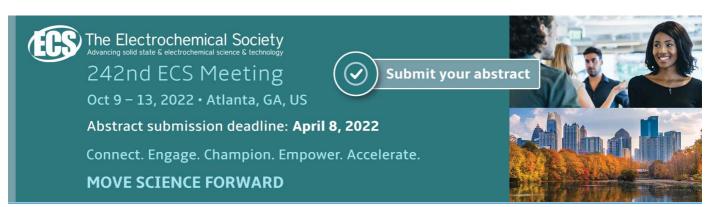
LETTER


Improved operational reliability of MOCVD-grown AlSiO gate dielectric on β -Ga₂O₃ (001) by postmetallization annealing

To cite this article: Zhe Ashley Jian et al 2021 Semicond. Sci. Technol. 36 09LT03

View the article online for updates and enhancements.

You may also like

- Comparative Investigation of Flat-Band Voltage Modulation by Nitrogen Plasma Treatment for Advanced HKMG Jiaxin Yao, Huaxiang Yin, Zhenhua Wu et
- Progress in state-of-the-art technologies of Ga₂O₃ devices Cheniu Wang, Jincheng Zhang, Shengrui
- Xu et al - Stress-induced charge trapping and electrical properties of atomic-layer-
- deposited HfAIO/Ga2O3 metal-oxide-semiconductor capacitors Hongpeng Zhang, Lei Yuan, Renxu Jia et

Semicond. Sci. Technol. 36 (2021) 09LT03 (7pp)

https://doi.org/10.1088/1361-6641/ac1566

Letter

Improved operational reliability of MOCVD-grown AlSiO gate dielectric on β -Ga₂O₃ (001) by post-metallization annealing

Zhe Ashley Jian^{1,*}, Islam Sayed², Subhajit Mohanty¹, Wenjian Liu² and Elaheh Ahmadi^{1,3}

E-mail: jianzhe@umich.edu

Received 3 May 2021, revised 13 July 2021 Accepted for publication 16 July 2021 Published 28 July 2021

Abstract

In this work, we studied the impact of post-metallization annealing (PMA) on interfacial and bulk dielectric properties of AlSiO/ β -Ga₂O₃ metal—oxide—semiconductor capacitors (MOSCAPs). Annealing at 300 °C improved the reverse operational stability within the test operation range from -10 V to -42 V. The near-interface fast and slow traps were both suppressed by PMA at 300 °C and 350 °C, leading to a negligible flat-band voltage hysteresis. The low gate leakage region was extended from 3.7 MV cm $^{-1}$ to 4 MV cm $^{-1}$ and the breakdown strength was improved from 7.8 MV cm $^{-1}$ to 8.2 MV cm $^{-1}$ for AlSiO/ β -Ga₂O₃ MOSCAPs with PMA at 300 °C compared with not-annealed samples. The superior operational reliability demonstrated in this work is useful for future high-performance and reliable MOS-based Ga₂O₃ transistors.

Keywords: β -Ga₂O₃, annealing, reliability, capacitance–voltage (C–V) characteristics, hysteresis

(Some figures may appear in color only in the online journal)

1. Introduction

 β -Ga₂O₃ has shown tremendous potential for high power applications due to its ultra-wide bandgap of 4.8 eV, large breakdown field (\sim 8 MV cm⁻¹) and cost-effective meltgrown bulk substrates [1–5]. Rapid progress and breakthroughs have been achieved in various Ga₂O₃-based devices [3, 6, 7]. Enhancement-mode vertical Fin-field effect transistors (Fin-FETs) demonstrated a breakdown voltage (BV)

over 2.6 kV and Baliga's figure-of-merit of 280 MW cm⁻² [8]. Recently, a record high BV of 8.03 kV was achieved on field-plated lateral metal-oxide-semiconductor FETs (MOSFETs) with polymer passivations [9].

