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In this paper, we propose some new strongly correlated gapless states (or critical states) of spin-
1/2 electrons in 1+1-dimensions, such as the doped ferromagnetic and anti-ferromagnetic spin-1/2
Ising chains. We find that the metallic phases in the doped ferromagnetic and anti-ferromagnetic
Ising chain are different strongly correlated gapless phases, despite that the two phases have the same
symmetry. The doped anti-ferromagnetic Ising chain has a finite energy gap for all charge-1 fermionic
excitations even without pairing caused by the attractive interaction, resembling the pseudo-gap
phase of underdoped high Tc superconductors. Applying a transverse field to the ferromagnetic
and anti-ferromagnetic metallic phase can restore the Z2 symmetry, which gives rise to two distinct
critical points despite that the two transitions have exactly the same symmetry breaking pattern.
We also propose new chiral metallic states. All those new gapless states are strongly correlated in the
sense that they do not belong to the usual Tomonaga-Luttinger phase of fermions, i.e. they cannot
be smoothly deformed into the non-interacting fermion systems with the same symmetry. Our non-
perturbative results are obtained by noting that gapless quantum systems have emergent categorical
symmetries (i.e. noninvertible gravitational anomalies), which are described by multi-component
partition functions that are modular covariant. This allows us to calculate the scaling dimensions
and quantum numbers of all the low energy operators for those strongly correlated gapless states.
This demonstrates an application of emergent categorical symmetries in determining low energy
properties of strongly correlated gapless states, which are hard to obtain otherwise.
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I. INTRODUCTION

The simplest 1d metallic states are Fermi liquids of
non-interacting electrons, whose low energy properties
are described by non-interacting fermionic quasiparticles.
In the low energy limit, Fermi liquids are described by
several decoupled sectors and each sector contains a few
modes. In this paper, we will try to develop a general
understanding of gapless states by viewing the gapless
states as formed by several decoupled sectors, and using
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the notion of categorical symmetry1 (i.e. modular covari-
ance of noninvertible gravitational anomaly2).
Readers who are just interested in 1d strongly inter-

acting metallic states can directly go to Section III. The
section II contains some general discussions.
If a strongly interacting metallic state is stable against

all symmetry preserving perturbations, then it will rep-
resent a stable phase of quantum matter. However,
most strongly interacting metallic states are not sta-
ble against certain symmetry preserving perturbations.
Those metallic states will correspond to critical states
(or multi-critical points) that describe continuous phase
transitions between different phases of quantum matter.
Thus the constructions discussed in this paper can be
viewed as a systematic way to discover 1d gapless quan-
tum phases, as well as 1d (multi-)critical points. (In this
paper, we will use 1d to refer to 1-dimensional space and
1+1D to refer to 1+1-dimensional space-time.)

II. A GENERAL PICTURE FOR GAPLESS
QUANTUM STATES

After the development of last 30 years, we start
to have a comprehensive understanding of all gapped
quantum states in 1-dimensional, 2-dimensional, and 3-
dimensional spaces, in terms of spontaneous symme-
try breaking3,4, group cohomology5,6, and braided fu-
sion (higher) category7–17. In fact, we have classified
(or proposed to classify) all 1d18–21, 2d12–14,22, and
3d15–17 gapped liquid23,24 states of boson/fermion sys-
tems with any finite on-site symmetry. The classifica-
tion is achieved via the realization that gapped quantum
phases are described by symmetry breaking orders, topo-
logical orders7,25,26, and/or symmetry protected trivial
(SPT) orders27,28.
Such a systematic understanding of topological

orders7,25,26 and SPT orders27 (including topological in-
sulators and superconductors29–40) leads to a deeper un-
derstanding of gauge and gravitational anomalies, in
terms of the boundaries of topological order or SPT or-
der in one-higher-dimensional lattice models41–44. This
resulted in a generalization of anomalies to include nonin-
vertible anomalies.2,43,45–47 Those generalized anomalies
(inlcuding perturbative and global gauge/gravity anoma-
lies) are classified in terms of topological orders and SPT
orders in one higher dimension42,43. Such an under-
standing of anomalies also lead to a solution to the long-
standing chiral fermion problem48,49.
In comparison, there is a lack of comprehensive un-

derstanding of gapless quantum states of matter, despite
that we know many examples of them, such as super-
fluid, anti-ferromagnets, nodal d-wave superconductors,
graphene, Weyl semi-metals, etc . But in 1d, thanks to
Belavin-Polyakov-Zamolodchikov, we do have a good un-
derstanding of gapless quantum states with linear veloc-
ities via conformal field theories (CFT)50–52. In particu-
lar, we can use the modular invariant partition function,

gapless anomalous sectors

in one higher dim.
topological orders

gapped boundary

FIG. 1. (Color online) A general picture of a gapless quan-
tum states, which is formed by decoupled anomalous gapless
sectors restricted to the symmetric sub-Hilbert spaces (the
red dots). The emergent symmetry and emergent anoma-
lies are described by noninvertible gravitational anomalies
(i.e. the topological orders in one higher dimension). Thus,
the anomalous sectors are the boundary of corresponding
topological orders in one higher dimension.

which is parametrized by a complex number τ describing
the shape of the spacetime torus,

Z(τ) = Z(τ + 1) = Z(−1/τ) (1)

to systematically study 1d gapless states.
In this paper, we will try to develop a systematic

point of view of gapless quantum matter based on
gauge/gravity anomaly, hoping this may lead to a more
general understanding of gapless states in higher dimen-
sions.
First, the low energy part of a gapless state may be-

come several decoupled sectors, where the interactions
between different sectors approach to zero in the in-
frared limit under renormalization group flow. Conse-
quently, in the low energy limit, there are often emergent
symmetries. For example, the original UV symmetry
G (the lattice symmetry) may enlarged at low energies,
G → G × G × · · · , one copy for each decoupled sector.
Since each decoupled low energy sector is not a full sys-
tem, each sector by itself is often anomalous. Thus there
are also emergent anomalies (i.e. the low energy effective
theory is anomalous).
Recently, it is pointed out that, when restricted

to the symmetric sub-Hilbert space, a symmetry can
be fully characterized1 by a noninvertible gravitational
anomaly.2,43,45–47 So we can treat the emergent symme-
tries and emergent anomalies in a unified way by re-
stricting to the symmetric sub-Hilbert space. In this
case, we only have an emergent noninvertible gravita-
tional anomaly. To stress this close connection between
noninvertible gravitational anomaly and the symmetry,
we refer to noninvertible gravitational anomaly as cat-
egorical symmetry.2 This point of view is very general.
Not only emergent 0-symmetries (i.e. the usual global
symmetries) can be viewed as emergent noninvertible
gravitational anomalies, emergent higher symmetries and
even more general emergent higher algebraic symmetries
can also be viewed as emergent noninvertible gravita-
tional anomalies (i.e. be viewed as emergent categorical
symmetry).53,54

For example, 1+1D gapless state with on-site symme-
try G in the original lattice system also has a dual al-
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gebraic symmetry denoted by G̃2. The total symmetry

is the categorical symmetry denoted by G ∨ G̃2. Note
that a categorical symmetry is nothing but a general-
ized gravitational anomaly (which can be a noninvert-
ible gravitational anomaly). Also note that a generalized
gravitational anomaly is nothing but a topological order
in one higher dimension42,43,45–47. The topological order
in one higher dimension that describes the categorical

symmetry G ∨ G̃ is the topological order described by
G gauge theory. The 1+1D gapless state corresponds
to the minimal gapless boundary of the 2+1D G gauge
theory2, that have no condensation of gauge charge nor
gauge flux.
To have more information describing a gapless state,

we want to decompose the gapless state into smallest
decoupled sectors. This allows us to see the maximal
emergent symmetry and emergent anomalies. In other
words, this allows us to obtain the maximal categorical
symmetry1. It may be possible that the maximal cat-
egorical symmetry fully characterizes the gapless state.
This may be a way to systematically understand strongly
correlated gapless states.
Since each decoupled sector has a generalized gravita-

tional anomaly, it can be viewed as a boundary of topo-
logical order in one higher dimension (see Fig. 1). For
example, the right-moving sector of a 1+1D gapless state
has a perturbative gravitational anomaly characterized
by its central charge cR. Similarly, the left-moving sec-
tor also has a gravitational anomaly characterized by its
central charge cL. The right-moving sector is a boundary
of a 2+1D chiral topological order. The left-moving sec-
tor is also a boundary of a 2+1D chiral topological order.
The two chiral topological orders allow us to describe the
1+1D gapless state.
For a system with a generalized gravitational anomaly

(i.e. a noninvertible gravitational anomaly), its par-
tition function has multiple components. This
multi-component partition function transforms covari-
antly under mapping-class-group transformations of the
spacetime2,55. So the multi-component partition func-
tion forms a representation of the mapping class group.
Such a representation turns out to be the representation
that describes the topological order in one higher dimen-
sion. Since

topological order in one higher dimension

= noninvertible gravitational anomaly

= categorical symmetry, (2)

we see that the categorical symmetry determines the rep-
resentation of the mapping class group formed by the
multi-component partition function, which in turn deter-
mines the dynamical properties (such as scaling dimen-
sions) of the 1+1D gapless state. This is how emergent
maximal categorical symmetry systematically describes
a strongly correlated gapless state.
In this paper, we will use this line of thinking, i.e. use

multi-component partition functions and their modular

covariance, to study strongly correlated metals. This ap-
proach is beyond perturbation.

III. SUMMARY OF RESULTS

A. Ising strongly correlated metal with
ferromagnetic and anti-ferromagnetic correlation

In section IV, we consider a spin- 12 electron chain close
to one electron per site with strong on-site repulsive in-
teraction and (anti-)ferromagnetic Ising spin interaction.
The model has Z2 spin-flip symmetry: Sz → −Sz and
the U(1) electron conservation symmetry, as well as the
translation symmetry: U(1)× Zs2 × Z.
We note that for the insulating Ising chain, there are

two Z2 symmetry breaking phases, one when the in-
teraction is ferromagnetic and the other when the in-
teraction is anti-ferromagnetic. The phase in the anti-
ferromagnetic case breaks the translation symmetry.
After doping, there are also two Z2 symmetry break-

ing phases in the metallic states for ferromagnetic and
anti-ferromagnetic Ising interactions. However, the anti-
ferromagnetic metallic phase does not break the transla-
tion symmetry. We will show that despite the two metal-
lic phases have the same symmetry, they are two distinct
phases separated by phase transitions, if we do not ex-
plicitly break the symmetry. In particular, the fermionic
charge-1 excitation is gapless in the ferromagnetic metal-
lic phase, and is gapped in the anti-ferromagnetic metal-
lic phase. Thus the ferromagnetic and anti-ferromagnetic
metallic phases provide examples of symmetry pro-

tected gapless phases56,57.
The Z2 spin-flip symmetry breaking in the two metal-

lic phases can be restored if we add a strong transverse
magnetic field, which will change the two metallic phases
into the same metallic phase of polarized spins. We find
that the critical theories of the transition points are dif-
ferent for the ferromagnetic and anti-ferromagnetic cases.
The ferromagnetic critical point is described by a CFT

u1⊕ Is⊕ u1⊕ Is, (3)

while the anti-ferromagnetic critical point is described by
a different CFT. We see that even the same symmetry
breaking pattern can have distinct critical theories58.

