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Abstract
Graph autoencoder can map graph data into a low-dimensional space. It is a powerful graph embedding method applied in

graph analytics to lower the computational cost. Researchers have developed different graph autoencoders for addressing

different needs. This paper proposes a strategy based on noise injection for graph autoencoder training. This is a general

training strategy that can flexibly fit most existing training algorithms. The experimental results verify this general strategy

can significantly reduce overfitting and identify the noise rate setting for consistent training performance improvement.
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1 Introduction

Autoencoder is a neural network composed of encoder and

decoder [2]. Encoder converts the input data into an

abstract representation, while decoder reconstructs the

original input data from the output of encoder. Graph

autoencoder is based on graph neural network, whose input

data are graph information. The great potential of graph

autoencoder in dimensionality reduction has motivated

scientists to apply it in graph embedding [3–5]. Graph

autoencoder embeds graph data based on matrix factor-

ization [3, 6]. It aims to preserve the graph structure of the

input matrix, e.g., adjacency matrix, in a low-dimensional

space by matrix factorization [7].

Since the importance of graph autoencoder is recog-

nized, more and more training algorithms have been

designed for meeting different needs. Conventional graph

autoencoders, such as GAE [8], SDNE [9], and DRNE

[10], aim to preserve the graph information in a low-di-

mensional space. Variational graph autoencoders, e.g.,

VGAE [8], focus on building a graph autoencoder allowing

users to feed random data or interpolated data to the

decoder. Recently, Samanta et al. proposed NeVAE, a

variational graph autoencoder using a deep generative

model, for processing molecular graphs [11], while Grover

et al. developed Graphite, a variational graph autoencoder

using a scalable deep generative model [12]. Besides pre-

serving the graph information, the encoder needs to learn

the distribution of training samples in training. Denoising

graph autoencoders, e.g., DNGR [13], can automatically

filter out noise. Therefore, the related training algorithms

use corrupted input in training, while the desired output of

decoder is the original input. Adversarially regularized

graph autoencoders, e.g., ARGE [6], ARVGE [6], and

NetRA [14], attempt to train an autoencoder with the fea-

ture of distinguishing faked encoded representation. The

related training platform is composed of generator and

discriminator [15]. The former is trained to confuse the

latter, while the latter is trained to classify true samples and

generated data. The corresponding training algorithm based

on this platform is good at reducing autoencoder learning

failures caused by too much capacity of encoder and

decoder.

The success of a graph autoencoder is strongly corre-

lated to the performance of its training algorithm. A gen-

eral training strategy, which can improve most training

algorithms of graph autoencoder, will advance the study
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and application of graph autoencoder significantly. The

goal of this work is to develop such a training strategy.

Noise injection is a general training strategy, which was

proposed three decades ago [16]. Most studies of this

strategy focus on conventional feedforward neural net-

works such as multilayer perceptron (MLP) [17–28] and

radial basis function (RBF) [27, 28]. Although the suc-

cesses of these works strongly encourage us to apply the

noise injection strategy in the training of graph autoen-

coder, there are still some challenges. The first challenge is

how to inject noise. All existing works directly add random

noise to the input vector. However, this method does not fit

graph information. For instance, all elements in the adja-

cency matrix are one or zero, which represent the con-

nection status between nodes. Directly adding random

noise to elements of the adjacency matrix makes the values

of these elements hard to interpret. Furthermore, the

experience of setting the noise rate on traditional feedfor-

ward neural networks may not work on a graph neural

network.

This paper proposes a noise injection strategy for graph

encoder training with addressing the above-mentioned

challenges. We developed a simple noise injection method

for injecting noise into the input graph information.

Additionally, this work investigates the impact of noise rate

on training performance in experiments based on conven-

tional graph autoencoders, variational graph autoencoders,

and adversarially regularized graph autoencoders.

The rest of this paper is organized as follows. Section 2

introduces the basic architecture of a graph autoencoder.

The noise injection strategy is presented in Sect. 3. Sec-

tion 4 details and discusses the results of experiments

conducted for verifying the effectiveness of the proposed

strategy. Finally, Sect. 5 concludes the paper and proposes

future work.

2 The architecture of graph autoencoder

A graph autoencoder is composed of an encoder and a

decoder. The upper part of Fig. 1 is a diagram of a general

graph autoencoder. The input graph data are encoded by

the encoder. The output of encoder is the input of decoder.

Decoder can reconstruct the original input graph data. This

paper focuses on GAE, VGAE, ARGE, and ARVGE for

covering conventional graph autoencoders, variational

graph autoencoders, and adversarially regularized graph

autoencoders. We use the basic architecture of these

models as an example. The diagram of this architecture is

given in the lower part of Fig. 1. The encoder, which was

first proposed by Kipf and Welling [8], is based on a graph

convolutional network (GCN) [29]. The input graph data

can be represented by (A, X), where A is the adjacency

matrix, while X is the node feature matrix. If the number of

nodes is n, A is a n� n matrix. It is worth noting that all

diagonal elements of A are set to one. If the number of

features is m, X is a n� m matrix. We can build the n� n

degree matrix D based on A by the following expression.

