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ABSTRACT

Single-particle tracking (SPT) experiments of lipids and membrane proteins provide a wealth of information about the properties of biomem-
branes. Careful analysis of SPT trajectories can reveal deviations from ideal Brownian behavior. Among others, this includes confinement
effects and anomalous diffusion, which are manifestations of both the nanoscale structure of the underlying membrane and the structure of
the diffuser. With the rapid increase in temporal and spatial resolution of experimental methods, a new aspect of the motion of the particle,
namely, anisotropic diffusion, might become relevant. This aspect that so far received only little attention is the anisotropy of the diffusive
motion and may soon provide an additional proxy to the structure and topology of biomembranes. Unfortunately, the theoretical framework
for detecting and interpreting anisotropy effects is currently scattered and incomplete. Here, we provide a computational method to evaluate
the degree of anisotropy directly from molecular dynamics simulations and also point out a way to compare the obtained results with those
available from SPT experiments. In order to probe the effects of anisotropic diffusion, we performed coarse-grained molecular dynamics sim-
ulations of peripheral and integral membrane proteins in flat and curved bilayers. In agreement with the theoretical basis, our computational
results indicate that anisotropy can persist up to the rotational relaxation time [r = (2D;) "], after which isotropic diffusion is observed.
Moreover, the underlying topology of the membrane bilayer can couple with the geometry of the particle, thus extending the spatiotemporal
domain over which this type of motion can be detected.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054973

I. INTRODUCTION of domains, compartmentalization, specific interaction patterns,
and interleaflet coupling in the underlying membrane.'”"'* They

Proteins, either integral or peripheral, are potentially opti- manifest themselves as trapping, hopping, or anomalous diffusion
mized for certain suitable environments to perform their func- modes.”” 7 All these phenomena have associated characteristic spa-

tions. For example, protein oligomerization' and lipid-protein
interactions—either via allosteric modulation”’ or membrane-
mediation’®—are central regulators of protein function. The for-
mation of functional protein-protein and protein-lipid units is
effectively driven by lateral diffusion along the membrane plane.
Therefore, lateral diffusion coefficients of lipids and proteins are
commonly extracted and used to characterize diffusion-limited pro-
cesses in membranes.”’

Protein and lipid diffusion measurements are increasingly used
to uncover countless details on the molecular-level organization
of cellular membranes. When combined with a proper theoret-
ical framework, even indirect measurements reveal the presence

tiotemporal scales and, therefore, certain experimental requirements
for detection. Recent advances in super-resolution approaches'®
enabled diffusion measurements that reach nanometer spatial scales
with a time resolution in the microsecond regime'*'*?’ —some even
without the need to use any probes that could perturb the stud-
ied system.”’ > Among these measurements, single-particle track-
ing (SPT) and high-speed AFM imaging”’’**> have been proven to
be the most powerful approaches, as they provide a time series of
molecular positions and/or orientations, which can be then analyzed
using different theoretical models.

An aspect that has received little attention is the anisotropy
of diffusive motion.”®”” Anisotropy can stem from either an
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anisotropic shape of proteins and protein complexes (hydrodynamic
anisotropy) or the anisotropic interactions of proteins with the lipid
bilayer (steric anisotropy).”*”’ The theoretical framework for par-
ticle anisotropy was already considered in the earliest works on
diffusion, in the context of dielectric dispersion of ellipsoidal parti-
cles.””*" Since then, anisotropic diffusion has been addressed only by
a fairly limited number of experimental and computational studies
covering three-dimensional liquids.”®! -’

Based on hydrodynamic considerations, anisotropy of the dif-
fusive motion in 2D is expected to be significantly larger than in
3D,*® thus producing a more biologically relevant impact. This is
intuitively explained by the fact that a 2D viscous medium must
undergo large displacements in order to flow around the long,
major axis of a particle. Contrary to this, 3D medium flow can
always circumnavigate an elongated particle using the shorter parti-
cle dimensions, thereby reducing the hydrodynamic drag. Therefore,
quasi-2D diffusion anisotropy of biomolecules is closer to the grasp
of super-resolution techniques.'® Moreover, cellular environments,
such as macromolecular crowding, membrane domains, curvature,
and confinement, should enlarge the affected spatiotemporal scales
due to potentially delaying the onset of normal Brownian diffu-
sion.!*"!7#9"41 The Saffman-Delbriick (SD) model,*” which provides
a theoretical description of the lateral diffusion of membrane pro-
teins, is the first place to look for hints and factors potentially favor-
ing anisotropic diffusion in biological membranes. According to the
SD model, the translational diffusion Dr is

1 . (IHM —Y)) (1)

Dr = kgTby = kg T -
T =kplbr = kp e e

where br is the translational mobility of the membrane inclusion,
the s are the viscosities of solvent and the membrane, a is the radius
of the diffusing particle, k is the thickness of the membrane, and y
is the Euler—-Mascheroni constant (~ 0.577). The rotational diffusion
Dg is given by a similar expression

1 1

Dr = kpTbr = kT - C =
R = KpTOR = kp s @

)

These single diffusion coefficients, Dt and Dg, describe the ideal
isotropic diffusion process that is time independent, or simply, they
describe the long time limit behavior of the motion.

Rethinking the SD model in terms of a full diffusion tensor
D instead of a single scalar diffusion coefficient reveals potential
factors influencing anisotropy such as anisotropic membrane vis-
cosity or asymmetric hydrophobic mismatch around the protein.*
The non-circular shape of the membrane inclusion also influences
diffusion, whether the diffuser is a single protein, a multimer, or a
larger macromolecular complex. The extension of the SD model to
anisotropic diffusion is not trivial. For example, diffusion parallel to
the larger dimension of the particle is typically the least slowed down
by hydrodynamic drag, indicating that it is the cross section of the
particle in the plane perpendicular to a given axis that determines
the magnitude of hydrodynamic interactions along the axis. On the
other hand, treatment of the rotational diffusion of anisotropic par-
ticles does not require fundamental conceptual changes; it suffices to
swap the square of the radius of the particle a* in the denominator
by its anisotropic counterpart a; - a; and introduce a “shape factor”
to correct for the perturbed hydrodynamics.*’
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The anisotropic curvature in lipid bilayers* can create or
enhance anisotropic diffusion by coupling with the asymmetry of the
particle.”” Cellular membranes experience varying mean and Gaus-
sian curvatures on the <100 nm scale for the endoplasmic reticulum,
mitochondria, vesicles, and on the plasma membrane during endo-
cytosis/exocytosis.” The nanoscopic geometry of the membrane is
frequently omitted in experiments and assumed to be flat. Curvature
can manifest itself as an apparent anomalous and anisotropic diffu-
sion in the laboratory frame,””*’ potentially amplifying the effects of
the anisotropic particle shape.

