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Abstract: Cholera toxin B-subunit (CTxB) has emerged as one of the most widely utilized tools in membrane
biology and biophysics. CTxB is a homopentameric stable protein that binds tightly to up to five GM1
glycosphingolipids. This provides a robust and tractable model for exploring membrane structure and its
dynamics including vesicular trafficking and nanodomain assembly. Here, we review important advances in
these fields enabled by use of CTxB and its lipid receptor GM1.
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Key Contribution: Recent advances in our understanding of membrane biology emerging from studies using
cholera toxin B-subunit and synthetic derivatives of its receptor GM1 are highlighted.
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To enter the cytosol of host cells, CTx has evolved to bind with high affinity to the
oligosaccharide moiety of a raft-associated glycosphingolipid, ganglioside GM1. This is mediated
entirely by the toxin’s binding B-subunit, CTxB (Figure 1 [4]). CTxB assembles as a homopentamer
of 11 kDa peptide chains and it functions as a lectin with five binding sites for the oligosaccharide
head group of GM1 (and other closely related gangliosides [5—7]). It is thus capable of clustering

1. Introduction

Cholera toxin (CTx) typifies the ABs bacterial toxins, and it is the essential pathogenic factor that causes the massive
secretory diarrhea seen in humans infected with V. cholerae [1,2]. The Vibrio pathogen first secretes the toxin into the
intestinal lumen after colonization of the mucosal surface, but CTx is not active in this space. Remarkably, the toxin encodes
within its protein structure everything necessary to breach the intestinal epithelial barrier and enter the cytosol of host
cells. Here, in the cytosol, a portion of the toxin induces disease by activation of adenylyl cyclase. This alters the physiology
of the intestinal epithelium by activating the Cl- channel CFTR and inhibiting the Na*/H* exchanger NHE3 to cause Cl
secretion and Na malabsorption leading to a severe form of secretory watery diarrhea [3].

The toxin accomplishes cytosolic entry by co-opting normal aspects of host cell membrane and organelle biology. It
does not induce pathogenic membrane pores, or penetrate cell membranes, or damage the integrity of the mucosal
surface in any way. Rather, it traffics into the cell and across the mucosal barrier by riding along endogenous pathways of
membrane lipid and protein trafficking, and by engaging different aspects of normal subcellular organelle biology. The
evolutionarily driven adaptations enabling these processes have rendered the toxin one of the most potent and
informative probes of cell and membrane structure and function and mucosal tissue biology. This is the topic of the current
review: how CTx has illuminated our understanding of basic membrane and subcellular processes fundamental to cell

biology.
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up to five glycosphingolipids together [8]. GM1 acts as the vehicle for endocytic uptake and
retrograde trafficking of CTx all the way backwards in the secretory pathway into the endoplasmic
reticulum (ER) [9-11]. The structure of the ceramide moiety of GM1 dictates the trafficking of the
toxin-GSL complexes in this pathway [12,13]. Once in the ER, the CTx A-subunit co-opts the
mechanics of protein folding quality control to separate from the B subunit and retrotranslocate
across the ER-limiting membrane into the cytosol where it induces toxicity by enzymatically
ADPribosylating Gas and activating adenylyl cyclase (Figure 2) [14,15]. Separate secondary and
lower affinity binding sites for glycoproteins also exist on CTxB that modify toxin action [16-27].

Figure 1. The molecular structures of CTx and GM1. (A) A side view of CTx is shown with the A subunit in grey
and the five B subunits shown in color. (B) A view from the bottom, membranebinding surface of CTxB. The
five G33 amino acids of the GM1 binding pockets are shown as space-filling spheres. (C,D) Structure of the
CTx receptor ganglioside GM1. GM1 structures with ceramides containing acyl chains of C16:0 (C) and C16:1
(D) are shown. The crystal structure for CTx was downloaded from the Protein Data Bank 1S5E [4]. CTx
structure is from O’Neal, C.J.; Amaya, E.I.; Jobling, M.G.; Holmes, R.K.; Hol, W.G. Crystal structures of an
intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism. Biochemistry 2004,
43,3772-3782. [4).