Dij ¼
Pn

k¼1

Aik; if i ¼ j

0; if i 6¼ j

8
<

:
ð1Þ

where 1� i; j� n. Assume the GCN model used in the

encoder has k layers. The output of the lth layer of GCN,

represented by Z lð Þ, can be computed by the following

formula.

Z lð Þ ¼ f lð Þ D�1
2AD�1

2Z l�1ð ÞW lð Þ
� �

; ð2Þ

where 1� l� k, Z0 ¼ X, f lð Þ is the activation function of

the lth layer, W lð Þ is the weight matrix of the lth layer, and

D�1
2 can be calculated by the following expression.

D
�1

2

ij ¼ D
�1

2

ii ; if i ¼ j
0; if i 6¼ j

(

ð3Þ

The training algorithm adjusts the weight parameters of

all layers. In GAE, VGAE, ARGE, and ARVGE, the two-

layer GCN of the encoder uses the following ReLU acti-

vation function for the first layer.

fRelu tð Þ ¼ max 0; tð Þ ð4Þ

And the following linear function is used for the second

layer.

flinear tð Þ ¼ t ð5Þ

We use Z to represent the output of the encoder. In GAE

and ARGE,

Z ¼ Z 2ð Þ; ð6Þ

while in VGAE and ARVGE, the output of the encoder is

calculated by the following expression.

Z ¼ Z 2ð Þ þ Nn�r 0;Exp Z 2ð Þ
� �� �

; ð7Þ

where r is the number of units in hidden layer 2, Exp(�)
element-wisely computes the natural exponential of the

input matrix, and Nn�r 0;ð Þ returns a n� r matrix filled with

random values with (0, �) normal distribution.

The input of the decoder is Z, which is the output of the

encoder. Here, we focus on reconstructing the adjacency

matrix, A. The reconstructed adjacency matrix is denoted

by Â and can be computed by the following formula.
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Â ¼ sigmoid ZZT
� �

; ð8Þ

where ZT is the transpose matrix of Z and the details of

sigmoidð�Þ are given as follows.

sigmoid tð Þ ¼ 1

1þ e�t
ð9Þ

3 Training strategy

This paper proposes a noise injection strategy based on the

classic training framework for graph autoencoder. To

reconstruct the adjacency matrix, the classic framework

uses the input adjacency matrix as the desired output of

decoder. Our strategy injects noise into the original adja-

cency matrix of a training sample and uses the noisy input

to replace the original input and the desired output.

An element of an adjacency matrix is either one or zero.

One indicates that the two corresponding nodes are con-

nected, while zero suggests there is no connection between

the two corresponding nodes. Therefore, the traditional

noise injection method, which directly adds random noise

to the input vector, does not fit the input data of graph

autoencoder. DNGR [13], a denoising graph autoencoder,

adds noise to the input by randomly changing some matrix

elements from one to zero. This method decreases the

number of edges. It may bring some concerns in sparse

matrixes, which only contain a few edges. To overcome

this potential issue, we developed a simple noise injection

approach by randomly removing some existing edges and

add the same number of new random edges. In comparison

with DNGR, our approach can keep the number of edges

stable. Edge removal is to change one into zero, while edge

addition is to change zero into one. It is worth noting that

we only focus on the edges between different nodes, so the

elements of the diagonal of the adjacency matrix are

ignored. The current version of our approach is designed

for sparse adjacency matrixes, while it can also be adapted

for dense adjacency matrix. We use p and u to represent the

noise rate and the number of edges, respectively. After

users specify p, which is between zero and one, our

approach randomly removes pub c edges and also randomly

adds pub c edges, where �b c is the floor function. The

adjacency matrix of an undirected graph is symmetrical.

Therefore, we first focus on the upper triangular matrix of

the adjacency matrix in practice. This approach randomly

changes pub c elements from one to zero and pub c elements

from zero to one. After the upper triangular matrix is

updated, our approach updates the lower triangular matrix

symmetrically.

The noise injection process does not change the number

of edges, but randomly shifts edges. In each training iter-

ation, we randomly inject noise to the original training

input and use the noisy input to replace the original input

and the desired output, while the original training algo-

rithm has no change. It allows this strategy to be flexibly

applied to most existing training algorithms. Since the

noise injection is conducted in each iteration, the original

training input is not directly used in the whole training. The

proposed strategy is summarized as follows.