B. Spin-rotation symmetric strongly correlated
metal

In this paper, we also construct some 1d chiral gapless
states. One way to do so is to start with a 2d FQH stripe.
On one side of the stripe, we have a gapless edge state
(the bottom part of Fig. 1), and on the other side of the
stripe (the top part of Fig. 1) we have a fully gapped
edge (assuming the FQH state support gapped edges).
This way, we can obtain a strongly interacting gapless
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state. In Appendix A, we show that, if we start with
an Abelian FQH state and consider only U(1) symmetry
of electron number conservation, the above construction
actually will always give us a Tomonaga-Luttinger (TL)
liquids, not a new gapless phase. Thus in this paper,
we consider electron systems with more than just the
U(1) symmetry. As an application, in Section V, we start
with 2d integer quantum Hall stripe with SO(3) spin
rotation symmetry, and obtain a chiral metallic state of
spin-1/2 charge-1 electrons, where the right-moving and
left-moving gapless fermions carry different spins. This
chiral metallic state is beyond the TL liquids of spin-1/2
electrons.
Furthermore, we consider an electron system with U(1)

charge, SU(2) spin, and Z lattice translation symmetries.
The lattice fermions carry charge-1 and spin-1/2. Such
an electron system can realize a chiral metallic phase (see
Section VI). In this chiral metallic state, the low energy
excitations are described by a CFT

su22 ⊕ u1⊕ Is⊕ su21 ⊕ su21 ⊕ u1, (4)

Note that the right movers and left movers are described
by different CFTs (i.e. different chiral algebras), and
those different sectors may have diffrent velocities. We
see that the single lattice SU(2) spin rotation symme-
try is enlarged to SU(2) × SU(2) × SU(2) symmetry
at low energies. The single lattice U(1) charge conser-
vation symmetry is enlarged to U(1) × U(1) symmetry
at low energies. In the clean limit, the chiral metallic
state has a quantized two-terminal thermal conductance

κ = cπ6
k2BT
~

, where c = 3
2 + 1 + 1

2 = 3 is the total central
charge for right movers (or left movers). Since the spin Sz
is conserved, we can treat it as a conserved charge where
each electron carries ±~/2 Sz-charge. The corresponding
two-terminal Sz-conductance is also quantized:

σSz
= νs

(~/2)2

h
= νs

~

8π
, (5)

with νs = 4. For TL liquids of spin-1/2 electrons, c and
νs are always integers, and they are always the same

c = νs. (6)

For the chiral metallic state (4), c = 3 and νs = 4. Thus
the constructed chiral metallic state (4) is beyond TL
liquids. Note that the central charges of some sectors are
fractional. Thus chiral metallic state is a chiral “non-
Abelian” metallic state.

IV. ISING PHASE TRANSITIONS IN
METALLIC STATE OF SPIN- 1

2
ELECTRON

CHAIN

In this section, we consider a spin- 12 electron chain with
ferromagnetic or anti-ferromagnetic Sz-spin interactions.
The system has a symmetry U(1)×Zs2×Z. We show that

the Zs2 symmetry breaking transitions for the two cases
are described by different CFTs in the metallic state, de-
spite that the two transitions cause the identical symme-
try change, i.e. reduce the symmetry group of the ground
state from U(1)× Zs2 × Z to U(1)× Z.

A. The model

Let us first consider a spin- 12 chain with Ising interac-
tion

H = −J
∑

i

σzi σ
z
i+1 −B

∑

i

σxi , (7)

where B is the external magnetic field. We then add
some doping to obtain a metallic state of spin- 12 electron
chain. In this paper, we will mainly consider the case
when Fermi energy of the dropped electrons is much less
than |J |, |B|. In this case, the system is in Z2 symmetry
breaking phase when B = 0, with σz = ±1 (i.e. all the
electron either have σz = +1 or σz = −1). In the Z2

symmetry breaking phase, the charge degree of freedom
remain gapless. The phase is described by U(1) CFT
with central charge c = c = 1. The Z2 symmetry break-
ing state has central charge c = c = 1. In the large B
limit, the system is in a Z2 symmetric phase where all
the electrons have σx = +1. The Z2 symmetric state
has central charge c = c = 1. We would like to consider
the critical point of the Z2 symmetry breaking transi-
tion. The critical point of pure Z2 symmetry breaking
has central charge c = c = 1

2 . Plus the contribution from
the conserved U(1) charge fluctuations, the critical point
is expected to have a total central charge c = c = 3

2 .
The symmetry of a fermion system is described by a

pair of groups: (Zf2 , Gf ). Here Gf is the full symmetry

group and Zf2 is generated by fermion number parity,
which is a central subgroup of Gf . For our spin-1/2 chain

Gf = U(1)× Zs2 and Zf2 is the subgroup of the U(1).
In general, to fully describe a critical theory with a

global symmetry G, we can consider the partition func-
tion twisted under the symmetry. More specifically, a
twisted partition function defined on a Euclidean space-
time torus parametrized by a complex number τ , is in-
dexed by a pair of elements g, h of Gf ,

Zg,h(τ), gh = hg, g, h ∈ Gf . (8)

It records all low energy excitations φ that satisfy twisted
boundary conditions along spacial and temporal direc-
tions, φ(x + L,− it) = gφ(x,− it), φ(x,− it + T ) =
hφ(x,− it), where − it denote the imaginary time.
If the symmetry Gf is non-anomalous, the partition

functions twisted under the symmetry satisfy the follow-
ing relations:

Zh−1,g(−1/τ) = Zg,h(τ),

Zg,hg(τ + 1) = Zg,h(τ),

Zugu−1,uhu−1(τ) = Zg,h(τ). (9)
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For example, for a fermionic system with only fermion-

number-parity symmetry, Gf = Zf2 , the partition func-
tion depends on the boundary conditions along tempo-
ral and spacial direction. Put it in plain words, we
consider the 4-component partition function indexed by
g, h ∈ {P,A}: ZAP (τ), ZAA(τ), ZPA(τ) and ZPP (τ),
where P and A represents the periodic and anti-periodic
boundary condition of a local fermion.

B. Partition functions

Thus, for a CFT of a fermionic system, there are at
least four sectors of partition functions defined as

ZPEf (τ) = TrE e−Im(τ)HP− iRe(τ)KP ,

ZPOf (τ) = TrO e−Im(τ)HP− iRe(τ)KP ,

ZAEf (τ) = TrE e−Im(τ)HA− iRe(τ)KA ,

ZAOf (τ) = TrO e−Im(τ)HA− iRe(τ)KA .

(10)

where TrE is the trace over the states with even (total)
numbers of fermions and TrO is the trace over the states
with odd numbers of fermions. HP (HA) is the Hamil-
tonian for a system where fermion fields satisfy an (anti-
)periodic boundary condition in x direction. Similarly,
KP (KA) is the total momentum operator of the systems
where fermion fields satisfy a (anti-)periodic boundary
condition in x direction.
Alternatively, we may define the torus partition func-

tions for fermion systems through the space-time path
integral, which also include four types, ZPP (τ), ZPA(τ),
ZAP (τ), and ZAA(τ). Here the first and second subscrip-
tion P or A corresponds the periodic or anti-periodic
boundary condition for fermions in x and t direction, re-
spectively. The two sets of partition functions are related

ZPEf =
1

2
(ZPP + ZPA), ZPOf = −1

2
(ZPP − ZPA),

ZAEf =
1

2
(ZAP + ZAA), ZAOf = −1

2
(ZAP − ZAA).

(11)

Each partition function can be expanded as

Z(τ) = q−
c
24 (q∗)−

c
24

∑

(h,h)

Nh,hq
h(q∗)h, (12)

where c, c are the central charge for right and left movers,

q = e− iτ 2π
L , (13)

where L is the size of the 1d system. The summation∑
(h,h) is over a set of pairs (h, h), which gives rise to

the spectrum of scaling dimensions of local operators.
In particular, the expansion coefficients Nh,h must be

positive integers for each of ZPEf (τ), ZPOf (τ), ZAEf (τ),
and ZAOf (τ).

Unlike CFTs from bosonic lattice systems that have a
modular invariant partition function eqn. (1), for a CFT
realizable by a fermionic lattice model, the above four
types of partition functions transform covariantly under
modular transformations. More explicitly, under S : τ →
− 1
τ ,

ZPP

(
−1

τ

)
=ZPP (τ), ZAA

(
−1

τ

)
= ZAA(τ),

ZAP

(
−1

τ

)
=ZPA(τ), ZPA

(
−1

τ

)
= ZAP (τ),

(14)

and under T : τ → τ + 1,

ZPP (τ + 1) =ZPP (τ), ZAA(τ + 1) = ZAP (τ),

ZAP (τ + 1) =ZAA(τ), ZPA(τ + 1) = ZPA(τ).
(15)

In the basis (ZAEf , ZPOf , ZPEf , ZAOf ), the partition
function transforms as2

ZI(τ + 1) = T
Zf

2

IJ ZJ(τ), ZI(−1/τ) = S
Zf

2

IJ ZJ(τ),
(16)

where I, J = AEf , POf , PEf , AOf and

TZ
f
2 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 , SZ

f
2 =

1

2




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


 .

(17)

As a warm-up example, we consider the 1d charge-
1 spinless non-interacting fermions. The 4-component
partition functions for a charge-1 spinless fermion satisfy
eqn. (16) and are given by the characters of u14 CFT
for right movers near kF , and by the characters of u14
CFT for left movers near −kF (see Appendix B 3). As a
result, the 4-component partition functions for a charge-1
spinless non-interacting fermion can be constructed from
the characters of u14 ⊕ u14 CFT:

ZAEf = |χu140 |2 + |χu142 |2,
ZPOf = χu141 χu14−1 + χu14−1 χ

u14
1 ,

ZPEf = |χu141 |2 + |χu14−1 |2,
ZAOf = χu140 χu142 + χu142 χu140 .

(18)

Here, the primary field corresponding to χu142 (χu142 ) is
the charge-1 right(left)-moving fermion. We also note
that the right (left) movers near kF (−kF ) can be viewed
as the edge state for integer quantum Hall state with
filling fraction ν = 1 (ν = −1).
To find modular covariant partition functions for the

Ising critical point in the spin-1/2 electron system, we
use the characters of u14 CFT, χu14m , and the characters
of Ising CFT, χIs

h , to construct the 4-component parti-
tion functions that satisfy eqn. (16) (details shown in
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Appendix B 3):

χu1Mm (τ), 0 ≤ m < M = 4,

χIs
h (τ), h = 0,

1

2
,
1

16
(19)

Here the u1 CFT describes the gapless U(1) charge fluc-
tuations. Also the Ising CFT describes the gapless spin
fluctuations at the Ising transition point. Eqn. (16)
can have many solutions. For example, the following 4-
component partition functions represent a solution sat-
isfy eqn. (16)

ZAE =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

+
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2,

ZPO =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

+
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2,

ZPE =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2 (20)

+
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)
,

ZAO =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

+
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
.

In the above 4-component partition functions, we have
considered the symmetry twist and the quantum number

of Zf2 . To obtain more information, let us also consider
the partition functions for the spin symmetry twist Zs2 :
ZPP (τ), ZPA(τ), ZAP (τ), and ZAA(τ) which also satisfy
eqn. (15) and eqn. (22). We introduce ZPEs(τ), ZPOs(τ),
ZAEs(τ), and ZAOs(τ) in a similarly but slightly different
way

ZPEs =
1

2
(ZPP + ZPA), ZPOs =

1

2
(ZPP − ZPA),

ZAEs =
1

2
(ZAP + ZAA), ZAOs =

1

2
(ZAP − ZAA), (21)

where ZPEs is the partition function in the Zs2 even sec-
tor, and ZPOs is the partition function in the Zs2 odd sec-
tor. Similarly, ZAEs is the partition function in the Zs2
even sector, and ZAOs is the partition function in the Zs2
odd sector, but now there is a Zs2 symmetry twist in the
spatial direction. In the basis (ZPEs , ZPOs , ZAEs , ZAOs),
the partition function transforms as

ZI(τ + 1) = T
Zs

2

IJ ZJ(τ), ZI(−1/τ) = S
Zs

2

IJ ZJ(τ), (22)

where I, J = PEs, POs, AEs, AOs and

TZ
s
2 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 , SZ

s
2 =

1

2




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


 ,

(23)

which is the same as eqn. (17).

For example, the 4-component partition functions for
the critical point of an 1d Ising model (7) satisfy eqn. (22)
and are given by the characters of Ising CFT (see Ap-
pendix B 3):

ZPEs = |χIs
0 |2 + |χIs

1
2
|2,

ZPOs = |χIs
1
16
|2,

ZAEs = |χIs
1
16
|2,

ZAOs = χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0 .

(24)

Now we like to include symmetry twists and the quan-

tum numbers for both Zf2 and Zs2 , which gives us the
16-component partition functions ZII′(τ), where I =
AEf , POf , PEf , AOf . and I ′ = PEs, POs, AEs, AOs.
ZII′(τ) satisfy the modular covariant condition (see
Ref. 2)

ZII′(τ + 1) = T
Zf

2 ×Zs
2

II′;JJ ′ ZJJ ′(τ),

ZII′(−1/τ) = S
Zf

2 ×Zs
2

II′,JJ ′ZJJ ′(τ), (25)

where

TZ
f
2 ×Zs

2 = TZ
f
2 ⊗ TZ

s
2 ,

SZ
f
2 ×Zs

2 = SZ
f
2 ⊗ SZ

s
2 . (26)

Eqn. (25) has many solutions. The list of 36 solutions
are given by Appendix G. But which one of the parti-
tion functions describe the Ising transition of spin-1/2
electrons?

