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Metallic states beyond Tomonaga-Luttinger liquids in one dimension

Wenjie Ji! and Xiao-Gang Wen®

In this paper, we propose some new strongly correlated gapless states (or critical states) of spin-
1/2 electrons in 1+1-dimensions, such as the doped ferromagnetic and anti-ferromagnetic spin-1,/2
Ising chains. We find that the metallic phases in the doped ferromagnetic and anti-ferromagnetic
Ising chain are different strongly correlated gapless phases, despite that the two phases have the same
symmetry. The doped anti-ferromagnetic Ising chain has a finite energy gap for all charge-1 fermionic
excitations even without pairing caused by the attractive interaction, resembling the pseudo-gap
phase of underdoped high Tc superconductors. Applying a transverse field to the ferromagnetic
and anti-ferromagnetic metallic phase can restore the Z> symmetry, which gives rise to two distinct
critical points despite that the two transitions have exactly the same symmetry breaking pattern.
We also propose new chiral metallic states. All those new gapless states are strongly correlated in the
sense that they do not belong to the usual Tomonaga-Luttinger phase of fermions, i.e. they cannot
be smoothly deformed into the non-interacting fermion systems with the same symmetry. Our non-
perturbative results are obtained by noting that gapless quantum systems have emergent categorical
symmetries (i.e. noninvertible gravitational anomalies), which are described by multi-component
partition functions that are modular covariant. This allows us to calculate the scaling dimensions
and quantum numbers of all the low energy operators for those strongly correlated gapless states.
This demonstrates an application of emergent categorical symmetries in determining low energy
properties of strongly correlated gapless states, which are hard to obtain otherwise.
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The simplest 1d metallic states are Fermi liquids of

non-interacting electrons, whose low energy properties
are described by non-interacting fermionic quasiparticles.
In the low energy limit, Fermi liquids are described by

17 several decoupled sectors and each sector contains a few
modes. In this paper, we will try to develop a general

understanding of gapless states by viewing the gapless

algebras 18 states as formed by several decoupled sectors, and using



the notion of categorical symmetry® (i.e. modular covari-
ance of noninvertible gravitational anomaly?).

Readers who are just interested in 1d strongly inter-
acting metallic states can directly go to Section III. The
section II contains some general discussions.

If a strongly interacting metallic state is stable against
all symmetry preserving perturbations, then it will rep-
resent a stable phase of quantum matter. However,
most strongly interacting metallic states are not sta-
ble against certain symmetry preserving perturbations.
Those metallic states will correspond to critical states
(or multi-critical points) that describe continuous phase
transitions between different phases of quantum matter.
Thus the constructions discussed in this paper can be
viewed as a systematic way to discover 1d gapless quan-
tum phases, as well as 1d (multi-)critical points. (In this
paper, we will use 1d to refer to 1-dimensional space and
141D to refer to 14+1-dimensional space-time.)

II. A GENERAL PICTURE FOR GAPLESS
QUANTUM STATES

After the development of last 30 years, we start
to have a comprehensive understanding of all gapped
quantum states in 1-dimensional, 2-dimensional, and 3-
dimensional spaces, in terms of spontaneous symme-
try breaking®*, group cohomology®®, and braided fu-
sion (higher) category” 7. In fact, we have classified
(or proposed to classify) all 1d'®21 24271422 and
3d'5717 gapped liquid®®?* states of boson/fermion sys-
tems with any finite on-site symmetry. The classifica-
tion is achieved via the realization that gapped quantum
phases are described by symmetry breaking orders, topo-
logical orders”2%26 and/or symmetry protected trivial
(SPT) orders®"2%,

Such a systematic understanding of topological
orders”?>26 and SPT orders?” (including topological in-
sulators and superconductors??-4?) leads to a deeper un-
derstanding of gauge and gravitational anomalies, in
terms of the boundaries of topological order or SPT or-
der in one-higher-dimensional lattice models*' 44, This
resulted in a generalization of anomalies to include nonin-
vertible anomalies.?*345747 Those generalized anomalies
(inlcuding perturbative and global gauge/gravity anoma-
lies) are classified in terms of topological orders and SPT
orders in one higher dimension*?*3. Such an under-
standing of anomalies also lead to a solution to the long-
standing chiral fermion problem®:49,

In comparison, there is a lack of comprehensive un-
derstanding of gapless quantum states of matter, despite
that we know many examples of them, such as super-
fluid, anti-ferromagnets, nodal d-wave superconductors,
graphene, Weyl semi-metals, etc . But in 1d, thanks to
Belavin-Polyakov-Zamolodchikov, we do have a good un-
derstanding of gapless quantum states with linear veloc-
ities via conformal field theories (CFT)50 52, In particu-
lar, we can use the modular invariant partition function,

gapped boundary

topological orders
in one higher dim:"

gapless anomalous sectors

FIG. 1. (Color online) A general picture of a gapless quan-
tum states, which is formed by decoupled anomalous gapless
sectors restricted to the symmetric sub-Hilbert spaces (the
red dots). The emergent symmetry and emergent anoma-
lies are described by noninvertible gravitational anomalies
(i.e. the topological orders in one higher dimension). Thus,
the anomalous sectors are the boundary of corresponding
topological orders in one higher dimension.

which is parametrized by a complex number 7 describing
the shape of the spacetime torus,

Z(ry=Z(t+1)=Z(-1/71) (1)

to systematically study 1d gapless states.

In this paper, we will try to develop a systematic
point of view of gapless quantum matter based on
gauge/gravity anomaly, hoping this may lead to a more
general understanding of gapless states in higher dimen-
sions.

First, the low energy part of a gapless state may be-
come several decoupled sectors, where the interactions
between different sectors approach to zero in the in-
frared limit under renormalization group flow. Conse-
quently, in the low energy limit, there are often emergent
symmetries. For example, the original UV symmetry
G (the lattice symmetry) may enlarged at low energies,
G — G X G x ---, one copy for each decoupled sector.
Since each decoupled low energy sector is not a full sys-
tem, each sector by itself is often anomalous. Thus there
are also emergent anomalies (7.e. the low energy effective
theory is anomalous).

