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Gapped non-liquid state (also known as fracton state) is a very special gapped quantum state of
matter that is characterized by a microscopic cellular structure. Such microscopic cellular structure
has a macroscopic effect at arbitrary long distances and cannot be removed by renormalization
group flow, which makes gapped non-liquid state beyond the description of topological quantum
field theory with a finite number of fields. Using Abelian and non-Abelian topological orders in
2-dimensional (2d) space and the different ways to glue them together via their gapped boundaries,
we propose a systematic way to construct 3d gapped states (and in other dimensions). The resulting
states are called cellular topological states, which include gapped non-liquid states, as well as gapped
liquid states in some special cases. Some new fracton states with fractal excitations are constructed
even using 2d Z2 topological order. More general cellular topological states can be constructed
by connecting 2d domain walls between different 3d topological orders. The constructed cellular
topological states can be viewed as fixed-point states for a reverse renormalization of gapped non-
liquid states.
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I. INTRODUCTION

Different phases of matter are not only characterized
by their symmetry breaking patterns.1,2 Even systems
without any symmetry can have many distinct gapped
zero-temperature phases, characterized by different pat-
terns of long range quantum entanglement3. Those
gapped phases include gapped liquid phases4,5 [which in-
cluse phases with topological orders6–8, symmetry en-
riched topological (SET) orders9–17 and symmetry pro-
tected trivial (SPT) orders18–20], as well as gapped non-

liquid phases21,22, such as foliated phases4,23,24 (i.e. type-
I fracton phases25).
So far, we have a nearly complete understanding

gapped liquid phases for boson and fermion systems with
and without symmetry. In 1+1D, all gapped phases are
liquid phases. They are classified by (GH , GΨ, ω2)

26,27,
where GH is the symmetry group of the Hamiltonian, GΨ

the symmetry group of the ground state GΨ ⊂ GH , and
ω2 ∈ H2(GΨ,R/Z) is a group 2-cocycle for the unbroken
symmetry group GΨ.
In 2+1D, we believe that all gapped phases are liquid

phases. They are classified (up to E8 invertible topologi-
cal orders and for a finite unitary on-site symmetry GΨ)
by (GH ,Rep(GΨ) ⊂ C ⊂ M) for bosonic systems and
by (GH , sRep(GΨ) ⊂ C ⊂ M) for fermionic systems28–30.
Here Rep(GΨ) is symmetric fusion category formed by
representations of GΨ, and sRep(GΨ) is symmetric fu-

sion category formed by Z
f
2 -graded (i.e. fermion graded)

representations of GΨ. Also C is a braided fusion cate-
gory and M is a minimal modular extension29,30.
In 3+1D, some gapped phases are liquid phases while

others are non-liquid phases. The 3+1D gapped liquid
phases without symmetry for bosonic systems (i.e. 3+1D
bosonic topological orders) are classified by Dijkgraak-
Witten theories if the point-like excitations are all
bosons, by twisted 2-gauge theory with gauge 2-group
B(G,Z2) if some point-like excitations are fermions and
there are no Majorana zero modes, and by a special
class of fusion 2-categories if some point-like excitations
are fermions and there are Majorana zero modes at
some triple-string intersections31–33. Comparing with
classifications of 3+1D SPT orders for bosonic20,34 and
fermioinc systems35–40, this result suggests that all 3+1D
gapped liquid phases (such as SET and SPT phases) for
bosonic and fermionic systems with a finite unitary sym-
metry (including trivial symmetry, i.e. no symmetry)
are classified by partially gauging the symmetry of the
bosonic/fermionic SPT orders32.
However, the classification of gapped non-liquid phases

is still unclear (for a review, see Ref. 41). In this paper,
we are going to propose a very systematic construction of
3+1D gapped non-liquid phases for bosonic and fermionic
systems with possible symmetry. We hope our systematic
construction can lead to a classifying understanding of
gapped non-liquid phases. Our construction is based on
the above classification of gapped liquid phases and a
classification of gapped boundaries of those gapped liquid
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FIG. 3. For Ci satisfying eqn. (2), the layer Mij is detached.
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FIG. 4. (a) A deformation step C ⊠M D = C
′
⊠

M̃
D

′ (see
eqn. (11)). (b) Using the deformation step, we can change the
blue-hexagonal tensor network to the one formed by red links
and light-blue dots. (c) Shrinking the triangles to the red dots
produces the blue-hexagonal tensor network (see eqn. (12)).