If the electron spins have a ferromagnetic interaction
(i.e. J < 0 in eqn. (7)), then we can view the doped holes
as spinless fermions. Thus, in this case, we can view the
Ising transition point as decoupled critical point of Ising
chain and the metalic state of spinless fermions. There-
fore, the ferromagnetic Ising transition point of spin-1/2
electrons is described by the following 16-component par-
tition functions (see eqn. (G1)):

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)
, (27)

ZPOf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)
,

ZPEf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)
,

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAEf ,POs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2, (28)

ZPOf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2,

ZPEf ,POs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2,

ZAOf ,POs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2,
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ZAEf ,AEs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2, (29)

ZPOf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2,

ZPEf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2,

ZAOf ,AEs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2,

ZAEf ,AOs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
, (30)

ZPOf ,AOs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
,

ZPEf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
,

ZAOf ,AOs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
.

The above 16-component partition function is the multi-
component partition function mentioned in Section III,
which is a reflection of the noninvertible gravitational
anomaly if we restrict to the symmetric sub-Hilbert space

of the Zf2 ×Zs2 symmetry. The modular covariance of the
above multi-component partition function can help us
to determine many properties of the strongly correlated
gapless state. We remark that the above 16-component
partition function only describe part of emergent nonin-
vertible gravitational anomaly (i.e. part of emergent cat-
egorical symmetry), which is not the maximal categorical
symmetry.
We also note that the 16-component partition function

reduces to the following 4-component partition function

if we only consider the Zf2 symmetry twist:

ZAEf = ZAEf ,PEs + ZAEf ,POs

=
(
|χu140 |2 + |χu142 |2

)
ZIs,

ZPOf = ZPOf ,PEs + ZPOf ,POs

=
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
ZIs,

ZPEf = ZPEf ,PEs + ZPEf ,POs

=
(
|χu141 |2 + |χu14−1 |2

)
ZIs,

ZAOf = ZAOf ,PEs + ZAOf ,POs

=
(
χu140 χu142 + χu142 χu140

)
ZIs, (31)

where

ZIs = |χIs
0 |2 + |χIs

1
2
|2 + |χIs

1
16
|2. (32)

When the electron spins have an anti-ferromagnetic
interaction (i.e. J > 0 in eqn. (7)), the Ising transition
point will be described by a different CFT. This is be-
cause when there are an odd number of electrons on the
ring, the spins carried by the electrons will behave like
those in a spin chain with a Zs2 symmetry twist. In other
words, a state with an odd number of fermions is like a
Neel ordered Ising spin configuration with an odd num-
ber of spins, thus satisfying anti-periodic boundary con-
dition.
It means that in the partition functions whose first

label is AOf or POf (i.e. with odd number of electrons),

the (untwisted) spin part of the excitations (the sectors
labeled by POs and PEs) is given by the Zs2 twisted
sector of Ising CFT. In specific,if the second label is POs,
the spin part is described by Ising character χIs

0 χ
Is
1
2
+

χIs
1
2

χIs
0 (which is ZAOs shown in (24)); if the second label

is PEs, it is described by Ising character |χIs
1
16

|2 (which

is ZAEs shown in (24)). Still in the partition functions
whose first label is AOf or POf , the Z2 twisted spin
part is given by the Zs2 untwisted sector of Ising CFT. In
summary, the partition functions, whose first labels are
AOf/POf , are as follows,

ZIs
AOf/POf ,PEs =

∣∣∣χIs
1
16

∣∣∣
2

,

ZIs
AOf/POf ,POs =χIs

0 χ
Is
1
2
+ χIs

1
2
χIs
0 ,

ZIs
AOf/POf ,AEs =

∣∣χIs
0

∣∣2 +
∣∣∣χIs

1
2

∣∣∣
2

,

ZIs
AOf/POf ,AOs =

∣∣∣χIs
1
16

∣∣∣
2

. (33)

Also, in the partition functions with first label AEf

or PEf (i.e. with even number of electrons), the (un-
twisted) spin part is given by untwisted sector of Ising
CFT, the Z2 twisted spin part is given by Zs2 twisted
sector of Ising CFT.

ZIs
AEf/PEf ,PEs =

∣∣χIs
0

∣∣2 +
∣∣∣χIs

1
2

∣∣∣
2

,

ZIs
AEf/PEf ,POs =

∣∣∣χIs
1
16

∣∣∣
2

,

ZIs
AEf/PEf ,AEs =

∣∣∣χIs
1
16

∣∣∣
2

,

ZIs
AEf/PEf ,AOs =χIs

0 χ
Is
1
2
+ χIs

1
2
χIs
0 . (34)

Furthermore, since a fermion always carries an odd
number of the U(1) charge, the partition functions la-
beled by AOf and POf (i.e. with odd number of elec-
trons) must be described by u1 character χu14m χu14n with
m − n = 2 mod 4. We find the partition functions
eqn. (G13) satisfy the above conditions. Thus, the anti-
ferromagnetic Ising transition point of spin-1/2 electrons
is described by the following 16-component partition
functions (see eqn. (G13)):

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)
,

ZPOf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2, (35)

ZPEf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)
,

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2,

ZAEf ,POs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2, (36)

ZPOf ,POs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
,

ZPEf ,POs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2,

ZAOf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
,
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operators σx k h, h

ψψ 1 0 1
2
, 1
2

σσ −1 0 1
16
, 1
16

ψ −1 0 1
2
, 0

ψ −1 0 0, 1
2

σσψ ∼ σσψ 1 0 1
16
, 1
16

TABLE I. Quantum numbers of local and non-local operators
in critical point of ferromagnetic Ising model eqn. (7). Here σx

is the Z2 spin quantum number, k is the crystal momentum,
and (h, h) are the right and left scaling dimension. ψ, σ are
the Is CFT primary fields associated with the Ising character
χIs

1
2
, χIs

1
16
, which have scaling dimensions 1

2
and 1

16
respectively.

Similarly, ψ, σ are the Is CFT fields.

operators σx k h, h

ψψ 1 0 1
2
, 1
2

σσ −1 ±π
a

1
16
, 1
16

ψ −1 ±π
a

1
2
, 0

ψ −1 ±π
a

0, 1
2

σσψ ∼ σσψ 1 0 1
16
, 1
16

TABLE II. Quantum numbers of local and non-local operators
in critical point of anti-ferromagnetic Ising model eqn. (7).

ZAEf ,AEs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2, (37)

ZPOf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)
,

ZPEf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2,

ZAOf ,AEs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)
,

ZAEf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
,

ZPOf ,AOs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2, (38)

ZPEf ,AOs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
,

ZAOf ,AOs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2.

The above 16-component partition functions reduce to
the 4-component partition functions given in eqn. (20),

if we only consider the Zf2 symmetry twist.

C. Scaling operator and their quantum numbers

Let us first consider the scaling operators and their
quantum numbers of the critical point (24) of the Ising
model eqn. (7) without doping. The partition functions
eqn. (24) tell us the Zs2 quantum numbers. For ferromag-
netic spin coupling (J < 0 in eqn. (7)), the low energy
states all carry crystal momentum near zero. The states

operators σx q k h, h (θ = 0)

e± i (ϕ+ϕ) 1 0 ±2kF
(chθ−shθ)2

2
,
(chθ−shθ)2

2
( 1
2
, 1
2
)

e± i (ϕ−ϕ) 1 ±2 0 (chθ+shθ)2

2
,
(chθ+shθ)2

2
( 1
2
, 1
2
)

ψψ 1 0 0 1
2
, 1
2

( 1
2
, 1
2
)

σσ −1 0 0 1
16
, 1
16

( 1
16
, 1
16
)

e± iϕ 1 ±1 ±kF ch2θ
2
, sh2θ

2
( 1
2
, 0)

e± iϕ 1 ∓1 ±kF sh2θ
2
, ch2θ

2
(0, 1

2
)

e± iϕσσ −1 ±1 ±kF ch2θ
2

+ 1
16
, sh2θ

2
+ 1

16
( 7
16
, 1
16
)

e± iϕσσ −1 ∓1 ±kF sh2θ
2

+ 1
16
, ch2θ

2
+ 1

16
( 1
16
, 7
16
)

TABLE III. Quantum numbers of local gapless bosonic and
fermionic operators in ferromagnetic Ising transition point of
the strongly interacting spin-1/2 electron system (the doped
ferromagnetic Ising model). Here σx is the Z2 spin quantum
number, q is the U(1) charge, k is the crystal momentum, and
(h, h) are the right and left scaling dimensions (the values in
bracket are for θ = 0, see eqn. (44)). ϕ is the bosonic field to
describe u14 CFT, where ϕ is normalized such that e iϕ has
a scaling dimension 1

2
. ψ, σ are the Is CFT fields with scaling

dimension 1
2
and 1

16
respectively. Similarly, ϕ is the bosonic

field to describe u14 CFT and ψ, σ are the Is CFT fields.

described by |χIs
1
2

|2 in ZPEs are created by local operator

ψψ from the ground state in |χIs
0 |2. Thus the operator

ψψ carries Zs2 quantum number σx = 1. The states de-
scribed by |χIs

1
16

|2 in ZPOs are created by local operator

σσ from the ground state. Thus the operator σσ carries
Zs2 quantum number σx = −1. The states described by
χIs

1
2

χIs
0 in ZAOs are created by non-local operator ψ from

the ground state. Thus the non-local operator ψ carries
Zs2 quantum number σx = 1. Similarly, the non-local
operator ψ also carries Zs2 quantum number σx = 1. The
states described by |χIs

1
16

|2 in ZAEs are created by non-

local operator σσψ ∼ σσψ from the ground state. Thus
the operator σσψ ∼ σσψ carries Zs2 quantum number
σx = 1. The above results are summarized in Table I.
However, for anti-ferromagnetic spin coupling (J > 0

in eqn. (7)), the low energy states carry crystal momen-
tum near k = ±π

a if the Zs2 quantum number σx = −1
(and carry crystal momentum near zero if the Zs2 quan-
tum number σx = 1). The scaling operators and their
quantum numbers for anti-ferromagnetic Ising critical
point are summarized in Table II.
Now let us consider the scaling operators and their

quantum numbers for the spin-1/2 electrons at the Ising
transition point. The partition functions eqn. (27)-(30)

and eqn. (35)-(38) tell us the Zf2 and Zs2 quantum num-
bers. In the following, we will discuss the U(1) and mo-
mentum quantum numbers.
Let us first consider the ferromagnetic Ising transition

point described by eqn. (27)-(30). The u14 character χ
u14
m

describes states with U(1) charge q = m
2 mod 2, and

momentum k = kF
2 mod 2kF . Here kF = πnF , where
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operators σx q k h, h

e± i (ϕ+ϕ) 1 0 ±2kF
(chθ−shθ)2

2
,
(chθ−shθ)2

2

e± i (ϕ−ϕ) 1 ±2 0 (chθ+shθ)2

2
,
(chθ+shθ)2

2

ψψ 1 0 0 1
2
, 1
2

e± i ϕ+ϕ
2 σσ −1 0 ±kF 2(chθ−shθ)2+1

16
,
2(chθ−shθ)2+1

16

e± iϕσσψ 1 ±1 ±kF ch2θ
2

+ 1
16
, sh2θ

2
+ 1

16

e± iϕσσψ 1 ∓1 ±kF sh2θ
2

+ 1
16
, ch2θ

2
+ 1

16

e± i ϕ−ϕ
2 ψ −1 ±1 ±kF (chθ+shθ)2+4

8
,
(chθ+shθ)2

8

e± i ϕ−ϕ
2 ψ −1 ±1 ±kF (chθ+shθ)2

8
,
(chθ+shθ)2+4

8

TABLE IV. Quantum numbers of local gapless bosonic
and fermionic operators in anti-ferromagnetic Ising transition
point of the strongly interacting spin-1/2 electron system (the
doped anti-ferromagnetic Ising model).

nF is the fermion number per site. The u14 character
χu14m describes states with U(1) charge q = −m

2 mod

2, and momentum k = kF
2 mod 2kF . For such U(1)

charge assignment, we see that the states described by
the partition function ZAEf ,··· (ZAOf ,···) carry even (odd)
U(1) charges. The states described by the Ising character
do not carry any U(1) charge and momentum.
The states described by the partition function

ZAEf ,··· (ZAOf ,···) are created by local gapless bosonic
(fermionic) operators from the ground state in the sec-
tor |χu140 |2|χIs

0 |2. So the above discussion gives us a list
of scaling operators, as well as their quantum numbers
and scaling dimensions. The results are summarized
in Table III. For example (see eqn. (27)), the bosonic
operator e± i (ϕ±ϕ) create the states in |χu142 |2|χIs

0 |2.
The local fermionic operator e± iϕ create the states in
χu142 χu140 |χIs

0 |2.
From Table III, we see that there is only one relevant

operator that carries a trivial quantum number, ψψ, with
total scaling dimension h + h = 1. This is the operator
that drives the ferromagnetic Ising transition.
Next, let us consider the anti-ferromagnetic Ising tran-

sition point described by eqn. (35)-(38). The u14 char-
acter χu14m still describes states with U(1) charge q = m

2

mod 2, and momentum k = kF
2 mod 2kF . The u14 char-

acter χu14m still describes states with U(1) charge q = −m
2

mod 2, and momentum k = kF
2 mod 2kF . For such

U(1) charge assignment, again the states described by
the partition function ZAEf ,··· (ZAOf ,···) carry even (odd)
U(1) charges. The states described by the Ising charac-
ter do not carry any U(1) charge. But they can carry
momentum ±kF if σx = −1. The results are summa-
rized in Table IV. For example (see eqn. (35)), the local
gapless bosonic operator e± i (ϕ±ϕ) creates the states in
|χu142 |2|χIs

0 |2. The local fermionic operator e± iϕσσψ ∼
e± iϕσσψ creates the states in χu142 χu140 |χIs

1
16

|2.
From Table IV, we see that there is only one relevant

operator that carries trivial quantum numbers, ψψ, with

h

h−

+

FM

AFM

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

FIG. 2. The relations between the total scaling dimensions
h+ and h− of the electron operators with Zs

2 quantum number
σx = 1 and σx = −1, respectively, for the ferromegnetic (FM)
and anti-ferromegnetic (AFM) Ising transitions.

total scaling dimension h + h = 1. This is the operator
that drives the anti-ferromagnetic Ising transition.