Recently, it is pointed out that, when restricted
to the symmetric sub-Hilbert space, a symmetry can
be fully characterized® by a noninvertible gravitational
anomaly.Q’43’45’47 So we can treat the emergent symme-
tries and emergent anomalies in a unified way by re-
stricting to the symmetric sub-Hilbert space. In this
case, we only have an emergent noninvertible gravita-
tional anomaly. To stress this close connection between
noninvertible gravitational anomaly and the symmetry,
we refer to noninvertible gravitational anomaly as cat-
egorical symmetry.?2 This point of view is very general.
Not only emergent O-symmetries (i.e. the usual global
symmetries) can be viewed as emergent noninvertible
gravitational anomalies, emergent higher symmetries and
even more general emergent higher algebraic symmetries
can also be viewed as emergent noninvertible gravita-
tional anomalies (i.e. be viewed as emergent categorical
symmetry).>354

For example, 141D gapless state with on-site symme-
try G in the original lattice system also has a dual al-



gebraic symmetry denoted by G2. The total symmetry
is the categorical symmetry denoted by G V G2. Note
that a categorical symmetry is nothing but a general-
ized gravitational anomaly (which can be a noninvert-
ible gravitational anomaly). Also note that a generalized
gravitational anomaly is nothing but a topological order
in one higher dimension*?43:45-47 The topological order
in one higher dimension that describes the categorical
symmetry G V G is the topological order described by
G gauge theory. The 141D gapless state corresponds
to the minimal gapless boundary of the 2+1D G gauge
theory?, that have no condensation of gauge charge nor
gauge flux.

To have more information describing a gapless state,
we want to decompose the gapless state into smallest
decoupled sectors. This allows us to see the maximal
emergent symmetry and emergent anomalies. In other
words, this allows us to obtain the maximal categorical
symmetry!. It may be possible that the maximal cat-
egorical symmetry fully characterizes the gapless state.
This may be a way to systematically understand strongly
correlated gapless states.

Since each decoupled sector has a generalized gravita-
tional anomaly, it can be viewed as a boundary of topo-
logical order in one higher dimension (see Fig. 1). For
example, the right-moving sector of a 1+1D gapless state
has a perturbative gravitational anomaly characterized
by its central charge cr. Similarly, the left-moving sec-
tor also has a gravitational anomaly characterized by its
central charge cr. The right-moving sector is a boundary
of a 241D chiral topological order. The left-moving sec-
tor is also a boundary of a 2+1D chiral topological order.
The two chiral topological orders allow us to describe the
141D gapless state.

For a system with a generalized gravitational anomaly
(i.e. a noninvertible gravitational anomaly), its par-
tition function has multiple components. This
multi-component partition function transforms covari-
antly under mapping-class-group transformations of the
spacetime?5®., So the multi-component partition func-
tion forms a representation of the mapping class group.
Such a representation turns out to be the representation
that describes the topological order in one higher dimen-
sion. Since

topological order in one higher dimension
= noninvertible gravitational anomaly

= categorical symmetry, (2)

we see that the categorical symmetry determines the rep-
resentation of the mapping class group formed by the
multi-component partition function, which in turn deter-
mines the dynamical properties (such as scaling dimen-
sions) of the 1+1D gapless state. This is how emergent
maximal categorical symmetry systematically describes
a strongly correlated gapless state.

In this paper, we will use this line of thinking, i.e. use
multi-component partition functions and their modular

covariance, to study strongly correlated metals. This ap-
proach is beyond perturbation.

III. SUMMARY OF RESULTS

A. Ising strongly correlated metal with
ferromagnetic and anti-ferromagnetic correlation

In section IV, we consider a spin—% electron chain close
to one electron per site with strong on-site repulsive in-
teraction and (anti-)ferromagnetic Ising spin interaction.
The model has Z5 spin-flip symmetry: S* — —S* and
the U(1) electron conservation symmetry, as well as the
translation symmetry: U(1) x Z5 x Z.

We note that for the insulating Ising chain, there are
two Z, symmetry breaking phases, one when the in-
teraction is ferromagnetic and the other when the in-
teraction is anti-ferromagnetic. The phase in the anti-
ferromagnetic case breaks the translation symmetry.

After doping, there are also two Zs symmetry break-
ing phases in the metallic states for ferromagnetic and
anti-ferromagnetic Ising interactions. However, the anti-
ferromagnetic metallic phase does not break the transla-
tion symmetry. We will show that despite the two metal-
lic phases have the same symmetry, they are two distinct
phases separated by phase transitions, if we do not ex-
plicitly break the symmetry. In particular, the fermionic
charge-1 excitation is gapless in the ferromagnetic metal-
lic phase, and is gapped in the anti-ferromagnetic metal-
lic phase. Thus the ferromagnetic and anti-ferromagnetic
metallic phases provide examples of symmetry pro-
tected gapless phases®%°7.

The Zs spin-flip symmetry breaking in the two metal-
lic phases can be restored if we add a strong transverse
magnetic field, which will change the two metallic phases
into the same metallic phase of polarized spins. We find
that the critical theories of the transition points are dif-
ferent for the ferromagnetic and anti-ferromagnetic cases.
The ferromagnetic critical point is described by a CFT

ul®lsdul @I, (3)

while the anti-ferromagnetic critical point is described by
a different CFT. We see that even the same symmetry
breaking pattern can have distinct critical theories®®.

B. Spin-rotation symmetric strongly correlated
metal

In this paper, we also construct some 1d chiral gapless
states. One way to do so is to start with a 2d FQH stripe.
On one side of the stripe, we have a gapless edge state
(the bottom part of Fig. 1), and on the other side of the
stripe (the top part of Fig. 1) we have a fully gapped
edge (assuming the FQH state support gapped edges).
This way, we can obtain a strongly interacting gapless



state. In Appendix A, we show that, if we start with
an Abelian FQH state and consider only U(1) symmetry
of electron number conservation, the above construction
actually will always give us a Tomonaga-Luttinger (TL)
liquids, not a new gapless phase. Thus in this paper,
we consider electron systems with more than just the
U(1) symmetry. As an application, in Section V, we start
with 2d integer quantum Hall stripe with SO(3) spin
rotation symmetry, and obtain a chiral metallic state of
spin-1/2 charge-1 electrons, where the right-moving and
left-moving gapless fermions carry different spins. This
chiral metallic state is beyond the TL liquids of spin-1/2
electrons.

