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A B S T R A C T

The real-world application of image compressive sensing is largely limited by the lack of standardization in
implementation and evaluation. To address this limitation, we present OpenICS, an image compressive sensing
toolbox that implements multiple popular image compressive sensing algorithms into a unified framework
with a standardized user interface. Furthermore, a corresponding benchmark is also proposed to provide a fair
and complete evaluation of the implemented algorithms. We hope this work can serve the growing research
community of compressive sensing and the industry to facilitate the development and application of image
compressive sensing.
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1. Introduction

Compressive sensing is a signal sensing technique that simulta-
neously performs sensing and compression of signals in order to re-
duce the transmission cost of sensor devices. A wide variety of image
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compressive sensing reconstruction algorithms has been proposed over
the years with a prominent performance in terms of reconstruction
speed and accuracy. However, the application of image compressive
sensing in real world is largely limited by the lack of standardization
in implementation and evaluation.
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To address this limitation, we present OpenICS, an image compres-
ive sensing toolbox with multiple image compressive sensing recon-
truction algorithms implemented into a unified framework to greatly
mprove the usability of various image compressive sensing algorithms.
e also propose a corresponding benchmark to provide a comprehen-
ive and fair evaluation of all the implemented algorithms as well as
he future proposed algorithms.
We hope this toolbox and benchmark can serve the research commu-

ity and the industry to facilitate the development of new image com-
ressive sensing algorithms and the application of image compressive
ensing in real-world problems.

. Toolbox functionality and benchmark

.1. Toolbox functionality

OpenICS has ten image compressive sensing algorithms imple-
ented. Based on whether the method is data-dependent, we divide
mplemented methods into two categories: Model-based methods and
ata-driven methods. Model-based methods include L1[1], NLR-CS [2],
VAL-3[3] and D-AMP [4]. Data-driven methods include ReconNet [5],
DAMP [6], ISTA-Net [7], LAPRAN [8], CSGM [9], CSGAN [10].
ach method is reimplemented with a standard interface, same pa-
ameter definitions, and similar program structures to provide high
sability and readability for users. The common parameters of all the
ethods are 1. dataset: the name of the dataset to be used; 2. in-
ut_channel: number of color channels in images; 3. m: dimensionality
f measurements; 4. n: dimensionality of input images.
In addition to the unified interface, each implemented algorithm

an also be used separately with no dependency on other algorithms,
hich provides high extensibility and customizability for developers.
n addition, the pre-trained models of data-driven methods are also
rovided. Users can easily apply existing algorithms to new problems
r datasets by further fine-tuning pre-trained models. Developers can
asily build new algorithms on top of existing algorithms by reusing
he implementations as well as the pre-trained models as the starting
oint.

.2. Benchmark

We conduct the benchmark experiments on six datasets: MNIST
11], CIFAR10[12], CIFAR10(grayscaled), CELEBA [13], Bigset, Bigset
grayscaled). Bigset stands for a manually composed dataset used in
APRAN [8]. For MNIST, CIFAR10, CIFAR10(gray), the image size of
amples is 32 × 32. For CELEBA, Bigset(gray) and Bigset, the image
ize of samples is 64 × 64. We take five different compression ratios:
, 4, 8, 16, 32. The reconstruction accuracy is quantified with two
etrics: PSNR(0-48) and SSIM(0-1) between reconstructed images and
riginal images on average. The reconstruction speed is quantified with
he number of images reconstructed per second on average.

. Impact overview

OpenICS is an open-source image compressive sensing toolbox that
rovides a unified framework with a modularized design for multiple
opular image compressive sensing reconstruction algorithms out-of-
ox. To the best of our knowledge, OpenICS is the first image compres-
ive sensing toolbox so far that has the above features and implemented
p to ten different image compressive sensing algorithms. We will
ontinue to add new image compressive sensing algorithms to the
oolbox in the future when new algorithms are proposed.
We also present a corresponding benchmark for a comprehensive

nd fair comparison of all the implemented algorithms. To the best of
ur knowledge, OpenICS is by far the most comprehensive performance
enchmark in the domain of image compressive sensing in terms of the
iversity of datasets, the scale of the tested compression ratios, and the

This toolbox was initially privately developed and used within
the lab for research purposes. The relevant academic publications
include [8] and [14]. In [8], the LDAMP and LAPRAN methods from the
toolbox are used to benchmark each method’s reconstruction accuracy
and time on different datasets and compression ratios. In [14], the
OpenICS implementations of ReconNet and LAPRAN are used as the
initial and main reconstruction networks to quickly demonstrate the
performance of the proposed compression ratio adaptor. We very re-
cently made the toolbox publicly available and drafted a corresponding
technical report [15]. We hope our work can help to advance the
research and application of image compressive sensing.
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