The development of high-quality gate dielectrics is critical for enabling high performance and switching capability of β -Ga₂O₃ MOS-based transistors. The gate dielectric should combine the merits of large band offset, low interface states with Ga₂O₃ and preferably a higher breakdown field than underlying semiconductor. Many reliability issues such as threshold voltage variation, pre-mature dielectric breakdown and frequency-dependent dispersion are related to dielectric

Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America

² Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, United States of America

³ Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, United States of America

^{*} Author to whom any correspondence should be addressed.

degradation which affects the switching performance of high power devices. To date, there have been extensive efforts on investigating the dielectric performance of SiO_2 , HfO_2 and Al_2O_3 on β - Ga_2O_3 [9–13] along with a few studies on novel dielectrics such as ZrO_2 , $LaAl_2O_3$, and $(Y_{0.6}Sc_{0.4})_2O_3$ [14–16].

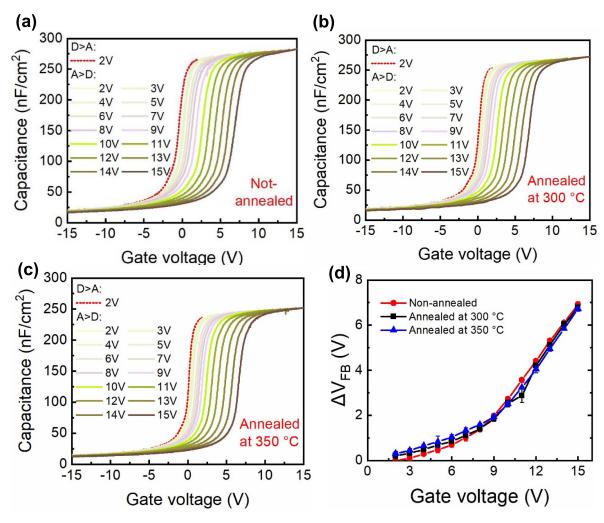
Aluminum silicon oxide (AlSiO) has been proposed as a high-quality and reliable gate dielectric for GaN-based devices [17–19]. Alloying of Al₂O₃ with silicon to form amorphous AlSiO has the potential to incorporate the advantages of both SiO_2 ($E_g = 9.0$ eV) and Al_2O_3 ($E_g = 6.7$ eV) thus realizing high band offsets and high breakdown strength [18, 20]. A low interface states ($D_{\rm it}$) of $\sim 10^{12}~{\rm cm}^{-2}~{\rm eV}^{-1}$ was achieved in AlSiO on Ga-polar GaN using metal-organic chemical vapor deposition (MOCVD) technique and a dielectric lifetime of 20 years for electric fields higher than 3 MV cm⁻¹ was predicted by Chan et al [17, 21]. Sayed et al studied the impact of GaN polarity and the effect of post-metallization annealing (PMA) on the electrical properties of AlSiO/Npolar GaN MOS devices [20, 22, 23]. Annealing in air ambient at 370 °C was reported to reduce the density of near-interface traps by a factor of two from 5.6×10^{11} to 2.6×10^{11} cm⁻² [23]. Recently, we demonstrated MOCVDgrown AlSiO gate dielectric on (001) β -Ga₂O₃ with negligible hysteresis, low gate leakage, low interfacial trap density of $6.63 \times 10^{11} \text{ cm}^{-2} \text{ eV}^{-1}$, and high breakdown electric field of \sim 7.8 MV cm⁻¹ [24]. This motivated us to further enhance the electrical properties of AlSiO/Ga₂O₃ MOS capacitors (MOSCAPs) and study its operational reliability for future high power switching applications.

In this work, MOCVD-grown AlSiO/ β -Ga₂O₃ (001) MOS structures were fabricated and tested for operational stability. The impact of PMA at different temperatures on forward and reverse flat-band voltage stability was studied. The interfacial and bulk properties of AlSiO on Ga₂O₃ were investigated using deep UV assisted capacitance–voltage (C–V) methodology. In addition, forward gate leakage performance and breakdown strength were compared for samples with or without annealing.

