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Abstract

Graph autoencoder can map graph data into a low-dimensional space. It is a powerful graph embedding method applied in
graph analytics to lower the computational cost. Researchers have developed different graph autoencoders for addressing
different needs. This paper proposes a strategy based on noise injection for graph autoencoder training. This is a general
training strategy that can flexibly fit most existing training algorithms. The experimental results verify this general strategy
can significantly reduce overfitting and identify the noise rate setting for consistent training performance improvement.
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1 Introduction

Autoencoder is a neural network composed of encoder and
decoder [2]. Encoder converts the input data into an
abstract representation, while decoder reconstructs the
original input data from the output of encoder. Graph
autoencoder is based on graph neural network, whose input
data are graph information. The great potential of graph
autoencoder in dimensionality reduction has motivated
scientists to apply it in graph embedding [3-5]. Graph
autoencoder embeds graph data based on matrix factor-
ization [3, 6]. It aims to preserve the graph structure of the
input matrix, e.g., adjacency matrix, in a low-dimensional
space by matrix factorization [7].

Since the importance of graph autoencoder is recog-
nized, more and more training algorithms have been
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designed for meeting different needs. Conventional graph
autoencoders, such as GAE [8], SDNE [9], and DRNE
[10], aim to preserve the graph information in a low-di-
mensional space. Variational graph autoencoders, e.g.,
VGAE [8], focus on building a graph autoencoder allowing
users to feed random data or interpolated data to the
decoder. Recently, Samanta et al. proposed NeVAE, a
variational graph autoencoder using a deep generative
model, for processing molecular graphs [11], while Grover
et al. developed Graphite, a variational graph autoencoder
using a scalable deep generative model [12]. Besides pre-
serving the graph information, the encoder needs to learn
the distribution of training samples in training. Denoising
graph autoencoders, e.g., DNGR [13], can automatically
filter out noise. Therefore, the related training algorithms
use corrupted input in training, while the desired output of
decoder is the original input. Adversarially regularized
graph autoencoders, e.g., ARGE [6], ARVGE [6], and
NetRA [14], attempt to train an autoencoder with the fea-
ture of distinguishing faked encoded representation. The
related training platform is composed of generator and
discriminator [15]. The former is trained to confuse the
latter, while the latter is trained to classify true samples and
generated data. The corresponding training algorithm based
on this platform is good at reducing autoencoder learning
failures caused by too much capacity of encoder and
decoder.

The success of a graph autoencoder is strongly corre-
lated to the performance of its training algorithm. A gen-
eral training strategy, which can improve most training
algorithms of graph autoencoder, will advance the study
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and application of graph autoencoder significantly. The
goal of this work is to develop such a training strategy.
Noise injection is a general training strategy, which was
proposed three decades ago [16]. Most studies of this
strategy focus on conventional feedforward neural net-
works such as multilayer perceptron (MLP) [17-28] and
radial basis function (RBF) [27, 28]. Although the suc-
cesses of these works strongly encourage us to apply the
noise injection strategy in the training of graph autoen-
coder, there are still some challenges. The first challenge is
how to inject noise. All existing works directly add random
noise to the input vector. However, this method does not fit
graph information. For instance, all elements in the adja-
cency matrix are one or zero, which represent the con-
nection status between nodes. Directly adding random
noise to elements of the adjacency matrix makes the values
of these elements hard to interpret. Furthermore, the
experience of setting the noise rate on traditional feedfor-
ward neural networks may not work on a graph neural
network.

This paper proposes a noise injection strategy for graph
encoder training with addressing the above-mentioned
challenges. We developed a simple noise injection method
for injecting noise into the input graph information.
Additionally, this work investigates the impact of noise rate
on training performance in experiments based on conven-
tional graph autoencoders, variational graph autoencoders,
and adversarially regularized graph autoencoders.

The rest of this paper is organized as follows. Section 2
introduces the basic architecture of a graph autoencoder.
The noise injection strategy is presented in Sect. 3. Sec-
tion 4 details and discusses the results of experiments
conducted for verifying the effectiveness of the proposed
strategy. Finally, Sect. 5 concludes the paper and proposes
future work.