Single-particle tracking provides a molecular trajectory either
directly or by following an attached probe.”””***’ Current exper-
imental methods rarely provide information about the orienta-
tion of the diffusing particle. Notable exceptions are systems with
multiple simultaneously tracked labels*® or fluorescent methods
that follow the orientation of the transition dipole moment.*"*"
Analysis of single-molecule location and orientation trajectories
requires a theoretical foundation to connect studies of varying
scales.

Molecular dynamics (MD) simulations can predict both the
timescales and length scales of non-Brownian molecular motion and
benchmark available theoretical frameworks with atomistic resolu-
tion.”'~%? Unlike other methods, such as Brownian dynamics simu-
lations, that require as a priori input the anisotropic diffusion tensor
to probe anisotropy,” MD simulations rely simply on the molecu-
lar interactions as parameters; thus, any resulting anisotropy is an
inherent property of the studied system.

In this article, we perform MD simulations to show that inher-
ent anisotropic diffusion arises from diffusing membrane-bound
biomolecules of various shapes and that this effect can be magni-
fied by the curvature of the membrane. We demonstrate this phe-
nomenon and provide a theoretical method for SPT analysis. Our
analysis allows automatic determination of the major and minor
axes of a diffusing membrane-bound particle, given both position
and orientation information vs time. It also provides a straightfor-
ward comparison of MD simulations with SPT experiments. Most
notably, the anisotropic diffusion in our simulations extends into
the spatiotemporal regime, which is within reach of modern super-
resolution measurements and has possible biological significance.
Our simulations do not give a detailed curvature dependence of the
diffusion coefficient; however, the method could be applied to com-
putational or experimental data to achieve that. Furthermore, our
approach enables the experimental detection of structural informa-
tion on the diffusing molecule (e.g., protein aggregation) and the
host membrane (e.g., membrane curvature) through the analysis of
diffusion anisotropy.

This article is organized as follows: First, we discuss the the-
ory underlying the motion of anisotropic particles and introduce
the “Fixed Initial Angle Mean Square Displacement” for determin-
ing the diffusion tensor. This is followed by the presentation of the
fast converging three-step relation of Matsuda et al.,”* which is con-
sidered to be a robust method to determine anisotropy from single
particle experiments. The two methods are then applied to a range of
systems: (a) passive rigid rotors of various sizes in a 2D argon liquid
and (b) coarse-grained Martini models’>*° of a peripheral F-BAR
domain protein® and a transmembrane f-1 adrenergic receptor in
its monomeric and dimeric forms,”® each bound either to a planar
or a curved lipid bilayer.
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Il. THEORY
A. Dynamics of an anisotropic particle

To derive the equations of motion for an anisotropic particle,
one can consider the overdamped case of the Langevin equation

%=V2D-&(t), 3)

where D is the isotropic translational diffusion coefficient and &(¢) is
an independent correlation-free Gaussian random noise. This over-
damped limit of the Langevin equation is the relevant regime to
describe motion in viscous media, such as biomembranes, and it
is, therefore, well suited for the analyses of molecular dynamics and
SPT experiments on such systems.””

In the case of anisotropic lateral diffusion, one assigns differ-
ent translational diffusion coefficients along the major (D) and
minor (D,) axes of the diffusing particle, reflecting the different
hydrodynamic radii. Such differences in radii are readily accessi-
ble, as demonstrated by several experimental and theoretical exam-
ples using particles with high aspect ratios.”"°-*> The resulting
Langevin equation for the motion of the particle—as derived by Han
et al.”*—can be found in Appendix A. One can also define the char-
acteristic length (J), time (7), and anisotropy of the motion (1) as®’

I= (M - M (4)

2D, (Dy +D.)

Following this set of equations, a particle tends to diffuse preferen-

tially along a given direction on the timescale of 7 until the transla-

tional correlation is washed out by rotation. Consequently, in planar

systems, rotational averaging recovers the isotropic diffusion in the

long time limit*® with coefficient Diong = (D) + D1)/2, respecting
the isotropic nature of the membrane environment.

1/2
) ,7=(2D) 7", A

B. Detection of anisotropy in simulations

Consider the diffusion of an anisotropic particle that has Dy
aligned with the x axis of the laboratory frame (¢, = 0); ¢, is the
angle at which the particle diffuses fastest relative to the lab frame.
The particle obviously shows larger individual displacements along
the x axis than the y axis for lagtimes smaller than 7. Under these
conditions, the initial diffusion coefficients measured along both
axes will give limaoDx(A) = Dy and limaoDy(A) = D,.

After some lagtime on the order of A ~ 7, the directional infor-
mation is gradually lost due to rotational averaging. Eventually, in
the long time limit A > 7, as a result of the central limit theorem,
Dy(A) = Dy(A) = (D + D1)/2 is recovered, and isotropic diffusion
is observed. This means that the information about the initial ori-
entation of the particle, ¢,» can, in principle, be obtained on the
timescale A <« 7, albeit with less and less certainty as one approaches
the timescale 7. Finally, by performing this tracking experiment sev-
eral times, one can take an ensemble average over its many real-
izations. However, when an ordinary ensemble average is used, it
constitutes an average over all possible initial angles, that is, over all
possible ¢,. As generally it is not the underlying space but the parti-
cle itself that is anisotropic, this procedure results in isotropic diffu-
sion, where the anisotropy is averaged out by the rotations. In other
words, while at a fixed value of é, the distribution of the individual
displacements is asymmetric, the superposition—and subsequent
averaging—of particles with different ¢ orientations results in a
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symmetric distribution. Thus, to observe anisotropy, one must make
sure to restrict the ensemble average to a fixed initial orientation.

While this recipe does allow the determination of anisotropic
diffusion, the above described alignment of the particle requires a
priori knowledge of the major and minor axes of the diffusing object.
In molecular dynamics, one could take an arbitrary orientation ¢, as
the reference frame, such as the first configuration along the sim-
ulated trajectory. This angle ¢, is the value by which the arbitrarily
chosen reference frame must be rotated to correspond with the prin-
cipal frame, where D) = Dxx and D, = D,,. Then, before starting
a mean square displacement (MSD) calculation the usual way, an
root-mean-square deviation (RMSD) alignment must be performed
to fit the current initial configuration (A = 0), while also conceptu-
ally rotating along with it its whole trajectory, thereby transforming
the displacements of the particle along with the particle itself into the
reference frame. Once this is accomplished, the Fixed Initial Angle
Mean Square Displacement (FIA-MSD)* can be evaluated as

MSD;;(4; ¢o) = ([Axi(A)][Ax;(A)])g,» (%)

where (- - -) 9 denotes an ensemble average constrained to the initial
angle ¢. The FIA-MSD is related to the diffusion tensor D(A; ¢,,) as

D;j(A;¢o) = MSDy(4;¢0)/2t. )

In general, the arbitrarily chosen reference frame and the principal
frame in which the diffusion tensor is diagonal do not coincide, and
thus, one must resort to rotating the reference sequentially for every
single lagtime until the two frames align.