2. Experimental methods

The AlSiO/Ga₂O₃ MOSCAP structures in this study consisted of a 10 μ m thick lightly Si-doped (\sim 6.5 \times 10¹⁶ cm⁻³) Ga₂O₃ epitaxial layer grown by halide phase vapor epitaxy on an n+Sn-doped β -Ga₂O₃ (001) substrate. Surface pretreatment of three cycles of UV-ozone and 49% HF dip was performed prior to the deposition of the AlSiO dielectric layer [24]. The AlSiO with various thicknesses (10 nm, 20 nm, and 30 nm), with a silicon composition of \sim 40%, were grown by MOCVD at 700 °C. The bandgap (E_g), conduction band offset (E_C) and valence band offset (E_V) of AlSiO with respect to Ga₂O₃ were estimated to be 7.3 eV, 1.9 eV and 0.5 eV, respectively [25–27]. After the dielectric deposition, backside ohmic contact was formed by chlorine-based inductively coupled-plasma etching before Ti/Au (20/200 nm) deposition [28]. No rapid thermal annealing was performed. The Cr/Ti/Au

(10/20/200 nm) metal stack was deposited on top as gate contact. In the annealing study to improve device performance, the MOSCAPs were then annealed at 300 °C and 350 °C for 30 min in a vacuum chamber (\sim 8 × 10⁻⁵ torr).


The thickness of AlSiO layer was analyzed on co-loaded Si wafers using a Woollam M-2000 ellipsometer. C-V and current–voltage (I-V) measurements were taken at room temperature using a Keysight B1500A semiconductor parameter analyzer. The frequency and amplitude of AC signals were set with 1 MHz and 30 mV, respectively. Deep UV assisted C-V characterization was conducted using a deep UV lamp with a wavelength of 254 nm and an optical power density of 0.13 W cm⁻².

3. Results and discussion

The impact of PMA on the forward operational reliability of AlSiO/Ga₂O₃ MOSCAPs was explored through step-stress C-V measurements, as depicted in figures 1(a)–(c). The AlSiO thickness was 30 nm for all the tested devices. First, the initial depletion-accumulation (D > A) C-V sweep was measured from -15 V to 2 V and considered as a reference curve. Then the MOSCAP was stressed at a forward bias voltage for 10 s, and immediately swept backward from accumulation to depletion (A > D). The forward stress voltage was varied from 2 V to 15 V sequentially, which corresponds to electric fields from 0.67 MV cm⁻¹ to 5 MV cm⁻¹. The electric field (E_{field}) was calculated by gate bias divided by the dielectric thickness, assuming E_{field} is uniform inside dielectric. Flat-band voltage was calculated at flat-band capacitance of each C-V sweep, following Jian et al [24]. The hysteresis ($\Delta V_{\rm FB}$) is the flat-band voltage difference between each A > D curve and the reference D > A curve. The relationship between extracted $\Delta V_{\rm FB}$ and forward stress voltage for five devices with and without PMA is shown in figure 1(d) statistically. No significant change of $\Delta V_{\rm FB}$ between not-annealed and annealed samples was observed. The ΔV_{FB} increased with increasing the stress voltage on all three samples. Specifically, the $\Delta V_{\rm FB}$ increased slightly up to 2 V at the forward stress of 9 V (3 MV cm⁻¹). Beyond the critical stress of 3 MV cm⁻¹, the $\Delta V_{\rm FB}$ increased at a higher speed and reached to \sim 7 V at a forward stress of 5 MV cm⁻¹. This trend of positive flatband voltage shift suggests the existence of negative charge trapping in the dielectric dependent of the applied DC positive bias under accumulation region. Significant charge trapping occurring at high-field stress suggests electrons tunneling and hopping into the dielectric [29]. Note that the maximum stress field of 5 MV cm⁻¹ in our study is approximately four times larger than that applied to the gate in vertical β -Ga₂O₃ Fin-FET on-state operation [8].

Figures 2(a)–(c) shows typical reverse step-stress results for 30 nm AlSiO/Ga₂O₃ MOSCAPs. The reference A > D curve was swept from 5 V to -10 V. The following D > A C–V sweeps were taken after the gate bias was held at a negative depletion voltage for 3 min and then swept back to 5 V. The reason for non-uniform stress periods for forward and reverse bias is that the semiconductor shared the electric field partially

Figure 1. Forward step-stress C-V profiles of 30 nm AlSiO/Ga₂O₃ MOSCAPs: (a) not-annealed, (b) annealed at 300 °C, and (c) annealed at 350 °C. The maximum accumulation voltage was increased for each sweep from 2 V to 15 V by a step voltage of 1 V. (d) Corresponding flat-band hysteresis $\Delta V_{\rm FB}$ versus applied forward stress for 10 s. The depletion–accumulation (D>A) C-V curve from 2 V to -15 V was identified as a reference for accumulation–depletion (A>D) C-V profiles and $\Delta V_{\rm FB}$ calculation.