Here, we focus in this review on how the CTxB subunit can be used as a non-toxic reporter
to probe basic aspects of membrane structure, mechanisms of endocytosis, nanodomain
assembly, and membrane trafficking enabled by glycosphingolipid biology.
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Figure 2. Intracellular itinerary of CTx trafficking and mechanism of intoxification. The CTx holotoxin binds
the plasma membrane via its pentameric membrane binding B subunit. It is subsequently internalized and
delivered to endosomes. From there the toxin enters into the retrograde trafficking pathway, leading to its
delivery to the endoplasmic reticulum (ER). In the lumen of the ER, the A subunit is released from the B
subunit and unfolded by protein disulfide isomerase (PDI), enabling its translocation across the ER membrane
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into the cytoplasm. The A subunit then refolds and ADP ribosylates Gas. This leads to activation of adenylate
cyclase (AC) and increased cAMP levels. Chloride secretion follows, triggering massive watery diarrhea. See
text for further details. Created using Biorender.

2. CTxB as a Probe for Membrane Organization

The plasma membrane is thought to contain over 100,000 different lipid species whose
distributions within the membrane leaflets are not homogeneous. Instead, these lipids, along with
membrane-associated proteins are often organized laterally into domains based on differential
physicochemical interactions [28]. One well-studied example of membrane organization is
membrane (lipid) rafts, which are regions enriched in sterols, sphingolipids and saturated
phospholipids [29,30]. Rafts are defined by having altered membrane miscibility, highly packed
and tightly ordered lipid molecules characteristic of lipids in the liquid ordered (Lo) phase, distinct
from a more fluid liquid disordered (Ld) membrane environment [31]. The biology of CTx is closely
linked to membrane rafts [32—35], and over the last two decades, CTxB has often been used as a
marker for rafts and thereby for deciphering their properties and physiological functions
[29,36,37]. In this section, we focus on several recent studies seeking to uncover the mechanisms
that control the association of CTxB with rafts and related membrane nanodomains (Figure 3).
Membrane rafts are thought to range in size from few to a couple of hundreds of nanometers.
Likewise, their lifetimes are also thought to vary from nanoseconds to much longer times under
conditions where they are stabilized [29]. Given the inherent difficulty of experimentally
elucidating such dynamic and diffraction-limited processes as well as their composition in cells,
many of the characteristics of lipid rafts in cells are still under debate [38—41]. Several fundamental
properties of rafts can, however, be studied in model systems such as giant unilamellar vesicles
(GUVs) and giant plasma membrane vesicles (GPMVs) [42,43]. Depending on the lipid composition
and experimental conditions, membranes in GUVs and GPMVs form co-existing L, and Lydomains.
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Figure 3. Multivalent binding of CTxB binding to order-preferring GM1 is required to induce phase separation
and stabilize ordered membrane domains. (A) Wild type CTxB can bind to up to 5 GM1s. As a consequence
of multivalent binding to GM1, CTxB can generate and sort to orderpreferring lipid phases. Multivalent
binding also induces membrane curvature (see Figure 4 for further details). (B) A CTxB mutant containing a
single binding functional GM1 site associates equally well with ordered and disordered domains. It is also
incapable of stabilizing raft domains or inducing membrane curvature. Wild type CTxB is predicted to behave
similarly under conditions where it binds to a single GM1, for example at low GM1: CTxB ratios. Note that for
simplicity, cholesterol is not depicted in the membrane.

CTxB associates with the ordered phase of GUVs containing trace amounts of GM1, but this
depends on the structure of its ceramide moiety (see further discussion below) (Figure 1C,D) [44].
CTxB also can induce domain formation in single-phase GUVs comprised of lipids close to a
demixing point, suggesting that the toxin can actively reorganize the membrane to form domains
[45,46]. Typically, CTxB preferentially associates with and stabilizes ordered raft-like domains in
GPMVs derived from living cell plasma membranes [12,44,45,47-54]. These findings led to the
hypothesis that CTxB assembles stabilized raft domains via its ability to cluster together multiple
copies of GM1. We recently tested this idea in GPMVs using a monovalent variant of CTxB capable
of only binding to a single GM1 [55]. Consistent with the predictions of this hypothesis, a
monovalent mutant CTxB did not bind preferentially to Lo nanodomains—rather it bound equally
well to the ordered and disordered phases [55]. Since GPMVs retain the same lipid complexity as
biological membranes [54], similar stabilization of rafts likely occurs upon binding of CTxB to the
plasma membrane of living cells.