Because the diffusion tensor is just a covariance matrix, here
we propose to diagonalize it at every lagtime by a suitable rotation
matrix R(A; ¢,),

R(A;¢0)D(A; ¢0)R (A; ¢o) = diag(Dy, D). (7)

Explicit diagonalization of D(A; ¢,,) provides R(A;¢,) as a matrix
formed by the eigenvectors of the matrix D(A;¢,), with D and
D, being the corresponding eigenvalues. As a result of this proce-
dure, the off-diagonal elements are eliminated while the diagonals
are given by Dy = Dy and Dy, = D,. Note that in the absence of
anomalous diffusion, D and D, are independent of the lagtime.
This method for the evaluation of the anisotropy of transla-
tional diffusion is similar to the recent study of Linke et al., who
considered the 3D rotational diffusion of an anisotropic particle and
performed a least squares fit of the covariance matrix to the ideal
expressions® that assumes normal rotational diffusion. As even our
simplest systems do not seem to exhibit ideal diffusion, here we
considered an alternative approach to quantifying the error in our
calculations: A peculiar attribute of diagonalizing the diffusion ten-
sor at every time step is the fact that the algorithm is guaranteed to
find a “largest” and “smallest” axis in the dataset. In practice, this
prevents D and D, from converging to the same value for isotropic
particles, as the algorithm will find small numerical differences along
certain axes in the data and assign the larger (smaller) value to Dj
(D). By performing the eigenvalue calculation at a given value of
lagtime A, one obtains an estimate of the angle ¢, corresponding
to the diagonalization of D(A; ¢, ) at that lagtime. Of course, the real
particle should only be characterized by a single real ¢,. Hence, while
a mostly constant estimate of the angle ¢ (as a function lagtimes up
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to the timescale 7) signifies anisotropic motion, large changes indi-
cate that only statistically insignificant differences in the diffusion
tensor have been found by the diagonalization. The estimate of ¢,
becomes less accurate for particles with less anisotropy, for longer
lagtimes, and for shorter simulations. Finally, the best estimate of
¢, is calculated as an average on the range A < 7. After averaging,
the (@) is subsequently used in Eq. (5) to once more decompose the
diffusion tensor at various lagtimes and thus reanalyze the trajectory.

C. Detection of anisotropy from experiments

Several theoretical tools exist for the evaluation of particle
anisotropy in SPT experiments.”**! To provide means for com-
paring the simulated results to experiments, we implemented the
three-step relation of Matsuda et al., which was proven to have
smaller errors and faster rate of convergence than other existing
approaches.”

In their algorithm, Matsuda et al. considered relative dis-
placements between three consecutive positions. From the relative
displacements, a scatter plot is calculated. The deviation from a
circular distribution is then quantified by a radius of gyration ten-
sor (denoted by (Rf )), as discussed in Appendix C. Although the
exact relationship between (Rf) and the degree of anisotropy A is
unknown, the authors provide a simple polynomial equation fit-
ted to results simulated at different values of A and At’, the non-
dimensionalized time step.”* Despite the quadratic relation describ-
ing the connection between (Rf) and A, the equation [Eq. (17) in
Ref. 54] is a one-to-one mapping, and therefore, it can be readily
inverted to express A in terms of (Rf ) This inverse reads

AR AY) = _(puo+pudt) - (po+pudt)? (1 -R?)

2p20 4p3, po ®
with parameters
pro = (~1.41 £2.28) x 1072, )
P20 = —0.897 + 0.028, (10)
and
pi1=-1.44£0.16 (11)

taken from the original publication (Ref. 54). This expression
provides a convenient relationship to compare anisotropy values
obtained from computer simulations and SPT experiments. To dis-
tinguish between the two ways of calculation, we designated with
Amp and Agpr the values calculated from molecular simulations and
SPT analysis, respectively. It is important to point out that while both
methods can provide information about the degree of anisotropy of
the diffusing particle, only the molecular method gives direct access
to the diffusion coefficients along the major and minor axes of the
particle.

ARTICLE scitation.org/journalljcp

I1l. METHODS

A. Simulations

MD simulations of a 2D model Lennard-Jones (L]) liquid with
various inclusions and extensive coarse-grained (CG) Martini*” sim-
ulations were performed with the GROMACS 2020 package®“® to
evaluate the degree of diffusion anisotropy in molecular systems.

The L] systems investigated here are similar to those used by
Jeon et al.°® The L] beads were parameterized to represent argon
atoms, with ¢ = 0.3405 nm and ¢ = 0.996 kJ/mol.®” Simulations were
performed in the canonical NVT ensemble (essentially NAT with a
fixed area, A, as all particles were initially positioned on a plane and
remained there) at the boiling temperature of argon (87.3 K), and
the area of the simulation box was chosen to approximately repro-
duce the 3D diffusion coefficient of argon at 1 bar pressure. In order
to investigate the effect of particle anisotropy in simple systems, we
have simulated the following argon systems: (I) 2D argon without
inclusions, (II) 2D argon with a four-bead linear rotor (connected
by rigid bonds), (IIT) 2D argon with a six-bead linear rotor, (IV)
2D argon with an eight-bead linear rotor, and (V) 2D argon with
a hexagonal inclusion of seven beads. The geometry of the linear
rotors was held fixed by virtual sites, which prevented any “buckling”
of the particles. It is important to note that the term “rotor” in
this context does not imply any active mechanism. For each case,
1000 solvent molecules were used in 100 ns long simulations, per-
formed with a 1 fs step size and repeated five times. The temperature
of the systems was controlled by the stochastic velocity rescaling
algorithm algorithm,*® while the simulation box dimensions were
Ly=L,=11.6 nm and L, =4 nm. No charges were present, and
the L] interactions were truncated at 1 nm, which ensured that all
interactions took place along the 2D plane.