when MOSCAP was biased at the reverse region, whereas, the dielectric withheld most of the electric field when the device was biased at the forward region. Therefore, the reverse bias has less stressing impact on the dielectric and the longer stress period was needed for reverse stability test to make the C-Vflat-band voltage shifts more visible. The negative depletion bias was increased for each C–V sweep from -10 V to -42 V by a step voltage of -2 V. The $\Delta V_{\rm FB}$ is the voltage difference between measured D > A curve and reference A > Dcurve. The extracted $\Delta V_{\rm FB}$ as a function of reverse stress voltage for five devices is illustrated in figure 2(d). The hysteresis value reduced as annealing temperature increased. For the sample not-annealed or annealed at 350 °C, the $\Delta V_{\rm FB}$ was almost stable until the reverse voltage extended to \sim 36 V and then the $\Delta V_{\rm FB}$ changed significantly with increasing the voltage stress. On the other hand, the C-V sweeps of sample with PMA at 300 °C were almost identical to each other and $\Delta V_{\rm FB}$ was stable until the reverse stress reached to -38 V. Only slight increase in $\Delta V_{\rm FB}$ was observed at reverse stress of -40 V and -42 V. This behavior is probably attributed to the reduction of defects/mobile ions at the interface and dielectric due to PMA at 300 °C. It should be mentioned that the accumulation capacitance of samples treated with PMA at 300 °C and 350 °C decreased from 265 nF cm⁻² (not-annealed) to 261 nF cm⁻² and 245 nF cm⁻², respectively. This decrease in accumulation capacitance can be explained by a dielectric degradation with lower dielectric constant probably due to the gate metal (Cr/Ti/Au) diffusion into dielectric during PMA at higher temperature [30–32].

To further explore the impact of PMA on the interface states near the conduction band edge, two C-V dual sweeps were conducted. In the first C-V sweep, the gate voltage was biased from depletion to accumulation, then held at accumulation for a 10 min stress prior to sweeping back to depletion. Since the first C-V sweep contains a stress, the measured hysteresis is associated with the behavior of both the slow and fast trap near the conduction band edge [23]. Next, another dual C-V sweep was performed without an electrical stress; the gate voltage was swept from depletion to accumulation and then immediately back to depletion, in which the slow traps were

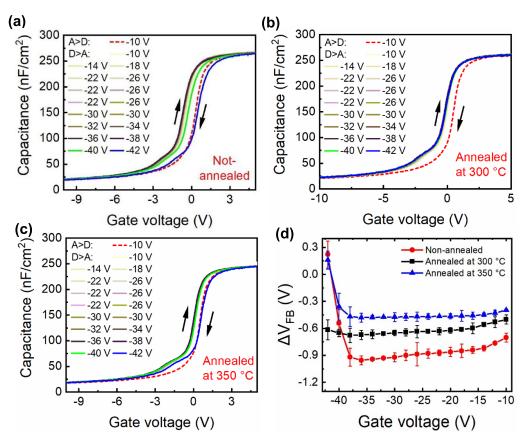


Figure 2. Reverse step-stress C-V profiles of 30 nm AlSiO/Ga₂O₃ MOSCAPs: (a) not-annealed, (b) annealed at 300 °C, and (c) annealed at 350 °C. The maximum depletion voltage was decreased for each sweep from -10 V to -42 V by a step voltage of -2 V. (d) Corresponding flat-band hysteresis $\Delta V_{\rm FB}$ versus applied reverse stress for 3 min. The accumulation–depletion (A > D) C-V curve from 5 V to -10 V was identified as a reference for depletion–accumulation (A > D) C-V profiles and $\Delta V_{\rm FB}$ calculation.