Fig. 1 The upper part is the diagram of a general graph autoencoder. The lower part is the diagram of a graph autoencoder proposed by Kipf and

Welling [8]

Neural Computing and Applications (2021) 33:4807–4814 4809

123



It is worth noting that our training strategy is different

from that used in denoising autoencoders. After noise

injection, our strategy uses the updated noisy input as

desired output, while denoising autoencoders still use the

original desired output, which has no noise.

4 Experiments and discussion

To verify the effectiveness of our strategy and investigate

the suitable noise rates, we conduct experiments of link

prediction on two data sets: Cora [30] and Citeseer [31].

The information of these two data sets is given in Table 1

[6, 8]. Both data sets were used for the experiments of

[6, 8]. Our experiments test four autoencoders that are

GAE, VGAE, ARGE, and ARVGE. Besides the original

input, our experiments also test noisy input with noise rate

0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 on both

data sets. We follow the same experimental setting of [8].

The dimensions of the first and second layers are 32 and 16,

respectively. In each data set, 5% connected node pairs and

5% non-connected node pairs are randomly picked for the

validation set. Similarly, 10% connected node pairs and

10% non-connected node pairs are randomly picked for the

test set. The rest is used for the training set. The training

algorithm is Adam algorithm [32], while the learning rate

is 0.01. The experiments apply area under the ROC curve

(AUC) and average precision (AP) scores [33–35] to

measure performance. As for each autoencoder, we

repeatedly train ten times on both data sets. In order to

easily reproduce training results, the random seed of the ith

time is set to i. This paper reports average AUC and AP

scores on the testing data sets. All autoencoders were

trained 200 iterations in the experiments of [6, 8] on Cora

and Citeseer. Because overfitting is more likely to happen

with more iterations, the experiments report average AUC

and AP scores with 200, 500, 1000, 2000, and 5000 iter-

ations. As for other parameters, we use the default setting

of each autoencoder.

The experimental results on Cora and Citeseer are given

in Figs. 2 and 3, respectively. It is worth noting that noise

rate 0 refers to the original input without noise injection.

Figure 2 shows that inputs with noise rates 0.05, 0.1, and

0.2 consistently outperform original input (noise rate 0) in

AUC and AP scores with all four autoencoders, while other

positive noise rates perform inconsistently. Figure 3 shows

similar results. It suggests that noise rates 0.05, 0.1, and 0.2

consistently reduce overfitting in all tests. It also indicates

noise rates less than 0.05 or greater than 0.2 may bring

performance change, but not always performance

improvement.

The impact of noise injection is clearly reflected in

Figs. 2 and 3. Without noise injection (noise rate 0), the

training performances with 200 iterations are consistently

the best due to the overfitting problem. However, the noise

injection strategy may achieve better performance with

much more iterations by reducing the overfitting. For

example, ARGE on both data sets can achieve better per-

formance with iteration number 5000 and noise rate 0.2

than iteration number 200 and noise rate 0. It does not only

encourage us to apply the proposed strategy in training, but

also leaves an open question: which is the best noise rate?

Although experimental results show 0.05, 0.1, and 0.2 can

consistently improve performance, they are not always the

best rate for a given graph autoencoder on a given data set.

Tables 2 and 3 list the best noise rates for all categories. It

is clear that 0.001 and 0.01 are not the best rates regardless

of autoencoder and data set. It could be because they are

too small for regularization. Furthermore, some rates

greater than 0.2 are the best rates in some categories. It

encourages us to develop new methods that can dynami-

cally adjust the noise rate for gaining the best training

performance in the future.

5 Conclusion and future work

This paper proposes a noise injection strategy for graph

autoencoder training. This strategy can be flexibly applied

in most existing graph autoencoders. The experimental

results verify the effectiveness of this training strategy and

suggest noise rates 0.05, 0.1, and 0.2 consistently improve

training performance in all tests, although other higher

rates may achieve better performance in some categories.

In our future work, we will develop new methods with the

feature of dynamically adjusting the noise rate during the

training.

Table 1 The information of data sets used in experiments

Cora Citeseer

The number of nodes 2708 3327

The number of edges 5429 4732

The number of features 1433 3703
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Fig. 2 AUC and AP scores with 200, 500, 1000, 2000, and 5000

training iterations on Cora. Noise rate 0 refers to the original training

input without noise injection. a GAE and AUC scores, b GAE and AP

scores, c VGAE and AUC scores, d VGAE and AP scores, e ARGE

and AUC scores, f ARGE and AP scores, g ARVGE and AUC scores,

h ARVGE and AP scores
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Fig. 3 AUC and AP scores with 200, 500, 1000, 2000, and 5000

training iterations on Citeseer. Noise rate 0 refers to the original

training input without noise injection. a GAE and AUC scores,

b GAE and AP scores, c VGAE and AUC scores, d VGAE and AP

scores, e ARGE and AUC scores, f ARGE and AP scores, g ARVGE

and AUC scores, h ARVGE and AP scores
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