To investigate more realistic systems containing proteins,
CG Martini™" simulations of a peripheric F-BAR domain (PDB
id: 2V00O)*” and the B;-adrenergic receptor (PDB id:4GPQO)*
monomer (B;-AR-m chain B) and dimer (B;-AR-d chains A &B)
were performed in bilayers composed of POPC lipids (Fig. 1). These
bilayers were fully hydrated, and 10% of the solvent was modeled as
the antifreeze particles to prevent the well-known crystallization of
the solvent in the Martini force field.”> Ions were used to neutralize
any excess charge of the proteins. Although F-BAR is not an integral
membrane protein, it might still exhibit anisotropic lateral diffu-
sion due to its association with the membrane and its highly asym-
metric shape. F-BAR is known to interact strongly with negatively
charged lipids.”” However, as we have not found any clear differ-
ence between such membranes and neat PC, we chose to use the neat
PC for all simulations in this work. The dimeric B;-AR protein is a
transmembrane complex that also has an asymmetric shape, while
the monomeric form is essentially cylindrical and thus expected to
diffuse isotropically. To quantify the impact of curvature on the dif-
fusion coefficient observed in SPT experiments, we simulated the
proteins in both planar and curved bilayers. The curved membranes
were generated by the BUMPy script’' and maintained by dummy
particles that repelled the acyl chains. The 50 us long simulations
were performed using the New-RF Martini simulation parameters’>
with a time step of 25 fs. The input parameters are available under
the DOIs listed in Table II1. As a reference for the curved systems,
a similar system was simulated without any additional proteins, for
20 ps. Overall, more than 600 us of CG simulations were performed
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B-AR-d-curved
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POPC F-BAR
B;-AR monomer 2
B;-AR monomer 1

F-BAR-flat

FIG. 1. Side (top row) and top (bottom row) views of the final conformations of three coarse-grained systems (see Table | for naming). Protein coloring in the legend. In
POPC, the choline (NC3) bead is shown in yellow, whereas the rest of the molecule is shown in green. Water, counter-ions, and the dummy particles that are used to
maintain the curved membrane conformation are not shown for clarity. The shown systems are chosen as examples: BsAR-m-curved is identical to BsAR-d-curved but
with only one protein monomer. B;AR-m-flat and B1AR-m-flat are identical F-BAR-flat but with the protein monomer or dimer embedded in the bilayer instead of the F-BAR
bound onto it. The size bars are for the curved membranes, yet the flat ones cover a very similar area of 37 x 37 nm?.

in the framework of this study. A summary of all systems can be seen
in Table I.

B. Anisotropic diffusion

For the computation of the FIA-MSD, the first frame of the first
replica of every simulated trajectory of every inclusion-type was con-
sidered as a reference. This way, the same reference orientation was
used to analyze all replicas of F-BAR/B;-AR in both the curved and
flat systems. Then, the rotation matrix required for the least-squares
fitting of the given conformation onto the reference was computed.

As the observable of interest is inherently two dimensional, the rota-
tion matrix was calculated over the system projected onto the macro-
scopic plane of the membrane. While this is trivial in the case of B;-
AR, the possible rotation along the major axis (along the axis lying in
the macroscopic plane of the bilayer) of F-BAR causes the rotation
matrix to spuriously switch signs. To avoid this, the orientation of F-
BAR was calculated based on two representative points of the protein
backbone.

Using the orientation encoded in the rotation matrix, the
FIA-MSD was evaluated by aligning the particle at lagtime A =0
with the reference while also rotating its trajectory along with it. This

TABLE I. Summary of the simulated 2D argon “toy model” and coarse-grained Martini systems.

Name Inclusion Solvent Length Replicas
2D argon
Rotor 4 4-bead 1000 Ar 500 ns 5
Rotor 6 6-bead 1000 Ar 500 ns 5
Rotor 8 8-bead 1000 Ar 500 ns 5
Disk 7-bead 1000 Ar 500 ns 5
CG Martini
F-BAR-flat F-BAR 4000 POPC 50 us 2
F-BAR-curved F-BAR 6108 POPC 50 ps 2
B;-AR-m-flat B1-AR monomer 4000 POPC 50 ps 2
B;-AR-m-curved B;-AR monomer 6108 POPC 50 ps 2
B;-AR-d-flat Bi-AR dimer 4000 POPC 50 us 2
B;-AR-d-curved B;-AR dimer 6108 POPC 50 ps 2
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way, the particle always started diffusion from the same initial ori-
entation, albeit not the one corresponding to the principal frame,
but an arbitrarily chosen one. Having calculated the FIA-MSD, the
orientation of the principal frame (where the MSDs along the two
axes are uncorrelated, thus the diffusion coefficients are decoupled)
with respect to the reference frame was obtained by diagonalization
of the reference-frame MSD tensor based on Eq. (7). This procedure
provides not only the diagonal values D and D, at every lagtime
but also an associated angle. Note that the diffusion coefficients pre-
sented in this work were not corrected for finite-size effects,”> as we
are interested in the general phenomenon of anisotropic diffusion
and not the absolute magnitude of the coefficients. Furthermore, the
diffusion coefficients reported for the curved systems were obtained
by projecting the motion of the particles onto the macroscopic plane
of the bilayer.

For the principal frame to be meaningful, this angle must be
constant for lagtimes up to the characteristic time of anisotropic dif-
fusion. Of course, finite statistics and the molecular flexibility of the
particles add noise to ¢,. To eliminate this effect, we calculated the
average (¢o) over an interval of lagtimes and across replicas and per-
formed a second decomposition similar to Eq. (7) but using (¢o)
without lagtime-dependence.

Furthermore, the three-step relation of Matsuda et al.”* was also
implemented along with the inverted relationship between <Rf ) and
A. These two methods provide a convenient way to compare compu-
tationally and experimentally available data. The source code written
in Python for these two procedures is freely available on GitHub at
https://github.com/balazsfabian/MD_anisotropy.

IV. RESULTS AND DISCUSSION
A. A model system: 2D argon

As a simple model system, we have analyzed the behavior of
solutes in a 2D argon liquid. Despite being only two dimensional