This completes a renormalization step (M,C,D) → (M̃, C̃, D̃).

cellular topological state. The entanglement structure
can be revealed by the renormalization of the state (see
Fig. 4). The renormalization is done via a basic defor-
mation step in Fig. 4a, where fusing two boundaries C,D
and fusing two boundaries C

′,D′ given rise to the same
boundary of the four stacked 2+1D topological orders
(described by the four outer lines): C⊠M D = C

′
⊠

M̃
D

′.
To describe such a deformation step more explicitly, we

need a quantitative description of the 2+1D topological
order Mij and the 1+1D anomalous topological order Ci.
The topological orders can be characterized by the rep-
resentations of mapping class groups for all Riemannian
surfaces.7,8 Here for simplicity,71–73 we will only use the
representation for mapping class group of a torus.74,75 In
other words, we will use the Sb

a, T
b
a matrices (the genera-

tors of a modular representation of SL(2,Z)) to charac-
terize a 2+1D topological order M, where a, b label the
types of the topological excitations in the topological or-
der. Similarly, the gapped domain walls C between two
topological orders characterized by (S, T ) and (S′, T ′) are
characterized by the wave function overlap of the degen-
erate ground states, |ψa〉 and |ψ′

a′〉, of the two topological
orders on torus:61

〈ψ′

a′ |e−HW |ψa〉 = e
−σAT2+o( 1

A
T2

)
Ca

a′ (3)

where HW is local hermitian operator like a Hamiltonian
of a quantum system, AT 2 is the area of the torus T 2

and Ca
a′ is a topological invariant that characterize the

domain between the two topological orders. Ca
a′ turns out

(a) (b)
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FIG. 5. (a) Fusion of two 1+1D domain walls C and
C
′ connected by a 2+1D topological order M

′ gives rise to
C
′′ = C

′
⊠M′ C. The loop-like t-direction is not shown. (b)

Exchanging x and t, we get the corresponding wave func-
tion overlapes. Two wave function overlaps C and C′ can
be reduced to one wave function overlap C′′. The loop-like
x-direction is not shown.

to be non-negative integers for torus, which satisfy59,61

∑

b′

S′b
′

a′Cb
b′ =

∑

a

Ca
a′Sb

a,
∑

b′

T ′b
′

a′Cb
b′ =

∑

a

Ca
a′T b

a ,

Ca
a′Cb

b′ ≤
∑

c′,c

Na′b′

c′ Cc
c′N

ab
c . (4)

where Nab
c and Na′b′

c′ are the fusion coefficients for the
topological excitations in the two topological orders.

Now let us describe an elementary deformation step.
Consider three topological orders M, M′ and M

′′ charac-
terized by (S, T ), (S′, T ′), and (S′′, T ′′). A tensor C de-
scribes a domain wall C between (S, T ) and (S′, T ′), and
a tensor C ′ describes a domain wall C′ between (S′, T ′)
and (S′′, T ′′). The two domain wall C and C

′ can fuse
into a single domain wall C′′ (see Fig. 5a):

C
′′ = C

′
⊠M′ C. (5)

Note the C and C
′ are fused with a “glue” M

′ (see Fig.
5)62,63, which is indicated by the subscript of ⊠. It turns
out that the domain wall C′′ is characterized by a tensor
C ′′

(C ′′)aa′′ =
∑

a′

(C ′)a
′

a′′Ca
a′ , or C ′′ = C ′C. (6)

The above just describes the composition of wavefunction
overlap in Fig. 5b.

We note that the above elementary step is reversible,
which can fuse two domain walls or split a single domain
wall. A fusion followed a split in a different direction
produces the elementary deformation step in Fig. 4a.

If one side of the domain wall between M and M
′ is

trivial (say M
′ is trivial), then the domain wall (i.e. the

boundary of M) is described by Ca
1
≡ Ca (or by C1

a ≡ Ca

if the boundary is at the opposite side of M, where 1

corresponds to the trivial excitation). We see that the
boundary Ci in our construction (see Fig. 2) is charac-
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FIG. 6. A simple tensor network formed by two vertices
connected by a link. The link corresponds to a 2+1D topolog-
ical order M. The vertices corresponds to a 1+1D anomalous
topological order C,D.

terized by non-negative integer tensor

Ci ∼
{

Caijaikail
, if i is type-A,

Caijaikail , if i is type-B,
(7)

where (aij , aik, ail) labels the topological excitations in
Mi = Mij ⊠ Mik ⊠ Mil and aij labels the topological
excitations in Mij etc .
The above discussion suggests that we can view the

blue honeycomb lattice in Fig. 4 as a tensor network,
where the tensors at the solid-blue vertices are given by
Caijaikail , while the tensors at the open-blue vertices are
given by Daijaikail