2 The architecture of graph autoencoder

A graph autoencoder is composed of an encoder and a
decoder. The upper part of Fig. 1 is a diagram of a general
graph autoencoder. The input graph data are encoded by
the encoder. The output of encoder is the input of decoder.
Decoder can reconstruct the original input graph data. This
paper focuses on GAE, VGAE, ARGE, and ARVGE for
covering conventional graph autoencoders, variational
graph autoencoders, and adversarially regularized graph
autoencoders. We use the basic architecture of these
models as an example. The diagram of this architecture is
given in the lower part of Fig. 1. The encoder, which was
first proposed by Kipf and Welling [8], is based on a graph
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convolutional network (GCN) [29]. The input graph data
can be represented by (4, X), where A is the adjacency
matrix, while X is the node feature matrix. If the number of
nodes is n, A is a n X n matrix. It is worth noting that all
diagonal elements of A are set to one. If the number of
features is m, X is a n X m matrix. We can build the n x n
degree matrix D based on A by the following expression.

A, ifi=j

py={ Zhwe Wiz (1)
0, if i #j

where 1<i,j<n. Assume the GCN model used in the

encoder has k layers. The output of the /th layer of GCN,

represented by Z(), can be computed by the following
formula.

Z0 — ¢ (Df%AD—%Z<171>W<z>>, 2)

where 1 <1<k, Z° =X, f is the activation function of
the Ith layer, W) is the weight matrix of the Ith layer, and
D can be calculated by the following expression.

1
-3 D ifi=j
D.? = i J 3
Y { 0, ifi#j ®)
The training algorithm adjusts the weight parameters of
all layers. In GAE, VGAE, ARGE, and ARVGE, the two-
layer GCN of the encoder uses the following ReLU acti-
vation function for the first layer.

fRelu(t) = max(O, t) (4)

And the following linear function is used for the second
layer.

ﬁinear(t) =1 (5)

We use Z to represent the output of the encoder. In GAE
and ARGE,

z=27", (6)

while in VGAE and ARVGE, the output of the encoder is
calculated by the following expression.

7=27% 4N, (o, Exp (z<2>)) , (7)

where r is the number of units in hidden layer 2, Exp(-)
element-wisely computes the natural exponential of the
input matrix, and N,«,(0,) returns a n X r matrix filled with
random values with (0, -) normal distribution.

The input of the decoder is Z, which is the output of the
encoder. Here, we focus on reconstructing the adjacency
matrix, A. The reconstructed adjacency matrix is denoted

by A and can be computed by the following formula.
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Fig. 1 The upper part is the diagram of a general graph autoencoder. The lower part is the diagram of a graph autoencoder proposed by Kipf and

Welling [8]

A= sigmoid (ZZ"), (8)

where ZT is the transpose matrix of Z and the details of
sigmoid(-) are given as follows.

Lo 1
sigmoid(t) = Toer 9)

3 Training strategy

This paper proposes a noise injection strategy based on the
classic training framework for graph autoencoder. To
reconstruct the adjacency matrix, the classic framework
uses the input adjacency matrix as the desired output of
decoder. Our strategy injects noise into the original adja-
cency matrix of a training sample and uses the noisy input
to replace the original input and the desired output.

An element of an adjacency matrix is either one or zero.
One indicates that the two corresponding nodes are con-
nected, while zero suggests there is no connection between
the two corresponding nodes. Therefore, the traditional
noise injection method, which directly adds random noise
to the input vector, does not fit the input data of graph
autoencoder. DNGR [13], a denoising graph autoencoder,
adds noise to the input by randomly changing some matrix
elements from one to zero. This method decreases the
number of edges. It may bring some concerns in sparse
matrixes, which only contain a few edges. To overcome
this potential issue, we developed a simple noise injection
approach by randomly removing some existing edges and