Furthermore, we consider an electron system with U(1)
charge, SU(2) spin, and Z lattice translation symmetries.
The lattice fermions carry charge-1 and spin-1/2. Such
an electron system can realize a chiral metallic phase (see
Section VI). In this chiral metallic state, the low energy
excitations are described by a CFT

su29 & ul ©Is © su2; © su2; S ul, (4)

Note that the right movers and left movers are described
by different CFTs (i.e. different chiral algebras), and
those different sectors may have diffrent velocities. We
see that the single lattice SU(2) spin rotation symme-
try is enlarged to SU(2) x SU(2) x SU(2) symmetry
at low energies. The single lattice U(1) charge conser-
vation symmetry is enlarged to U(1) x U(1) symmetry
at low energies. In the clean limit, the chiral metallic
state has a quantized two terminal thermal conductance

K= cg%, where ¢ = 5 —|— 1 + s = 3 is the total central
charge for right movers (or left movers) Since the spin S,

is conserved, we can treat it as a conserved charge where
each electron carries £7/2 S,-charge. The corresponding

two-terminal S,-conductance is also quantized:

_ (w22 h
0S5, = Vs h = Vg 87‘(’7 (5)

with vs = 4. For TL liquids of spin-1/2 electrons, ¢ and
v are always integers, and they are always the same

c=vs. (6)

For the chiral metallic state (4), ¢ = 3 and vs = 4. Thus
the constructed chiral metallic state (4) is beyond TL
liquids. Note that the central charges of some sectors are
fractional. Thus chiral metallic state is a chiral “non-
Abelian” metallic state.

IV. ISING PHASE TRANSITIONS IN
METALLIC STATE OF SPIN-% ELECTRON
CHAIN

In this section, we consider a spin—% electron chain with

ferromagnetic or anti-ferromagnetic S*-spin interactions.
The system has a symmetry U(1) x Z5 x Z. We show that

the Z5 symmetry breaking transitions for the two cases
are described by different CFTs in the metallic state, de-
spite that the two transitions cause the identical symme-
try change, i.e. reduce the symmetry group of the ground
state from U(1) X Z§ x Z to U(1) x Z

A. The model

Let us first consider a spin—% chain with Ising interac-

tion
H=-JY oici, —BY ot (7)

where B is the external magnetic field. We then add
some doping to obtain a metallic state of spin—% electron
chain. In this paper, we will mainly consider the case
when Fermi energy of the dropped electrons is much less
than |J|, |B]. In this case, the system is in Zs symmetry
breaking phase when B = 0, with 0* = £1 (i.e. all the
electron either have ¢ = 41 or ¢ = —1). In the Zy
symmetry breaking phase, the charge degree of freedom
remain gapless. The phase is described by U(1) CFT
with central charge ¢ = ¢ = 1. The Zs symmetry break-
ing state has central charge ¢ = ¢ = 1. In the large B
limit, the system is in a Z; symmetric phase where all
the electrons have o = +1. The Z; symmetric state
has central charge ¢ = ¢ = 1. We would like to consider
the critical point of the Zs symmetry breaking transi-
tion. The critical point of pure Zs symmetry breaking
has central charge c =¢ = % Plus the contribution from
the conserved U(1) charge fluctuations, the critical point
is expected to have a total central charge c =¢ = %
The symmetry of a fermion system is described by a
pair of groups: (Z2f ,Gy). Here Gy is the full symmetry

group and Zg is generated by fermion number parity,
which is a central subgroup of G¢. For our spin-1/2 chain
Gy =U(1) x Z5 and 71 is the subgroup of the U(1).

In general, to fully describe a critical theory with a
global symmetry G, we can consider the partition func-
tion twisted under the symmetry. More specifically, a
twisted partition function defined on a Euclidean space-
time torus parametrized by a complex number 7, is in-
dexed by a pair of elements g, h of Gy,

Zgn(1),  gh=hg, g.heGy. (8)

It records all low energy excitations ¢ that satisfy twisted
boundary conditions along spacial and temporal direc-
tions, ¢(x + L,—it) = go(z,—it),¢(z,—it + T) =
hé(xz, —it), where —it denote the imaginary time.

If the symmetry Gy is non-anomalous, the partition
functions twisted under the symmetry satisfy the follow-
ing relations:

Zp-1,4(=1/7) = Zgn(7),
Zghg(T+1) = Zgn(T),
Zugufl.,uhu*1 (T) Zg,h(T) (9)



For example, for a fermionic system with only fermion-
number-parity symmetry, G = Zg , the partition func-
tion depends on the boundary conditions along tempo-
ral and spacial direction. Put it in plain words, we
consider the 4-component partition function indexed by
g, h € {P,A}: Zap(T), Zaa(7), Zpa(r) and Zpp(T),
where P and A represents the periodic and anti-periodic
boundary condition of a local fermion.

B. Partition functions

Thus, for a CFT of a fermionic system, there are at
least four sectors of partition functions defined as
=Trg eflm(T)pr iRe(7)Kp

—Im(7)Hp—iRe(7)K
= Trpe MM Hr (MK

(7)
Zpos(T) (10)
ZAEf (7_) _ TI‘E e*Im(T)HAf iRe(T)KA7
ZAOf (7_) =Trpe Im(t)Ha—iRe(7)Ka )

where Trg is the trace over the states with even (total)
numbers of fermions and Trp is the trace over the states
with odd numbers of fermions. Hp (H,) is the Hamil-
tonian for a system where fermion fields satisfy an (anti-
)periodic boundary condition in x direction. Similarly,
Kp (K4) is the total momentum operator of the systems
where fermion fields satisfy a (anti-)periodic boundary
condition in x direction.