D. Low energy effective theory

Let us further compare the ferromagnetic and anti-
ferromagnetic Ising transition for the spin-1/2 electrons
when there is interaction. Both the ferromagnetic and
anti-ferromagnetic Ising transition points are described
by the same low energy effective field theory

L =
1

4π
(∂xϕ∂tϕ− ∂xϕ∂xϕ− ∂xϕ∂tϕ− ∂xϕ∂xϕ)

− 1

2π
V ∂xϕ∂xϕ+ ψ(∂t − ∂x)ψ + ψ(∂t + ∂x)ψ. (39)

However, the set of local operators are different for the
two Ising transition points. For the ferromagnetic Ising
transition point, the local operators are given in Ta-
ble III. While for the anti-ferromagnetic Ising transition
point, the local operators are given in Table IV. In the
tables, σ(x) (σ(x)) operator is the operator that creates
the sign flip at x in the ψ (ψ) field.

In the last section, we study the case with V = 0. And
the U(1) charge fluctuations are described by u14 ⊕ u14
CFT. Here we will consider the effect of V on the scaling
dimensions h, h. Let us introduce

(
φ

φ

)
=

(
chθ shθ

shθ chθ

)(
ϕ

ϕ

)
,

(
ϕ

ϕ

)
=

(
chθ −shθ

−shθ chθ

)(
φ

φ

)
, (40)
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with θ satisfying

V =
2chθshθ

ch2θ + sh2θ
. (41)

The Lagrangian for φ, φ is diagonal

L =
1

4π
(∂xφ∂tφ− v∂xφ∂xφ− ∂xφ∂tφ− v∂xφ∂xφ).

(42)

Thus the scaling dimensions h, h for operator

e i (mϕ+mϕ) = e i [m(chθ φ−shθ φ)+m(chθ φ−shθ φ)] (43)

are given by

h(θ) =
(m chθ −m shθ)2

2
, h(θ) =

(m chθ −m shθ)2

2
.

(44)

From Tables III and IV, we see that the charge neutral
operator with σx = −1 has scaling dimensions 1

16 ,
1
16 and

2(chθ−shθ)2+1
16 , 2(chθ−shθ)2+1

16 for the ferromagnetic and the
anti-ferromagnetic critical points respectively. The scal-
ing dimensions for the anti-ferromagnetic critical points
are always larger then 1

16 ,
1
16 . So the the ferromagnetic

and the anti-ferromagnetic critical points are really dis-
tinct critical points, despite they describe idential sym-
metry breaking pattern.
Next we compare the ferromagnetic and anti-

ferromagnetic Ising transition for the spin-1/2 electrons
by considering the total scaling dimension h+(θ) = h+h
for the electron operator with Zs2 quantum number σx =
1 and h−(θ) = h + h for the electron operator with Zs2
quantum number σx = −1. As a function of interaction
θ, h+(θ) and h−(θ) have different relations for the fer-
romegnetic and anti-ferromegnetic Ising transitions, as
shown in Fig. 2. For example, in the ferromagnetic tran-
sition, the Zs2 even and odd electron operator can be e± iϕ

and e± iϕσσ, respectively. And in the antiferromagnetic

transition, they can be e± iϕσσψ and e± i ϕ−ϕ
2 ψ respec-

tively. From Fig. 2, we see that in the ferromagnetic case,
the scaling dimension of the Z

s
2 odd electron operator is

always larger than that of Z
s
2 one by 1

8 that is indepen-
dent of interaction. However, in the anti-ferromagnetic
case, the difference in the scaling dimension of Zs2 odd
and Zs2 even operator increases with the attractive in-
teracting strength (θ > 0), and decreases with the re-
plusive interacting strength (θ < 0), comparing to the
non-interacting case θ = 0.

E. Two metallic phases of spin- 1
2
electron chain

with the same symmetry

Let us consider the spin- 12 Ising chain eqn. (7) with
B > 0. As we change J from 0 → +∞, the Ising chain
goes into a state that breaks the Zs2 spin-flip symmetry.

operators q k h, h (θ = 0)

e± i (ϕ+ϕ) 0 ±2kF
(chθ−shθ)2

2
,
(chθ−shθ)2

2
( 1
2
, 1
2
)

e± i (ϕ−ϕ) ±2 0 (chθ+shθ)2

2
,
(chθ+shθ)2

2
( 1
2
, 1
2
)

e± iϕ ±1 ±kF ch2θ
2
, sh2θ

2
( 1
2
, 0)

e± iϕ ∓1 ±kF sh2θ
2
, ch2θ

2
(0, 1

2
)

TABLE V. Quantum numbers of local gapless bosonic and
fermionic operators in metallic phase of spin-1/2 electrons
with strong ferromagnetic Ising interaction. Here, q is the
U(1) charge, k is the crystal momentum, and (h, h) are the
right and left scaling dimensions (the values in bracket are for
θ = 0, see eqn. (44)). ϕ is the bosonic field to describe u14
CFT. Similarly, ϕ is the bosonic field to describe u14 CFT.

operators q k h, h (θ = 0)

e± i (ϕ+ϕ) 0 ±2kF
(chθ−shθ)2

2
,
(chθ−shθ)2

2
( 1
2
, 1
2
)

e± i (ϕ−ϕ) ±2 0 (chθ+shθ)2

2
,
(chθ+shθ)2

2
( 1
2
, 1
2
)

TABLE VI. Quantum numbers of local gapless bosonic op-
erators in metallic phase of spin-1/2 electrons with strong
anti-ferromagnetic Ising interaction. Local fermionic opera-
tors (i.e. odd-charge operators) are all gapped.

If we change J from 0 → −∞, the Ising chain goes into
a state that breaks both the Zs2 spin-flip and translation
symmetries.

However, for a doped Ising chain which is a metal-
lic state, both the J → +∞ and the J → −∞ cases
have the same symmetry: the Zs2 spin-flip symmetry is
spontaneously broken while the translation symmetry is
not broken. Despite the two large |J | metallic phases
have the same symmetry, our previous discussions indi-
cate that the transitions from the J = 0 metallic phase
to J = ±∞ metallic phases are described by two distinct
critical points. Thus, even the transitions that have iden-
tical spontaneous symmetry breaking patterns can be de-
scribed by different critical points.

The two distinct critical points also suggest that J =
±∞ metallic phases are two distinct metallic phases de-
spite that they have the same symmetry. Thus, they
are examples of symmetry protected gapless phases,
i.e. distinct gapless phases with the same symmetry. To
understand these two distinct metallic phases, we con-
sider modular covariant partition functions with U(1)×
Zf2 symmetry. We will consider the 16-component parti-

tion functions with Zf2 × Zs2 symmetry twists. Since Zs2
symmetry is spontaneously broken, the partition func-
tions with non-trivial Zs2 symmetry twist vanish. Using
the u14 CFT characters to construct the modular covari-
ant partition functions, we identify the following two sets
of partition functions to describe the J = ±∞ metallic
phases.

For the J = +∞ metallic phase (ferromagnetic Ising
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interaction), we have

ZAEf ,PEs = |χu140 |2 + |χu142 |2,
ZPOf ,PEs = χu141 χu14−1 + χu14−1 χ

u14
1 ,

ZPEf ,PEs = |χu141 |2 + |χu14−1 |2,
ZAOf ,PEs = χu140 χu142 + χu142 χu140 ,

(45)

ZAEf ,POs = |χu140 |2 + |χu142 |2,
ZPOf ,POs = χu141 χu14−1 + χu14−1 χ

u14
1 ,

ZPEf ,POs = |χu141 |2 + |χu14−1 |2,
ZAOf ,POs = χu140 χu142 + χu142 χu140 ,

(46)

ZAEf ,AEs = 0,

ZPOf ,AEs = 0,

ZPEf ,AEs = 0,

ZAOf ,AEs = 0,

(47)

ZAEf ,AOs = 0,

ZPOf ,AOs = 0,

ZPEf ,AOs = 0,

ZAOf ,AOs = 0.

(48)

The corresponding primary fields (i.e. gapless operators)
and their quantum numbers are listed in Table 46.

For the J = −∞ metallic phase (anti-ferromagnetic
Ising interaction), we have

ZAEf ,PEs = |χu140 |2 + |χu142 |2,
ZPOf ,PEs = 0,

ZPEf ,PEs = |χu141 |2 + |χu14−1 |2,
ZAOf ,PEs = 0,

(49)

ZAEf ,POs = |χu141 |2 + |χu14−1 |2,
ZPOf ,POs = 0,

ZPEf ,POs = |χu140 |2 + |χu142 |2,
ZAOf ,POs = 0,

(50)

ZAEf ,AEs = 0,

ZPOf ,AEs = χu141 χu14−1 + χu14−1 χ
u14
1 ,

ZPEf ,AEs = 0,

ZAOf ,AEs = χu140 χu142 + χu142 χu140 ,

(51)

ZAEf ,AOs = 0,

ZPOf ,AOs = χu140 χu142 + χu142 χu140 ,

ZPEf ,AOs = 0,

ZAOf ,AOs = χu141 χu14−1 + χu14−1 χ
u14
1 .

(52)

The corresponding primary fields (i.e. gapless operators)
and their quantum numbers are listed in Table 49.

In particular, from the above partition function, we can
read that in the anti-ferromagnetic metallic phase, the
single electron excitations are all gapped. For example, in
eqn. (49), we see that ZAEf ,PEs 6= 0 which means a sector
with even fermions and integer Sz spins is gapless. If add
an electron, we obtain a sector with odd fermions and
half-integer Sz spins described by ZAOf ,POs in eqn. (50).
ZAOf ,POs = 0 means the sector to have an energy gap.

This is in contrast to the ferromagnetic metallic phase.
ZAEf ,PEs 6= 0 in eqn. (46) and ZAOf ,POs 6= 0 in eqn. (47)
implies that the sectors differ by an electron are both
gapless. Thus the single electron excitations are gapless.

To understand this result, we note that the spins of
electrons have a Neel-like ↑↓↑↓ · · · pattern. As a result,
for even numbers of electrons, the partition function is
non-zero only when there is no Zs2 symmetry twist. For
odd numbers of electrons, the partition function is non-
zero only when there is a Zs2 symmetry twist. Since the
fermion number and the Zs2 symmetry twist are locked,
the fermion operators (i.e. odd-charge operators) are all
gapped. We can also see that the gapping of charge-1
fermions by noticing that applying a charge-1 fermion
operator to states in the sector ZAEf ,PEs gives us states

in the sector ZAOf ,PEs and ZAOf ,POs , where AEf →
AOf (adding a fermion) and PEs → PEs, POs (the Zs2
symmetry twist cannot be changed). Since ZAOf ,PEs =
ZAOf ,POs = 0, meaning the two sectors are gapped, thus
the charge-1 fermionic excitations are all gapped.