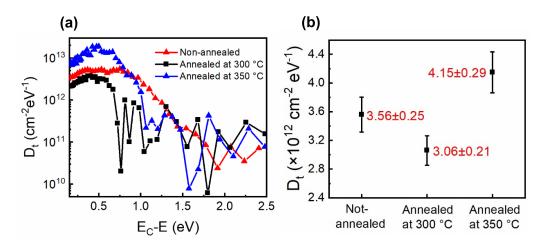
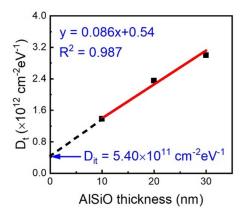
Table 1. Summary of hysteresis with and without stress ($\Delta V_{\rm FB,\,W/\,stress}$) and $\Delta V_{\rm FB,\,W/\,o\,stress}$), calculated near-interface fast and slow traps ($Q_{\rm T,\,fast}$ and $Q_{\rm T,\,slow}$) for not-annealed, annealed at 300 °C and 350 °C AlSiO/Ga₂O₃ MOSCAPs. The AlSiO thicknesses were 30 nm.

	$\Delta V_{ m FB, w/o \ stress} \ (m V)$	$\Delta V_{\mathrm{FB, w/ stress}}$ (V)	$Q_{\mathrm{T, fast}} (\mathrm{cm}^{-2})$	$Q_{\mathrm{T, slow}} (\mathrm{cm}^{-2})$
Not-annealed	0.12	0.31	1.9×10^{11}	3.0×10^{11}
Annealed at 300 °C	0.05	0.23	5.6×10^{10}	2.8×10^{11}
Annealed at 350 °C	0.06	0.26	7.5×10^{10}	3.1×10^{11}

maintained occupied and only fast traps could respond. $\Delta V_{\rm FB}$ extracted from the C--V measurements and calculated near-interface fast and slow traps are depicted in table 1 for 30 nm AlSiO/Ga₂O₃ MOSCAPs. Annealing at 300 °C and 350 °C decreased both hysteresis values with and without electrical stress. Compared to sample without PMA treatment, the density of fast and slow traps was reduced by 68% and 6.7% for the sample with PMA at 300 °C. This decrease in the density of near-interface traps suggests that annealing reduced the interface defects or dangling bonds similar to our previously report on hysteresis reduction at the interface between Al₂O₃ and (001) β -Ga₂O₃ [33]. It is noted that PMA at higher temperature of 350 °C resulted in less reduction in the density of near-interface fast traps and slight increase in slow traps with respect to PMA at 300 °C.

Figure 3(a) depicts the D_t as a function of energy for samples with and without PMA measured via deep UV

assisted C-V methodology proposed by Swenson et al [34] and Liu et al [35]. This measurement was developed to characterize the changing occupancy of interface states and bulk traps, accounting for interface traps significantly below the conduction band edge as well as hole traps in the bulk dielectric. Figure 3(b) shows the calculated average D_t statistics for samples with and without PMA. The average D_t was calculated for energy below $E_{\rm C}$ -0.15 eV, where the depletion capacitance dominates. The results show that, PMA at 300 °C reduced the density of traps occupying energy levels over the range of 0.15-1.5 eV away from the Ga₂O₃ conduction band. The average D_t for sample with PMA at 300 °C was calculated to be 3.06×10^{12} cm⁻² eV⁻¹, which was smaller than the average D_t of 3.56×10^{12} cm⁻² eV⁻¹ calculated for not-annealed samples. PMA at 350 °C was found to increase the density of traps, which suggests a slightly degraded AlSiO/Ga₂O₃ interface and bulk dielectric.

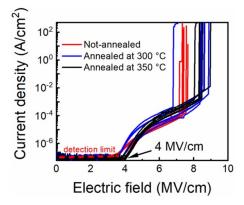

Figure 3. Total traps (D_t) as the function of energy and (b) average D_t for not-annealed, annealed at 300 °C and 350 °C AlSiO/Ga₂O₃ MOSCAPs. The AlSiO thicknesses were 30 nm for all the samples.

Figure 4. The linear fit of average trap density as a function of AlSiO thickness. The *y*-axis intercept and slope correspond to the interface density ($D_{\rm it}$) of 5.4×10^{11} cm⁻² eV⁻¹ and the bulk trap density ($n_{\rm bulk}$) of 4.3×10^{17} cm⁻³ eV⁻¹.