Rotor 4 Rotor 6
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and thus lacking any surrounding medium, such two-dimensional
systems still qualitatively capture the Saffman-Delbriick scaling rela-
tions in terms of rotational and translational dynamics.*"”* More-
over, their diffusion behavior has been demonstrated to agree with
coarse-grained and atomistic models of lipid membranes.”"*° How-
ever, following the Stokes’ paradox, diffusion coefficients in a two-
dimensional fluid diverge with increasing system sizes, as there is
no solvent through which momentum could be transferred. This
issue also haunts simulations of quasi-two-dimensional lipid bilay-
ers with limited amounts of solvent. In that case, however, a theoret-
ical framework exists for the extrapolation of diffusion coefficients
to infinite system sizes in terms of lateral dimensions as well as the
height of the solvent layer.”” Still, the 2D argon liquid is a suit-
able simplification for a qualitative study of anisotropic diffusion,
where absolute values of the diffusion coefficients are not central.
In the case of passive linear rotors, the major and minor axes of
anisotropic diffusion are immediately obvious from symmetry con-
siderations. The diffusion coefficients according to Eq. (6) and the
calculated orientation of the principal frame with respect to the ref-
erence frame—that is the angle between the major axis of the particle
and the x axis of the simulation box—can be found for all the sys-
tems in Fig. 2. For the sake of simplicity, the reference and principal
frames were made to coincide by choosing a reference where the
major axis of the particle was aligned with the x axis of the simu-
lation box. The largely constant value of ¢, across replicas and up to
lagtimes on the order of the characteristic time of anisotropic diffu-
sion (1) are indicative of anisotropic diffusion even for the smallest
solutes. This clearly contrasts the case of the circular disk for which
neither a single curve of a given replica nor the different replicas
converge to a common orientation (see Fig. 2). The diffusion coeffi-
cients present a similar picture, namely, the diagonalized diffusion
tensors are anisotropic, and the diffusion coefficients Dy and D,
are centered symmetrically around the isotropic value D. Further-
more, they tend to converge to the average diffusion coefficient D

Rotor 8
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D
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Disk
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FIG. 2. (Top) Lateral diffusion coefficients of the various inclusions simulated in a 2D argon fluid. The solid black curves represent the diffusion coefficients along the major
and minor axes of the particle (D above, D, below), while the dashed line is the isotropic value (D). (Bottom) Angle formed by the major axis of the particle between the
principal and reference frames. The different curves correspond to the five replicas. The red dashed vertical line corresponds to the timescale of anisotropic diffusion (7).
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on the timescale 7 before diverging because of the lack of statistics. 120 =77
The behavior of the circular disk is again qualitatively different, as 100 M .
Dy and D, initially coincide and gradually diverge as the statistics . 80 ]
worsens. E 6o L
The overall diffusion in the 2D LJ systems with/without solutes = e

closely matches the behavior observed in Jeon et al.,”’ namely, an =40 |- .
initial regime of superdiffusion apparent from the upward curving 20 |- |
MSD (not shown here) followed by normal diffusion. In these sim- e S i

ple 2D liquids, the surrounding medium is isotropic, so there should
be no direct coupling between anomalous and anisotropic diffusion,
although the presence of anomalous behavior clearly influences the
observed degree of anisotropy by changing the isotropic diffusion
coefficient. In addition to the anomalous isotropic diffusion coeffi-
cient, D and D, are distinctly different from the ideal case repre-
sented by Eq. (B1) (see Appendix B), even after the subtraction of
the anomalous isotropic term D.

B. A peripheral protein: F-BAR domain

To investigate the effects of anisotropy on the dynamics in a
more biologically relevant setting, we first evaluated diffusion of
the F-BAR domain attached onto flat and curved membranes. The
trajectories of all the replicas projected onto the xy plane can be
seen in Fig. 3. The area covered by the particle in the flat system
is much larger than in the curved one. In addition, in the case
of curved membranes, the geometric restriction imposed on the
particle by the curvature of the bilayer is apparent from the hor-
izontal “slabs” in the plot of the trajectory. Interestingly, the dis-
tance between these slabs does not correspond to the wavelength of
the curved surface. It is merely an artifact of projecting the inher-
ently 3D motion of the particles onto the macroscopic plane of
the bilayer, albeit amplified by the anisotropic motion of the pro-
teins and their curvature preference. More explicitly, the major axis
of the particle tends to be parallel to the x axis of the laboratory
resulting in large displacements along the x axis, while the displace-
ments along the minor axis are further decreased as a result of the
projection.

First, we computed the Mean Square Rotation (MSR) of F-BAR
in all of the simulated system and extracted the rotational diffusion
coefficients D, from linear fits on the range between 100 ns and
1 ps. The obtained values are presented in Table I, while the log-log
plot of the curves can be seen in the top panel of Fig. 4. On the
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FIG. 3. Trajectories of the simulated CG F-BAR domains projected onto the macro-
scopic plane of the membrane. Green and light green represent the two replicas of
the flat system, while those of the curved system are colored in red and pink. The
repeat distance along the curved y axis is ~34 nm. The trajectories are arbitrarily
shifted for visualization.

surface of the flat membrane, the F-BAR can rotate freely and
rapidly. However, on the curved bilayer, its rotation is highly con-
strained by the geometry of the membrane, as supported by a more
than ten-fold decrease in the rotational diffusion coefficient and
a subdiffusive anomalous diffusion exponent.”” The characteristic
timescales of anisotropy 7 computed from D, are shown in Table II.
It must be noted that even though a 7 value can be calculated for
any particle, it represents the relevant timescale only for a parti-
cle that has an appreciable degree of anisotropy A. According to
these values, the anisotropy of the F-BAR domains can be detected
on a 1 us timescale in the planar case and on a 10 us timescale
in the curved one. Therefore, based on our simulations, its tempo-
ral scale puts anisotropy within reach of experimentally measurable
quantities.*®”>7”

To further characterize the rotational dynamics of the F-BAR,
we calculated the probability density function of its 2D orientation
in the macroscopic plane of the membranes. The angle was taken
to be formed by the x axis of the laboratory frame of reference and
the major axis of diffusion, the determination of which is discussed
below. The calculated curves are presented in the top panel of Fig. 5.
The results related to the planar bilayers reinforce the idea that the
anisotropic motion of the particle does not in any measure induce
anisotropy in the plane of the membrane. The situation is quite
the opposite, as it is the curved lipid bilayer that exerts forces that

TABLE II. Major, minor, isotropic, and rotational diffusion coefficients and anisotropy parameters calculated “from MD” (Ayp) and “from SPT"(Aspr) for the F-BAR and B4-AR
monomer and dimer proteins in flat and curved POPC bilayers. The translational diffusion coefficients were averaged from 10 to 100 ns, whereas D, was averaged 100 ns to
1 us. Avp, |, and 7 are derived from the diffusion coefficient following Eq. (4), while Agpr is obtained by the three-step relation of Matsuda et al.>

Translational diffusion (107 cm?/s)

Name D D, D D, (10° rad?/s) AMD Aspr I (nm) 7 (us)