V. CHIRAL METALLIC PHASES OF SPIN- 1
2

ELECTRONS

Following the ideas in Ref. 59, we can also construct a
strongly interacting metallic phase of spin-1/2 electrons
where the left-movers and right-movers have very differ-
ent behavior. We will call such metallic phases chiral
metallic phases.

In the first example, the left-movers and right-movers
have the same emergent symmetry at low energy. How-
ever, they carry different representations under the sym-
metries. In specific, one such chiral metallic phase has
SU(2)-spin and U(1)-charge symmetries with symme-
try group [SU(2) × U(1)]/Z2. At low energies, the
chiral metallic phase has n left-moving and n right-
moving fermions, which are non-interacting. Those non-
interacting fermions all carry charge-1. But the left-
moving and right-moving fermions form different SU(2)
representations. Let SRz be the n × n hermitian matrix
for the Sz-spin of the right-moving fermions, and SLz be
the n× n hermitian matrix for the left-moving fermions.
For the low energy fermions to be free from perturbative
SU(2) anomaly, the SU(2) representations must satisfy

Tr(SRz )
2 = Tr(SLz )

2. (53)
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where

Jc(x) = ψ†
αa(x)ψαa(x),

Js(x) =
1

2
ψ†
αa(x)σαβψβa(x),

(63)

are the U(1) charge and SU(2) spin current (or density),
and σ are the Pauli matrices. As a current-current in-
teraction, when the coupling constant g’s are not too
large, the above interaction term [with scaling dimension
(h, h) = (2, 0)] is always exactly marginal. It does not
open up any energy gap, but only modifies the velocities
in the corresponding sector. With the interactions, the
right movers have SU(2)×SU(2)×U(1) symmetry, and
are described by a CFT

su2f2 ⊕ su2s2 ⊕ u1c. (64)

The three sectors, each containing the flavor, spin and
charge degrees of freedom respectively, can have separate
velocities, while the excitations within each sector have
the same velocity.
For left-movers we add interactions

δH = gs1Js1(x) · Js1(x) + gs2Js2(x) · Js2(x)
+ gc1Jc1(x)Jc1(x) + gc2Jc2(x)Jc2(x). (65)

Here

Jc1(x) = ψ
†
α1(x)ψα1(x),

Jc2(x) = ψ
†
α2(x)ψα2(x),

Js1(x) =
1

2
ψ
†
α1(x)σαβψβ1(x),

Js2(x) =
1

2
ψ
†
α2(x)σαβψβ2(x).

(66)

Such current-current interactions also do not open up
gaps, but modify the velocity in the corresponding sector.
With the interaction, the left movers have the symmetry
SU(2) × U(1) × SU(2) × U(1), and are described by a
CFT

su2s1 ⊕ u1c1 ⊕ su2s1 ⊕ u1c2. (67)

The chiral metallic phase that we have constructed
so far (see eqn. (64) and eqn. (67)) can be smoothly
connected to TL liquids (i.e. interacting 1d Fermi
liquids)60,61, as we reduce g’s to zero. To construct a
chiral chiral metallic phase that is not connected to TL
liquid, we add an additional interaction term

δH′ = g(ψ†
↑1ψ

†
↓1 − ψ†

↓1ψ
†
↑1)(ψ↑1ψ↓1 − ψ↓1ψ↑1) + h.c. .

(68)

We note that the above operator carries a crystal mo-
mentum k = 0 + 0 + π + π = 0 mod 2π. Thus the
term respects the translation symmetry. Such a term is
not a current-current interaction and can induce energy

gaps for some excitations and drive the system into a new
phase.
To understand the new phase, note that the above

operator respects the spin SU(2), the diagonal charge
U(1), and the translation symmetry (since the crystal
momentum carried by the operator vanishes). Such
an operator only causes interaction within the sector

su2f2 ⊕ u1c ⊕ u1c1. If the interaction g is strong enough,

it will gap out the u1c1 and part of the su2f2 ⊕ u1c sec-

tor, which reduces su2f2 ⊕ u1c ⊕ u1c1 down to Is⊕ u1cf ,
where Is denotes Ising CFT. In this way, we obtain a
chiral metallic phase described by CFT

su22 ⊕ u1cf ⊕ Is⊕ su21 ⊕ su21 ⊕ u1, (69)

which is beyond TL liquids.

B. The gapping process

We would like to show the gapping process of the in-
teraction (68) more explicitly. This is accomplished by
using CFT and current algebras. Furthermore, we can
derive the physical properties such as local operators,
correlation functions, and partition functions, which will
be done in the next subsection.
We start with H0 in eqn. (54) plus the interactions

eqn. (64) and eqn. (67). The resulting low energy theory
has the following emergent symmetry

right movers: U(1)× SUf (2)× SUs(2)

left movers: U1(1)× SUs(2)× U2(1)× SUs(2)
(70)

ψαa carry the U(1) charge-1, and transform as doublets
of both the flavor and spin SU(2). In contrast, ψα1 carry
the charge-1 for U1(1), form a doublet of the first SUs(2);
and ψα2 carry the charge-1 for U1(1), form a doublet
of the second SU(2)s. The low energy excitations are
descirbed by the following current algebras:

right movers: u1c ⊕ su2s2 ⊕ su2f2 ,

left movers: u11 ⊕ su211 ⊕ u12 ⊕ su221.
(71)

The theory is free from gravitational anomaly, since the
left central charge c = 1+ 3

2 +
3
2 = 4 is equal to the right

central charge c = 1 + 1 + 1 + 1.
The local operators of our theory are powers of the

fermion operators ψαa, ψαa. The fermion operators can
be represented in terms of the primary fields of the above
CFT. In particular, they can be written in terms of sim-
ple free boson fields and free Majorana fermion fields in
u1, su22 and su21 CFTs (see Appendix B 1):

ψαa = e iϕc/2σs e
± i φs

2 σf e
± i

φf
2 = e i

ϕc
2 V

su2s2
1
2 ,±

1
2

V
su2f2
1
2 ,±

1
2

,

ψα1(z) = e
i
ϕ1√

2 e
± i

φ1√
2 = e

i
ϕ1√

2V
su211
1
2 ,±

1
2
, (72)

ψα2 = e
i
ϕ2√

2 e
± i

φ2√
2 = e

i
ϕ1√

2V
su221
1
2 ,±

1
2
.
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Here, for right movers,
(1) ϕc is the bosonic field to describe u1c,
(2) ηs, σs, φs are the Ising CFT fields and the bosonic

field to describe su2s2, and
(3) ηf , σf , φf are the Ising CFT fields and the bosonic

field to describe su2f2 .
Similarly, for left movers,
(1) ϕ1 is the bosonic field to describe u11,

(2) ϕ2 is the bosonic field to describe u12,

(3) φ1 is the bosonic field to describe su211, and

(4) φ2 is the bosonic field to describe su221.
We adopt the convention that the correlation function

of all bosonic fields are

〈φ(z1)φ(z2)〉 ∼ − ln(z1 − z2), (73)

where zi = τi + ixi is the complex cooridinate. The
scaling dimensions of operators in (72) all equal 1

2 , a nec-
essary condition for chiral fermion operators. In fact, it
fix the u1 parts of fermion operator representations in
(72).

Now the gapping term (68) can be rewritten as (via
operator product expansion, see Appendix B 2)

δH′ ∼ −g cos
(
ϕc + φf −

√
2ϕ1

)
. (74)

When g > 0 is large, the sectors generated by ϕc + φf
and ϕ1 are fully gapped. Other sectors are not affected.
Consequently, the gapless excitations in the new phase
are described by the following CFT

right movers: u1cf ⊕ su2s2 ⊕ Isf ,

left movers: su211 ⊕ u12 ⊕ su221,
(75)

where u1cf is u1 CFT represented by the field ϕc − φf ,
the conjugate field of ϕc+ φf that remains gapless. And

Isf =
su2f2
u1f

is Ising CFT with primary fields 1, σf and
ηf . Primary fields of above CFTs are summarised in
Appendix B 1.

The scaling dimension of e i (ϕc+φf−
√
2ϕ1) is

(
h, h

)
=

(1, 1). We emphasize that, even though the local interac-
tion term gaps out the left-mode and right-mode in equal
numbers, it selects an inequivalent combination of right-
modes, comparing to the left-modes, since the operator
is in the CFT

u1c4 ⊕ u1fz4 ⊕ u112 ⊂ u1c4 ⊕ su2f2 ⊕ u112. (76)

And the resulting phase is anomaly-free and has a lattice
realization.

C. The local operators

To compute the physical properties of the chiral metal-
lic phase, we first identify local operators in the above
CFT. In the chiral metallic phase, the fermion opera-
tors ψα1 and ψα1 are gapped (i.e. their imaginary-time

operators spin charge k

ψα2 = e i
ϕc−φf

2 V
su2s2
1
2
,± 1

2

σf
1
2

-1 0

ψα2 = e
i
ϕ2√

2 V
su221
1
2
,± 1

2

1
2

-1 − π
2a

ψ
†
α1ψβ1 = σfV

su2s2
1
2
,± 1

2

V
su211
1
2
,± 1

2
0, 1 0 π

a

TABLE VII. Quantum numbers of local operators, where k is
the crystal momentum.

correlations have exponential decay), since they contain

either e i
ϕc+ϕf

2 or e
i
φ1√

2 . They are local operators but
do not appear in the low energy CFT. All other fermion
operators,

ψα2 = e i
ϕc−φf

2 σs e
± iφs/2σf = e i

ϕc−φf
2 V

su2s2
1
2 ,±

1
2

σf ,

ψα2 = e
i
ϕ2√

2 e
± i

φ2√
2 = e

i
ϕ2√

2V
su221
1
2 ,±

1
2
,

(77)

are still gapless, therefore are local operators in CFT.
Operators generated from the OPEs of ψα2’s and ψα2
are also local operators.
The above local operators are purely chiral with either

only right movers or left movers. Another type of local
operators containing both right movers and left movers
is

ψ†
α1ψβ1 =e− i

ϕc+φf−
√

2φ1
2 σs e

± iφs/2σf e
± i

φ1√
2 ,

∼σs e± iφs/2σf e
± i

φ1√
2 = σfV

su2s2
1
2 ,±

1
2

V
su211
1
2 ,±

1
2
,

(78)

where we have used the knowledge that in the chiral
metallic phase, the cos term in (74) is frozen to the max-

imum value, i.e. e− i
ϕc+φf−

√
2φ1

2 ∼ 1. Therefore ψ†
α1ψβ1’s

are also low energy local operators in the chiral metallic
phase.

D. Partition functions

To find modular covariant partition functions (see
eqn. (16)), we use the CFT characters for u1M , Is ∼= su22

u1 ,
su21, and su22 (details shown in Appendix B 3):

χu1Mm , 0 ≤ m < M,

χIs
µ , µ = 0, η, σ,

χsu21ρ , ρ = 0,
1

2
,

χsu22ν , ν = 0,
1

2
, 1.

(79)

The scaling dimension of the U(1) part in ψα2, ψα2 in
(77) are both 1

4 , thus corresponds to u1 primary fields

with R =
√
2. This determines the level of u1M CFT to

be M = 2 (See Eq (B9)).
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operators spin charge k h, h

e
± i

ϕc−ϕf
2

± i
ϕ2√

2 V
su2s2
1,l V

su211
1
2
,± 1

2
V

su221
1
2
,± 1

2
0, 1, 2 0,±2 π ± π

2
3
4
, 3
4

e
± i

ϕc−ϕf
2

± i
ϕ2√

2 ηfV
su211
1
2
,± 1

2
V

su221
1
2
,± 1

2
0, 1 0,±2 π ± π

2
3
4
, 3
4

V
su2s2
1,l ηf 1 0 0 1, 0

V
su2s2
1
2
,± 1

2

σfV
su211
1
2
,± 1

2
0, 1 0 π 1

4
, 1
4

e
± i

ϕc−ϕf
2

± i
ϕ2√

2 V
su2s2
1
2
,± 1

2

V
su221
1
2
,± 1

2
0, 1 0,±2 ±π

2
1
2
, 1
2

TABLE VIII. Quantum numbers of local gapless bosonic operators in the chiral metallic phase su2s2×u12×Is×su212×su222×u12.
Here k is the crystal momentum.