Next, a series of AlSiO/Ga₂O₃ MOSCAPs with 10 nm, 20 nm and 30 nm thick AlSiO were annealed at 300 °C to characterize the interface states and bulk traps by deep UV assisted C-V method. Further details about this methodology and physical analytical model can be found in [36]. Figure 4 shows the linear fit of average $D_{\rm t}$ as a function of AlSiO thickness. The $D_{\rm it}$ of 5.4×10^{11} cm⁻² eV⁻¹ and $n_{\rm bulk}$ of 4.3×10^{17} cm⁻³ eV⁻¹ were extracted from the *y*-intercept and slope of the linear fit, respectively. Both interface state density and bulk traps are smaller than that were measured on AlSiO/Ga₂O₃ MOSCAPs without annealing, with corresponding $D_{\rm it}$ and $n_{\rm bulk}$ of 6.63×10^{11} cm⁻² eV⁻¹ and 4.65×10^{17} cm⁻³ eV⁻¹, respectively [33].

Figure 5 compares the forward I-V characteristics of AlSiO/Ga₂O₃ MOSCAPs with or without PMA treatment. The I-V characteristics presents two distinguishable regions: region I of low-leakage operation identified by the leakage current below the detection limit current level ($\sim 5 \times 10^{-8}$ A cm⁻²); and region II in which the gate leakage increases significantly until the gate bias approaches the avalanche breakdown. AlSiO with PMA at 300 °C extended

Figure 5. Forward leakage characteristics of AlSiO/ Ga_2O_3 MOSCAPs with and without PMA. Annealing extended the region of low-leakage operation from 0–3.7 MV cm $^{-1}$ to 0–4 MV cm $^{-1}$ in the forward bias region.

the region of low-leakage operation from 0–3.7 MV cm $^{-1}$ to 0–4 MV cm $^{-1}$ compared with not-annealed samples. In addition, the average breakdown field strength was measured to be 8.2 MV cm $^{-1}$ at average leakage current of 1×10^{-3} A cm $^{-2}$ for AlSiO with PMA at 300 °C, which is higher than that of the underlying Ga_2O_3 and preferable for high power applications. No distinct improvement in low-leakage operation and breakdown strength were observed on sample with PMA at 350 °C. The results of lower-leakage operation and improved breakdown strength for AlSiO/ Ga_2O_3 treated with PMA at 300 °C suggest a more reliable bulk dielectric with improved interface.

4. Conclusion

In summary, we studied the impact of PMA on the operational reliability of MOCVD-grown AlSiO/ β -Ga₂O₃ (001) MOSCAPs. No significant change was observed between the sample with and without PMA treatment in forward C-V stepstress measurements. A distinct improvement in reverse operational stability (test reverse stress from -10 to -42 V) was

measured on AlSiO treated with PMA at 300 °C. In addition, the capacitance–voltage hysteresis and near-interface fast and slow traps were both suppressed by PMA at 300 °C. The low gate leakage region was extended from 3.7 MV cm⁻¹ to 4 MV cm⁻¹ and the breakdown strength was enhanced from 7.8 MV cm⁻¹ to 8.2 MV cm⁻¹ for AlSiO/ β -Ga₂O₃ MOSCAPs treated with PMA at 300 °C compared with not-annealed samples. Reliable step-stress C-V performance, negligible hysteresis and reduced interfacial and bulk trap density achieved in this work demonstrate promising results for the improvements of MOS-based Ga₂O₃ devices.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This work was supported by the Air Force Office of Scientific Research (Program Manager, Dr Ali Sayir) through Program FA9550-20-1-0045 and the National Science Foundation under Grant No. 2043803. The work partially done at UCSB was supported by Office of Naval Research (Program manager Dr. Paul Maki) under program N00014-20-1-2166. This work was performed in part at the University of Michigan Lurie Nanofabrication Facility, which is supported by the College of Engineering at the University of Michigan.