add the same number of new random edges. In comparison
with DNGR, our approach can keep the number of edges
stable. Edge removal is to change one into zero, while edge
addition is to change zero into one. It is worth noting that
we only focus on the edges between different nodes, so the
elements of the diagonal of the adjacency matrix are
ignored. The current version of our approach is designed
for sparse adjacency matrixes, while it can also be adapted
for dense adjacency matrix. We use p and u to represent the
noise rate and the number of edges, respectively. After
users specify p, which is between zero and one, our
approach randomly removes |pu| edges and also randomly
adds |pu| edges, where |-] is the floor function. The
adjacency matrix of an undirected graph is symmetrical.
Therefore, we first focus on the upper triangular matrix of
the adjacency matrix in practice. This approach randomly
changes |pu| elements from one to zero and |pu| elements
from zero to one. After the upper triangular matrix is
updated, our approach updates the lower triangular matrix
symmetrically.

The noise injection process does not change the number
of edges, but randomly shifts edges. In each training iter-
ation, we randomly inject noise to the original training
input and use the noisy input to replace the original input
and the desired output, while the original training algo-
rithm has no change. It allows this strategy to be flexibly
applied to most existing training algorithms. Since the
noise injection is conducted in each iteration, the original
training input is not directly used in the whole training. The
proposed strategy is summarized as follows.

@ Springer
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Training Strategy (noise rate p,0 < p < 1):
For each iteration:

randomly remove edges with rate p;

randomly add new edges with rate p;

replace the original input by the noisy input

replace the desired output by the noisy input

use the original training algorithm with the noisy training data
End For

It is worth noting that our training strategy is different
from that used in denoising autoencoders. After noise
injection, our strategy uses the updated noisy input as
desired output, while denoising autoencoders still use the
original desired output, which has no noise.

4 Experiments and discussion

To verify the effectiveness of our strategy and investigate
the suitable noise rates, we conduct experiments of link
prediction on two data sets: Cora [30] and Citeseer [31].
The information of these two data sets is given in Table 1
[6, 8]. Both data sets were used for the experiments of
[6, 8]. Our experiments test four autoencoders that are
GAE, VGAE, ARGE, and ARVGE. Besides the original
input, our experiments also test noisy input with noise rate
0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 on both
data sets. We follow the same experimental setting of [8].
The dimensions of the first and second layers are 32 and 16,
respectively. In each data set, 5% connected node pairs and
5% non-connected node pairs are randomly picked for the
validation set. Similarly, 10% connected node pairs and
10% non-connected node pairs are randomly picked for the
test set. The rest is used for the training set. The training
algorithm is Adam algorithm [32], while the learning rate
is 0.01. The experiments apply area under the ROC curve
(AUC) and average precision (AP) scores [33-35] to
measure performance. As for each autoencoder, we
repeatedly train ten times on both data sets. In order to
easily reproduce training results, the random seed of the ith
time is set to i. This paper reports average AUC and AP
scores on the testing data sets. All autoencoders were
trained 200 iterations in the experiments of [6, 8] on Cora
and Citeseer. Because overfitting is more likely to happen
with more iterations, the experiments report average AUC

Table 1 The information of data sets used in experiments

Cora Citeseer
The number of nodes 2708 3327
The number of edges 5429 4732
The number of features 1433 3703
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and AP scores with 200, 500, 1000, 2000, and 5000 iter-
ations. As for other parameters, we use the default setting
of each autoencoder.

The experimental results on Cora and Citeseer are given
in Figs. 2 and 3, respectively. It is worth noting that noise
rate O refers to the original input without noise injection.
Figure 2 shows that inputs with noise rates 0.05, 0.1, and
0.2 consistently outperform original input (noise rate 0) in
AUC and AP scores with all four autoencoders, while other
positive noise rates perform inconsistently. Figure 3 shows
similar results. It suggests that noise rates 0.05, 0.1, and 0.2
consistently reduce overfitting in all tests. It also indicates
noise rates less than 0.05 or greater than 0.2 may bring
performance change, but not always performance
improvement.