The intrinsic preference of GM1 itself for raft or non-raft domains also influences the phase
in which CTxB preferentially resides. GM1 is classically thought to be a raftassociated glycolipid
[29,36,43,45]. However, some GM1 species with unsaturated acyl chain lengths do not associate
with raft domains. We recently investigated how these key structural features of GM1 influence
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its phase preference [13,56]. Headgroup-labeled fluorescent GM1 species containing a C16:0 acyl
chain partition into the Lo phase, whereas GM1 with a C16:1 acyl chain do not, even when
clustered by CTxB [56]. A small library of GM1 species was also recently tested for Lo and Ld phase
preference in GPMVs obtained from various cell types. Here, we found that the partitioning
between phases depended on the presence or absence of unsaturated cis-double bonds in the
acyl chain of the ceramide moiety [13]. Normally in cells, the most prominent acyl chain structures
include palmitic, stearic and nervonic acid [57]. How CTxB would behave when bound to multiple
but different GM1 species containing different combinations of acyl chains remains to be
investigated.

GM1 is also known to form nanoclusters in cell membranes and model membranes [58-60].
There is wide discrepancy in the reported size, composition and phase of these clusters in model
systems [60]. In cells, GM1 nanoclusters have been reported to form in a cholesterol, actin, and
temperature-dependent manner [58,59]. Our recent work has revealed that the ability of GM1
species to form nanoclusters is also controlled by their ceramide structure [56]. As reported by
fluorescence anisotropy homoFRET measurements, GM1 containing a C16:0 acyl chain forms
nanoclusters in live cell membranes. These nanoclusters are cholesterol, phosphatidylserine, and
actin-dependent, suggesting that they share some features previously reported for nanoclusters
of GPI-anchored proteins [61]. In contrast, GM1 with a C16:1 acyl chain is predominantly randomly
distributed across the cell surface [56]. The addition of CTxB induces higher order clustering within
live plasma membranes, leading to the formation of domains which are stable over a timescale of
seconds [56]. While an increase in cluster size was observed for both saturated and unsaturated
GM1 upon CTxB binding, the nanodomain properties differed depending on GM19 acyl chain. The
function of the GM1 nanodomains is not yet clear, but could represent sites where CTxB initially
binds the membrane or sites that dictate lipid sorting through the different recycling, retrograde,
and late endosome/lysosome endocytic pathways [13].

They may for example be linked to transport of CTx from the plasma membrane to the Golgi
complex, a process already known to be actin dependent [62].

Taken together, these findings emphasize the importance of the structure of both CTxB and
GM1 in controlling their association with rafts and cellular nanodomains. This has broader
implications for our understanding of how ABs toxins regulate their association with membrane
domains, as well as the general roles that lipid acyl chain structure and protein-mediated lipid
clustering events play in membrane organization. They also raise interesting questions about how
the structure of CTxB and GM1 controls additional biological activities of the toxin such as its
ability to sense and/or induce curvature in cell membranes and influences its endocytic and
intracellular trafficking, as discussed further below.

3. CTxB as a Sensor and Inducer of Membrane Curvature

Regulated membrane shapes are critical to diverse cellular processes such as
exocytosis/endocytosis, pathogen vulnerability/protection, therapeutic targeting, and organelle
morphology [63]. Proteins have shown a diverse capability to sense and generate curvature by a
variety of mechanisms depending on both the membrane and protein properties [64-67]. CTxB
has emerged as an important model and tool to understand how proteins affect and are affected
by membrane curvature. CTxB exhibits an intrinsic capability to manipulate membrane shapes, as
shown by CTxB-induced membrane budding in quasi-one component model lipid bilayers [68,69].
In cells, CTxB localizes to the inside of membrane tubules and vesicles as it is trafficked from the
plasma membrane to the ER. Current models suggest that CTxB and related toxin B-subunits such
as that of Shiga toxin (STxB) not only prefer to reside in regions of negative membrane curvature
like those found inside transport carriers but also induce de novo curvature upon binding to
membranes via a cooperative process [36,68,70—78]. Thus, curvature sensing and generation are
key to the toxin’s biological activities.