Alternatively, we may define the torus partition func-
tions for fermion systems through the space-time path
integral, which also include four types, Zpp(7), Zpa(T),
Zap (1), and Z 44 (7). Here the first and second subscrip-
tion P or A corresponds the periodic or anti-periodic
boundary condition for fermions in z and ¢ direction, re-
spectively. The two sets of partition functions are related

1

1

Zpgs =§(ZPP + Zpa), Zpor = —i(ZPP — Zpa),
1 1

Zapt :i(ZAP +Z44), Zaor = _i(ZAP —Z44).

(11)

Each partition function can be expanded as

Z(r)=q #(¢")"% > N,7d"(q (12)
(hh)

where ¢, ¢ are the central charge for right and left movers,

27

g=e¢ 7T, (13)

where L is the size of the 1d system. The summation
>_(n 18 over a set of pairs (h,h), which gives rise to
the spectrum of scaling dimensions of local operators.
In particular, the expansion coefficients Nh,ﬁ must be
positive integers for each of Zpgs (1), Zpos (7), Zags (T),
and ZAOf (T)

Unlike CFTs from bosonic lattice systems that have a
modular invariant partition function eqn. (1), for a CFT
realizable by a fermionic lattice model, the above four
types of partition functions transform covariantly under

modular transformations. More explicitly, under S : 7 —
_1

T

Zpp <—i> =Zpp(7), Zaa (—i) = Zaa(7),

(14)
Zap (-j_) =Zpa(7), Zpa (-j_) = Zap(7),
and under 7' : 7 — 7 + 1,
pr(T'i‘l) :ZPP(T), ZAA(T+1):ZAP(T)7 (15)
ZAP(T—|—1) :ZAA(T), ZPA(T-Fl):ZpA(T)‘

In the basis (Zgs, Zpos,ZprssZa0r), the partition
function transforms as?

f f
Zi(r+ 1) =T13 Z5(7),  Zi(~1/7) = 573 Z;(7),
(16)
where I,.J = AEf, PO/, PET, AO and
100 0 11 1 1
gzl _|010 0 g7 1|11 —1 -1
001 0|’ 211 -1 1 -1
000 —1 1 -1 -1 1
(17)

As a warm-up example, we consider the 1d charge-
1 spinless non-interacting fermions. The 4-component
partition functions for a charge-1 spinless fermion satisfy
eqn. (16) and are given by the characters of uly CFT
for right movers near kr, and by the characters of uly
CFT for left movers near —kr (see Appendix B3). As a
result, the 4-component partition functions for a charge-1
spinless non-interacting fermion can be constructed from
the characters of uly ® uly CFT:

Zapr = Do P+ et
Zpor = X{ XU XX a8)
Zpps = lel“l2 + XU
ZAOf — XO u14 _|_ X’U.14 u14
Here, the primary field corresponding to x4'* (X5'*) is

the charge 1 right(left)-moving fermion. We also note
that the right (left) movers near kr (—kp) can be viewed
as the edge state for integer quantum Hall state with
filling fraction v =1 (v = —1).

To find modular covariant partition functions for the
Ising critical point in the spin-1/2 electron system, we
use the characters of uly CFT, x%!4, and the characters
of Ising CFT, X}f, to construct the 4-component parti-
tion functions that satisfy eqn. (16) (details shown in



Appendix B 3):
XM (1), 0<m<

S 1
X};’(T)v h:07§7

=4,

M

1
— 19
6 (19)
Here the ul CFT describes the gapless U(1) charge fluc-
tuations. Also the Ising CFT describes the gapless spin
fluctuations at the Ising transition point. Eqn. (16)
can have many solutions. For example, the following 4-
component partition functions represent a solution sat-
isfy eqn. (16)

Zag = (o1 + " ) (6 + IxE1?)

+ (AP I P I P

Zpo = (X314X214 + Xu14xgl4) (X%)SXIS + XISX%)S)

+ (A X I P
Zpp = (Ixo 1P + Iz )5 2 (20)
+ (AP ) (X + IEP),
ZAO — (XloLl4—u14 + X’u,14—u14)‘xls |2
+ (X X)X+ xE)-

In the above 4-component partition functions, we have
considered the symmetry twist and the quantum number
of Z2f . To obtain more information, let us also consider
the partition functions for the spin symmetry twist Z3:
Zpp(T), Zpa(T), Zap(T), and Z44(7) which also satisfy
eqn. (15) and eqn. (22). We introduce Zpgs(7), Zpos(T),
Zags(7), and Za0s(7) in a similarly but slightly different
way

1

i(ZPP —Zpa),
1

3(Zap = Zaa), (21)

1

ZpEs :§(ZPP +Zpa), Zpos =
1

ZAEs :§(ZAP +Zaa), Zaos =

where Zpg- is the partition function in the Z5 even sec-
tor, and Zpgp- is the partition function in the Z5 odd sec-
tor. Similarly, Z4g- is the partition function in the Z3
even sector, and Z 40+ is the partition function in the Z3
odd sector, but now there is a Z5 symmetry twist in the
spatial direction. In the basis (Zpgs, Zpos, Zags, Zaos),
the partition function transforms as

=T} Z5(1),  Zi(~1/7) =
where I,J = PE®, PO® AES, AO® and

Zi(r +1) S% 7,(7), (22)

100 0 11 1 1
7z (010 0| g 1f1 1 -1 1)
001 0 2(1 -1 1 -1
000 —1 1 -1 -1 1

(23)

which is the same as eqn. (17).

For example, the 4-component partition functions for
the critical point of an 1d Ising model (7) satisfy eqn. (22)
and are given by the characters of Ising CFT (see Ap-
pendix B 3):

Zpps = |XG |2+|X 2,
Zpos = \X |2 (24)
ZAE“ ‘XIS |2

ZAO? _ X%)sxlls + XISXIS

Now we like to include symmetry twists and the quan-
tum numbers for both Zg and Z5, which gives us the
16-component partition functions Zrp/ (7), where I =
AE?, PO' PEf AOf. and I' = PE*, PO*, AE®, AO*.
Zip (1) satisfy the modular covariant condition (see
Ref. 2)

Zin(r+1) = T35 % 2, 10(7),
Zip(=1/7) = SIZI%;L(]LZ;ZJJ’ (1), (25)
where
TZix25 _ 77f o 7%,
§7ix7i _ g7 o 5%, (26)

Eqn. (25) has many solutions. The list of 36 solutions
are given by Appendix G. But which one of the parti-
tion functions describe the Ising transition of spin-1/2
electrons?