. The link 〈ij〉 carries the index aij
which label the types of topological excitations in Mij .
The trace of the tensor network give us the partition func-

tion, which is the ground state degeneracy of the cellular

topological state.59,61,67

To see why trace of tensor network give rise to ground
state degeneracy, let us consider a simple tensor network
with two vertices connected by a link59,67. The link cor-
responds to a Z2 topological order M = GT

2+1
Z2

(i.e. the

2+1D Z2 gauge theory)76,77. The Z2 topological order
GT

2+1
Z2

has four type of topological excitations 1, e,m, f ,
labeled by a = 1, 2, 3, 4 respectively. The S, T modular
matrices are given by

T =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1











, S =
1

2











1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1











. (8)

The Z2 topological order has two gapped boundayies:
Ce from e-particle condensation and Cm from m-particle
condensation66. There are described by the following
rank-1 tensors (a = 1, · · · , 4)

Ce : (Ca
e ) =











1

1

0

0











, Cm : (Ca
m) =











1

0

1

0











(9)

If both boundaries in Fig. 6 are given by C = D = Ce,
then the ground state degeneracy of the system is given
by

∑

a C
a
eC

a
e = 2. This result can also be obtained using

the e-string operatorWe that creates a pairs of e-particle

at its ends, and the m-string operator Wm that creates
a pairs of m-particle at its ends. Since e-particles con-
dense at the boundaries, the open e-string operator, We,
connecting the two boundaries does change the energy
(i.e. commute with the Hamiltonian). A loop of the m-
string operator in z-direction, W z

m, also commute with
the Hamiltonian. Since the e-string operator and the m-
string operator intersect at one point and anti-commute
WeW

z
m = −W z

mWe, the ground states are 2-fold degen-
erate.

If the boundaries in Fig. 6 are given by C = Ce and
C = Cm, then the ground state degeneracy of the system
is given by

∑

a C
a
eC

a
m = 1. In this case, there is no string

operators that connect the two boundaries and create two
condensing particles.

With the above tensor representation of the bound-
aries, the renormalization of the cellular topological
state becomes the standard renormalization of tensor
network.78,79 Let us assume that, in the hexagonal ten-
sor network (see Fig. 2 and 4b), all Mij are the same
Mij = M, whose topological excitations are labeled by
a, b, c, · · · . The boundaries Ci at the solid-bule vertices
are given by Ci = C (or by tensor Cabc), while boundaries
Ci at the open-bule vertices are given by Ci = D (or by
tensor Dabc). For simplicity, we will assume

Cabc = Ccab, Dabc = Dcab. (10)

Then, the deformation in Fig. 4a is explicitly given by
the following tensor relation:

∑

e

CeabDecd =
∑

ã

(C ′)ãbc(D′)ãda. (11)

where ã label the topological excitations in a new 2+1D
topological order M̃. We like to mention that the defor-
mation (11) is not unique. There can be many choices

of M̃,C′,D′ that satisfy eqn. (11). We like to find the

deformation where M̃ has minimal total quantum dimen-
sion D =

√
∑

ã d
2
ã. Here dã is the quantum dimensions

of topological excitations in M̃. Later, we will see that
if the resulting M̃ is trivial or equal to the original M,
then the corresponding cellular topological state may be
a liquid state.

We like to remark that, as we will see later, a cel-
lular state contains extra local structures that are not
related to the universal class of a gapped state. So, by
choosing M̃ to have minimal total quantum dimension,
we hope to obtain the simplest cellular topological state
after each step of renormalization, trying to remove those
local structures as much as possible.

We can use the deformation Fig. 4a to deform the blue
hexagonal tensor network in Fig. 4b to the one described
by red links in Fig. 4b. We then shrink the small trian-
gles in Fig. 4b to a point and obtain a new red hexagonal
tensor network in Fig. 4c. The new boundaries C̃ and D̃
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are given by

C̃ ãb̃c̃ =
∑

a,b,c

(C ′)ãcb(C ′)b̃ac(C ′)c̃ba,

D̃ãb̃c̃ =
∑

a,b,c

(D′)ãcb(D
′)b̃ac(D

′)c̃ba. (12)

The two relations (11) and (12) define the renormaliza-
tion of the cellular topological state.