ORCID iDs

Zhe Ashley Jian https://orcid.org/0000-0003-2182-4159 Subhajit Mohanty https://orcid.org/0000-0002-1469-5363 Wenjian Liu https://orcid.org/0000-0003-0483-649X Elaheh Ahmadi https://orcid.org/0000-0002-8330-9366

References

- [1] Roy R, Hill V G and Osborn E F 1952 Polymorphism of Ga₂O₃ and the system Ga₂O₃—H₂O *J. Am. Chem. Soc.* 74 719–22
- [2] Baliga B J 1989 Power semiconductor device figure of merit for high-frequency applications *IEEE*. Electron. Device Lett. 10 455–7
- [3] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Gallium oxide (Ga₂O₃) metal-semiconductor field-effect transistors on single-crystal β-Ga₂O₃ (010) substrates Appl. Phys. Lett. 100 013504
- [4] Ahmadi E and Oshima Y 2019 Materials issues and devices of α- and β-Ga₂O₃ J. Appl. Phys. 126 160901
- [5] Jian A Z, Khan K and Ahmadi E 2019 β-(Al,Ga)₂O₃ for high power applications—a review on material growth and device fabrication *Int. J. High Speed Electron. Syst.* 28 1940006
- [6] Mcglone J F, Xia Z, Zhang Y, Joishi C, Lodha S, Rajan S, Ringel S A and Arehart A R 2018 Trapping effects in Si-doped-Ga₂O₃ MESFETs on an Fe-doped-Ga₂O₃ substrate *IEEE Electron Device Lett.* 39 1042–5

- [7] Zhang Y, Xia Z, Joishi C and Rajan S 2018 Design and demonstration of (Al_xGa_{1-x})₂O₃/Ga₂O₃ double heterostructure field effect transistor (DHFET) 2018 76th Device Research Conf. (DRC) (Santa Barbara, CA, USA) vol 0976 (IEEE) pp 1–2
- [8] Li W, Nomoto K, Hu Z, Nakamura T, Jena D and Xing H G 2019 Single and multi-fin normally-off Ga₂O₃ vertical transistors with a breakdown voltage over 2.6 kV (San Francisco, CA, USA, December 2019) (IEEE) pp 12.4.1–4
- [9] Sharma S, Zeng K, Saha S and Singisetti U 2020 Field-plated lateral Ga₂O₃ MOSFETs with polymer passivation and 8.03 kV breakdown voltage *IEEE. Electron. Device Lett.* 41 836–9
- [10] Carey P H, Ren F, Hays D C, Gila B P, Pearton S J, Jang S and Kuramata A 2017 Band alignment of atomic layer deposited SiO₂ and HfSiO₄ with (201) β-Ga₂O₃ Japan. J. Appl. Phys. 56 071101
- [11] Yuan L, Zhang H, Jia R, Guo L, Zhang Y and Zhang Y 2018 Energy-band alignment of (HfO₂)x (Al₂O₃)_{1-x} gate dielectrics deposited by atomic layer deposition on β-Ga₂O₃ (-201) Appl. Surf. Sci. 433 530-4
- [12] Dong H et al 2018 C-V and J-V investigation of HfO₂/Al₂O₃ bilayer dielectrics MOSCAPs on (100) β -Ga₂O₃ AIP Adv. 8 065215
- [13] Masten H N, Phillips J D and Peterson R L 2021 Charge trapping and recovery in ALD HfO₂/β-Ga₂O₃ (010) MOS capacitors Semiconductor Sci. Technol. 3
- [14] Wheeler V D, Shahin D I, Tadjer M J and Eddy C R 2017 Band alignments of atomic layer deposited ZrO₂ and HfO₂ high-k dielectrics with (-201) β-Ga₂O₃ ECS J. Solid State Sci. Technol. 6 Q3052-5
- [15] Carey P H, Ren F, Hays D C, Gila B P, Pearton S J, Jang S and Kuramata A 2017 Conduction and valence band offsets of LaAl₂O₃ with (-201) β-Ga₂O₃ J. Vac. Sci. Technol. B 35 041201
- [16] Masten H N, Phillips J D and Peterson R L 2019 Ternary alloy rare-earth scandate as dielectric for β-Ga₂O₃ MOS structures *IEEE. Trans. Electron. Devices* 66 2489–95
- [17] Chan S H et al 2016 Metalorganic chemical vapor deposition and characterization of (Al,Si)O dielectrics for GaN-based devices Japan. J. Appl. Phys. 55 021501
- [18] Kikuta D, Itoh K, Narita T and Mori T 2017 Al₂O₃/SiO₂ nanolaminate for a gate oxide in a GaN-based MOS device J. Vac. Sci. Technol. A 35 01B122
- [19] Gupta C, Chan S H, Agarwal A, Hatui N, Keller S and Mishra U K 2017 First demonstration of AlSiO as gate dielectric in GaN FETs; applied to a high performance OG-FET *IEEE*. Electron. Device Lett. 38 1575–8
- [20] Sayed I, Bonef B, Liu W, Chan S, Georgieva J, Speck J S, Keller S and Mishra U K 2019 Electrical properties and interface abruptness of AlSiO gate dielectric grown on 000 1⁻N-polar and (0001) Ga-polar GaN Appl. Phys. Lett. 115 172104
- [21] Chan S H 2018 First Developments of AlSiO Gate Dielectrics by MOCVD: A Pathway to Efficient GaN Electronics
- [22] Sayed I, Liu W, Georgieva J, Krishna A, Keller S and Mishra U K 2020 Characterization of AlSiO dielectrics with varying silicon composition for N-polar GaN-based devices Semicond. Sci. Technol. 35 095027
- [23] Sayed I, Liu W, Romanczyk B, Georgieva J, Chan S, Keller S and Mishra U K 2020 Improved operation stability of in situ AlSiO dielectric grown on (000-1) N-polar GaN by MOCVD Appl. Phys. Express 13 061010
- [24] Jian Z A, Sayed I, Liu W, Mohanty S and Ahmadi E 2021 Characterization of MOCVD-grown AlSiO gate dielectric on β-Ga₂O₃ (001) Appl. Phys. Lett. 118 172102
- [25] Ito K, Kikuta D, Narita T, Kataoka K, Isomura N, Kitazumi K and Mori T 2017 Band offset of $Al_{1-x}Si_xO_y$ mixed oxide on