If the electron spins have a ferromagnetic interaction
(i.e. J < 0ineqn. (7)), then we can view the doped holes
as spinless fermions. Thus, in this case, we can view the
Ising transition point as decoupled critical point of Ising
chain and the metalic state of spinless fermions. There-
fore, the ferromagnetic Ising transition point of spin-1/2
electrons is described by the following 16-component par-
tition functions (see eqn. (G1)):

ZARS PEs = (|X014|2 + |X214|2)(|X ? + \X 1), (27)
Zpor,pee = (XY XX (6P + ),
ZpEgf pEs = (| U14|2 + |Xu14| )(|X ? + \X | )

Znor pe = (EHTE 1 xBlxide) (I |2+|le| )

Zags pos = (IX§™ 2 + Ixs™)? )|XIS 2, (28)
Zpof.pos = (Xu14 u14 + Xu14 u14)|XIS 2,
(2 + X P I 1,

uly u14 u14 u14)|XIs ‘2

ZpEs Po*

Zaos pos = (Xo X2



(o™ + Ixa™ P I 1%, (29)
Zpor,ape = (XX A XX I P
Zpps aps = (XEH7 + ISP )|XIS %,

(Xu14 uly +Xu14 u14)|XIS |2

Z AR AR =

ZA0f AES =

Zaprao- = (g PP+ s 1?) (@ X +x5xw), (30)
ZPOf,AOS — ( uly u14 u114X11,L14)(X{)sXIS +XIISX%]S)
Zpps,aos = (XA P+ IXEP) (@ XS +XEX0),
ZAOf,AOS — ( u14 14 +Xu14 u14)(XabXIb +lexés)

The above 16-component partition function is the multi-
component partition function mentioned in Section III,
which is a reflection of the noninvertible gravitational
anomaly if we restrict to the symmetric sub-Hilbert space
of the Z{ x Z§ symmetry. The modular covariance of the
above multi-component partition function can help us
to determine many properties of the strongly correlated
gapless state. We remark that the above 16-component
partition function only describe part of emergent nonin-
vertible gravitational anomaly (i.e. part of emergent cat-
egorical symmetry), which is not the maximal categorical
symmetry.

We also note that the 16-component partition function
reduces to the following 4-component partition function
if we only consider the Zg symmetry twist:

Zaps = Zaps pEs + Zagi pos
= (X" PP + x5 1?) Zas,
Zpoi = Zpos pes + Zpos pos
= (XX XX Ziss
Zppt = Zppf prs + ZpEs Po*
= (P + XU P) Zass
Zpos = Zaos pes + Zaos pos
= (xgxs™ + xaxet) Zis, (31)

where
Zis = Ixo' ] + IXISI2 + IXIS 2. (32)

When the electron spins have an anti-ferromagnetic
interaction (i.e. J > 0 in eqn. (7)), the Ising transition
point will be described by a different CFT. This is be-
cause when there are an odd number of electrons on the
ring, the spins carried by the electrons will behave like
those in a spin chain with a Z5 symmetry twist. In other
words, a state with an odd number of fermions is like a
Neel ordered Ising spin configuration with an odd num-
ber of spins, thus satisfying anti-periodic boundary con-
dition.

It means that in the partition functions whose first
label is AOf or PO’ (i.e. with odd number of electrons),

the (untwisted) spin part of the excitations (the sectors
labeled by PO® and PE?®) is given by the Z5 twisted
sector of Ising CF'T. In specific,if the second label is PO?®,
the spin part is described by Ising character xg XIS +

7 (which is Z40s shown in (24)); if the second label
\2 (which

is Zapg- shown in (24)). Still in the partltlon functions
whose first label is AOf or POY, the Z, twisted spin
part is given by the Z5 untwisted sector of Ising CFT. In
summary, the partition functions, whose first labels are
AOY /PO are as follows,

X X
is PES, it is described by Ising character |x

Is
Z 401 /POt PEs = ‘Xi

Is Is—Is Is—Is
Z 80fP0s POs =X0 X1 +X1Xo>

)

Is _ S Is
ZAof/Pof,AEs = |X0 + ‘X%

ZzlélsOf/POf,AOS = ‘Xlia . (33)

Also, in the partition functions with first label AE7
or PES (i.e. with even number of electrons), the (un-
twisted) spin part is given by untwisted sector of Ising
CFT, the Z, twisted spin part is given by Z5 twisted
sector of Ising CFT.

Is o Is 2 S
Z 7B PES PES = x|+ ‘Xl

2
Is _ | s
Z,afo/PEf,POS—‘Xll73 )

2
Is _ Is
ZAEf/PEf,AES_‘X% )
Is Is—Is Is—Is
ZAEf/pEf,Aos =Xo X1 +X1X (34)

Furthermore, since a fermion always carries an odd
number of the U(1) charge, the partition functions la-
beled by AOf and PO’ (i.e. with odd number of elec-
trons) must be described by ul character x%!+x“4 with
m —n = 2 mod 4. We find the partition functions
eqn. (G13) satisfy the above conditions. Thus, the anti-
ferromagnetic Ising transition point of spin-1/2 electrons
is described by the following 16-component partition
functions (see eqn. (G13)):

ZARf PEs = (\X014\2+|X214| ) (Ix¢ |2+|XIS| )
ZPOf,PE'b _ ( uly u14 1114 u14)|XIb |2 (35)
Zpgf pps = (\X114‘2 + Y )(\XIs >+ |Xllb|2)v
ZAOf,PE“ ( uly u14 12114 u14)|XIs |2
Zags pos = (XA + XY )|XIS 2, (36)
ZPOf Pos = (Xu14 u14 u14Xgl4)<XasXIIS +XIISX%)S)
Zpps.pos = (Ix6" 17+ Ixs ™ )|le %,
Zaor,pos = (I XL+ XEIXT) (X + XEXG),



operators | o® |k| h,h
vy 0] 5.3
oc “1(0| i, 15
P —1|{0] %,0
P —-1|{0] 0,3

ooy ~oap| 1 |0 %67%

TABLE I. Quantum numbers of local and non-local operators
in critical point of ferromagnetic Ising model eqn. (7). Here o®
is the Z2 spin quantum number, k is the crystal momentum,
and (h,h) are the right and left scaling dimension. 1, o are
the Is CFT primary fields associated with the Ising character
XI; xllia, which have scaling dimensions % and 1175 respectively.