III. CELLULAR TOPOLOGICAL STATES

FROM 2+1D Z2 TOPOLOGICAL ORDER

A. A general construction

In this section, we are going to construct some simple
cellular topological states in Fig. 2 by choosing Mij to be

the same 2+1D Z2 topological order Mij = GT
2+1
Z2

. We

find that GT2+1
Z2

⊠GT
2+1
Z2

⊠GT
2+1
Z2

has 10 types of gapped

boundaries, Bulk(Ci) = GT
2+1
Z2

⊠GT
2+1
Z2

⊠GT
2+1
Z2

, that are
entangled (i.e. do not have the form in eqn. (2)). Their
tensor representations, Cabc

i , are givein by (only non-zero
elements are listed):

C1 : C111
1 , C122

1 , C212
1 , C221

1 , C333
1 , C344

1 , C434
1 , C443

1 = 1,

C2 : C111
2 , C144

2 , C223
2 , C232

2 , C322
2 , C333

2 , C414
2 , C441

2 = 1,

C3 : C111
3 , C133

3 , C222
3 , C244

3 , C313
3 , C331

3 , C424
3 , C442

3 = 1,

C4 : C111
4 , C144

4 , C222
4 , C233

4 , C323
4 , C332

4 , C414
4 , C441

4 = 1,

C5 : C111
5 , C132

5 , C212
5 , C231

5 , C323
5 , C344

5 , C424
5 , C443

5 = 1,

C6 : C111
6 , C132

6 , C223
6 , C244

6 , C312
6 , C331

6 , C424
6 , C443

6 = 1,

C7 : C111
7 , C123

7 , C213
7 , C221

7 , C332
7 , C344

7 , C434
7 , C442

7 = 1,

C8 : C111
8 , C123

8 , C232
8 , C244

8 , C313
8 , C321

8 , C434
8 , C442

8 = 1,

C9 : C111
9 , C133

9 , C213
9 , C231

9 , C322
9 , C344

9 , C424
9 , C442

9 = 1,

C10 : C111
10 , C122

10 , C233
10 , C244

10 , C312
10 , C321

10 , C434
10 , C443

10 = 1.
(13)

The first four, (C1,C2,C3,C4), are cyclic symmetric
(10). Let us examine those four types of the bound-
aries of GT2+1

Z2
⊠ GT

2+1
Z2

⊠ GT
2+1
Z2

in more details. First
we note that C1 and C3 as well as C2 and C4 differ by
an automorphism of the Z2 topological order: ei ↔ mi,
where i = 1, 2, 3 labels the three Z2 topological orders in
GT

2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

. Those boundaries are formed
by condensing the topological excitations in the three
Z2 topological orders66,68–70. In the following, we list
the condensing excitations (the generators) for the four
boundaries:

C1 : e2e3, e1e3, e1e2, m1m2m3;

C2 : f1f2, f1f3, f2f3, m1m2m3;

C3 : m2m3, m1m3, m1m2, e1e2e3;

C4 : f2f3, f1f3, f1f2, e1e2e3; (14)

e

ad

c b

ad

c b

a

M

D

M M

C

M
M

M M

M

M
D’

C’

FIG. 7. If we choose M̃ = M⊠M, then eqn. (11) always has
solutions.

which are obtained from the tensor indices abc with
Cabc = 1.
If we assume M̃ to be the trival topological order, then

the equation eqn. (11) for the deformation in Fig. 11a
has no solutions, for those cyclic symmetric boundaries.
If we assume M̃ to be given by the 2+1D Z2 topological
order GT2+1

Z2
, then for the following (C,D)’s

(C1,C2), (C1,C3), (C1,C4), (C2,C3), (C3,C4), (15)

the deformation eqn. (11) also has no solution. But, for
other cyclic symmetric boundaries C,D’s, the deforma-
tion eqn. (11) has two solutions, which are given by (see
Fig. 11)

(C,D) = (C1,C1) → (C′,D′) = (C1,C1) or (C10,C10),

(C,D) = (C3,C3) → (C′,D′) = (C3,C3) or (C9,C9),

(C,D) = (C2,C2) → (C′,D′) = (C2,C2) or (C4,C4),

(C,D) = (C4,C4) → (C′,D′) = (C2,C2) or (C4,C4),

(C,D) = (C2,C4) → (C′,D′) = (C2,C4) or (C4,C2).
(16)

If we choose M̃ to be a more general topological order,
such as M̃ = M⊠M, then eqn. (11) always has solutions
(see Fig. 7).
After obtaining C

′ and D
′, we can perform the shrink-

ing operation (12) (see Fig. 4) to obtain C̃, D̃:

(C,D) = (C1,C1) → (C̃, D̃) = (2C1, 2C1) or (2C3, 2C3),

(C,D) = (C3,C3) → (C̃, D̃) = (2C3, 2C3) or (2C1, 2C1),

(C,D) = (C2,C2) → (C̃, D̃) = (2C2, 2C2) or (2C4, 2C4),

(C,D) = (C4,C4) → (C̃, D̃) = (2C2, 2C2) or (2C4, 2C4),

(C,D) = (C2,C4) → (C̃, D̃) = (2C2, 2C4) or (2C4, 2C2).
(17)