F-BAR-flat 21.1+0.9 14.2 £ 0.6 17.7 £ 0.6 52+0.7 0.19 + 0.04 0.26 + 0.04 59+04 1.0+ 0.1
F-BAR-curved 109+24 3.2+0.1 70+1.2 0.4 +0.1 0.54 + 0.09 0.48 + 0.02 139+ 34 13.2+4.2
Bi-AR-m-flat 18.0+ 0.4 172+ 0.7 17.6 + 0.3 26.0 +£ 0.3 0.02 £ 0.01 0.05 + 0.04 26+0.1 0.2+0.1
Bi-AR-m-curved 8.4+0.7 59+0.2 7.1+0.4 62+1.3 0.17 +£ 0.06 0.13 + 0.04 34+03 0.8+0.2
Bi-AR-d-flat 13.8+0.4 11.3+0.1 12.6 £ 0.2 11.6 £ 0.8 0.09 + 0.01 0.18 + 0.05 3.3+0.1 0.4 +0.1
Bi-AR-d-curved 6.5+0.3 3.2+0.2 4.9+ 0.2 0.3+0.1 0.35+ 0.01 0.21 + 0.02 18.0 + 8.7 169 + 0.1
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FIG. 4. Mean Square Rotation of the various inclusions in the flat (green and light
green) and curved (red and pink) POPC bilayers. Dashed lines represent different
values of the anomalous diffusion exponent™® (¢?(A)) = D,A*. Linear fits of D;
were made on the range from 100 nm to 1.0 ys.

restrain the free rotation of F-BAR, thereby increasing the degree of
anisotropy in its motion.

The next step of the analysis was the calculation of the
FIA-MSDs and diffusion tensors by Egs. (5) and (6), as described in
the Methods section. Upon diagonalization of the diffusion tensor
at every lagtime, one finds that the angles between the principal and
reference frames remain constant almost up to 7 and agree closely
with each other in the two replicas, as seen in the top panel of Fig. 6.
The translational diffusion coefficients obtained through the diago-
nalization are presented in the top panel of Fig. 7 (red dashed lines).
In order to emphasize the uniqueness of the major axis of the par-
ticle, the curves in Fig. 7 were recalculated using (¢o) as averaged
across both replicas from 10 to 100 ns (black lines). Considering that
the obtained curves show an appreciable degree of anomalous diffu-
sion, which also has an impact on the anisotropy [at least through the
denominator of A, see Eq. (4)], we also fitted the diffusion coefficients
between 10 and 100 ns, which proved to be a suitable compromise to
minimize the effects of anomalous behavior, while still being smaller
than 7. The major, minor, and isotropic diffusion coefficients can be
found in Table II.

The characteristic quantities of the anisotropic diffusion calcu-
lated from the diffusion coefficients are collected in Table II. Sim-
ilar to the 7 values, the characteristic lengthscale I of anisotropic
diffusion also falls in the regime of experimental methods.”**#767
The orientational constraint imposed on F-BAR by the curved
bilayer greatly reduces both the translational and rotational diffu-
sion of the protein while increasing the timescales and length scales
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FIG. 5. Probability density function of the protein orientation in the flat (green and
light green) and curved (red and pink) POPC bilayers. The angle ¢ is taken to
be the angle between the major axis of diffusion and the x axis of the laboratory
frame. In all cases, the proteins exhibit free rotation in the flat systems. This is in
contrast to that observed in the curved systems, where the preferred orientation of
the major axis of the particle coincides with the non-curved x axis.

of the anisotropic behavior. In particular, the measured degree of
anisotropy of the motion is enhanced by the decrease in the isotropic
diffusion coefficient accompanied by similar differences between the
diffusion along the major and minor axes of the protein.

For the sake of comparison, the degree of anisotropy measured
by Han et al. for a prolate ellipsoid with an aspect ratio of 8:1 (radii
r1 =24ymandr, = r3 = 0.3 um>°) was found to be A = 0.605, which
is commensurate with the value Ayp = 0.54 obtained for the F-BAR
whose ratio is ~5:1 (radii r; = 18 nm and r, = r3 = 3.3 nm).

C. Transmembrane proteins: Monomer and dimer
of the g, -adrenergic receptor

To cover a wider range of scenarios, we also simulated the B; -
AR monomer and dimer in the flat and curved bilayers. Similar to
the F-BAR domain, we calculated the mean squared rotation, as
seen in Fig. 4. The B;-AR dimer exhibits anomalous rotational dif-
fusion in the curved system, possibly owing to the more constrained
rotation compared to the monomer. Correspondingly, going from
the planar to the curved membrane, the rotational diffusion coeffi-
cient decreases about four-fold for the monomer, but 30-fold for the
dimer, which is an even larger change than in the case of F-BAR.
This is also supported by the angle distribution (see Fig. 5), where
only a mild angle preference can be observed for the monomer, but
rather a strong one in the case of the B;-AR dimer. The rotational
diffusion coefficients can be found in Table II.
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FIG. 6. The angle ¢, representing the major axis of diffusion of the particle as
a function of the lagtime 7 in the flat (green and light green) and curved (red and
pink) POPC bilayers. Vertical dashed lines: characteristic timescales of anisotropic
diffusion as computed from the D, values, with the green line corresponding to
flat and the red line to the curved systems. Horizontal dashed lines: values of
¢, averaged between 100 ns and 1.0 ps for the individual replicas. In all of the
systems presented, the value of ¢, remains fairly constant in lagtime and across
replicas, with the exception of the B{-AR monomer on the flat membrane. In the
latter, there are significant differences in lagtime as well as between the individual
replicas.

The FIA-MSDs were also computed in the same manner as for
the F-BAR domain. The ¢, values representing the angle between
the instantaneous major axis and the x axis of the laboratory frame of
reference agree closely among the replicas and for varying lagtimes,
with the exception of the B;-AR monomer in the flat membrane.
The 2D projection of this protein is close to circular and, therefore,
its motion is expected to be isotropic, as supported by our results.

The diffusion coefficients along the major and minor axes of the
particle show clear anisotropy for the dimer in both geometries and
present strong evidence for the isotropy of the monomer in the flat
membrane. The curved system exhibits hints of anisotropic behav-
ior; however, the diffusion coefficients at short lagtimes are fairly
close to each other. Based on the argon “toy model” system, the prox-
imity of these two curves at small lagtimes is a hallmark of isotropic
behavior, as indicated by the circular disk data in Fig. 2. Therefore,
the anisotropic diffusion of the B;-AR monomer in the curved sys-
tem cannot be definitively stated. The various translational diffusion
coefficients are collected in Table II.