To provide mechanistic insights into how CTxB induces membrane curvature, we recently
employed polarized localization microscopy (PLM), a form of super-resolution microscopy that
detects membrane curvature [69,79]. PLM combines single-molecule localization microscopy with
polarized total internal reflection microscopy to reveal membrane curvature. By varying the ratio
of GM1: CTxB in model membranes of controlled composition, we found that CTxB requires a
stoichiometry of binding with at least two GM1 molecules per CTxB to generate curvature [79,80].
This was confirmed by comparing pentavalent wild type (wt) or a monovalent mutant CTxB
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(mCTxB) capable of binding only a single GM1 in both cells and model membranes [79]. In all
conditions, multivalent binding was critical for CTxB to induce membrane shape changes.

CTxB likely induces membrane curvature by several mechanisms, all of which depend on its
ability to cluster multiple GM1s. The first is a direct consequence of the physical shape of CTxB
and relative locations of the five GM1 binding pockets. In particular, the GM1 binding pockets on
CTxB are located on the perimeter of the homopentamer and elevated above the membrane-
binding surface of CTxB. Because of this the membrane must deform to enable binding to more
than one GM1 simultaneously (Figure 4). According to this model, upon engagement of the first
GM1 CTxB assumes a tilted orientation, minimally perturbing membrane shape [72,81-83]. In
response to binding of CTxB to two or more GM1s, however, the membrane bends to allow GM1
to reach the peripheral GM1 binding pockets on the CTxB. Multivalent binding of GM1 to CTxB
ultimately requires the membrane to wrap around the CTxB [72,77]. The degree of induced
curvature is thus directly linked to the GM1:CTxB stoichiometry.

A 4 B

Figure 4. Model for how the stoichiometry of binding of CTxB to GM1 controls the degree of membrane
curvature. The ratio of CTxB subunits bound (pink) and unbound (brown) to GM1 (yellow) affects the shape
of the membrane surface (blue). (A) Binding of CTxB to a single GM1 has no effect on membrane curvature.
(B) Binding to two GM1s generates cylindrical negative curvature in one dimension. (C) Binding of CTxB to
three or more GM1s induces spherical negative membrane curvature in two dimensions. This results in a
wrapping of the membrane around the CTxB, such as within an endocytic pit. The schematics were created
in Visual Molecular Dynamics [84] by building upon a crystal structure of CTxB [85]. Figure reproduced with
permission Kabbani, A.M., Raghunathan, K., Lencer, W.l.,, Kenworthy, A.K., and Kelly, C.V. Structured
clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin. Proc.
Natl. Acad. Sci. USA 2020, 117, 14978-14986 [79].

The ability of CTxB to induce membrane phase separation in response to GM1 crosslinking
also contributes to its membrane bending activity. Local enrichment and crosslinking of GM1 by
CTxB creates a local membrane composition enriched in orderpreferring gangliosides, which may
trigger lipid phase separation. Lipid phase separation can in turn encourage membrane bending
by creating a line tension or differential lateral pressure profiles [86—-89]. Coupling between the
lipid phase and membrane curvature would thus be expected to initiate a cooperative feedback
loop that amplifies membrane curvature [90].

Crosslinking of GM1 by CTxB may also induce local lipid compression and membrane tension
changes, similar to that observed upon crosslinking of Gb3 by STxB [78]. This is important because
membrane tension is key to membrane shape regulation [67]. In model membranes consisting
primarily of POPC, CTxB induces similar membrane curvature when bound to GM1s that differ in
the length and saturation of their acyl chains [79]. This implies that curvature generation is
independent of the acyl chain composition of GM1 and that lipid phase separation is not required
for CTxB to induce membrane shape changes [79]. Since both CTxB and STxB induce negative
membrane curvature and are localized to the outer leaflet of the plasma membrane, it is unlikely
that toxin crowding generates steric pressure since this would be counterproductive to
endocytosis [91]. Instead, toxin binding may induce asymmetric membrane tension via
compression of glycolipids in the outer leaflet to foster the negative membrane curvature. These
local tension variations across the plasma membrane may in turn facilitate toxin internalization
[92].