Here 2C ≡ C ⊕ C means that the boundary is formed
by accidentally degenerate C and C. Since C̃ comes from
fusing three C’s. We roughly have a fusion rule for the
boundaries: C ⊠ C ⊠ C ∼ C̃. The results (17) suggest
that the boundary C and D have a quantum dimension√
2. So the ground state degeneracy is roughly given by

2
NA+NB

2 (up to a finite factor), where NA and NB are
the number of type-A and type-B vertices (see Fig. 2).
In other words the ground state degeneracy is roughly
given by 2Nh where Nh is the number of the hexagons
(see Fig. 2).
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In our above discussions, we have assumed that the
vertices in the honeycomb lattice (see Fig. 2) is far
apart. This leads to the accidentally degeneracy of two
C’s. However, in reality, the vertices in the honeycomb
lattice have a small separation. In this case, the degen-
eracy of two C’s is split.
To summarize, we constructed five cellular topological

phases labeled by the following (M,C,D)’s:

(GT2+1
Z2

,C1,C1), (GT
2+1
Z2

,C2,C2), (GT
2+1
Z2

,C3,C3),

(GT2+1
Z2

,C4,C4), (GT
2+1
Z2

,C2,C4). (18)

Those phases have the key properties that under the
renormalization (M,C,D) → (M̃, C̃, D̃) in Fig. 4, we can-
not reduce the 2+1D topological order M to the triv-
ial one, but M can be unchanged under renormalization:
M = GT

2+1
Z2

→ M̃ = GT
2+1
Z2

. Later, we will see that the
invariance of M under renormalization suggests that the
corresponding cellular topological state is a liquid state.
We also constructed five cellular topological phases la-

beled by the following (M,C,D)’s:

(GT2+1
Z2

,C1,C2), (GT
2+1
Z2

,C1,C3), (GT
2+1
Z2

,C1,C4),

(GT2+1
Z2

,C2,C3), (GT
2+1
Z2

,C3,C4). (19)

Those phases have the key properties that under the
renormalization (M,C,D) → (M̃, C̃, D̃) in Fig. 4, we can-
not reduce the 2+1D topological order M to the trivial
one, and M cannot be unchanged under the renormal-
ization. Later, we will see that the non-invariance of M
under renormalization suggests that the corresponding
cellular topological state is a non-liquid state.

B. Cellular topological state (GT2+1

Z2
,C1,C1)

Some cellular topological states are non-liquid states,
while other cellular topological states are actually liquid
states. In this section, we are going to discuss a cellu-
lar topological state (GT2+1

Z2
,C1,C1), and show that it is

actually a gapped liquid state – a 3+1D Z2 topological
ordered state GT

3+1
Z2

described by Z2 gauge theory.

The cellular topological state (GT2+1
Z2

,C1,C1) is con-
structed using 2+1D Z2 topological order, and choos-
ing the junction of three Z2 topological orders to be the
1+1D anomalous topological order C1 in eqn. (13) (see
Fig. 2).
The 1+1D topological order C1 has a condensation of

e1e2, e2e3, and e3e1, for the excisions in the connected
2+1D topological order. This means that the e-particles
can freely move between the 2+1D topological orders
GT

2+1
Z2

connected by the 1+1D topological order C1 (see
Fig. 8). In other words, the e-particle can move freely in
the whole 3d space.
From the renormalization of the corresponding tensor

network

(C,D) = (C1,C1) → (C̃, D̃) = (2C1, 2C1), (20)

1 1

e e
e

e
e

e
eee

e
e

e

e e e
e

e

Z2

2+1C C GT

W

FIG. 8. In the cellular topological state (GT2+1

Z2
,C1,C1), the

e-particle can move freely in 3d space. The unmarked links
are in sector-1. A configuration with a loop of links in sector-2
(marked by e− e) corresponds to another degenerate ground
state.

z

GT
Z2

2+1

GT
Z2

2+1

G
T

Z
2

2
+

1

i j
k

l

m

m

m
m

m

m

m
1

m m
m

m

m
m

m

m

m

m

m

m

m

1

11

C C

C C

FIG. 9. In the cellular topological state (GT2+1

Z2
,C1,C1), the

m-particles must form a closed loop in the dual honeycomb
lattice.

we find that the ground state degeneracy is roughly given
by 2Nh . Such degeneracy can be understood by using
the closed e-string operator We that move an e-particle
around a hexagon and the closed m-string operators W z

m

that wraps around in the z-direction (see Fig. 6). Both
closed string operators commute with the Hamiltonian.
Since We and W z

m anti-commute when they intersects,
we find that each hexagon contributes a factor 2 (corre-
sponding to We = ±1) to the ground state degeneracy.