Just as for F-BAR, the curvature of the membrane increases the
length scale and timescale and the degree of anisotropy for both the
B;-AR monomer and dimer. The values can be found in Table II.
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The differences seem to originate from the slower isotropic and
rotational diffusion of the proteins, while maintaining the differ-
ences between the major and minor axes. Notably, the ratios of the
diffusion coefficients of the dimers and the monomers are always
~ 70%. In the framework of the Saffman-Delbriick model for cylin-
drical diffusers, this difference suggests that a dimer would have
twice the hydrodynamic radius of a monomer [D ~ In(R)] accord-
ing to Eq. (1).*> This seems somewhat excessive, especially as the
dimers and monomers are expected to have similar hydrodynamic
radii along the parallel axis, which dominates the dimer diffusion
(D) > D). Nevertheless, we are not aware of a general theoret-
ical framework that would describe the lateral diffusion of non-
cylindrical proteins.

D. Effect of curvature on anisotropic diffusion

When taking into account the orientational preference of the
particle as seen in Fig. 5, one can consider the curved membrane
as an external, position dependent torque on the peripheral F-BAR
domain, reminiscent of the theoretical setups considered by Grima
and Yaliraki.”® However, the idealizations implicit in the derivation
of their equations prevent meaningful comparison with the present
results. For example, in our simulations just as in reality, the inter-
actions between the proteins and the membrane differ in the two
environments.

In order to investigate the effect of the curvature, we com-
puted the lateral diffusion coefficients of the lipids along the x and y
axes separately in the neat, curved system. The obtained values are
Dylipias = 6.35 x 1077 em®/s and Dyjpias = 2.43 x 1077 cm?/s, with
Dy being in accord with the literature value of isotropic diffusion
for lipids on planar membranes, in the Martini model."’ Remark-
ably, the isotropic D of the proteins is always decreased by curva-
ture according to the geometric ratio” D, sipids/Dxlipids ~ 0.4. Even
though the anisotropic diffusion coefficients show no such clear ten-
dencies, the degree of anisotropy is always enhanced by the curva-
ture of the membrane or even induced, as observed for the B;-AR
monomer.

A peculiar feature of the rotationally constrained diffusion of
the F-BAR domain is that Dy > D and D, < D, (see Fig. 7). This
finding seemingly contradicts the fact that during the anisotropic
diffusion, Dy (D)) should be maximal (minimal). The apparent con-
tradiction stems from the anisotropy of the environment and can
be resolved by the following picture: the rotationally constrained
particle is predominantly oriented along the x axis, so its D) value
is unhindered compared to D,, which lies against the crests of
the membrane. Rotating away from this preferred orientation by a
small angle points the major axis of the particle toward the crests of
the undulating membranes, and thereby, the translation along the
major axis decreases. Although in this arrangement, the diffusion
also decreases along the x axis, but only to a lesser extent.

E. Comparison of experimental and simulation
approaches

To provide more direct means for experimental comparison,
we have implemented the three-step relation of Matsuda et al.,
which requires as input only the rotational diffusion coefficient and
the particle trajectory as measured in SPT. Matsuda et al. detected
diffusion anisotropy with a weak dependence on the value of D, such
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FIG. 7. Lateral diffusion coefficients of the F-BAR, B1-AR monomer, and dimer proteins in flat (top) and curved (bottom) POPC bilayers, averaged over the two replicas. The
dashed red lines represent the diffusion coefficients from the diagonalization of the diffusion tensor at the corresponding lagtime, while the black curves are the diffusion
coefficients along the average major and minor axes of the particle as determined by (¢ ). The green curves are the diffusion coefficients obtained along the x and y axes
of the laboratory frame of reference. Gray dashed line: isotropic diffusion coefficient. Vertical black dashed line: characteristic timescale of diffusion. Horizontal black dashed

line: anisotropic diffusion coefficients as averaged from 100 ns to 1.0 us.

that approximate values produce meaningful results. The primary
experimental limitation in applying the Matsuda et al. method is the
spatial and temporal trajectory resolution. Comparing the two meth-
ods is a crucial benchmark that is only possible by using computer
simulations where the molecular orientation is known at all times.
Fortunately, Aspr values also indicate a degree of anisotropy that cor-
relates well with Ayp, with R? = 0.8. The agreement between the two
approaches is far from evident regarding the fact the Amp values were
calculated from diffusion coefficients obtained by averaging over rel-
atively large lagtimes, while the Aspr values are, in principle, more
reflective of the A — 0 limiting case. The deviations between the val-
ues obtained using these approaches have three major sources. First,
the three-step relation inherently only uses information contained in
short lagtimes. Second, the procedure completely neglects the orien-
tation of the particle and only uses the information contained in the
subsequent translational steps. Finally, the mapping between R? and
Aspr [Eq. (8)] was derived assuming ideal diffusion, which is typically
not a valid assumption.

The three-step relation of Matsuda et al. does not require the
knowledge of the molecular orientation. Modern single-particle
imaging techniques are increasingly able to simultaneously reveal
both the molecular orientation and translation on timescales and
length scales comparable to our MD simulations, thus enabling more
sophisticated and illuminating analyses. For the direct measure-
ment of rotational and translational trajectories, one could employ
experimental methods such as iSCAT,*® MINFLUX,*" or polar-
ized localization microscopy.” Super-resolution single-molecule
localization microscopy methods (i.e, PALM/STORM)®"#* are
typically limited to localization precision >10 nm, which is
greater than the size of most relevant biomolecules. Accordingly,

single-molecule localization microscopy is traditionally unable to
report the single-molecule orientation for biomolecules labeled with
two chromatically distinct fluorophores. Rather than using small-
molecule fluorophores, proteins and lipids have been successfully
labeled with large fluorescent microspheres such that the localiza-
tion and orientation of the diffuser could be resolved.* If coupled
with iSCAT, such a technique has the potential to measure single-
molecule localization and orientation on membranes at 1 MHz,*’
but with the complication of having labels orders-of-magnitude
larger than the biomolecule. The emerging microscopy method of
MINFLUX has demonstrated SPT with single-fluorophore lateral
localization precision to 2.4 nm at 40 Hz or 20 nm at 8.5 kHz,
depending on the allocation of the photon budget.*’

Detecting the location and orientation of a single biomolecule
with a single fluorophore is feasible by measuring the anisotropic
fluorophore emission if the orientation of the fluorophore is chem-
ically coupled to that of the biomolecule. Polarized localization
microscopy has been employed to examine the mechanism of motor
proteins stepping along actin® and nanoscale membrane bending.*
Optimal conditions may yield a 5 nm two-degree single-fluorophore
localization precision with low background, bright fluorophores,
and slow imaging.”® Clever sample preparation provides additional
opportunities for connecting experiments to simulations. Imaging
live cells has additional challenges of fluorescence background that
reduces the localization precision and dynamic variability in the
membrane topography. Model bilayers have the potential to iso-
late key sample parameters with the benefit of controlled mem-
brane composition and shape®” as well as integrating EM fields and
microfluidic flow for dynamic control of sample anisotropy.*® As
demonstrated in our simulations, engineered membrane properties
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and protein conformations may regulate the diffusion anisotropy;
the methods developed in this manuscript can be applied to analyze
the diffusion anisotropy and reveal otherwise irresolvable properties
of the underlying membrane or diffusers.