We find the simplest solution of covariant partition
functions that contains local operators (77) and (78) is
(1) Anti-periodic boundary condition with even num-

ber of fermions:

ZAE =χu120 (χsu220 χIs
0 + χsu221 χIs

η )χ
u12
0 χ

su211
0 χ

su221
0

+ χu121 (χsu221 χIs
0 + χsu220 χIs

η )χ
u12
1 χ

su211
1/2 χ

su221
1/2

+ χu120 χsu221/2 χ
Is
σ χ

u12
0 χ

su211
1/2 χ

su221
0

+ χu121 χsu221/2 χ
Is
σ χ

u12
1 χ

su211
0 χ

su221
1/2 . (80)

The primary field corresponding to each term of char-
acters in ZAE is bosonic with integral spin h − h ∈ Z.
We list the scaling dimensions of all primary fields in
Appendix E.
(2) Anti-periodic boundary condition with odd number

of fermions:

ZAO =χu120 (χsu220 χIs
0 + χsu221 χIs

η )χ
u12
1 χ

su211
0 χ

su221
1/2

+ χu121 (χsu221 χIs
0 + χsu220 χIs

η )χ
u12
0 χ

su211
1/2 χ

su221
0

+ χu120 χsu221/2 χ
Is
σ χ

u12
1 χ

su211
1/2 χ

su221
1/2

+ χu121 χsu221/2 χ
Is
σ χ

u12
0 χ

su211
0 χ

su221
0 . (81)

The primary field corresponding to each term of char-
acters in ZAE is fermionic with half-integral spin h−h ∈
Z+ 1

2 . We list the scaling dimensions of all primary fields
in Appendix E.

(3) Periodic boundary condition with even or odd num-
ber of fermions:

ZPE = ZPO

=
1

2
(χu120 χsu221/2 χ

Is
σ χ

su211
0 + χu121 χsu220 χIs

0 χ
su211
0 )

· (χu121 χ
su221
0 + χu120 χ

su221
1/2 )

+
1

2

[
χu120 (χsu221 χIs

0 + χsu220 χIs
η )χ

su211
1/2

+χu121 (χsu221 χIs
η χ

su211
0 + χsu221/2 χ

Is
σ χ

su211
1/2 )

]

· (χu121 χ
su221
0 + χu120 χ

su221
1/2 ), (82)

where both terms in ZPE(ZPO) is 8-fold degenerate, es-
sentially contributed from 4 Majorana zero modes for pe-
riodic boundary condition, as explained in Appendix D.
The primary field corresponding to each term of charac-
ters in ZPE (ZPO) is bosonic with integral spin h−h ∈ Z.
We list the scaling dimensions of all primary fields in Ap-
pendix E.
Here we have used the fact that ZPP = 0, since the

chiral metallic phase contains free fermions ψα2 and ψα2.
The zero modes of free fermions in space-time path inte-
gral cause ZPP = 0.
There is a physical approach that leads to this so-

lution of modular covariant partition functions. Con-
sider the combination of a Heisenberg chain and a spin-
1/2 Dirac fermion (refered as the HD hybrid system).
The low energy theory is for the Heisenberg chain is

su211 ⊕ su211 CFT. The low energy theory of free spin-

1/2 Dirac fermion is su221 ⊕ u12 ⊕ su221 ⊕ u12. Its par-
tition function ZHDAA is thus the product of the partition
functions of the two CFTs,

ZHDAA =(χ
su211
0 χ

su211
0 + χ

su211
1/2 χ

su211
1/2 )(χ

su221
0 χu120 + χ

su221
1/2 χ

u12
1 )

· (χsu2
2
1

0 χu120 + χ
su221
1/2 χ

u12
1 ), (83)

and can be reorganized as

ZHDAA =
[
(χ
su211
0 χ

su221
0 χu120 + χ

su211
0 χ

su221
1/2 χ

u12
1 )χ

su211
0

+(χ
su211
1/2 χ

su221
0 χu120 + χ

su211
1/2 χ

su221
1/2 χ

u12
1 )χ

su211
1/2

]

· (χsu2
2
1

0 χu120 + χ
su221
1/2 χ

u12
1 ). (84)

The interesting fact is that su211 × su221 characters can
all be represented precisely by su22×Is characters. More
specifically,

χ
su211
0 χ

su221
0 =χsu220 χIs

0 + χsu221 χIs
η ,

χ
su211
0 χ

su221
1/2 =χ

su211
1 χ

su221
0 = χsu221/2 χ

Is
σ , (85)

χ
su211
1/2 χ

su221
1/2 =χsu220 χIs

η + χsu221 χIs
0 .
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We find that after replacing χ
su211
µ χ

su221
ν in the partition

function (84) with these identities above, and rewriting
in the basis with fixed fermion number parity, we reach
partition functions (80), (81) and (82).
The partition function (80) provides us a list of local

gapless bosonic operators and their scaling dimensions
(E1) in the chiral metallic phase. The result is summa-
rized in Table VIII.

The crystal momenta of those local gapless bosonic op-
erators is also an important quantum number. Note that
all right-movers carry zero crystal momentum. For left-

movers, the spin-1/2 operators in the su11 sector carry

crystal momentum π. In the u12⊕ su21 sector, the opera-

tor ψα2 ∼ e
± i

ϕ2√
2V

su221
1
2 ,±

1
2
carries crystal momentum ±π/2.

From these results, we obtain the crystal momenta of the
local gapless bosonic operators in Table VIII.

From χu120 χsu220 χIs
0 χ

u12
0 χ

su211
0 χ

su221
0 term in ZAE , we see

that there is no discrete symmetry breaking in the chiral
metallic phase. If there is, say, a Z2 symmetry breaking,

2χu120 χsu220 χIs
0 χ

u12
0 χ

su211
0 χ

su221
0 will appear in ZAE .

We see that all the local gapless bosonic operators
carry non-trivial quantum numbers. Therefore, the chiral
metallic phase is stable.

E. Phase transition from Tomonaga-Luttinger
liquid to chiral metallic phase

This procedure signals that there can be a direct phase
transition between the HD hybrid system, whose low en-
ergy is described by Tomonaga-Luttinger liquid theory,
and the chiral metallic phase, whose low energy physics
is described by non-Abelian CFTs. The HD phase has 4
emergent SU(2) symmetries. The chiral metallic phase
has 3 emergent SU(2) symmetries.
Indeed, the interaction operator (74) is a marginal

operator with h = h = 1. It is a tempting indica-
tion that the zero-spin marginal perturbation can drive a
transition between two stable gapless (under symmetry)
phases.

VII. EXAMPLES OF STRONGLY
INTERACTING GAPLESS METALLIC STATES

IN HIGHER DIMENSIONS

The fact that the emergent symmetry at low ener-
gies can be anomalous plays a key role in the solution
of the chiral fermion problem48,49. For example, in the
lattice realization of SO(10) chiral fermions, we start
with a 4+1d slab, which can be viewed as a 3+1d sys-
tem from far away. We design the gapped fermion state
with SO(10) on-site symmetry in the 4+1d bulk prop-
erly, such that its surface is described by 16 massless Weyl
fermions, forming a 16-dimensional spinor representation
of the SO(10). On the 4+1d slab, one 3+1d surface gives

gapped

state
gapped

state
theory
fermion
of chiral
the mirror

gapping

fermion
chiral

theory

of chiral
fermion
theory

the mirror
chiral

fermion
theory

(a) (b)

FIG. 4. (Color online) (a) Chiral fermions and mirror of
chiral fermions can appear on the boundary of a 4+1d slab of
gapped state. (b) Sometimes (such as the SO(10) case) the
boundary mirror chiral fermions can be gapped by interaction,
which leads to a solution of the chiral fermion problem.

rise to 16 chiral Weyl fermions and the other 3+1d sur-
face gives rise to 16 mirror chiral Weyl fermions (see Fig.
4a). Each sector of the Weyl fermions has an emergent
symmetry U(16). Such an emergent U(16) symmetry is
anomalous for each sector49. In Ref. 48, the sufficient
conditions are given for a sector (such as the 16 mir-
ror chiral Weyl fermions) to be gappable via interactions
without breaking the lattice and on-site symmetry (see
Fig. 4b). Applying to the SO(10) case, we find that the
16 mirror chiral Weyl fermions can be gapped without
breaking the SO(10) on-site symmetry, and this solves
the chiral fermion problem for the case of SO(10) grant
unification. We would like to stress that the gaping of
16 chiral Weyl fermions is very special, in the sense that
there is no fermion mass term that can achieve such a
gapping process without breaking the SO(10) symmetry.
It appears that the anomaly of the emergent U(16) sym-
metry protects the 16 chiral Weyl fermions to be gapless
against any small perturbations that respect the SO(10)
symmetry.

In the above example, each sector of 16 massless Weyl
fermions is free of all anomalies. It was also pointed out
in48 that even when each sector is anomalous, it is still
possible that an anomalous sector can be in a topologi-
cally ordered gapped phase62. This offers a more general
way to solve the chiral fermion problem. In general, for
a gapless system, the low energy effective theory for the
gapless modes can be anomalous. Even such an anoma-
lous low energy effective theory can sometimes be realized
by a well-defined lattice model in the same dimension,
since the anomaly can be canceled by a gapped (anoma-
lous) topological sector.

One such example is the 2d gapless theory of one single
Weyl fermion with U(1) (fermion number NF ) and time
reversal (T ) symmetry. The time reversal transforma-
tion satisfies T 2 = (−)NF . Such a single-Weyl-fermion
theory has a parity anomaly (time reversal is a space-
time parity transformation). It was believed (incorrectly)
that there was no 2d lattice theory with on-site U(1) and
time reversal symmetries that can produce low energy ef-
fective theory of a single-Weyl-fermion. Indeed, there are
no non-interacting lattice theories with on-site U(1) and
time reversal symmetries that can produce low energy
effective theory of a single-Weyl-fermion. However, if we
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include interaction, then there are interacting lattice the-
ory with on-site U(1) and time reversal symmetries that
can produce low energy effective theory of a single-Weyl-
fermion without breaking those symmetries. One way to
construct such an interacting 2d lattice model is to start
with a slab of 3d lattice model, which can be viewed
as a 2d lattice model from far away. On the 3d slab
we have the topological insulator with U(1) symmetry
and T 2 = (−)NF time reversal symmetry. The fermions
do not interact near one surface of the slab, which give
rise to the low energy effective theory of a single-Weyl-
fermion. Near the other surface of the slab, fermions in-
teract strongly, which give rise to a gapped non-Abelian
topologically ordered state and do not contribute to low
energy modes (see Fig. 4b).
This research was partially supported by NSF DMS-

1664412. This work was also partially supported by the
Simons Collaboration on Ultra-Quantum Matter, which
is a grant from the Simons Foundation (651440).

Appendix A: Tomonaga-Luttinger liquids as Abelian
gapless phases

We define the Tomonaga-Luttinger liquid as the liq-
uid, containing only excitations with integral (or bosonic)
statistics. It can always be written as

KF =

(
1 0

0 −1

)
. (A1)

Thus the LL has the property that Γ = Γ0. For sim-
plicity, we assume NL = NR = 1, there is only one
left and one right mode. The essence of the proof does
not depend on NL(= NR), and can be generalized to
NL > 1. The task is to prove that once all excitations
in the Lagrangian subgroup are condensed, the partition
function of the low energy theory is the same as that of
LLs, i.e. the u11 ⊕ u11 CFT.

We consider one kind of Abelian state, constructed
from double-layered FQH stripe, and gap sectors along
one edge totally (the top part of Fig. 1), and sectors
from the other edge remain gapless (the bottom part of
Fig. 1). The claim is that Abelian states realized by such
construction, are always LLs, whose low energy theory is
u11 ⊕ u11 CFT.
The edge theory of Abelian FQH state, is described

by a symmetric integer matrix K. Quasiparticles, cre-

ated by operator e i l
Tφ are labeled by an integer vector

l. Given two quasiparticles l,m ∈ Z
2, the self-statistics

of l quasiparticle and the mutual statistics of two quasi-
particle are

θl
π

= lTK−1l,
θlm
2π

= lTK−1m. (A2)

In particular, a local excitation is that can be created by
local operators, i.e. bosonic or fermionic operators. One
set of local excitations is Γ0 = KZ

2. We see that basis

vectors are columns of K = (k1, k2). It follows that K
matrix encodes the statistics of these local operators,

θij
2π

= kTi K
−1kj = Kij , (A3)

which is integral. Another set of local operators are

e i l
T (φ+φ), l ∈ Z

2, (A4)

where φ are fields of the other edge, described by −K.
We see that the statistics of

θlm
2π

= l
TK−1

m− l
TK−1

m = 0, (A5)

and

θlm
2π

= l
TK−1m ∈ Z

2, (A6)

since m ∈ KZ
2.