The cellular topological state has a tensor network rep-
resentation (see Fig. 2 and 4). We can also compute
ground state state degeneracy using the trace of the ten-
sor network. Each link of the tensor network has a label
a = 1, 2, 3, 4. The label 1 corresponds to a stripe of Z2

topological order in the trivial sector. The label 2, 3, 4
correspond to a stripe in the non-trivial sectors. Ap-
plying an open e-string operator We connecting the two
boundaries to the trivial sector produces the sector-2 (see
Fig. 6). Similarly, applying the open m-string (f -string)
operator Wm (Wf ) connecting the two boundaries to the
trivial sector produces the sector-3 (the sector-4).

A ground state of the cellular topological phase is given
by the stripes of Z2 topological orders, all in the trivial
sector (i.e. with label a = 1 on all links). Now we apply
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ffff
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2 2
Z2

2+1C C GT

W

FIG. 10. In the cellular topological state (GT2+1

Z2
,C2,C2), the

f -particle can move freely in 3d space.

a loop e-string operators W loop
e on some links to make

them to be a small loop of sector-2 (see Fig. 8). The
configuration corresponds to another degenerate ground
state. Thus each hexagon contributes a factor 2 to the
ground state degeneracy.
When the separation between vertices is small, the op-

erators W loop
e are local operators. We may include such

operators in the Hamlitonian δH = J
∑

W loop
e . The new

Hamiltonian no longer commute with m-string operators
Wm. So δH splits the ground state degeneracy. The
new ground states is believed to have a finite degeneracy
independent of system size.
The condensation m1m2m3 at the 1+1D topological

order C1 implies that we can create three m-particles
on the neighboring three 2+1D Z2 topological orders,
which form a small triangle in the dual honeycomb lat-
tice. Putting many small triangles together gives us a
loop in the dual honeycomb lattice formed by the m-
particles (see Fig. 9). However, the z-coordinates of the
m-particles can be arbitrary.
But if we add the δH = J

∑

W loop
e term to the Hamil-

tonian, it will confine two m-particles in the same stripe
of the Z2 topological order. In this case the above loop of
the m-particles must have similar z-coordinates, in order
to reduce the energy.
Those properties suggest that the cellular topologi-

cal state (GT2+1
Z2

,C1,C1) is a 3+1D Z2 topological order

GT
3+1
Z2

. The free-moving e-particle is the point-like Z2-

charge in GT
3+1
Z2

. The loop of m-particles is the Z2-flux

loop in GT
3+1
Z2

.

C. Cellular topological state (GT2+1

Z2
,C2,C2)

The cellular topological state (GT2+1
Z2

,C2,C2) is also

a gapped liquid state – a 3+1D Z
f
2 topological ordered

state GT3+1

Z
f
2

described by twisted Z2 gauge theory where

the point-like Z2-charge is a fermion.80

The 1+1D topological order C2 has a condensation of
f1f2, f2f3, and f3f1, for the excitations in the connected
2+1D topological orders. This means that the f -particles
can freely move between the 2+1D topological orders
GT

2+1
Z2

connected by the 1+1D topological order C2 (see

13

m
m

m

m

e

e

e
e

Z2

2+1C C GT

FIG. 11. In the cellular topological state (GT2+1

Z2
,C1,C3),

the e-particle can move across the C1 boundary, and the m-
particle can move across the C3 boundary. However, the long
distant motion of e- and m-particles are blocked.

m
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m

13

Z2

2+1CC
GT

FIG. 12. A configuration in the ground state. The unmarked
links are in sector-1. The links marked by m−m are in sector-
3.

Fig. 10). In other words, the f -particle can move freely
in the whole 3d space, which corresponds to the point-

like Z2-charge in the 3+1D Z
f
2 topological order GT3+1

Z
f
2

.

Similarly, the loop of m-particles is the Z2-flux loop in
GT

3+1

Z
f
2

.

D. Cellular topological state (GT2+1

Z2
,C1,C3)

The cellular topological state (GT2+1
Z2

,C1,C3) is a
gapped non-liquid state, which is a fracton state with
fractal excitations. In such a cellular topological state, e-
particle (m-particle) can move across the C1 (C3) bound-
aries (see Fig. 11). But the motion of e-particle (m-
particle) is blocked by the C3 (C1) boundaries. To move
across the C3 (C1) boundaries, the e-particle (m-particle)
must split into two (see Fig. 11). So the e- and m-
particles cannot move freely in x-y direction, indicating
that the cellular topological state maybe a non-liquid
state. However, the e-particle and m-particle can move
freely in z-direction within a stripe of Z2 topological or-
der (see Fig. 9).
Remember that a ground state of the cellular topolog-

ical phase is given by the stripes of Z2 topological orders,
all in the trivial sector (i.e. with label a = 1 on all links).
Now we apply the m-string operators Wm on some links
to make them to be the sector-3. The created m-particle
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+
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RB
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GT
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C
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C