V. CONCLUSIONS

In this work, we provide a framework for extracting parame-
ters describing anisotropy of diffusion from computer simulations.
We detect anisotropy using extensive coarse-grained simulations
in the regime of microseconds, which is in the reach of current
super-resolution SPT measurements.'*”*”® Notably, our simulations
demonstrate that anisotropy can arise either from the molecular
shape or from the underlying membrane topology. The strongest
anisotropy arises when both are present. Moreover, both integral
membrane proteins and peripheral proteins show clear diffusion
anisotropy, which is somewhat unexpected.

Simulations provide particle positions and orientations at all
timescales and allow to benchmark experimental methods with
lesser explicit information. Direct comparison can be achieved by
analyzing our trajectories as if they were obtained from SPT mea-
surements, that is, only using molecular positions and the rota-
tional diffusion coefficient of the diffusing particle. By applying the
methodology of Matsuda et al.”* to our reduced data, we extracted
anisotropy parameters that are in reasonable agreement with those
obtained from the more accurate analysis. This is striking when
considering their ideal diffusion assumptions but also that probe
somewhat different timescales.

The observed anisotropy in motion spanning multi-
microsecond timescales may have an impact on diffusion-limited
reactions in specific membrane topologies via influencing molecular

J

d[¥(O)| | \/2Djcos’ g(t) +\/2Dsin” ¢(t)

dt (1)

and the rotation of the particle is given by

W0 aDe (), (A2)

where £,(),&,(¢), and §,(t) are random forces with (&a(t)En(1))
=8(t' - t), (£4(t)) = 0, n = x, , 7. These equations can be integrated
in a straightforward manner to obtain the trajectory of the particle.

APPENDIX B: TEMPORAL EVOLUTION
OF THE DIFFUSION COEFFICIENTS
OF AN ANISOTROPIC PARTICLE

Assuming independent, ideal diffusion along the major and
minor axes of the particle, the ensemble average of the time

<\/ﬂ— \/ﬁ) cos ¢(t) sin ¢(t)
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encounter rates.”” Moreover, some membrane protein dimers

diffuse anisotropically while monomers do not. Using such infor-
mation and carefully analyzing single-particle tracking data can
therefore be used to detect protein oligomerization, which plays
a key role in signaling.! Similarly, in experiments often limited
to probing motion in two dimensions, anisotropy of diffusion
could be used as a proxy to study membrane topology.””*’ We also
find that non-symmetric protein-lipid interactions do not really
contribute or enhance protein anisotropy as seen in our B;-AR
dimer system. This is somewhat expected, as the dependence of
the diffusion coefficient in the Saffman-Delbriick model [Eq. (1)]
on many membrane parameters is relatively weak, especially since
local changes in membrane viscosity or membrane thickness are
relatively small. Finally, our results also contribute to the verifica-
tion of lateral diffusion models,”” which are free from symmetry
constraints imposed on the particle.
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APPENDIX A: EQUATIONS OF MOTION
OF AN ANISOTROPIC PARTICLE

In the case of an anisotropic particle, the center of diffusion in
the laboratory-fixed frame of reference can be given by the following
set of equations:

(/2D - /2Dy ) cos ¢(t) sin ¢() 10

> A
/2Dysin” ¢(t) +/2D.cos” ¢(t) | |&(t) (A

dependent diffusion tensor starting from a fixed ¢, is given by”®

1- e—4D,A
8D,A )

1 — =402
8D,A )

1 — 4D
8D,A )

where D is the isotropic diffusion coefficient, AD = D) =Dy, D; is
the rotational diffusion coefficient, and A is the lagtime. When the
reference frame coincides with the principal frame (¢, = 0), the dif-
fusion tensor D(A; ¢, = 0) is diagonal at all lagtimes. Otherwise,
the diagonal elements converge to D and the off-diagonals to 0 as
A — oo.

Dy (A;¢0) =D + ADcosZc/)O(
Dy, (As¢o) :D—ADc052¢o( (B1)

Dyy(A; ¢0) = Dyy(A) = ADsin 2¢>0(
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APPENDIX C: THE THREE-STEP RELATION
OF MATSUDA et al.>*

In their algorithm, Matsuda et al. first considered the rela-
tive displacements between three consecutive positions X1, Xx, and
X,+1 along the trajectory, separated by the non-dimensionalized time
step At'. The displacements are denoted as Ax,—1 = X, — Xu—1, and
AX, = Xn4+1 — Xn, While the non-dimensionalization of the time step
is achieved by the relation At" = D;At, with At being the dimensional
time step and D; being the rotational diffusion coefficient. To allow
the reliable detection of anisotropic behavior, At' « 1 must hold;
otherwise, the anisotropy of the displacements is no longer observ-
able due to rotational averaging. From the relative displacements, a
scatter plot is calculated as

&n | |AXy||CcOSyn
Bn At

, (C1
sin yy

where y, is the angle formed by Ax, and Ax,_;. Finally, the shape
of the obtained scatter diagram is characterized by the radius of
gyration tensor Rg, which is defined as

AR
S (e~ () (Bi — (B))

S (= (@) (Bi — (B))

Y (B (B
(C2)

In the limit of N — oo, the off-diagonal elements vanish, and the
diagonals converge to (rxz) and (ﬁz) The ratio of the diagonal

elements, (R?) = (*)/(«’), falls in the range (0,1].
When the particle is completely isotropic, one has (Rf ) =1

and A = 0, while <R§ ) < 1 indicates a certain degree of anisotropy,
therefore corresponding to A > 0. Even though the exact relationship
between (R?) and A is unknown, the authors make this connec-
tion by fitting a simple polynomial equation to results simulated at
different values of A and At'.>

DATA AVAILABILITY

The data that support the findings of this study are
openly available in Zenodo under reference numbers collected
in Table III. The tools used in the analysis can be found at
https://github.com/balazsfabian/MD_anisotropy.

TABLE lIl. DOIs of the performed CG simulations.

System Geometry Zenodo doi
F-BAR Flat 10.5281/zenodo.4114641
Curved 10.5281/zenodo.4115152
B2AR-monomer Flat 10.5281/zenodo.4114422
Curved 10.5281/zenodo.4116245
B2AR-dimer Flat 10.5281/zenodo.4114065
Curved 10.5281/zenodo.4115972
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