Similarly, ¢, @ are the Is CFT fields.

operators |o® | k | h,h
vy 110355
oz -1+ | &, &
0 —1{+%| L0
P —1|{+£Z| 0,1

ooy ~oap| 1| 0 %,%

TABLE II. Quantum numbers of local and non-local operators
in critical point of anti-ferromagnetic Ising model eqn. (7).

ZARf ARs = (|Xo14\2 + \th\ )\XIS 2, (37)
Zpof Aps = (X‘Lﬁu14 ulfyqfu) (|XIb s |XI§\2)a
Zpps aps = (A1 + XY )\XI5 2,

Zaos ape = (X6 wlayuls 4 x5 (e ”? + |X %),
Zapsaos = (I P+ IXEP) (@ XE +XEX0),
Zpof, A0s = (X u14 +Xu14 U14)|XI§ |2 (38)
Zpwsaos = (X6 > + s 7) (Xt +x5%0),
Zpor,A05 = ( e U14 71114le14)|><15 |2

The above 16-component partition functions reduce to
the 4-component partition functions given in eqn. (20),

if we only consider the Z{ symmetry twist.

C. Scaling operator and their quantum numbers

Let us first consider the scaling operators and their
quantum numbers of the critical point (24) of the Ising
model eqn. (7) without doping. The partition functions
eqn. (24) tell us the Z5 quantum numbers. For ferromag-
netic spin coupling (J < 0 in eqn. (7)), the low energy
states all carry crystal momentum near zero. The states

operators | 0% | ¢ k h,h (0=0)
otiletd) | 1 +2k (ch&;sh@)27 (chG;shB)2 (%7 %)
eTie=? | 1 |49 0 (0}10455}10)2’ (chG+;ht9)2 (%7 %)
Y | 1]0] 0 33 (33)
oo —-1{0]| 0 15,18 (5, 35)
et |1 &1 kp cb’0 b2 (%,0)
et1P 11 [ F1| £he si'6 cbd 0,3)
etiYor | —1|+1| tkp C}‘;O + &, 51‘229 + & (& %)
eiPoT | —1|F1| thp |20 4 L 0 1 (1 T

TABLE III. Quantum numbers of local gapless bosonic and
fermionic operators in ferromagnetic Ising transition point of
the strongly interacting spin-1/2 electron system (the doped
ferromagnetic Ising model). Here o” is the Z3 spin quantum
number, ¢ is the U(1) charge, k is the crystal momentum, and
(h, h) are the right and left scaling dimensions (the values in
bracket are for 8 = 0, see eqn. (44)). ¢ is the bosonic field to
describe uly CFT, where ¢ is normalized such that e'¥ has
a scaling dimension % 1, o are the Is CFT fields with scaling
dimension % and 1% respectively. Similarly, @ is the bosonic
field to describe uls CFT and 1,7 are the Is CFT fields.

described by | le 2in Zpg- are created by local operator
zpw from the ground state in |x¥|2. Thus the operator
i) carries Z5 quantum number 0% = 1. The states de-

scribed by |XIb |2 in Zpos are created by local operator

o0 from the ground state. Thus the operator oo carries
Z5 quantum number ¢ = —1. The states described by

Xlsx}f in Z 40+ are created by non-local operator ¢ from

the ground state. Thus the non-local operator 1 carries
Z5 quantum number ¢® = 1. Similarly, the non-local
operator 1 also carries Z5 quantum number 0% = 1. The
states described by | le | in Zpgs are created by non-

local operator o) ~ 001/) from the ground state. Thus
the operator 05y ~ oo carries Z5 quantum number
0% = 1. The above results are summarized in Table I.

However, for anti-ferromagnetic spin coupling (J > 0
in eqn. (7)), the low energy states carry crystal momen-
tum near k = £7 if the Z3 quantum number 0% = —1
(and carry crystal momentum near zero if the Z§ quan-
tum number o% = 1). The scaling operators and their
quantum numbers for anti-ferromagnetic Ising critical
point are summarized in Table II.

Now let us consider the scaling operators and their
quantum numbers for the spin-1/2 electrons at the Ising
transition point. The partition functions eqn. (27)-(30)
and eqn. (35)-(38) tell us the Z{ and Z5 quantum num-
bers. In the following, we will discuss the U(1) and mo-
mentum quantum numbers.

Let us first consider the ferromagnetic Ising transition
point described by eqn. (27)-(30). The ul, character x4

m

describes states with U(1) charge ¢ = 2 mod 2, and

2
momentum k = ’%F mod 2kr. Here kp = mnp, where



operators | o® | ¢ k h,h

etile+®) 1 +2k (ch&;s}10)2’ (chG;shB)Q

etie=2) | 1 |49 0 (0}10455}10)2’ (chG+;ht9)2
Vi 110 0 1.3

oti £1e 05| —1| 0 | tkp 2(ch0—156h€)2+1’ 2(ch97156h€)2+1

e ogy | 1 |£1| thp | DOy Lo sh L

e Pomy | 1 |F1| thp | WO L de L

ot w;aw 1|41 kg <ch9+s;9)2+4’ (ch9+85h0)2

oti WEWJ 1|41 kg (ch9+85h9)2’ (ch9+58h€)2+4

TABLE IV. Quantum numbers of local gapless bosonic
and fermionic operators in anti-ferromagnetic Ising transition
point of the strongly interacting spin-1/2 electron system (the
doped anti-ferromagnetic Ising model).

np is the fermion number per site. The uly character

X" describes states with U(1) charge q = —% mod
2, and momentum k = ££ mod 2kp. For such U(1)
charge assignment, we see that the states described by
the partition function Zgr ... (Zaor....) carry even (odd)
U(1) charges. The states described by the Ising character
do not carry any U(1) charge and momentum.