- GaN evaluated by hard X-ray photoelectron spectroscopy *Japan. J. Appl. Phys.* **56** 04CG07
- [26] Huan Y-W, Sun S-M, Gu C-J, Liu W-J, Ding S-J, Yu H-Y, Xia C-T and Zhang D W 2018 Recent advances in β-Ga₂O₃-metal contacts *Nanoscale Res. Lett.* 13 246
- [27] Levinshtein M E, Rumyantsev S L and Shur M S 2001 Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (Hoboken, New Jersey: Wiley)
- [28] Jian Z A, Mohanty S and Ahmadi E 2020 Temperature-dependent current-voltage characteristics of β-Ga₂O₃ trench Schottky barrier diodes *Appl. Phys. Lett.* 116 152104
- [29] Ferris-Prabhu A V 1977 Charge transfer by direct tunneling in thin-oxide memory transistors *IEEE*. Trans. Electron. Devices 24 524–30
- [30] van Orman J A and Crispin K L 2010 Diffusion in oxides Rev. Mineral. Geochem. 72 757–825
- [31] Jagadeesh Chandra S V, Kim J-S, Moon K-W and Choi C-J 2012 Effect of post metallization annealing on structural and electrical properties of Ge metal-oxide-semiconductor

- (MOS) capacitors with Pt/HfO₂ gate stack *Microelectron*. *Eng.* **89** 76–9
- [32] Lu N, Bai W, Ramirez A, Mouli C, Ritenour A, Lee M L, Antoniadis D and Kwong D L 2005 Ge diffusion in Ge metal oxide semiconductor with chemical vapor deposition HfO₂ dielectric Appl. Phys. Lett. 87 051922
- [33] Jian Z A, Mohanty S and Ahmadi E 2020 Deep UV-assisted capacitance–voltage characterization of post-deposition annealed Al₂O₃/β-Ga₂O₃ (001) MOSCAPs Appl. Phys. Lett. 116 242105
- [34] Swenson B L and Mishra U K 2009 Photoassisted high-frequency capacitance-voltage characterization of the Si₃N₄/GaN interface J. Appl. Phys. 106 064902
- [35] Liu W, Sayed I, Gupta C, Li H, Keller S and Mishra U 2020 An improved methodology for extracting interface state density at Si₃N₄/GaN Appl. Phys. Lett. 116 022104
- [36] Liu W, Sayed I, Georgieva J, Chan S, Keller S and Mishra U K 2020 A systematic and quantitative analysis of the bulk and interfacial properties of the AlSiO dielectric on N-polar GaN using capacitance-voltage methods J. Phys. D: Appl. Phys. 128