fig. 5. CyPhyHouse simulator running different scenarios with the same Koord application. Left shows simulation of 9 drones running Shapeform
application, Middle shows the Shapeform application on 16 drones. Different scenarios are specified by changing the configuration file.Right shows a
simulation of Task on heteterogenous robots.

Physical Models and Simulated World: Our simulated
physical world is developed based on Gazebo [31] and
we provide a simulated positioning system to relay posi-
tions of simulated devices from Gazebo to the CyPhyHouse
middleware. We integrate two Gazebo robot models from
the Gazebo and ROS community, the car from the MIT
RACECAR project [32] and the quadcopter from the hector
quadrotor project [33]. Further, we implement a simplified
version of position controller by modifying the provided
default model. Users can choose between simplified models
for faster simulation or original models for accuracy.

We also develop Gazebo plugins for trace visualization.
These can be used to plot robot movement for real-time
monitoring during experiments, or for post-experiment vi-
sualization and analysis with Gazebo.

B. Simulator performance analysis experiments and results.

Large scale simulations play an important role in testing
robotic applications and also in training machine learning
modules for perception and control. Therefore, we perform
a large set of experiments to measure the performance and
scalability of the CyPhyHouse simulator and experiment
with various scenarios (such as different application Koord
programs, increasing numbers of devices, or mixed device
types). We then collect the usages of different resources
and the amount of messages in each scenario. Finally, we
compare resource usages and communications to study how
our simulator can scale across different scenarios.

In our experiments, we use three Koord programs includ-
ing the example Task in Figure 2, a line formation program
Lineform, and a program forming a square Shapeform.
For Task, we simulate with both cars and quadcopters to
showcase the coordination between heterogeneous devices.

For Lineform and Shapeform, we use only quadcopters to
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Fig. 6. Resource usages and communications for Shapeform and Lineform.

evaluate the impact of increasing numbers of robots on
these statistics. For each experiment scenario with a timeout
of 120 seconds, we collect the total message packets and
packet length received by all robots and sample the following
resource usages periodically: Real Time Factor (RT Factor,
the ratio between simulated clock vs wall clock), CPU per-
centage, the memory percentage and the number of threads.
All experiments are run on a workstation with 32 Intel Xeon
Silver 4110 2.10GHz CPU cores and 32 GB main memory.

In Figure 6, we show the average of each collected metric.
For Lineform and Shapeform, RT factor drops while all
resource usages scale linearly with the number of robots.
Average number and size of packets received per second for
each robot grows linearly; hence, the message communica-
tion complexity for all robots is quadratic in the number of
robots. One can improve the communication complexity with
a more advanced distributed shared memory design.

VI. DEPLOYMENT SETUP

A. Vehicles
The CyPhyHouse toolchain was developed with heteroge-

neous robotics platforms in mind. In order to demonstrate
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such capabilities, we have built both a car and a quadcopter.
Quadcopter: The quadcopter was assembled from off-the-

shelf hardware, with a 40cm × 40cm footprint. The main
computing unit consists of a Raspberry Pi 3 B+ along with a
Navio2 deck for sensing and motor control. Stabilization and
reference tracking are handled by Ardupilot [34]. Between
the CyPhyHouse middleware and Ardupilot we include a
hardware abstraction layer to convert setpoint messages from
the high-level language into MAVLINK using the mavROS
library ([35]), so Ardupilot can parse them. Since the au-
topilot was originally meant to use a GPS module, we also
convert the current quadcopter position into the Geographic
Coordinate System before sending it to the controller.

Car: Similarly, the car platform uses off-the-shelf hard-
ware based on the open-source MIT RACECAR project [32].
The computing unit consists of an NVIDIA TX2 board. In
the car platform, instead of using Ardupilot to handle the
waypoint following, we wrote a custom ROS node uses
the current position and desired waypoints to compute the
input speed and steering angle using a Model Predictive
Controller (MPC). The car has an electronic speed controller
that handles low-level hardware control.
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Fig. 7. Top shows the y vs t trajectories of the vehicles during an execution
of the task, and bottom shows the minimum distance between all robots. The
vehicle positions in the top graph were normalized to improve visualization.
We can see concurrent movement when it is safe (for example at 13, 36, and
52 seconds), and only one robot moving or no robot moving when trying
to compute a safe and collision-free path to a task.

B. Test arena and localization

We performed our experiments in a 7m × 8m × 3m arena
equipped with 8 Vicon cameras. The Vicon system allows us
to track the position of multiple robots with sub-millimeter
accuracy, however, we note that the position data can come
from any source (for example GPS, ultrawide-band, LIDAR),
as long as all robots share the same coordinate system. While
the motion capture system transmits all the data from a
central computer, each vehicle only subscribes to its own
position information. This was done to simplify experiments,
as the goal of the paper is not to present new positioning
systems. All coordination and de-conflicting across agents
is performed based on position information shared explicitly
through shared variables in the Koord application.

C. Interface with middleware

As mentioned in Section IV, the same application can be
deployed using different path planners, which are associated
with the platform-specific motion automaton through inter-
faces defined by the CyPhyHouse middleware. Both vehicles
use RRT-based path planners [36] to compute a path to the
next task. The car planner uses a bicycle model to compute
the feasible paths, while the quadcopter planner assumes
it can move in a straight line between points. The path
generated is then forwarded to the robot via a ROS topic. The
ROS topics required for positioning and setting waypoints
of the vehicles were specified in the configuration. Each
vehicle updates the reached topic when they reach a prede-
fined ball around the destination. The car has nonholonomic
constraints, while the quadcopter has uncertain dynamics, so
in other standard settings, a roboticist would have to develop
a separate application for each platform.

D. Experiments with Task on upto four vehicles

The Task application of Section III was run in over 100
experiments with different combinations of cars and quad-
copters. Figure 7 shows the (x, y)-trajectories of the vehicles
in one specific trial run, in which two quadcopters and two
cars were deployed. Careful examination of the figure shows
that all the performance requirements of Task are achieved,
with concurrent movement when different robots have clear
paths to tasks, safe separation at all times, and agents getting
blocked when there is no safe path found. In our experiments
with up to 4 vehicles, we found that with fewer agents,
there are fewer blocked paths, so each robot spends less
time idling, but this non-blocking effect is superseded by
the parallelism gains obtained from having multiple robots.
For example, three agents (2 quadcopters and 1 car, or 1
quadcopter and 2 cars) show an average runtime of about
110 seconds for 20 tasks. The average runtime for the
same with 4 agents across 70 runs was about 90 seconds.
We experience zero failures, provided the wireless network
conditions satisfy the assumptions stated in Section IV.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the CyPhyHouse software de-
velopment and deployment toolchain for distributed robotic
applications. It interfaces with and complements existing
tools commonly used by roboticists, such as ROS, providing
easy integration with popular platforms by almost any user.
Our experience suggests that Koord and the Koord compiler
cann enable users to develop and run distributed robotics
applications in a hardware independent fashion; Koord pro-
grams can be ported across platforms automatically with
minimal effort from the application developer; and our
high fidelity simulation can provide a valuable testing and
debugging environment. In the future, we plan to perform a
user study to gain a better understanding of the robot app
developer’s experience and efficiency with CyPhyHouse.
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