CTxB molecules must also act cooperatively to facilitate large-scale membrane shape
changes [93]. The multivalent binding of CTxB to GM1 may also play an important role by
facilitating the formation of local membrane hotspots of lipid phase separation and curvature
[69,94]. One potential mechanism that could contribute to the local accumulation of CTxB is
membrane-mediated attractive forces extending >20 nm between CTxBs [93,95,96]. These forces
would be expected to be further amplified by membrane shape undulations [97,98].
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The collective action of multiple CTxBs to bend cell membranes likely employs a threedimensional
scaffolding to generate membrane topographies orders-of-magnitude larger than a single CTxB
[99].

In summary, CTxB induces and senses membrane curvature through a complex interplay of
physical factors resulting from its molecular shape and lipid crosslinking. Recent results have
demonstrated that CTxB locally accumulates and induces membrane bending though the
collective result of lipid phase separation, compression, and crosslinking inherent in the
multivalent binding of GM1 by CTxB. Ongoing efforts will focus on the precise mechanisms by
which local physical changes to the membrane composition and shape recruit the downstream
endocytic and intracellular trafficking machinery, for which WT and mutant CTxB are likely to be
key tools for research.

4. CTxB as a Reporter of Clathrin-Independent Endocytosis

Endocytosis- a processes by which a plethora of molecules such as nutrients, extracellular
cargoes, and activated membrane proteins/receptors are internalized into the cell- is critical for
physiological proceedings such as nutrient uptake and intracellular signaling driving cellular
homeostasis (reviewed in [100-103]). Endocytosis also drives cellular infection induced by
bacterial and viral proteins and/or toxins (selected reviews include [104-107]). The process of
endocytosis occurs at plasma membrane. Initiation of endocytic events induces biophysical
modifications of the plasma membrane, leading to membrane invagination and scission of
endocytic carriers to facilitate the uptake of molecules/cargoes into the interior of the cell.

Mechanistically, endocytosis can be broadly classified into clathrin-dependent and clathrin-
independent pathways (extensively reviewed in [108-110]). Driven predominantly by the
presence and activity of clathrin, clathrin mediated endocytosis (CME) is wellstudied and
characterized at molecular level [111-113]. In contrast to CME, the molecular determinants and
mechanisms of clathrin independent endocytosis (CIE) differ depending upon the morphology of
the endocytic carriers, cargoes and physiological need of the cells (reviewed extensively in [114—
122]). Furthermore, a unique or a universal molecular player for CIE is yet to be defined and our
knowledge about CIE machinery is continuing to evolve.

Studies on the uptake of cholera toxin and in particular its B subunit CTxB have not only
enhanced our understanding of the endocytic itinerary and pathophysiology induced by bacterial
toxins but also enlightened us about the biophysical modifications that the plasma membrane
undergoes in preparation for endocytosis. In this section, we will briefly discuss about different
routes of clathrin independent internalization of CTxB. Further, we will also touch upon the utility
of CTxB in delineating bacterial toxin internalization pathways that in turn has broadened our
knowledge about modalities and machineries driving CIE pathway in general.

Early on, it was recognized that CTxB can enter cells via multiple mechanisms, including both
canonical clathrin-dependent endocytosis and clathrin-independent mechanisms [123-125]
(Figure 5). For example, CTxB can be internalized via flask-shaped plasma membrane invaginations
known as caveolae [126—128]. It is also taken up into cells via the ClLathrin-Independent Carriers
(CLICs) and GPI-Enriched Endocytic Compartments (GEECs) pathway, a dynamin-independent
endocytic pathway responsible for the uptake of a variety of raft-associated proteins including
GPl-anchored proteins [125,129-133]. Another dynamin- and caveolin-independent CIE
mechanism utilized by CTxB is Arféemediated endocytosis, a pathway that internalizes similar
cargoes as the CLIC/GEEC pathway [121,124,134,135].
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Figure 5. Overview of the intracellular trafficking of CTxB. The biological function of CTxB is to carry the
enzymatically active A subunit of cholera toxin into cells. To do so, CTxB must first bind GM1 on the host
cell membrane. The subsequent entry of CTxB into cells depends importantly on its ability to cluster
multiple GM1s. This enables CTxB to induce and/or sort into areas of negative membrane curvature and to
enter cells via raft-dependent, clathrin-independent endocytic pathways (CIE). It can also be internalized via
clathrin coated pits (CCP) and caveolae (CAV). Following endocytosis, CTxB is trafficked to endosomal
compartments such as early endosomes (EE) and recycling endosomes (RE). To induce cellular
intoxification, CTxB must undergo additional retrograde trafficking steps to the trans-Golgi network (TGN)
and endoplasmic reticulum (ER). Which intracellular trafficking pathways CTxB ultimately follows is
controlled in part by the structure of the ceramide moiety of its receptor GM1.

More recent work has revealed that cholera toxin activates and is internalized by a
clathrinindependent pathway dubbed fast-endophilin mediated endocytosis or FEME
[116,118,136—139]. Driven by the N-BAR domain protein endophilin A2 (endoA2), the FEME
pathway is activated at the leading edge of migrating cells in response to ligand binding to receptor
tyrosine kinases and G-coupled receptors (GPCR), which are subsequently taken up by the
pathway [137-139]. Endophilin plays several important roles in this pathway, including capture of
transmembrane receptor cargo, generation of membrane curvature, and scission of tubular
endocytic carriers in cooperation with dynamin and actin via a friction driven process
[136,137,140]. Microtubules and dynein play important roles in the FEME pathway as well,
contributing to membrane tubulation and scission [136,141,142]. Interestingly, CTxB is capable of
activating FEME: in response to CTxB binding, endoA2 is recruited to the plasma membrane,
resulting in uptake of CTxB into endoA2-positive carriers. Internalization of CTxB is reduced upon
knock down of EndoA2, further implicating FEME as a mechanism that controls toxin uptake
[136,143]. Additional machinery that regulates the FEME pathway is continuing to emerge
[142,143].

An important question raised by these findings is how toxin binding is sensed by the cell and
translated into a signal that triggers endocytosis. One hypothesis is that clustering of multiple
copies of GM1 upon CTxB itself serves as a signal. According to this model, the ability of the toxin
to bind multiple copies of GM1, as well as structured clustering of GM1 by CTxB, functionally
regulate toxin internalization. In support of this idea, toxin variants engineered to contain as few
as one GM1 binding site exhibit strongly attenuated internalization, although they are still
capable of completing the intoxification pathway [144,145]. One major consequence of
multivalent glycolipid binding, as discussed above, is induction of membrane curvature [79]. This
principle was first identified for the case of STxB and represents an example of a broader
mechanism whereby lectins generate membrane curvature to drive endocytosis by binding to
multiple glycolipids or glycoproteins (the GL-Lect hypothesis) [146]. Membrane curvature created
by the extracellular CTxB could potentially lead to the recruitment of intracellular curvature-
sensing proteins, in turn controlling the local membrane composition [147,148]. However, CTxB
mutants capable of binding to only a single copy of GM1 can sort into preformed clathrin-
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independent endocytic structures, suggesting glycolipid clustering-induced curvature generation
is dispensable for its uptake into at least a subset of CIE carriers [141].

As discussed above, the binding of CTxB to multiple copies of GM1 also regulates its
association with ordered domains and the ability of the toxin to stabilize raft domains [55].
Glycolipid crosslinking initiated by cell surface binding of cholera toxin and other ABsfamily toxins
such as STx also initiates signaling events [149]. For example, binding of STx upregulates the
formation of clathrin-coated pits, and modulates microtubule dynamics [150,151]. It seems likely
that these raft-stabilizing activities and signaling capacities of CTxB, combined with local curvature
generation that drives the recruitment of the intracellular endocytic machinery, contribute to its
endocytic uptake by generating a “curvature-signaling hub”. However, the exact mechanisms by
which these processes are coupled remain to be determined.

In conclusion, internalization of CTxB occurs via multiple mechanisms and depends on a
variety of molecular players operating at the plasma membrane on different time scales. CTxB
actively regulates several of these pathways by inducing changes in membrane organization and
intracellular signaling in response to toxin binding. These activities are enhanced by CTxB’s ability
to cluster multiple GM1s, but glycolipid clustering is not essential for internalization of CTxB or the
ability of CTx to cause cellular intoxification. However, many open questions remain about how
these events are orchestrated. It is thus clear that CTxB will continue to be a critically important
tool to advance our knowledge of bacterial toxin internalization as well as to further illuminate
our understanding of mechanisms of CIE.

5. CTxB as a Probe of Retrograde Trafficking Mechanisms

The ultimate destination of internalized CTxB is the ER. The endocytic network of all cells
includes a pathway from the plasma membrane retrograde to the trans-Golgi network (TGN)—
and for the glycosphingolipids all the way backwards in the secretory pathway to the ER [152]. For
example, the pathway operates to regulate recycling of the mannose-6-phosphate receptor, the
endosome protease furin, and the endogenous glycosphingolipids. Trafficking of CTxB and the
other enteric ABs toxins from cell surface all the way into the ER requires binding to membrane
glycosphingolipids of the host cell, followed by endocytosis, endosomal sorting, and transport of
the CTxB-GM1 complex into the retrograde pathway (Figure 5) [153,154]. The retrograde pathway
links the cell surface with the trans-Golgi complex and the ER by vesicular trafficking. This pathway
was first discovered in studies on STx by Sandvig and van Deurs using thin-section electron
microscopy [155]. This marked a fundamental turning point in our understanding of how these
toxins entered host cells to cause disease.

STx, CTx and other ABs-toxins have since provided robust tools to study the mechanisms and
components responsible for endosomal sorting and membrane trafficking in the retrograde
pathway (summarized before in [11,77,152]). Toxin trafficking was measured by immune or direct
labeling of the toxins with fluorophores or nano-gold particles or biochemically by tagging the
toxins with N-glycosylation motifs that became glycosylated when the toxins entered the ER
lumen [33,156]. These studies were highly informative, but none were able to measure retrograde
trafficking in real time or quantitatively. In addition, both the imaging and biochemical approaches
were technically demanding, which prevented their application to high content and high
throughput unbiased genetic or chemical screens.

To address these problems, we modified the new split fluorescent protein technologies to
link a small fragment of GFP to CTx (via fusion to the A2-chain, termed CTBmNG21,) [10,157]. The
approach led to the development of a novel quantitative and near real-time single-cell flow
cytometry assay for retrograde membrane transport driven by CTxB binding to GM1 [10].
Retrograde trafficking to either the TGN or ER was monitored in cells stably expressing the GFP
acceptor fragment (mMNG2;-10 GFP) fused to TGN or ER targeting sequence by quantifying the
evolution of a fluorescence signal upon binding of CTB-mNG2;1 and mNG2;-;0 GFP. The assay led
to the discovery that perturbations of the sheet and tubular morphology of the ER affects the
retrograde trafficking pathway. Moving forward, this approach should be fully amenable to high
throughput studies on the underlying biology of membrane trafficking.

In a second approach, we have directly visualized the trafficking of GM1 itself through the
use of fluorescent headgroup-labeled forms of GM1 [12,13,158]. These lipids enabled us to
monitor retrograde trafficking of GM1 in the presence and absence of bound CTxB and dissect the
role of ceramide structure in dictating the trafficking pathways utilized by GM1. These are
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important questions given that lipids themselves are sorted in endosomal pathways [159] and
reports that trafficking of other ABs toxins are affected by the structure of their glycolipid
receptors [160]. We discovered that retrograde sorting of the CTxBGM1 complex depends
importantly on the structure of the GM1 ceramide moiety [12,13]. Ceramide structure, driven by
the length of the ceramide acyl chain and position of any cis double bonds if present [13], enables
sorting of the toxin (and the glycosphingolipid itself) into the narrow and highly curved sorting
tubules emerging from the early sorting endosome compartment. These sorting tubules feed the
recycling, retrograde, and (in polarized cells) transcytotic pathways. Fully saturated ceramide acyl
chains drive the lipid away from sorting tubules causing retention of GM1 in the body of the
sorting endosome and maturation into late endosomes and lysosomes. Notably, sorting of the
different GM1 species among these pathways correlates with the ability of the different ceramide
structures to regulate the association with cholesterol-dependent membrane nanodomains [13].
As GM1 acts as the trafficking receptor for the 84 kDa CTx, we believe these discoveries might be
harnessed for clinical applications that require transport of therapeutic peptides and proteins into
the various sub-cellular compartments of cells and even across mucosal barriers by transcytosis
[158,161-164].

Altogether, these recent advances highlight the continued importance of CTx and GM1 as
reporters of retrograde trafficking pathways. The tools described here should ultimately help
develop a deeper understanding of mechanisms controlling the intracellular transport of CTx and
related toxins, uncover principles that govern both protein and lipid sorting at multiple sites within
cells, and design new strategies for delivery of therapeutics.

6. Alternative Membrane Glycoprotein Receptors Affecting CTx Biology

CTxB binds the ganglioside GM1 with high affinity, and GM1 has been shown with the
greatest clarity to act as the functional receptor leading to CTx entry into the ER of host cells and
the induction of toxicity [12,13,144,165-172]. However, it has long been known that CTx will also
bind other glycosphingolipids [7,167,173—181]—and even glycosylated proteins, including the
histo-blood group antigens [24,25]. The site of (low affinity) binding to the histo-blood group
antigens was recently elucidated and found to occur on the side of the B-pentamer separate from
the site where the B-subunit binds the glycosphingolipids [26]. Some reports show evidence
consistent with the idea that these glycoproteins can act on their own, like the glycosphingolipids,
to enable endocytic uptake and retrograde trafficking of CTx into the ER required for the induction
of toxicity [27].

The evidence for secondary receptors, though in many ways compelling, is largely
circumstantial and could have alternative explanations. The glycoprotein receptors do lead to
endocytic uptake, for example [182]. However, for our part, we do not think binding to the
glycoproteins function in the retrograde pathway. First, none of the implicated glycoproteins have
been shown to traffic retrograde all the way into the ER; this is a very unusual pathway for plasma
membrane proteins. Additionally, more unambiguously, point mutations in the primary binding
site for the glycosphingolipids fully inactivate toxicity [85,168]. Thus, binding to the
glycosphingolipids is essential. The secondary glycoprotein receptors for CTx do, however, modify
toxin action, and the histo-blood group antigens for example are known modifiers of disease [16—
23]. As originally proposed by Heim et al. [26], we believe the highly prevalent glycoproteins act
as low-affinity binding site receptors for CTx influencing toxin action by enabling the initial binding
of toxin to the intestinal cell surface. This precedes and likely enables toxin binding to the much
more sparsely prevalent membrane glycosphingolipids, which act as the functional trafficking
receptors enabling toxicity.

7. Take-Homes and Open Questions

In this review, we highlighted recent advances in our understanding of membrane biology
and biophysics obtained through the use of CTxB. One important conclusion that emerges from
these studies is that CTxB is not simply a passive reporter. It can drive phase separation, induce
membrane curvature, stabilize rafts, stimulate its own internalization into cells, and re-direct GM1
into different intracellular trafficking pathways. This is not a new message, but it is one worth
repeating given CTxB is still sometimes assumed to represent a benign raft and endocytic marker
in the literature.
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Itis thus essential to exercise caution when using CTxB as a probe for membrane organization
and trafficking mechanisms, especially in poorly defined systems.

It is also becoming increasingly clear that not all GM1s are created equal. Depending on its
acyl chain structure and degree of saturation, GM1 can associate with ordered or disordered
membrane phases in model systems, and form nanoclusters- or not- in cell membranes. CTxB itself
also behaves very differently depending on whether it is bound to one or more copies of GM1, as
well as their structural features. This can have critical consequences for CTxB’s ability to associate
with rafts, bend membranes, and trigger endocytosis. Even changing the GM1/ CTxB ratio is
sufficient to evoke some of these changes. Finally, it is important to recognize that lower affinity
receptors for CTxB also exist, including other glycolipids and fucosylated secondary receptors. The
membrane remodeling activities of CTxB are thus highly context-dependent.

The recent pandemic has highlighted the importance of understanding the varied
mechanisms by which pathogens gain entry into cells. Many of the membrane remodeling
activites of CTxB are shared with other members of the ABs toxin family and some viruses
[68,76,183]. For example, binding of certain viruses to cells via glycolipid receptors is thought to
trigger similar mechanisms that facilitate their endocytic uptake [68,183]. The GL-Lect hypothesis
suggests an intriguing mechanism by which this might occur [77,116,118,146,184,185].
Understanding how these events are orchestrated could provide essential insights into how the
uptake of multiple classes of pathogens could be blocked- or how the internalization of specific
pathogens could be inhibited while leaving endogenous endocytic pathways intact. Finally, the
pathways uncovered through studies of CTxB hold the potential to be targeted for the delivery of
large drug molecules [161]. Thus, the tricks developed by CTxB to enable CTx to enter cells may
ultimately be exploited for pharmacological purposes.
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