FIG. 13. A configuration of the cellular topological state.
The unmarked links are in sector-1. The links marked by
m − m are in sector-3. Only the vertices in the blue circle
cost energy.

bound state on a vertex must be able to condense on
the boundary. In this case, we create another degener-
ate ground state (see Fig. 12). We can also apply the
e-string operators We on some links to make them to
be the sector-2. The created e-particle bound state on
the boundary must be able to condense on the boundary
(the resulting configuration is similar to Fig. 12). This
way, we obtain another degenerate ground state. We can
also apply the e-string and m-string operators together
to obtain new degenerate ground states. Counting all
such configurations give us the ground state degeneracy.
We note that different degenerate ground states have a
large separation of code distance, which increases with
system size.
From Fig. 12, we see that, in the ground state, the

links in sector-3 form many small triangles. A corner of
a triangle must connect to one and only one corner of
another triangle. This way, the links in sector-3 form
a fractal (see Fig. 12). This implies that the cellular
topological state (GT2+1

Z2
,C1,C3) is a fracton state with

fractal excitations.
If a corner of a triangle is not connected to any corner

triangle, such a corner will represent a point-like excita-
tion. But the x-y motion for such a point-like excitation
is highly restricted, like the point excitations in Haah’s
cubic code. Such kind of point excitations are called frac-
tons. We see fractons are created at the corners of the
fractal operator. However, fractons can move freely in
the z-direction within a stripe of Z2 topological order.
We believe that the cellular topological states,

(GT2+1
Z2

,C1,C2), (GT2+1
Z2

,C1,C4), (GT2+1
Z2

,C2,C3),

(GT2+1
Z2

,C3,C4), are similar to the cellular topological

states (GT2+1
Z2

,C1,C3) discussed above. They should also
be fracton states with fractal excitations.

E. A cellular topological state on square column

lattice

In this section we consider a cellular topological state
on a lattice formed by square columns (see Fig. 13).
The stripes in the z-direction are occupied by 2+1D Z2

FIG. 14. A cellular topological state on cubic lattice. The
square faces are occupied by 2+1D Z2 topological order, and
the red, blue, green lines correspond to three kinds of 1+1D
anomalous topological orders CR, CB , and CG. For example,
we assign the anomalous topological orders CR and CB to the
links in the x-direction in an alternative way.

topological order. The red and blue vertical lines are two
kinds of boundaries, CR and CB , of those Z2 topological
orders:

Bulk(CR) = GT
2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

,

Bulk(CB) = GT
2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

. (21)

The two boundaries are characterized by the following
condensing topological excitations (the generators):

CR : e1e2, e1e3, e1e4, m1m2m3m4, f1f2f3f4,

CB : m1m2, m1m3, m1m4, e1e2e3e4, f1f2f3f4. (22)

From the condensing particles on the boundaries, we
see that the e-particle can move across the CR bound-
aries, while the m-particle can move across the CB

boundaries. But, the arrangement of the CR and CB

boundaries is such that the long distant motion of the e-
andm-particles is blocked and they cannot move freely in
the x-y direction. This suggests the cellular topological
state to be a non-liquid state.
If all the links are in sector-1, then we have a minimal

energy ground state. If we change some links to sector-3
(marked by m − m in Fig. 13), we will get an excited
state. We may group the sector-3 links into small dia-
monds (see Fig. 13). Only the vertices that touch an odd
number of the diamonds cost a finite energy (see Fig. 13),
and correspond to a fracton. A fracton cannot move by
itself in x-y directions. Only a pair of fractons can move
in a certain way in x-y directions. But a fracton can move
freely and independently in z-direction. The fractons are
created at the corner of diamond-shaped membrane op-
erators. Those properties suggests that the constructed
cellular topological state is a type-I fracton state.