The gappable condition for a single edge is there are
a set of quasiparticles m ∈ Z

2 that forms a “Lagrangian
subgroup” M63. One way to fully gap the edge is to add
perturbation

δL =
∑

m∈M
gn cos(m

Tφ). (A7)

We see that when gn > 0 are sufficiently large, the

quasiparticles labeled by m are condensed, i.e. e im
Tφ ∼

1. The question is what is the gapless theory for the
other edge that remains gapless.
When allm are condensed, the local excitations in (A4)

become

e im
T (φ+φ) → e im

Tφ, (A8)

Now the lattice of local opetors is

Γ = ⊕m∈M(m+KZ
2). (A9)

This is still a two dimensional integeral lattice, and can
thus be represented by Γ = UZ

2, where U is a inte-
gral matrix. Levin proved that now P = UTK−1U is
a symmetric integral matrix with vanishing signature,
detP = ±1. In fact, P is the effective K now

P = UTK−1U. (A10)

Next by another linear superposition,

(WT )−1 = UW0, WTKW = η, (A11)

this means that when the null vectors become local op-
erators as well. Meanwhile, we tune the interactions at

the upper edge appropriately, so that Ṽij = vδij ,

V = (WT )−1Ṽ W−1. (A12)
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Let us illustrate the proof with two examples. First,
we consider

K =

(
m 0

0 −m

)
. (A13)

Pick a null vector l = (1, 1)T , and k1 to form the new
basis,

U =

(
1 m

1 0

)
(A14)

has mutual statistics

P =

(
0 1

1 m

)
. (A15)

By a second basis transformation W0 we find the basis .

W0 =

(
1−m
2

1+m
2

1 −1

)
, UW0 =

1

2

(
1 +m 1−m

1−m 1 +m

)
.

(A16)

With this basis, the statistics is

Keff = KF . (A17)

The interaction is tuned to

V =
v

2

(
1 +m2 1−m2

1−m2 1 +m2

)
. (A18)

In this basis, all vectors are mutually trivial.

e iu
Tφ = e iγ

TW−1φ = e iγ
T φ̃ (A19)

where γ =WTu it contributes

Z(τ) =
∑

γ∈Γ̃

|η(q)|−2q
1
2γ

2
1 (q∗)

1
2γ

2
2 (A20)

to Z(τ).
γ is in the lattice

Γ̃ =WTUZ
2 =W−1

0 U−1UZ
2 =W−1

0 Z
2. (A21)

Since W0 is an integer matrix with detW0 = ±1, so is
W−1

0 . Then from the theorem of lattice theory,

Γ̃ ≡ Z
2. (A22)

Therefore

Z(τ) =
∑

γ∈Z2

|η(q)|−2q
1
2γ

2
1 (q∗)

1
2γ

2
2 = χu110 χu110 , (A23)

and is the same as the partition function of u11 CFT.

Z(τ) =
∑

m∈M

∑

γ∈Γm

|η(q)|−2q
1
2γ

2
1 (q∗)

1
2γ

2
2 . (A24)

We point out that for the velocity matrix

V =

(
v 0

0 v

)
, (A25)

the matrix to make K → η and V diagonal is

W ′ =
1√
m
η, (A26)

and in this case, the partition function is

Z(τ) =
∑

m∈PZ

Zm(τ). (A27)

It is modular invariant, since

Z(−1

τ
) =

∑

m,n∈PZ

SmnZn(τ),

Smn =
1

| detP | e
i 2πmTK−1

eff
n. (A28)

The low energy theory is u1M × u1M CFT. And

(W ′)−1W =
1

2
√
m

(
1 +m −1 +m

−1 +m 1 +m

)
, (A29)

is a boosting matrix in SO(1, 1).

Second, we consider a general case with non-trivial La-
grangian subgroup,

K =

(
−1 1

1 3

)
. (A30)

We can choose a Lagrange subgroup M =
{(0, 0)T , (1, 1)T }. And we find

U =

(
1 1

1 −1

)
, W0 =

(
1 0

−1 1

)
, W =

(
1
2 1
1
2 0

)
. (A31)

We conclude that from the double-layered FQH and
gapping one edge, the gapless phase obtained is still a
Tomonaga-Luttinger liquid.

Appendix B: Conformal field theory extended with
current algebras

The theory of conformal field theory with extended
symmetry is well-known. In this section, we summa-
rize some defining knowledge to introduce our conven-
tion. We refer the readers to Francesco’s textbook64 for
further details.
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1. Current and primary fields

The u1, su21, and su22 CFT’s are not only invari-
ant under conformal symmetry, but also invariant under
current algebras. Current algebras are generated by cur-

rents, chiral primary fields with scaling dimension 1, and
denoted as Ja(z). The defining OPE of the level-k cur-
rent algebra gk is

Ja(z)Jb(w) ∼ kδab
(z − w)2

+
∑

c

ifabc
Jc(w)

(z − w)
, (B1)

where fabc is the structure constant of the corresponding
Lie algebra g. In particular, for u1M current algebra,

J0(z)J0(w) ∼ M

(z − w)2
, (B2)

for su2k current algebra, in the spin basis, whose su2
generators satisfying

[J+, J−] = 2J0, [J0, J±] = ±J±, (B3)

the OPEs are

J0(z)J0(w) ∼ k/2

(z − w)2
, J0(z)J±(w) ∼ ±J±(w)

(z − w)
,

J+(z)J−(w) ∼ k

(z − w)2
+

2J0(w)

(z − w)
. (B4)

Analogous to highest weight representations of Lie al-
gebras, the highest weight representations of the current
algebras are labeled by primary fields. The defining OPE
of a primary field Vλ(z) is

Ja(z)Vλ(w) ∼
taλVλ(w)

z − w
, (B5)

where taλ is the representation matrix for Ja of g in the
representation labeled by λ.
Current algebras can be represented in terms of dif-

ferent quantum fields, as long as the different represen-
tations produce the same correlation functions (so-called
quantum equivalence). In particular, primary fields of
the above current algebras can be expressed in terms of
the chiral compactified bosonic field φ and primary fields
in Is CFT. The representations of current fields and pri-
mary fields, and their scaling dimensions h are listed in
Table IX. Table X lists the primary fields and the scaling
dimensions h.

2. Operator product expansion

The OPE of fermion operators is

η(z)η(w) ∼ 1

z − w
. (B6)

CFT field h

u1M J0 = i
√
M∂φ 1

Vk = e
i k√

M
φ
, k = 0, . . . ,M − 1 k2

2M

su21 J0 = i√
2
∂φ 1

J± = e± i
√
2φ 1

V 1
2
,± 1

2
= e

± i 1√
2
φ 1

4

su22 J0 = i∂φ 1

J± =
√
2η e± iφ 1

V 1
2
,± 1

2
= σ e± iφ/2 3

16

V1,±1 = e± iφ 1
2

V1,0 = η 1
2

TABLE IX. Fields of CFTs with current algebras. J i are cur-
rent fields, and others are primary fields (except the identity
field with scaling dimension 0) of the current algebra. a0 is
the cut-off length scale.

Primary field h

1 0

σ 1
16

η 1
2

TABLE X. Primary fields of Ising CFT

The OPE of Ising primary fields are

σ(z)σ(w) ∼ 1

(z − w)
1
8

+ C(z − w)
3
8 η(w),

η(z)σ(w) ∼ 1

(z − w)
1
2

µ(w), (B7)

η(z)µ(w) ∼ 1

(z − w)
1
2

σ(w).

where µ denotes the disorder operator dual to the spin
operator σ, and it has the same OPE and conformal di-
mensions as σ. All other OPEs can be derived from (73),
(B6) and (B8).

3. Characters and modular transformations

Each primary field corresponds to a highest weight-
representation of the current algebra. The character of a
highest weight-representation encodes the degeneracy, or
multiplicities of states with the same quantum numbers.

a. u1M character

The u1M character χu1Mm is given by

χu1Mm (τ) = q−
1
24

∑∞
n=−∞ q

1
2 (

m
R
+nR)2

∏∞
n=1(1− qn)

, R2 =M, (B8)
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which contains primary fields of conformal symmetry,

e i (
m
R
+nR)φ. (B9)

When M = even, under modular transformation, χu1Mm

transform as

χu1Mi (−1

τ
) =

∑

j

Sijχ
u1M
j (τ), Sij =

1√
M

e− i 2π ij
M ,

χu1Mi (τ + 1) =e
i 2π

(
1
2

i2

M
− 1

24

)

χu1Mi (τ). (B10)

When M = odd, χu1Mm corresponds to the partition
function of a fermionic system.

b. su2k character

The ŝu(2)k character χsu2kj (τ) is

χsu2kj (q) =
q(2j+1)2/4(k+2)

[η(q)]3

·
∑

n∈Z

[2j + 1 + 2n(k + 2)] qn[2j+1+(k+2)n]

(B11)

where j ∈ P =
{
0, 12 , · · · , k2

}
. The modular transforma-

tions are

χsu2kj (−1/τ) =
∑

l∈P
Sjlχ

su2k
l (τ),

Sjl =

√
2

k + 2
sin

[
π(2j + 1)(2l + 1)

k + 2

]
(B12)

χsu2kj (τ + 1) =
∑

l∈P
Tjlχ

su2k
l (τ), Tjl = δjl e

i 2π( j(j+1)
k+2 − c

24 ).

and c = 3k
k+2 .

c. Ising characters

The Ising characters are

χr,s(q) = η−1(q)
∑

n∈Z

(
q(24n+4r−3s)2/48 − q(24n+4r+3s)2/48

)
,

(B13)

where

χ1 ≡ χ1,1, χσ ≡ χ1,2, χψ ≡ χ2,1. (B14)

In the basis (χ1, χσ, χη), the S matrix is

S =
1

2




1
√
2 1√

2 0 −
√
2

1 −
√
2 1


 , (B15)

and the T operation is

Tχµ = e i 2π(hµ− 1
48 )χµ, (B16)

where h1 = 0, hσ = 1
16 and hη = 1

2 .

Appendix C: Exactly marginal operators

Consider a perturbation δS = 1
2π

∑
i gi
∫
d2zφi(z, z),

where φi(z, z) is the marginal Virasora primary field with
weights (hi, hi). The correction of the correlations of
O(z, z), a product of primary fields, are

δ

δgj
〈O〉 = 1

2π

∫
d2w〈φj(w,w)O〉. (C1)

In particular, by taking O = φi(z1, z1)φi(z2, z2), one can
show that to the first order in δgi, the correction to the
weights are

δhi = δhi = −
∑

j

ciijδgj . (C2)

The necessary condition for a marginal operator to be ex-
actly marginal, i.e., preserving conformal symmetry when
gi is turned on continuously, is that ciij = 0, for any pri-
mary field φj .

Appendix D: Partition functions of free spin- 1
2
Dirac

fermions

The spin- 12 Dirac fermions can be considered as the
representation of the u12 ⊕ su21 current algebra. The
partition functions are

ZDirac
AE =χu120 χsu210 χu120 χsu210 + χu121 χsu211/2 χ

u12
1 χsu211/2 ,

=
1

2

(∣∣∣∣
θ3(q)

η(q)

∣∣∣∣
4

+

∣∣∣∣
θ4(q)

η(q)

∣∣∣∣
4
)
,

=
∑

k=0,2,4

(
4

k

)
(ZMaj

AE )k(ZMaj
AO )4−k,

ZDirac
AO =χu120 χsu210 χu121 χsu211/2 − χu121 χsu211/2 χ

u12
0 χsu210 ,

=
1

2

(∣∣∣∣
θ3(q)

η(q)

∣∣∣∣
4

−
∣∣∣∣
θ4(q)

η(q)

∣∣∣∣
4
)
,

=
∑

k=1,3

(
4

k

)
(ZMaj

AE )k(ZMaj
AO )4−k,

ZDirac
PE =ZDirac

PO ,

=
1

2
(χu120 χsu211/2 + χu121 χsu210 )(χu120 χsu211/2 + χu121 χsu210 ),

=
1

2

∣∣∣∣
θ2(q)

η(q)

∣∣∣∣
4

= 8(ZMaj
PE )4, (D1)

where we have used Jacobi’s theta functions θa(τ) to
track the various identities between characters. To un-
derstand the multiplicity in ZDirac

PE (ZDirac
PO ), we compare

it with

ZMaj
PE =ZMaj

PO =
1

2

∣∣∣∣
θ2(q)

η(q)

∣∣∣∣ . (D2)
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Since θ2/η has 2-fold degeneracy, there are no degeneracy

in ZMaj
PE , but a 8-fold degeneracy in ZDirac

PE . Physically,
in n chains of Majorana fermion with periodic boundary
condition, there is a ground state degeneracy of 2n due
to n zero modes. For fixed fermion number parity, the
degeneracy is

∑

k=0,2,··· ,k≤n

(
n

k

)
=

∑

k=1,3,··· ,k≤n

(
n

k

)
= 2n−1. (D3)

Appendix E: Scaling dimensions of primary fields in
chiral metallic phase

Here we list the scaling dimensions (h, h) of primary
fields corresponding to each term of characters ZAE (80),
are

(1) In ZAE (80):

(0, 0),

(
3

4
,
3

4

)
,

(
3

4
,
3

4

)
, (1, 0)

(
1

4
,
1

4

)
,

(
1

2
,
1

2

)
.

(E1)

(2) In ZAO (81):

(
0,

1

2

)
,

(
3

4
,
1

4

)
,

(
3

4
,
1

4

)
,

(
1,

1

2

) (
1

4
,
3

4

)
,

(
1

2
, 0

)
.

(E2)

(3) In ZPE or ZPO (82):

(
1

4
,
1

4

)
,

(
1

4
,
1

4

)
,

(
1

2
,
1

2

)
,

(
1

2
,
1

2

)
,

(
1

2
,
1

2

)
,

(
1

2
,
1

2

)
,

(
5

4
,
1

4

)
,

(
5

4
,
1

4

)
,

(
1

4
,
1

4

)
,

(
1

4
,
1

4

)
,

(
1

2
,
1

2

)
,

(
1

2
,
1

2

)
. (E3)

Appendix F: Computation of modular invariant
partition functions

1. Fusion algebra in chiral metallic phase

Fields generated from OPEs of fermion operators can
be summarised in terms of fusion algebras. The primary
fields in the partion functions can be organized in the
following fashion. We denote the vacuum and local op-
erators as

ν1 =V u120 V su220 1IsV
u12
0 V

su211
0 V

su221
0 ,

ν2 ≡ψα2 = V u120 V su220 1IsV
u12
1 V

su211
0 V

su221
1
2

,

µ1 ≡ψα2 = V u121 V su221
2

σV
u12
0 V

su211
0 V

su221
0 ,

µ2 ≡ψ†
α1ψβ1 = V u120 V su221

2

σV
u12
0 V

su211
1
2

V
su221
0 . (F1)

All the primary fields generated from the fusion of
them are

µ3 = ν2 × µ1 =V u121 V su221
2

σV
u12
1 V

su211
0 V

su221
1
2

,

µ4 = ν2 × µ2 =V u120 V su221
2

σV
u12
1 V

su211
1
2

V
su221
1
2

.

(F2)

The other fields are νij , 1 ≤ i ≤ 4, 0 ≤ j ≤ 3 defined as

νi0 =νi,

νi1 =V u120 V su221 1Is × νi0,

νi2 =V u120 V su220 η × νi0,

νi3 =V u120 V su221 η × νi0.

(F3)

ν1, ν2 has been given. And ν3, ν4 is determined by

µ1 × µ2 =

3∑

j=0

ν3j , µ1 × µ4 =

3∑

j=0

ν4j . (F4)

The solution is

ν3 =V u121 V su220 1IsV
u12
0 V

su211
1
2

V
su221
0 ,

ν4 =V u121 V su220 1IsV
u12
1 V

su211
1
2

V
su221
1
2

.
(F5)

Note that all νi0 ≡ νi has the partial vacuum V su220 1Is,
thus the fusion in (F3) is Abelian and trivial.
The primary fields defined above form a complete set

such that the fusion algebra is closed. We denote this
fusion algebra as

C = {µl, νij | 1 ≤ l, i ≤ 4, 0 ≤ j ≤ 3}. (F6)

2. A receipt to look for modular invariant partition
functions

From the fusion algebra C, we can look for solutions of
modular covariant Z.

1. Assign non-negative integeral multiplicities for the
characters χcj for cj ∈ C, and sum over them to get
an initial partition function z.

2. Generate a set of partition functions,

z Sz, TSz, STSz, Tz, STq (F7)

Since S2 = 1,65 T 2 = 1, (TS)3 = 1, they are all the
partition functions generated by modular transfor-
mations. Next one check that all the multiplicities
in these vectors are non-negative integer, and the
primary fields in these partition funcitons are either
bosonic or fermionic fields.
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3. There are three basis vector of S invariant partion
funcitons,

z1 = z + Sz, zT = Tz + STz, zTS = TSz + STSz.
(F8)

Therefore all vectors ZAA =
∑3
i=1 aizi, ai ∈

Z, ai ≥ 0 are invariant under S transformation.

4. The other sectors of partion function can be gener-
ated by ZAP = TZAA, ZPA = SZAP .

5. ZPP is to find
∑3
i=1 aizi, ai ∈ Z, ai ≥ 0 that is

purely bosonic.

The only free choice in the receipt is in the first step,
the general guide is to assign small integers to the mul-
tiplicities.

a. Another modular covariant partition function

There is another independent solution for modular co-
variant partition functions, as shown below.

Z ′
AE = χu120 χsu220 χIs

0 χ
u12
0 χ

su211
0 χ

su221
0

+χu121 χsu221 χIs
0 χ

u12
1 χ

su211
1/2 χ

su221
1/2

+χu121 χsu220 χIs
η χ

u12
1 χ

su211
1/2 χ

su221
1/2

+χu120 χsu221 χIs
η χ

u12
0 χ

su211
0 χ

su221
0

+χu121 χsu220 χIs
0 χ

u12
0 χ

su211
1/2 χ

su221
0

+χu120 χsu221 χIs
0 χ

u12
1 χ

su211
0 χ

su221
1/2

+χu120 χsu220 χIs
η χ

u12
1 χ

su211
0 χ

su221
1/2

+χu121 χsu221 χIs
η χ

u12
0 χ

su211
1/2 χ

su221
0 . (F9)

The scaling dimensions of primary field corresponding to
each term are

(0, 0),

(
3

4
,
3

4

)
,

(
3

4
,
3

4

)
, (1, 0)

(
1

4
,
1

4

)
,

(
1

2
,
1

2

)
,

(
1

2
,
1

2

)
,

(
5

4
,
1

4

)
. (F10)

Z ′
AO =χu120 χsu220 χIs

0 χ
u12
1 χ

su211
0 χ

su221
1/2

+ χu121 χsu221 χIs
0 χ

u12
0 χ

su211
1/2 χ

su221
0

+ χu121 χsu220 χIs
η χ

u12
0 χ

su211
1/2 χ

su221
0

+ χu120 χsu221 χIs
η χ

u12
1 χ

su211
0 χ

su221
1/2

+ χu121 χsu220 χIs
0 χ

u12
1 χ

su211
1/2 χ

su221
1/2

+ χu120 χsu221 χIs
0 χ

u12
0 χ

su211
0 χ

su221
0

+ χu120 χsu220 χIs
η χ

u12
0 χ

su211
0 χ

su221
0

+ χu121 χsu221 χIs
η χ

u12
1 χ

su211
1/2 χ

su221
1/2 . (F11)

The scaling dimensions of primary field corresponding to
each term are

(
0,

1

2

)
,

(
3

4
,
1

4

)
,

(
3

4
,
1

4

)
,

(
1,

1

2

)

(
1

4
,
3

4

)
,

(
1

2
, 0

)
,

(
1

2
, 0

)
,

(
5

4
,
3

4

). (F12)

Z ′
PE =Z ′

PO,

=χu120 χsu221/2 χ
Is
σ χ

u12
1 χ

su211
0 χ

su221
0

+ χu120 χsu221/2 χ
Is
σ χ

u12
0 χ

su211
0 χ

su221
1/2

+ χu121 χsu221/2 χ
Is
σ χ

u12
1 χ

su211
1/2 χ

su221
0

+ χu121 χsu221/2 χ
Is
σ χ

u12
0 χ

su211
1/2 χ

su221
1/2 . (F13)

The scaling dimensions of primary field corresponding to
each term are

(
1

4
,
1

4

)
,

(
1

4
,
1

4

)
,

(
1

2
,
1

2

)
,

(
1

2
,
1

2

)
. (F14)

Appendix G: Solutions of eqn. (25)

Using the characters of u14 CFT, χu14m , and the char-
acters of Ising CFT, χIs

h , we can construct many solution
of eqn. (25). The following is a list of 36 solutions. (The
list may not be complete.)

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPOf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPEf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAEf ,POs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZPEf ,POs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZAOf ,POs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,AEs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZPEf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2 (G1)

ZAOf ,AEs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,AOs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPOf ,AOs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
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ZPEf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAOf ,AOs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
.

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPOf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPEf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAEf ,POs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,POs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZPEf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZAOf ,POs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,AEs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2 (G2)

ZPEf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZAOf ,AEs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,AOs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPOf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPEf ,AOs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAOf ,AOs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)
.

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPOf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZPEf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAEf ,POs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,POs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPEf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAOf ,POs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,AEs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPOf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZPEf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZAOf ,AEs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAEf ,AOs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZPOf ,AOs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPEf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAOf ,AOs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2. (G3)

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPOf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZPEf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAEf ,POs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPEf ,POs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAOf ,POs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,AEs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPOf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZPEf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZAOf ,AEs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAEf ,AOs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZPOf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPEf ,AOs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAOf ,AOs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2. (G4)

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPOf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZPEf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAEf ,POs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPOf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZPEf ,POs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZAOf ,POs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAEf ,AEs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPEf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAOf ,AEs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,AOs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZPOf ,AOs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPEf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAOf ,AOs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2. (G5)

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)
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ZPOf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZPEf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAEf ,POs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPOf ,POs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZPEf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZAOf ,POs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAEf ,AEs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPEf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAOf ,AEs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,AOs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZPOf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPEf ,AOs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAOf ,AOs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2. (G6)

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPOf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZPEf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,POs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPEf ,POs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZAOf ,POs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAEf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZPOf ,AEs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPEf ,AEs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZAOf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAEf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPOf ,AOs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZPEf ,AOs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAOf ,AOs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2. (G7)

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPOf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZPEf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,POs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,POs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPEf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZAOf ,POs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAEf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZPOf ,AEs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPEf ,AEs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZAOf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAEf ,AOs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPOf ,AOs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZPEf ,AOs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAOf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2. (G8)

ZAEf ,PEs =
(
|χu140 |2 + |χu142 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPOf ,PEs =
(
|χu141 |2 + |χu14−1 |2

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZPEf ,PEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)
|χIs

1
16
|2

ZAOf ,PEs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2

ZAEf ,POs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPOf ,POs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZPEf ,POs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAOf ,POs =
(
χu140 χu142 + χu142 χu140

)(
|χIs

0 |2 + |χIs
1
2
|2
)

ZAEf ,AEs =
(
|χu141 |2 + |χu14−1 |2

)
|χIs

1
16
|2

ZPOf ,AEs =
(
|χu140 |2 + |χu142 |2

)
|χIs

1
16
|2

ZPEf ,AEs =
(
χu140 χu142 + χu142 χu140

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAOf ,AEs =
(
χu141 χu14−1 + χu14−1 χ

u14
1

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZAEf ,AOs =
(
|χu141 |2 + |χu14−1 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPOf ,AOs =
(
|χu140 |2 + |χu142 |2

)(
χIs
0 χ

Is
1
2
+ χIs

1
2
χIs
0

)

ZPEf ,AOs =
(
χu140 χu142 + χu142 χu140

)
|χIs

1
16
|2
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field theory (Springer Science & Business Media, 2012).
65 We do not consider the more involved case that S2 = C

that C 6= 1.


	Metallic states beyond Tomonaga-Luttinger liquids in one dimension
	Abstract
	Contents
	Introduction
	A general picture for gapless quantum states
	Summary of results
	Ising phase transitions in metallic state of spin-12 electron chain
	Chiral metallic phases of spin-12 electrons
	Chiral ``non-Abelian'' metallic phases
	Examples of strongly interacting gapless metallic states in higher dimensions
	Tomonaga-Luttinger liquids as Abelian gapless phases
	Conformal field theory extended with current algebras
	Exactly marginal operators
	Partition functions of free spin-12 Dirac fermions
	Scaling dimensions of primary fields in chiral metallic phase
	Computation of modular invariant partition functions
	Solutions of eqn. (25)
	References