The impact of noise injection is clearly reflected in
Figs. 2 and 3. Without noise injection (noise rate 0), the
training performances with 200 iterations are consistently
the best due to the overfitting problem. However, the noise
injection strategy may achieve better performance with
much more iterations by reducing the overfitting. For
example, ARGE on both data sets can achieve better per-
formance with iteration number 5000 and noise rate 0.2
than iteration number 200 and noise rate 0. It does not only
encourage us to apply the proposed strategy in training, but
also leaves an open question: which is the best noise rate?
Although experimental results show 0.05, 0.1, and 0.2 can
consistently improve performance, they are not always the
best rate for a given graph autoencoder on a given data set.
Tables 2 and 3 list the best noise rates for all categories. It
is clear that 0.001 and 0.01 are not the best rates regardless
of autoencoder and data set. It could be because they are
too small for regularization. Furthermore, some rates
greater than 0.2 are the best rates in some categories. It
encourages us to develop new methods that can dynami-
cally adjust the noise rate for gaining the best training
performance in the future.

5 Conclusion and future work

This paper proposes a noise injection strategy for graph
autoencoder training. This strategy can be flexibly applied
in most existing graph autoencoders. The experimental
results verify the effectiveness of this training strategy and
suggest noise rates 0.05, 0.1, and 0.2 consistently improve
training performance in all tests, although other higher
rates may achieve better performance in some categories.
In our future work, we will develop new methods with the
feature of dynamically adjusting the noise rate during the
training.
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Fig. 3 AUC and AP scores with 200, 500, 1000, 2000, and 5000
training iterations on Citeseer. Noise rate 0 refers to the original
training input without noise injection. a GAE and AUC scores,
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Table 2 The best noise rates with different autoencoders and iteration
times on Cora

Autoencoder GAE VGAE

Measurement AUC AP AUC AP

Number of iterations

200 0.4 0.4 0.2 0.05
500 0.4 0.2 0.7 0.3
1000 0.5 0.5 0.6 0.6
2000 0.5 0.5 0.4 0.4
5000 0.3 0.3 0.4 0.4
Autoencoder ARGE ARVGE
Measurement AUC AP AUC AP

Number of iterations

200 0.5 0.2 0.6 0.2
500 0.3 0.1 0.4 0.2
1000 0.3 0.3 0.2 0.2
2000 0.2 0.2 0.3 0.3
5000 0.3 0.3 0.3 0.3

Table 3 The best noise rates with different autoencoders and iteration
times on Citeseer

Autoencoder GAE VGAE

Measurement AUC AP AUC AP

Number of iterations

200 0.1 0.1 0.6 0.6
500 0.2 0.2 0.7 0.5
1000 0.2 0.2 0.5 0.3
2000 0.2 0.2 0.5 0.3
5000 0.2 0.2 0.5 0.5
Autoencoder ARGE ARVGE
Measurement AUC AP AUC AP

Number of iterations

200 0.2 0.2 0.5 0.2
500 0.2 0.2 0.5 0.5
1000 0.2 0.2 0.5 0.5
2000 0.2 0.2 0.5 0.5
5000 0.2 0.2 0.5 0.5

Acknowledgements This work was partially supported by the
National Science Foundation under Grant Number 1813252.

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of
interest.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Wang Y, Xu B, Kwak M, Zeng X (2020) A simple training

strategy for graph autoencoder. In: Proceedings of the interna-
tional conference on machine learning and computing (ICMLC),
pp 341-345. https://doi.org/10.1145/3383972.3383985

. Tahmasebi H, Ravanmehr R, Mohamadrezaei R (2020) Social

movie recommender system based on deep autoencoder network
using Twitter data. Neural Comput Appl. https://doi.org/10.1007/
$00521-020-05085-1

. Cai H, Zheng VW, Chang KCC (2018) A comprehensive survey

of graph embedding: Problems, techniques, and applications.
IEEE Trans Knowl Data Eng 30:1616-1637. https://doi.org/10.
1109/TKDE.2018.2807452

. Li B, Pi D (2020) Network representation learning: a systematic

literature review. Neural Comput Appl. https://doi.org/10.1007/
$00521-020-04908-5

. Pan S, Hu R, Fung SF et al (2020) Learning graph embedding

with adversarial training methods. IEEE Trans Cybern
50:2475-2487. https://doi.org/10.1109/TCYB.2019.2932096

. Pan S, Hu R, Long G, et al (2018) Adversarially regularized

graph autoencoder for graph embedding. In: Proceedings of 27th
international ~ joint  conference  artificial  intelligence,
pp 2609-2615. https://doi.org/10.1523/INEUROSCI.1317-08.
2008

. Zhang D, Yin J, Zhu X, Zhang C (2018) Network Representation

Learning: A Survey. IEEE Trans Big Data. https://doi.org/10.
1109/tbdata.2018.2850013

. Kipf TN, Welling M (2016) Variational graph auto-encoders. In:

NIPS workshop on bayesian deep learning

. Wang D, Cui P, Zhu W (2016) Structural deep network embed-

ding. In: Proceedings of the ACM SIGKDD international con-
ference on knowledge discovery and data mining, pp 1225-1234
Tu K, Cui P, Wang X, et al (2018) Deep recursive network
embedding with regular equivalence. In: Proceedings of ACM
SIGKDD international conference knowledge discovery data
min, pp 2357-2366. https://doi.org/10.1145/3219819.3220068
Samanta B, DE A, Jana G, et al (2019) NeVAE: A deep gener-
ative model for molecular graphs. In: Proceedings of the AAAI
conference on artificial intelligence. pp 1110-1117

Grover A, Zweig A, Ermon S (2019) Graphite: Iterative gener-
ative modeling of graphs. In: Proceedings of machine learning
research. pp 2434-2444

Cao S, Lu W, Xu Q (2016) Deep neural networks for learning
graph representations. In: Proceedings of 30th AAAI conference
on artificial intelligence, pp 1145-1152

Yu W, Zheng C, Cheng W, et al (2018) Learning deep network
representations with adversarially. In: Proceedings of the inter-
national conference on knowledge discovery and data mining,
pp 2663-2671

Goodfellow I, Pouget-Abadie J, Mirza M et al (2014) Generative
adversarial nets. Adv Neural Inf Process Syst 27:2672-2680
Elman JL, Zipser D (1988) Learning the hidden structure of
speech. J Acoust Soc Am 83:1615-1626. https://doi.org/10.1121/
1.395916

Sietsma J, Dow RJF (1991) Creating artificial neural networks
that generalize. Neural Netw 4:67-79. https://doi.org/10.1016/
0893-6080(91)90033-2

Holmstrom L, Koistinen P (1992) Using additive noise in back
propagation training. IEEE Trans Neural Netw 3:24-38. https://
doi.org/10.1109/72.105415

Skurichina M, Raudys S, Duin RPW (2000) K-nearest neighbors
directed noise injection in multilayer perceptron training. IEEE
Trans Neural Netw 11:504-511. https://doi.org/10.1109/72.
839019

@ Springer


https://doi.org/10.1145/3383972.3383985
https://doi.org/10.1007/s00521-020-05085-1
https://doi.org/10.1007/s00521-020-05085-1
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1007/s00521-020-04908-5
https://doi.org/10.1007/s00521-020-04908-5
https://doi.org/10.1109/TCYB.2019.2932096
https://doi.org/10.1523/JNEUROSCI.1317-08.2008
https://doi.org/10.1523/JNEUROSCI.1317-08.2008
https://doi.org/10.1109/tbdata.2018.2850013
https://doi.org/10.1109/tbdata.2018.2850013
https://doi.org/10.1145/3219819.3220068
https://doi.org/10.1121/1.395916
https://doi.org/10.1121/1.395916
https://doi.org/10.1016/0893-6080(91)90033-2
https://doi.org/10.1016/0893-6080(91)90033-2
https://doi.org/10.1109/72.105415
https://doi.org/10.1109/72.105415
https://doi.org/10.1109/72.839019
https://doi.org/10.1109/72.839019

4814

Neural Computing and Applications (2021) 33:4807-4814

20.

21.

22.

23.

24.

25.

26.

27.

Brown WM, Gedeon TD, Groves DI (2003) Use of noise to
augment training data: a neural network method of mineral-po-
tential mapping in regions of limited known deposit examples.
Nat Resour Res 12:141-152.  https://doi.org/10.1023/A:
1024218913435

Matsuoka K (1992) Noise injection into inputs in back-propa-
gation learning. IEEE Trans Syst Man Cybern 22:436—440.
https://doi.org/10.1109/21.370200

Reed R, Marks RJ, Oh S (1995) Similarities of error regulariza-
tion, sigmoid gain scaling, target smoothing, and training with
jitter. IEEE Trans Neural Netw 6:529-538. https://doi.org/10.
1109/72.377960

Bishop CM (1995) Training with noise is equivalent to Tikhonov
regularization. Neural Comput 7:108-116. https://doi.org/10.
1162/neco0.1995.7.1.108

Grandvalet Y, Canu S, Boucheron S (1997) Noise injection:
theoretical prospects. Neural Comput 9:1093-1108. https://doi.
org/10.1162/neco0.1997.9.5.1093

An G (1996) The Effects of adding noise during backpropagation
training on a generalization performance. Neural Comput
8:643-674. https://doi.org/10.1162/neco.1996.8.3.643

Piotrowski AP, Napiorkowski JJ (2013) A comparison of meth-
ods to avoid overfitting in neural networks training in the case of
catchment runoff modelling. J Hydrol 476:97-111. https://doi.
org/10.1016/j.jhydrol.2012.10.019

Wright WA (1999) Bayesian approach to neural-network mod-
eling with input uncertainty. IEEE Trans Neural Netw
10:1261-1270. https://doi.org/10.1109/72.809073

@ Springer

28.

29.

30.

31.

32.

33.

34.

35.

Wright WA, Ramage G, Cornford D, Nabney IT (2000) Neural
network modelling with input uncertainty: theory and application.
J VLSI Signal Process Syst Signal Image Video Technol
26:169-188. https://doi.org/10.1023/A:1008111920791

Zhang S, Tong H, Xu J, Maciejewski R (2019) Graph convolu-
tional networks: a comprehensive review. Comput Soc Netw
6:1-23. https://doi.org/10.1186/s40649-019-0069-y

McDowell LK, Gupta KM, Aha DW (2009) Cautious collective
classification. J] Mach Learn Res 10:2777-2836

Giles CL, Bollacker KD, Lawrence S (1998) CiteSeer: an auto-
matic citation indexing system. In: Proceedings of ACM inter-
national conference digital library, pp 89-98

Kingma DP, Ba JL (2015) Adam: a method for stochastic opti-
mization. In: Proceedings of the 3rd international conference on
learning representations

Fawcett T (2006) An introduction to ROC analysis. Pattern
Recognit Lett 27:861-874. https://doi.org/10.1016/j.patrec.2005.
10.010

McClish DK (1989) Analyzing a portion of the ROC curve. Med
Decis Mak 9:190-195. https://doi.org/10.1177/
0272989X8900900307

Wikipedia entry for the Receiver operating characteristic. https://
en.wikipedia.org/wiki/Receiver_operating_characteristic. Acces-
sed 9 Jan 2019

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.


https://doi.org/10.1023/A:1024218913435
https://doi.org/10.1023/A:1024218913435
https://doi.org/10.1109/21.370200
https://doi.org/10.1109/72.377960
https://doi.org/10.1109/72.377960
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1162/neco.1997.9.5.1093
https://doi.org/10.1162/neco.1997.9.5.1093
https://doi.org/10.1162/neco.1996.8.3.643
https://doi.org/10.1016/j.jhydrol.2012.10.019
https://doi.org/10.1016/j.jhydrol.2012.10.019
https://doi.org/10.1109/72.809073
https://doi.org/10.1023/A:1008111920791
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1177/0272989X8900900307
https://doi.org/10.1177/0272989X8900900307
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

	A noise injection strategy for graph autoencoder training
	Abstract
	Introduction
	The architecture of graph autoencoder
	Training strategy
	Experiments and discussion
	Conclusion and future work
	Acknowledgements
	References