The states described by the partition function
Zags.... (Zaos,...) are created by local gapless bosonic
(fermionic) operators from the ground state in the sec-
tor |4 |?|x&|?. So the above discussion gives us a list
of scaling operators, as well as their quantum numbers
and scaling dimensions. The results are summarized
in Table III. For example (see eqn. (27)), the bosonic
operator eF1(¥¥?) create the states in |5 |?|x¥)?.

The local fermionic operator e*i¥ create the states in
’LL14

X2 Y6‘14|X55|2~

From Table III, we see that there is only one relevant
operator that carries a trivial quantum number, 1), with
total scaling dimension h + h = 1. This is the operator
that drives the ferromagnetic Ising transition.

Next, let us consider the anti-ferromagnetic Ising tran-
sition point described by eqn. (35)-(38). The uly char-
acter x4 still describes states with U(1) charge ¢ = %

mod 2, and momentum k = ’%F mod 2kr. The ul, char-
m

acter Y% still describes states with U (1) charge ¢ = —2
mod 2, and momentum k = I%F mod 2kp. For such
U(1) charge assignment, again the states described by
the partition function Zgr ... (Za0s,...) carry even (odd)
U(1) charges. The states described by the Ising charac-
ter do not carry any U(1) charge. But they can carry
momentum =+kp if o, = —1. The results are summa-
rized in Table I'V. For example (see eqn. (35)), the local
gapless bosonic operator e (¥=?) creates the states in
Ix4M|2|x|?. The local fermionic operator e*?oa1) ~
et19551) creates the states in X;14Y814|X1116 2.

From Table IV, we see that there is only one relevant
operator that carries trivial quantum numbers, 11, with

0.5 ]

FIG. 2. The relations between the total scaling dimensions
h+ and h_ of the electron operators with Z5 quantum number
o® =1 and 0® = —1, respectively, for the ferromegnetic (FM)
and anti-ferromegnetic (AFM) Ising transitions.

total scaling dimension h + h = 1. This is the operator
that drives the anti-ferromagnetic Ising transition.

D. Low energy effective theory

Let us further compare the ferromagnetic and anti-
ferromagnetic Ising transition for the spin-1/2 electrons
when there is interaction. Both the ferromagnetic and
anti-ferromagnetic Ising transition points are described
by the same low energy effective field theory

1
L= (0l = 0200z p — 0:009 — 0.90,p)

_ %vaw@awa +(0) — D)t + DDy + 02) D (39)

However, the set of local operators are different for the
two Ising transition points. For the ferromagnetic Ising
transition point, the local operators are given in Ta-
ble II1. While for the anti-ferromagnetic Ising transition
point, the local operators are given in Table IV. In the
tables, o(z) (7(x)) operator is the operator that creates
the sign flip at « in the v (1) field.

In the last section, we study the case with V' = 0. And
the U(1) charge fluctuations are described by uls & uly
CFT. Here we will consider the effect of V' on the scaling

dimensions h, h. Let us introduce
[ chf sho %)
~\shd o) \5)’
hf —sh
_[c 0 —sho ? 7 (40)
—shf chf 10)



with 6 satisfying
2chfshd
V=———. 41
ch?6 + sh?0 (1)

The Lagrangian for ¢, ¢ is diagonal

1 _ _
L= E(ax¢at¢ - vam¢am¢ - 8$¢at¢ - an¢az¢)
(42)
Thus the scaling dimensions h, h for operator
el(me+m®) _ i[m(cho ¢—shf ¢)+m(chd p—shb ¢)] (43)

are given by

(m chf — mshh)?
2 9

(m ch® — mshh)?

h(0) = (o) =

(44)

From Tables I1T and IV, we see that the charge neutral
operator with o* = —1 has scaling dimensions %, 1—16 and

—ho)2 —ho)2 :
2(ch6—sh)"+1 ' 2(ché féle) *L for the ferromagnetic and the

anti-ferromagnetic critical points respectively. The scal-
ing dimensions for the anti-ferromagnetic critical points
are always larger then 1—16, %. So the the ferromagnetic
and the anti-ferromagnetic critical points are really dis-
tinct critical points, despite they describe idential sym-
metry breaking pattern.

Next we compare the ferromagnetic and anti-
ferromagnetic Ising transition for the spin-1/2 electrons
by considering the total scaling dimension h. (6) = h+h
for the electron operator with Z§ quantum number o” =
1 and h_(f) = h + h for the electron operator with Z3
quantum number o = —1. As a function of interaction
0, hy(0) and h_(0) have different relations for the fer-
romegnetic and anti-ferromegnetic Ising transitions, as
shown in Fig. 2. For example, in the ferromagnetic tran-
sition, the Z5 even and odd electron operator can be e !¢
and eT1¥07, respectively. And in the antiferromagnetic
transition, they can be eXi?o7y and e 7" 1) respec-
tively. From Fig. 2, we see that in the ferromagnetic case,
the scaling dimension of the Z3 odd electron operator is
always larger than that of Z5 one by % that is indepen-
dent of interaction. However, in the anti-ferromagnetic
case, the difference in the scaling dimension of Z5 odd
and Z5 even operator increases with the attractive in-
teracting strength (6 > 0), and decreases with the re-
plusive interacting strength (6 < 0), comparing to the
non-interacting case 6 = 0.

E. Two metallic phases of spin-% electron chain
with the same symmetry

Let us consider the spin-1 Ising chain eqn. (7) with
B > 0. As we change J from 0 — +o00, the Ising chain
goes into a state that breaks the Z5 spin-flip symmetry.
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operators | ¢ k h,h (0 =0)
etilet®) | o +9kp (ch9—25h0)27 (ch9;sh0)2 (%’ %)
eTi(e=) | 4o 0 (ch@-;she)27 (ch9+2sh6)2 (%7 %)
etie 1| tkp ci’6 sbd (1,0)
% | 1| ke 20 ch’0 0,1)

TABLE V. Quantum numbers of local gapless bosonic and
fermionic operators in metallic phase of spin-1/2 electrons
with strong ferromagnetic Ising interaction. Here, ¢ is the
U(1) charge, k is the crystal momentum, and (h,h) are the
right and left scaling dimensions (the values in bracket are for
0 = 0, see eqn. (44)). ¢ is the bosonic field to describe ula
CFT. Similarly, % is the bosonic field to describe uly CFT.

operators | ¢ k h,h (0 =0)
eiiw""@ 0 | +2kp (ch9—25h9)2 7 (ch6—25h9)2 (%7 %)
otile—2 | 1o 0 (ch(9+2she)27 (clr\9+25h<9)2 (%’ %)

TABLE VI. Quantum numbers of local gapless bosonic op-
erators in metallic phase of spin-1/2 electrons with strong
anti-ferromagnetic Ising interaction. Local fermionic opera-
tors (i.e. odd-charge operators) are all gapped.

If we change J from 0 — —oo, the Ising chain goes into
a state that breaks both the Z§ spin-flip and translation
symmetries.

However, for a doped Ising chain which is a metal-
lic state, both the J — 400 and the J — —oo cases
have the same symmetry: the Z5 spin-flip symmetry is
spontaneously broken while the translation symmetry is
not broken. Despite the two large |J| metallic phases
have the same symmetry, our previous discussions indi-
cate that the transitions from the J = 0 metallic phase
to J = £oo metallic phases are described by two distinct
critical points. Thus, even the transitions that have iden-
tical spontaneous symmetry breaking patterns can be de-
scribed by different critical points.

The two distinct critical points also suggest that J =
400 metallic phases are two distinct metallic phases de-
spite that they have the same symmetry. Thus, they
are examples of symmetry protected gapless phases,
i.e. distinct gapless phases with the same symmetry. To
understand these two distinct metallic phases, we con-
sider modular covariant partition functions with U(1) x
Zg symmetry. We will consider the 16-component parti-
tion functions with Zg X Z;5 symmetry twists. Since Z3
symmetry is spontaneously broken, the partition func-
tions with non-trivial Z5 symmetry twist vanish. Using
the uly CFT characters to construct the modular covari-
ant partition functions, we identify the following two sets
of partition functions to describe the J = 400 metallic
phases.

For the J = 400 metallic phase (ferromagnetic Ising



interaction), we have

ulyg |2 uly |2
Zapspes = X0 17+ X35
li—ul la—ul
Zpot,pes = X1 Xoi HXEIXT (45)
uly (2 ulyg |2
Zpgs pre = IXT T+ XU,
1 1 1 1
Zaof pes =Xo ‘Xo * X5 X
uly 2 uly |2
Zapspos = Ixo 7+ Ixa %
ul ul ul ul
Zpoipos =X1 ‘X1 T XZ1'X1 (46)
1412 1412
Zpgspos = IXT 7+ IXET,
1 1 1 1
Z 05, pos = Xo X3 *+ X3 Xo 4
Zagf aps =0,
Zpos aps =0, (47)
Zpgf aps =0,
Zaof ags =0,
Zags a0 =0,
Zpos,a0s =0
’ 7 (48)

Zpps aos =0,
Zaof,a0s = 0.

The corresponding primary fields (i.e. gapless operators)
and their quantum numbers are listed in Table 46.

For the J = —oo metallic phase (anti-ferromagnetic
Ising interaction), we have
1 ul
Zaps pre = X" + X5,

Zpos,prs =0,
Zpgs pre = DM+ XU

Zaos,pes =0,

ZARs pOs = = IXPP A+ IR,
Zpos.pos =0,
14|2 14|2

Zppspos = IXo 17+ x5

Zaor,pos =0,

Zagps ags =0,

Zpos aps = XIS+ XX, (51)
Zpgr,aps =0,

’U.14 u14 u14 ’U.14
ZA0f . AE* = Xo + Xo

)

Zags a0s =0,
Z u14—u14 u14—u14

POf, A0 = X0 + Xo ) (52)
ZPEf,AOS =0,

ulg—ul uly—ul
Zaof,a0: = X1 Xoi XSG
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The corresponding primary fields (i.e. gapless operators)
and their quantum numbers are listed in Table 49.

In particular, from the above partition function, we can
read that in the anti-ferromagnetic metallic phase, the
single electron excitations are all gapped. For example, in
eqn. (49), we see that Z,pr pgs # 0 which means a sector
with even fermions and integer S, spins is gapless. If add
an electron, we obtain a sector with odd fermions and
half-integer S spins described by Z40s po- in eqn. (50).
Z s0f,pos = 0 means the sector to have an energy gap.

This is in contrast to the ferromagnetic metallic phase.
Zaps pps 7 0ineqn. (46) and Z,or pos # 0in eqn. (47)
implies that the sectors differ by an electron are both
gapless. Thus the single electron excitations are gapless.

To understand this result, we note that the spins of
electrons have a Neel-like T|1] --- pattern. As a result,
for even numbers of electrons, the partition function is
non-zero only when there is no Z; symmetry twist. For
odd numbers of electrons, the partition function is non-
zero only when there is a Z5 symmetry twist. Since the
fermion number and the Z5 symmetry twist are locked,
the fermion operators (i.e. odd-charge operators) are all
gapped. We can also see that the gapping of charge-1
fermions by noticing that applying a charge-1 fermion
operator to states in the sector Z4pr pp- gives us states
in the sector Z or pgs and Zsor pos, where AEf —
AO’ (adding a fermion) and PE® — PE®, PO* (the Z5
symmetry twist cannot be changed). Since Z 0s pps =
Z s0f,pos = 0, meaning the two sectors are gapped, thus
the charge-1 fermionic excitations are all gapped.

V. CHIRAL METALLIC PHASES OF SPIN-%
ELECTRONS

Following the ideas in Ref. 59, we can also construct a
strongly interacting metallic phase of spin-1/2 electrons
where the left-movers and right-movers have very differ-
ent behavior. We will call such metallic phases chiral
metallic phases.

In the first example, the left-movers and right-movers
have the same emergent symmetry at low energy. How-
ever, they carry different representations under the sym-
metries. In specific, one such chiral metallic phase has
SU(2)-spin and U(1)-charge symmetries with symme-
try group [SU(2) x U(1)]/Z2. At low energies, the
chiral metallic phase has n left-moving and n right-
moving fermions, which are non-interacting. