A systematic construction of gapped non-liquid states
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Gapped non-liquid state (also known as fracton state) is a very special gapped quantum state of
matter that is characterized by a microscopic cellular structure. Such microscopic cellular structure
has a macroscopic effect at arbitrary long distances and cannot be removed by renormalization
group flow, which makes gapped non-liquid state beyond the description of topological quantum
field theory with a finite number of fields. Using Abelian and non-Abelian topological orders in
2-dimensional (2d) space and the different ways to glue them together via their gapped boundaries,
we propose a systematic way to construct 3d gapped states (and in other dimensions). The resulting
states are called cellular topological states, which include gapped non-liquid states, as well as gapped
liquid states in some special cases. Some new fracton states with fractal excitations are constructed
even using 2d Z2 topological order. More general cellular topological states can be constructed
by connecting 2d domain walls between different 3d topological orders. The constructed cellular
topological states can be viewed as fixed-point states for a reverse renormalization of gapped non-

liquid states.
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I. INTRODUCTION

Different phases of matter are not only characterized
by their symmetry breaking patterns.!’? Even systems
without any symmetry can have many distinct gapped
zero-temperature phases, characterized by different pat-
terns of long range quantum entanglement®. Those
gapped phases include gapped liquid phases™® [which in-
cluse phases with topological orders®®, symmetry en-
riched topological (SET) orders®'” and symmetry pro-
tected trivial (SPT) orders'®2°], as well as gapped non-
liquid phases®':??, such as foliated phases®?3:2 (i.e. type-
I fracton phases®®).

So far, we have a nearly complete understanding
gapped liquid phases for boson and fermion systems with
and without symmetry. In 141D, all gapped phases are
liquid phases. They are classified by (G, Gy,ws)?%?7,
where Gy is the symmetry group of the Hamiltonian, Gy

the symmetry group of the ground state Gy C Gy, and
wy € H?(Gy,R/Z) is a group 2-cocycle for the unbroken
symmetry group Gy.

In 241D, we believe that all gapped phases are liquid
phases. They are classified (up to Eg invertible topologi-
cal orders and for a finite unitary on-site symmetry Gy)
by (Gu,Rep(Gy) C € C M) for bosonic systems and
by (Gu,sRep(Gy) C € C M) for fermionic systems®® 3.
Here Rep(Gy) is symmetric fusion category formed by
representations of Gy, and sRep(Gy) is symmetric fu-
sion category formed by Zg -graded (i.e. fermion graded)
representations of Gy. Also C is a braided fusion cate-
gory and M is a minimal modular extension®%3°.

In 3+1D, some gapped phases are liquid phases while
others are non-liquid phases. The 3+1D gapped liquid
phases without symmetry for bosonic systems (i.e. 341D
bosonic topological orders) are classified by Dijkgraak-
Witten theories if the point-like excitations are all
bosons, by twisted 2-gauge theory with gauge 2-group
B(G,Z5) if some point-like excitations are fermions and
there are no Majorana zero modes, and by a special
class of fusion 2-categories if some point-like excitations
are fermions and there are Majorana zero modes at
some triple-string intersections®' 3. Comparing with
classifications of 341D SPT orders for bosonic2%34 and
fermioinc systems®® 4, this result suggests that all 3+1D
gapped liquid phases (such as SET and SPT phases) for
bosonic and fermionic systems with a finite unitary sym-
metry (including trivial symmetry, i.e. no symmetry)
are classified by partially gauging the symmetry of the
bosonic/fermionic SPT orders®?.

However, the classification of gapped non-liquid phases
is still unclear (for a review, see Ref. 41). In this paper,
we are going to propose a very systematic construction of
3+1D gapped non-liquid phases for bosonic and fermionic
systems with possible symmetry. We hope our systematic
construction can lead to a classifying understanding of
gapped non-liquid phases. Our construction is based on
the above classification of gapped liquid phases and a
classification of gapped boundaries of those gapped liquid



FIG. 1. The 3d space is divided into cells. Each cell surface is
occupied by a 2+1D topological order. Each edge is occupied
by an anomalous 141D topological order, which is a gapped
boundary of a stacking of the 241D topological orders.

phases??.

In a simplified form of our construction, we divide the
3d space into cells (see Fig. 1), where only cell surfaces
can overlap. We put a 241D topological order on each
patch of overlapping surfaces. The edges can be viewed
as a boundary of several stacked 241D topological or-
ders. We put a gapped boundary (a 141D anomalous
topological order??™*4) on each edge. We refer to the con-
structed gapped states as cellular topological states,
to stress the intrinsic cellular structure (such as folia-
tion structure®2%24) in those gapped states. In general,
cellular topological states are gapped non-liquid states,
although some special cellular topological states can be
liquid states (i.e. the cellular structure disappears).

Our construction is similar to some constructions of
SPT and SET phases®® 48, It is also similar to the layer,
cage-net, or string-membrane constructions of fracton
phases?®%4. However, there are some important differ-
ences, which allow us to construct new fracton states
with fractal excitations,?? even starting from 2+1D Z,
topological order.

We like to mention that there are also gapless non-
liquid phases. They include Fermi liquid in 2+1D and
above,” as well as some models with emergent graviton-
like excitations.?>®7

II. A SIMPLE CONSTRUCTION
A. The construction

We first consider a very simple decomposition of the 3d
space into hexagonal column’s R* = U;(H; x R,), where
H; are non-overlaping hexagons whose union form the z-y
plane. (see Fig. 2). We use 4, j to label the vertices and ij
the links of honeycomb lattice in the z-y plane. We then,
put bosonic topological orders M;; without symmetry on
the faces of hexagonal column’s (ij) x R..

We note that the vertical line at the vertex ¢ of the
honeycomb lattice is the boundary of the topological or-
der M;; XM, ®M;;. (Here CXD is the topological order

FIG. 2. The 3d space is decomposed into hexagonal col-
umn’s. The honeycomb lattice has two kinds of vertices: type-
A vertices have arrows pointing in, and type-B vertices have
arrows pointing out.

obtained by stacking topological orders C and D.) So
in general, we can put a 141D anomalous topological
order*? 4 on the vertical line ¢ which is described by a
fusion category C;°®. Those fusion categories satisfy

Bulk(C;) = M;, if i is type-A,
YOI M,,  ifd s type-B,

M; = M;; I My, XMy, (1)

which means that 141D anomalous topological order C;
is a gapped boundary of 2+1D topological order M; or
M;42:59-61  Here Bulk is the holographic map that map a
boundary anomalous topological order to its unique cor-
responding bulk topological order.#?:62-64 Buylk is closely
related to the Drinfeld center, whose physical calculation
is presented in Ref. 58. Also, the bar means the time
reversal conjugate.

We see that, using the data (M,;, C;), we can construct
a 34+1D gapped phases for bosonic systems, which can be
a non-liquid gapped phase. In general M;; can be non-
Abelian topological orders.

We like to mention that if, for example, C; has a form

C;,=D;XE;,
BUlk(Ez) = Mija BUlk(Dl) = Mik X Mila (2)

then the layer M;; is not connected to the line at vertex-i.
Such a layer can shrink to the line at vertex-j on the other
side (see Fig. 3), and hence can be removed (or corre-
spond to trivial M;; case). Thus we are looking for the so
called entangled solutions of eqn. (1) that do not have the
form (2). We also like to mention that the gapped bound-
aries of a 241D topological order can be constructed via
anyon condensation and are classified by the Lagrangian
algebra of the 24-1D topological order5>~°.

B. Entanglement structure

To understand the cellular topological state in Fig. 2
better, we like to study the entanglement structure of the
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FIG. 3. For C; satisfying eqn. (2), the layer M;; is detached.
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FIG. 4. (a) A deformation step C Xy D = C' K D’ (see
eqn. (11)). (b) Using the deformation step, we can change the
blue-hexagonal tensor network to the one formed by red links
and light-blue dots. (c) Shrinking the triangles to the red dots
produces the blue-hexagonal tensor network (see eqn. (12)).

This completes a renormalization step (M, C,D) — (l\7|, C, D).

cellular topological state. The entanglement structure
can be revealed by the renormalization of the state (see
Fig. 4). The renormalization is done via a basic defor-
mation step in Fig. 4a, where fusing two boundaries C, D
and fusing two boundaries C’, D’ given rise to the same
boundary of the four stacked 241D topological orders
(described by the four outer lines): CXy D = C' K, D’.
To describe such a deformation step more explicitly, we
need a quantitative description of the 2+1D topological
order M;; and the 1+1D anomalous topological order C;.
The topological orders can be characterized by the rep-
resentations of mapping class groups for all Riemannian
surfaces.”® Here for simplicity,” "™ we will only use the
representation for mapping class group of a torus.” In
other words, we will use the S, T? matrices (the genera-
tors of a modular representation of SL(2,Z)) to charac-
terize a 2+1D topological order M, where a,b label the
types of the topological excitations in the topological or-
der. Similarly, the gapped domain walls C between two
topological orders characterized by (S,T) and (S",T") are
characterized by the wave function overlap of the degen-
erate ground states, |1¢,) and |¢),), of the two topological
orders on torus:®
Wigle MW g = " TRy )
where Hyy is local hermitian operator like a Hamiltonian
of a quantum system, Ag» is the area of the torus T
and C¢ is a topological invariant that characterize the
domain between the two topological orders. C% turns out
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FIG. 5. (a) Fusion of two 141D domain walls C and
C’ connected by a 2+1D topological order M’ gives rise to
C" = C' ®w C. The loop-like ¢-direction is not shown. (b)
Exchanging = and ¢, we get the corresponding wave func-
tion overlapes. Two wave function overlaps C' and C’ can
be reduced to one wave function overlap C”’. The loop-like
z-direction is not shown.

to be non-negative integers for torus, which satisfy>%6!

2 : b’ j : j : b’ j :
Slalcg/ = 3’527 T,alcll:/ == g/Tgl‘),
14 4 a

CoCp <Y N&YCENE. (4)

where N and N%" are the fusion coefficients for the
topological excitations in the two topological orders.

Now let us describe an elementary deformation step.
Consider three topological orders M, M and M” charac-
terized by (S,T), (S',T"), and (S”,T"). A tensor C de-
scribes a domain wall C between (S,T) and (S’,7"), and
a tensor C” describes a domain wall C’ between (S’,7")
and (S”,7"). The two domain wall C and C’' can fuse
into a single domain wall C” (see Fig. 5a):

C"=CXw C. (5)

Note the C and C’ are fused with a “glue” M’ (see Fig.
5)62:63 which is indicated by the subscript of K. It turns

out that the domain wall C” is characterized by a tensor
C’//

(CM)a, =D (C)eC, or C"=C'C. (6)

a! —
a’l

The above just describes the composition of wavefunction
overlap in Fig. 5b.

We note that the above elementary step is reversible,
which can fuse two domain walls or split a single domain
wall. A fusion followed a split in a different direction
produces the elementary deformation step in Fig. 4a.

If one side of the domain wall between M and M’ is
trivial (say M’ is trivial), then the domain wall (i.e. the
boundary of M) is described by C§ = C* (or by C} = C,
if the boundary is at the opposite side of M, where 1
corresponds to the trivial excitation). We see that the
boundary C; in our construction (see Fig. 2) is charac-
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FIG. 6. A simple tensor network formed by two vertices
connected by a link. The link corresponds to a 2+1D topolog-
ical order M. The vertices corresponds to a 1+1D anomalous
topological order C, D.

terized by non-negative integer tensor

C‘ ~ {Caijaikatl’
K2

Oaijaikatl
)

if 7 is type-A,

(7)

if ¢ is type-B,

where (a;;, a;k, a;) labels the topological excitations in
M; = M;; X My, X My; and a;; labels the topological
excitations in M;; etc .

The above discussion suggests that we can view the
blue honeycomb lattice in Fig. 4 as a tensor network,
where the tensors at the solid-blue vertices are given by
C®ii%ik%il yyhile the tensors at the open-blue vertices are
given by Dq, a,.a,- The link (ij) carries the index a;;
which label the types of topological excitations in M;;.
The trace of the tensor network give us the partition func-
tion, which is the ground state degeneracy of the cellular
topological state.?6167

To see why trace of tensor network give rise to ground
state degeneracy, let us consider a simple tensor network
with two vertices connected by a link®?:%7. The link cor-
responds to a Z5 topological order M = GTZH (i.e. the
2+1D Z5 gauge theory)™®7". The Z5 topological order
GT2Jrl has four type of topologlcal excitations 1,e,m, f,
1abeled by a = 1,2, 3,4 respectively. The S, T modular
matrices are given by

100 O 1 1 1 1
010 O 111 1 -1 —1

T = . S=- (8)
001 O 211 -1 1 -1
000 —1 1 -1 -1 1

The Z, topological order has two gapped boundayies:
C. from e-particle condensation and C,, from m-particle

condensatlon66 There are described by the following
rank-1 tensors (a = 1,--- ,4)
1 1
1 0
Ce: (CF) = , Gt (CF) = 9
=1, =11 ©
0 0

If both boundaries in Fig. 6 are given by C = D = C,,
then the ground state degeneracy of the system is given
by >, C¢C¢ = 2. This result can also be obtained using
the e-string operator W, that creates a pairs of e-particle

at its ends, and the m-string operator W,,, that creates
a pairs of m-particle at its ends. Since e-particles con-
dense at the boundaries, the open e-string operator, W,
connecting the two boundaries does change the energy
(i.e. commute with the Hamiltonian). A loop of the m-
string operator in z-direction, W}, also commute with
the Hamiltonian. Since the e-string operator and the m-
string operator intersect at one point and anti-commute
W WE = —W7:We, the ground states are 2-fold degen-
erate.

If the boundaries in Fig. 6 are given by C = C, and
C = C,,,, then the ground state degeneracy of the system
is given by Y~ C¢Cf, = 1. In this case, there is no string
operators that connect the two boundaries and create two
condensing particles.

With the above tensor representation of the bound-
aries, the renormalization of the cellular topological
state becomes the standard renormalization of tensor
network.”" Let us assume that, in the hexagonal ten-
sor network (see Fig. 2 and 4b), all M;; are the same
M;; = M, whose topological excitations are labeled by
a,b,c,---. The boundaries C; at the solid-bule vertices
are given by C; = C (or by tensor C'**¢), while boundaries
C; at the open-bule vertices are given by C; = D (or by
tensor Dgp.). For simplicity, we will assume

Cabc _

Ccab’ -Dabc = Dcab~ (10)

Then, the deformation in Fig. 4a is explicitly given by
the following tensor relation:

Z CeabDecd _ Z(O,)abc(D/)&da- (11)

e a

where a label the topological excitations in a new 2+1D
topological order M. We like to mention that the defor-
mation (11) is not unique. There can be many choices
of M,C’,D’ that satisfy eqn. (11). We like to find the
deformation where M has minimal total quantum dimen-
sion D = />, dz. Here d; is the quantum dimensions
of topological excitations in M. Later, we will see that
if the resulting M is trivial or equal to the original M,
then the corresponding cellular topological state may be
a liquid state.

We like to remark that, as we will see later, a cel-
lular state contains extra local structures that are not
related to the universal class of a gapped state. So, by
choosing M to have minimal total quantum dimension,
we hope to obtain the simplest cellular topological state
after each step of renormalization, trying to remove those
local structures as much as possible.

We can use the deformation Fig. 4a to deform the blue
hexagonal tensor network in Fig. 4b to the one described
by red links in Fig. 4b. We then shrink the small trian-
gles in Fig. 4b to a point and obtain a new red hexagonal
tensor network in Fig. 4c. The new boundaries C and D



are given by

CY&EE — Z (C«/)&cb(C«/)Eac((j/)éba7
a,b,c

Daba - Z(D/)dCZ)(D/)Eac(D/)éba' (12)

a,b,c

The two relations (11) and (12) define the renormaliza-
tion of the cellular topological state.

III. CELLULAR TOPOLOGICAL STATES

FROM 2+1D Z; TOPOLOGICAL ORDER

A. A general construction

In this section, we are going to construct some simple
cellular topological states in Fig. 2 by choosing M;; to be
the same 2+1D Z, topological order M;; = GT%J;. We
find that GTQZj1 X GTZr1 X GT%1 has 10 types of gapped
boundaries, Bulk(C;) = GT%J;@GTZZI1 @GT%I, that are
entangled (i.e. do not have the form in eqn. (2)). Their
tensor representations, C2%, are givein by (only non-zero
elements are listed):

G
C

C3:
C4Z

Cs

Cs:
C7:

Cs
Co

C10 :

. Clll C 122 0212 0221 0333 C 344 C 434 0443
. C 111 0144 0223 0232 0322 C 333 0414 C441
Clll 0133 0222 0244 0313 613317 03 424 0442

Cill Ci44 0222 0233 0323 0232 02114 0441

L,
L,
L,
L OI, 0182 0212, 0281 032 034 0424 o — 1’
O 182 0228 (244 312 331 (2 o3 _
1
1
1
=1.

)

)
Clll 0%23 0213 0221 0332 0344 0334 C442
. 08111 08123 0232 0244 0313 0321 Cé134 0442
. Clll 0133 0213 231 0322 C344 C424 C442

111 122 233 244 312 321 434 443
C’10 7010 7010 ’Cl() 7010 7010 7010 7C

3
3

Y

(13)

The first four, (Cy,Cq,C3,Cy4), are cyclic symmetric

(10).

Let us examine those four types of the bound-

aries of GTZ‘1 X GT%‘;1 X GTQZirl in more details. First
we note that C; and C3 as well as Cy and C4 differ by
an automorphism of the Z, topological order: e; > m;,
where ¢ = 1,2, 3 labels the three Z, topological orders in
GTZ‘1 X GTZ‘1 X GTZ‘l. Those boundaries are formed
by condensing the topological excitations in the three

Z5 topological orders

66,6870 " Tn the following, we list

the condensing excitations (the generators) for the four

boundaries:
Ci: eges, €1€3, €1€2, mimsains;
Co: fifo, f1f3, J2f3, m1Mams;
C3: moms, mim3, mima, eeges;

Ci: fofs, f1fs, fife, ereges;  (14)

FIG. 7. If we choose M = MK M, then eqn. (11) always has
solutions.

Whli)Ch are obtained from the tensor indices abc with
c*e =1.

If we assume M to be the trival topological order, then
the equation eqn. (11) for the deformation in Fig. 1la
has no solutions, for those cyclic symmetric boundaries.
If we assume M to be given by the 2+1D Z5 topological
order GTQZ;H, then for the following (C,D)’s

(C1,Ca), (C1,C3), (Cq,Cy), (Co,Cy), (C5,Cq), (15)

the deformation eqn. (11) also has no solution. But, for
other cyclic symmetric boundaries C,D’s, the deforma-
tion eqn. (11) has two solutions, which are given by (see
Fig. 11)

(C,D) = (Cy4,Cq) = (C',D") = (C4,Cy) or (Cyo, Cro),
(C,D) = (C3,C3) — (C',D’) = (Cs,C3) or (Cy, Cy),
(C,D) = (Cq,Ca) — (C',D’) = (Cy,Ca) or (Cyq,Cy),
(C,D) = (C4,Cyq) — (C',D’) = (Ca,Ca) or (Cyq,Cy),
(C,D) = (Cq,Cyq) — (C',D’) = (Ca,Cy) or (Cy, Ca) 16)

If we choose M to be a more general topological order,
such as M = M X M, then eqn. (11) always has solutions
(see Fig. 7).

After obtaining C’ and D’, we can perform the shrink-
ing operation (12) (see Fig. 4) to obtain C,D:

(C,D) = (C1,Cy) — (C,D) = (2€4,2C,) or (2C3,2C3),
(C,D) = (Cs,C3) — (C,D) = (2C3,2C3) or (2C4,2C,),
(C,D) = (Cz,Cy) — (C,D) = (2C4,2Cy) or (2Cy4, 2Cy),
(C,D) = (Cy4,Cy) — (C,D) = (2C3, 2Cy) or (2C4, 2Cy),
(C,D) = (Cy,C4) — (C,D) = (2C4,2Cy) or (2c4,2c(2).)
17

Here 2C = C @ C means that the boundary is formed
by accidentally degenerate C and C. Since C comes from
fusing three C’s. We roughly have a fusion rule for the
boundaries: CX CK C ~ C. The results (17) suggest
that the boundary C and D have a quantum dimension
V2. So the ground state degeneracy is roughly given by

Naot+Np :
272 (up to a finite factor), where N4 and Np are

the number of type-A and type-B vertices (see Fig. 2).
In other words the ground state degeneracy is roughly
given by 2™ where Nj, is the number of the hexagons
(see Fig. 2).




In our above discussions, we have assumed that the
vertices in the honeycomb lattice (see Fig. 2) is far
apart. This leads to the accidentally degeneracy of two
C’s. However, in reality, the vertices in the honeycomb
lattice have a small separation. In this case, the degen-
eracy of two C’s is split.

To summarize, we constructed five cellular topological
phases labeled by the following (M, C,D)’s:

(GT%-:17C1aC1)7 (GT%—lJvCQ;CQ)a (GT%j15C37C3)7
(GTZ".Ca.Ca). (GTZ', G, Ca). (18)

Those phases have the key properties that under the
renormalization (M, C,D) — (M, C,D) in Fig. 4, we can-
not reduce the 2+1D topological order M to the triv-
ial one, but M can be unchanged under renormalization:
M= GTQZ";rl - M= GTQZ':l. Later, we will see that the
invariance of M under renormalization suggests that the
corresponding cellular topological state is a liquid state.

We also constructed five cellular topological phases la-
beled by the following (M, C,D)’s:

(GT%-:17C1aC2)7 (GT%—;val;C?))a (GT%j13C17C4)7
(GT3H,C3,Cy), (GT3',Cs, Ca). (19)

Those phases have the key properties that under the
renormalization (M, C,D) — (M, C,D) in Fig. 4, we can-
not reduce the 241D topological order M to the trivial
one, and M cannot be unchanged under the renormal-
ization. Later, we will see that the non-invariance of M
under renormalization suggests that the corresponding
cellular topological state is a non-liquid state.

B. Cellular topological state (GTgl,Cl, C1)

Some cellular topological states are non-liquid states,
while other cellular topological states are actually liquid
states. In this section, we are going to discuss a cellu-
lar topological state (GT%T, C1,C1), and show that it is
actually a gapped liquid state — a 3+1D Z5 topological
ordered state GT:Zrl described by Z, gauge theory.

The cellular topological state (GTgl, Cy,Cy) is con-
structed using 2+1D Zs topological order, and choos-
ing the junction of three Z5 topological orders to be the
141D anomalous topological order C; in eqn. (13) (see
Fig. 2).

The 141D topological order C; has a condensation of
e1es, eses, and eger, for the excisions in the connected
2+1D topological order. This means that the e-particles
can freely move between the 241D topological orders
GT%Z'I connected by the 141D topological order C; (see
Fig. 8). In other words, the e-particle can move freely in
the whole 3d space.

From the renormalization of the corresponding tensor
network

(C,D) = (C1,Cy) — (C,D) = (2C4,2Cy),  (20)

FIG. 8. In the cellular topological state (GTZH, C1,Cq), the
e-particle can move freely in 3d space. The unmarked links
are in sector-1. A configuration with a loop of links in sector-2
(marked by e — e) corresponds to another degenerate ground
state.

GT,'

FIG. 9. In the cellular topological state (GTZA7 C1,Cy), the
m-particles must form a closed loop in the dual honeycomb
lattice.

we find that the ground state degeneracy is roughly given
by 2N+, Such degeneracy can be understood by using
the closed e-string operator W, that move an e-particle
around a hexagon and the closed m-string operators W7,
that wraps around in the z-direction (see Fig. 6). Both
closed string operators commute with the Hamiltonian.
Since W, and W} anti-commute when they intersects,
we find that each hexagon contributes a factor 2 (corre-
sponding to W, = %1) to the ground state degeneracy.

The cellular topological state has a tensor network rep-
resentation (see Fig. 2 and 4). We can also compute
ground state state degeneracy using the trace of the ten-
sor network. Each link of the tensor network has a label
a = 1,2,3,4. The label 1 corresponds to a stripe of Zo
topological order in the trivial sector. The label 2,3,4
correspond to a stripe in the non-trivial sectors. Ap-
plying an open e-string operator W, connecting the two
boundaries to the trivial sector produces the sector-2 (see
Fig. 6). Similarly, applying the open m-string ( f-string)
operator W,,, (Wy) connecting the two boundaries to the
trivial sector produces the sector-3 (the sector-4).

A ground state of the cellular topological phase is given
by the stripes of Z5 topological orders, all in the trivial
sector (i.e. with label @ = 1 on all links). Now we apply



FIG. 10. In the cellular topological state (GT%J;, Cz, Cy), the
f-particle can move freely in 3d space.

a loop e-string operators W!°°P on some links to make
them to be a small loop of sector-2 (see Fig. 8). The
configuration corresponds to another degenerate ground
state. Thus each hexagon contributes a factor 2 to the
ground state degeneracy.

When the separation between vertices is small, the op-
erators W°°P are local operators. We may include such
operators in the Hamlitonian dH = J Y W°°P. The new
Hamiltonian no longer commute with m-string operators
Wm. So §H splits the ground state degeneracy. The
new ground states is believed to have a finite degeneracy
independent of system size.

The condensation mimoms at the 141D topological
order C; implies that we can create three m-particles
on the neighboring three 241D Z5 topological orders,
which form a small triangle in the dual honeycomb lat-
tice. Putting many small triangles together gives us a
loop in the dual honeycomb lattice formed by the m-
particles (see Fig. 9). However, the z-coordinates of the
m-particles can be arbitrary.

But if we add the H = J > W!°°P term to the Hamil-
tonian, it will confine two m-particles in the same stripe
of the Z5 topological order. In this case the above loop of
the m-particles must have similar z-coordinates, in order
to reduce the energy.

Those properties suggest that the cellular topologi-
cal state (GTZ‘l, Cy,Cy) is a 3+1D Z5 topological order
GT%‘l. The free-moving e-particle is the point-like Z5-
charge in GT?Zl. The loop of m-particles is the Zs-flux
loop in GT%‘:l.

C. Cellular topological state (GT;;,CQ,CQ)

The cellular topological state (GT%;Ll,Cg,Cg) is also

a gapped liquid state — a 3+1D Zg topological ordered
state GT‘;}'1 described by twisted Z5 gauge theory where
2

the point-like Zy-charge is a fermion.®°

The 141D topological order C; has a condensation of
fife, fafs, and f3f1, for the excitations in the connected
2+1D topological orders. This means that the f-particles
can freely move between the 2+1D topological orders
GT%;rl connected by the 141D topological order Cy (see

FIG. 11. In the cellular topological state (GT2Z§1,C1,C3),

the e-particle can move across the C; boundary, and the m-
particle can move across the C3 boundary. However, the long
distant motion of e- and m-particles are blocked.

FIG. 12. A configuration in the ground state. The unmarked
links are in sector-1. The links marked by m —m are in sector-
3.

Fig. 10). In other words, the f-particle can move freely
in the whole 3d space, which corresponds to the point-
like Z5-charge in the 3+1D Zg topological order GT;}I.

2
Similarly, the loop of m-particles is the Z-flux loop in
GT2H!
7zl -

D. Cellular topological state (GTQZ;rl,Cl,Cg)

The cellular topological state (GTZ“l, C,C3) is a
gapped non-liquid state, which is a fracton state with
fractal excitations. In such a cellular topological state, e-
particle (m-particle) can move across the C; (C3) bound-
aries (see Fig. 11). But the motion of e-particle (m-
particle) is blocked by the Cs (C;) boundaries. To move
across the C3 (C1) boundaries, the e-particle (m-particle)
must split into two (see Fig. 11). So the e- and m-
particles cannot move freely in z-y direction, indicating
that the cellular topological state maybe a non-liquid
state. However, the e-particle and m-particle can move
freely in z-direction within a stripe of Z5 topological or-
der (see Fig. 9).

Remember that a ground state of the cellular topolog-
ical phase is given by the stripes of Z5 topological orders,
all in the trivial sector (i.e. with label @ = 1 on all links).
Now we apply the m-string operators W,,, on some links
to make them to be the sector-3. The created m-particle
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FIG. 13. A configuration of the cellular topological state.
The unmarked links are in sector-1. The links marked by
m — m are in sector-3. Only the vertices in the blue circle
cost energy.

bound state on a vertex must be able to condense on
the boundary. In this case, we create another degener-
ate ground state (see Fig. 12). We can also apply the
e-string operators W, on some links to make them to
be the sector-2. The created e-particle bound state on
the boundary must be able to condense on the boundary
(the resulting configuration is similar to Fig. 12). This
way, we obtain another degenerate ground state. We can
also apply the e-string and m-string operators together
to obtain new degenerate ground states. Counting all
such configurations give us the ground state degeneracy.
We note that different degenerate ground states have a
large separation of code distance, which increases with
system size.

From Fig. 12, we see that, in the ground state, the
links in sector-3 form many small triangles. A corner of
a triangle must connect to one and only one corner of
another triangle. This way, the links in sector-3 form
a fractal (see Fig. 12). This implies that the cellular
topological state (GTgl, Cy,C3) is a fracton state with
fractal excitations.

If a corner of a triangle is not connected to any corner
triangle, such a corner will represent a point-like excita-
tion. But the z-y motion for such a point-like excitation
is highly restricted, like the point excitations in Haah’s
cubic code. Such kind of point excitations are called frac-
tons. We see fractons are created at the corners of the
fractal operator. However, fractons can move freely in
the z-direction within a stripe of Z, topological order.

We believe that the cellular topological states,
(GT3H,Cy,C),  (GTSHN,Cy,Cy),  (GT3H, Co,Cy),
(GT%I,C;),,CA;), are similar to the cellular topological

states (GTQZ?, Cy, C3) discussed above. They should also
be fracton states with fractal excitations.

E. A cellular topological state on square column
lattice

In this section we consider a cellular topological state
on a lattice formed by square columns (see Fig. 13).
The stripes in the z-direction are occupied by 2+1D 7,

FIG. 14. A cellular topological state on cubic lattice. The
square faces are occupied by 241D Z3 topological order, and
the red, blue, green lines correspond to three kinds of 1+1D
anomalous topological orders Cr, Cp, and Cg. For example,
we assign the anomalous topological orders Cr and Cp to the
links in the z-direction in an alternative way.

topological order. The red and blue vertical lines are two
kinds of boundaries, Cg and Cg, of those Z5 topological
orders:

Bulk(Cr) = GTZI ' RGTH RGTS ! KGTSH,
Bulk(Cp) = GT3/ ' RGTZ' RGT;'RGTS.  (21)

The two boundaries are characterized by the following
condensing topological excitations (the generators):

Cr: eieg, eres, ereq, mimomamy, fifafsfa,

Cp: mima, mims, mimy, eieseses, fifafsfa. (22)

From the condensing particles on the boundaries, we
see that the e-particle can move across the Cz bound-
aries, while the m-particle can move across the Cp
boundaries. But, the arrangement of the Cr and Cp
boundaries is such that the long distant motion of the e-
and m-particles is blocked and they cannot move freely in
the x-y direction. This suggests the cellular topological
state to be a non-liquid state.

If all the links are in sector-1, then we have a minimal
energy ground state. If we change some links to sector-3
(marked by m — m in Fig. 13), we will get an excited
state. We may group the sector-3 links into small dia-
monds (see Fig. 13). Only the vertices that touch an odd
number of the diamonds cost a finite energy (see Fig. 13),
and correspond to a fracton. A fracton cannot move by
itself in x-y directions. Only a pair of fractons can move
in a certain way in z-y directions. But a fracton can move
freely and independently in z-direction. The fractons are
created at the corner of diamond-shaped membrane op-
erators. Those properties suggests that the constructed
cellular topological state is a type-I fracton state.

F. A cellular topological state on cubic lattice

Now, we consider a cellular topological state on a cubic
lattice columns (see Fig. 14), which is a generalization of
the square column model in the last section. The square



faces of the cubic lattice are occupied by 2+1D Z5 topo-
logical order. The red, blue, and green lines are three
kinds of boundaries, Cr, Cp, and Cg of those Z5 topo-
logical orders:

Bulk(Cg) = GT3/ ' RGT3' MGTSH RGTS T,
Bulk(Cp) = GT5/ ' RGTH RGTSH KGTSH,
Bulk(Cq) = GT7/'RGTZ RGTZH RGTSH.  (23)

The above three boundaries are characterized by the fol-
lowing condensing topological excitations (the genera-
tors):

Cr: eies, eres, ereq, mimomamy, fifafsfa,
Cp: mima, mims, mima, eiegeses, fifafsfa,
Ca: fife, fifs, fifs, eresezeqs, mimomamy. (24)

From the condensing particles on the boundaries, we
see that the e-particle can move across the Cz bound-
aries, the m-particle can move across the Cg boundaries,
and the f-particle can move across the Cs boundaries.
But, the arrangement of the Cr, Cp, and Cg bound-
aries is such that the long distant motion of the e-, m-,
and f-particles is blocked and they cannot move freely
in the any directions. In other words, they are localized
in a finite region. To move further, those particles must
split into more and more particles. This suggests the
cellular topological state in Fig. 14 to be a non-liquid
state. In particular, the structure described in Fig. 13
also appears in the cubic cellular model, and gives rise to
point-like excitations with constrained motion.

IV. REVERSE RENORMALIZATION AND
GENERIC CONSTRUCTION

To systematically understand and to classify a gapped
liquid state (such as a topologically ordered state), we
perform wavefunction renormalization by removing the
unentangled degrees of freedom.”®8'83% We hope to ob-
tain a fixed-point wave function which gives us a classi-
fying understanding of the gapped liquid states. We also
hope the fixed-point wave function is described by a topo-
logical quantum field theory which does not dependent
on the lattice details.

However, for gapped non-liquid states, due to their
intrinsic foliation or cellular structure, above general ap-
proach does not work. In particular, we should not ex-
pect to have a quantum field theory to describe a non-
liquid state. (But a quantum field theories with explicit
layer structure may work.”®) On the other hand, we still
hope to obtain some kind of fixed-point wave functions
for non-liquid states, so that we can have a systematic
and classifying understanding of non-liquid states.

Here we like to propose a reverse renormalization ap-
proach to obtain the fixed-point wave functions for non-
liquid states. In such an approach, we add unentangled
degrees of freedom to our systems, to separation the lay-
ers in the foliation or cellular structure. After many steps
of renormalization, we get 3+1D gapped liquid states be-
tween layers (i.e. within a cell), such as topologically or-
dered states or SET/SPT states if we have symmetry.
(In our previous discussions, we have assumed the 3+1D
gapped liquid states to be trivial product states.) On
the layers, we have 241D anomalous topological orders,
which are the domain walls separating the neighboring
3+1D topological orders. The layers join at edges, which
correspond to 141D anomalous topological orders. The
edges join at vertices, which correspond to 0+1D anoma-
lous topological orders (see Fig. 1).

The above reverse renomalization understanding of
non-liquid states suggests the following general construc-
tion. We first decompose the 3d space into cells (see Fig.
1). We assign (possibly different) 3+1D topological or-
ders to the 3d cells, assign 2+1D anomalous topological
orders to the 2d surfaces, assign 141D anomalous topo-
logical orders to the 1d edges, and assign 0+1D anoma-
lous topological orders to the 0d vertices. (Without sym-
metry, the 04+1D anomalous topological orders are always
trivial.*?) This is a quite general construction, which may
cover all the non-liquid states. However, some construc-
tions may give rise to ground state degeneracies that can
be lifted by local operators. We need to include those
local operators to lift the degeneracies and to stabilize
the constructed states. Also, different constructions may
lead to the same gapped non-liquid phase. Finding the
equivalence relations between different constructions is
an every important issue.

Our construction also works if there are on-site sym-
metry, by requiring the (anomalous) topological orders in
various dimensions to have the same symmetry. In the
presence of space group symmetry, we need to choose
the cellular structure to have the space group symmetry.
We also need to choose (anomalous) topological orders
in various dimensions to have the proper symmetries, as
discussed in Ref. 45-48.

After posting this paper, the author became aware of
a prior unpublished work (now posted as Ref. 84) where
a very similar construction, based on defect network in a
3+1D topological quantum field theory, was proposed.
The defect planes and defect lines correspond to the
(anomalous) 2+1D and 141D topological orders in this
paper. Later, another similar construction was proposed
in Ref. 85.

I would like to thank Xie Chen and Kevin Slagle to
bring the above work to my attention. This work is mo-
tivated by the presentations in the Annual Meeting of
Simons Collaboration on Ultra-Quantum Matter, where
the issue of the fixed point field theory for fracton phases
were discussed. This research was partially supported by
NSF DMS-1664412. This work was also partially sup-
ported by the Simons Collaboration on Ultra-Quantum
Matter, which is a grant from the Simons Foundation
(651440).
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