F. A cellular topological state on cubic lattice

Now, we consider a cellular topological state on a cubic
lattice columns (see Fig. 14), which is a generalization of
the square column model in the last section. The square
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faces of the cubic lattice are occupied by 2+1D Z2 topo-
logical order. The red, blue, and green lines are three
kinds of boundaries, CR, CB , and CG of those Z2 topo-
logical orders:

Bulk(CR) = GT
2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

,

Bulk(CB) = GT
2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

,

Bulk(CG) = GT
2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

⊠ GT
2+1
Z2

. (23)

The above three boundaries are characterized by the fol-
lowing condensing topological excitations (the genera-
tors):

CR : e1e2, e1e3, e1e4, m1m2m3m4, f1f2f3f4,

CB : m1m2, m1m3, m1m4, e1e2e3e4, f1f2f3f4,

CG : f1f2, f1f3, f1f4, e1e2e3e4, m1m2m3m4. (24)

From the condensing particles on the boundaries, we
see that the e-particle can move across the CR bound-
aries, the m-particle can move across the CB boundaries,
and the f -particle can move across the CG boundaries.
But, the arrangement of the CR, CB , and CG bound-
aries is such that the long distant motion of the e-, m-,
and f -particles is blocked and they cannot move freely
in the any directions. In other words, they are localized
in a finite region. To move further, those particles must
split into more and more particles. This suggests the
cellular topological state in Fig. 14 to be a non-liquid
state. In particular, the structure described in Fig. 13
also appears in the cubic cellular model, and gives rise to
point-like excitations with constrained motion.

IV. REVERSE RENORMALIZATION AND

GENERIC CONSTRUCTION

To systematically understand and to classify a gapped
liquid state (such as a topologically ordered state), we
perform wavefunction renormalization by removing the
unentangled degrees of freedom.78,81–83 We hope to ob-
tain a fixed-point wave function which gives us a classi-
fying understanding of the gapped liquid states. We also
hope the fixed-point wave function is described by a topo-
logical quantum field theory which does not dependent
on the lattice details.

However, for gapped non-liquid states, due to their
intrinsic foliation or cellular structure, above general ap-
proach does not work. In particular, we should not ex-
pect to have a quantum field theory to describe a non-
liquid state. (But a quantum field theories with explicit
layer structure may work.53) On the other hand, we still
hope to obtain some kind of fixed-point wave functions
for non-liquid states, so that we can have a systematic
and classifying understanding of non-liquid states.

Here we like to propose a reverse renormalization ap-
proach to obtain the fixed-point wave functions for non-
liquid states. In such an approach, we add unentangled
degrees of freedom to our systems, to separation the lay-
ers in the foliation or cellular structure. After many steps
of renormalization, we get 3+1D gapped liquid states be-
tween layers (i.e. within a cell), such as topologically or-
dered states or SET/SPT states if we have symmetry.
(In our previous discussions, we have assumed the 3+1D
gapped liquid states to be trivial product states.) On
the layers, we have 2+1D anomalous topological orders,
which are the domain walls separating the neighboring
3+1D topological orders. The layers join at edges, which
correspond to 1+1D anomalous topological orders. The
edges join at vertices, which correspond to 0+1D anoma-
lous topological orders (see Fig. 1).
The above reverse renomalization understanding of

non-liquid states suggests the following general construc-
tion. We first decompose the 3d space into cells (see Fig.
1). We assign (possibly different) 3+1D topological or-
ders to the 3d cells, assign 2+1D anomalous topological
orders to the 2d surfaces, assign 1+1D anomalous topo-
logical orders to the 1d edges, and assign 0+1D anoma-
lous topological orders to the 0d vertices. (Without sym-
metry, the 0+1D anomalous topological orders are always
trivial.42) This is a quite general construction, which may
cover all the non-liquid states. However, some construc-
tions may give rise to ground state degeneracies that can
be lifted by local operators. We need to include those
local operators to lift the degeneracies and to stabilize
the constructed states. Also, different constructions may
lead to the same gapped non-liquid phase. Finding the
equivalence relations between different constructions is
an every important issue.
Our construction also works if there are on-site sym-

metry, by requiring the (anomalous) topological orders in
various dimensions to have the same symmetry. In the
presence of space group symmetry, we need to choose
the cellular structure to have the space group symmetry.
We also need to choose (anomalous) topological orders
in various dimensions to have the proper symmetries, as
discussed in Ref. 45–48.

After posting this paper, the author became aware of
a prior unpublished work (now posted as Ref. 84) where
a very similar construction, based on defect network in a
3+1D topological quantum field theory, was proposed.
The defect planes and defect lines correspond to the
(anomalous) 2+1D and 1+1D topological orders in this
paper. Later, another similar construction was proposed
in Ref. 85.
I would like to thank Xie Chen and Kevin Slagle to

bring the above work to my attention. This work is mo-
tivated by the presentations in the Annual Meeting of
Simons Collaboration on Ultra-Quantum Matter, where
the issue of the fixed point field theory for fracton phases
were discussed. This research was partially supported by
NSF DMS-1664412. This work was also partially sup-
ported by the Simons Collaboration on Ultra-Quantum
Matter, which is a grant from the Simons Foundation
(651440).
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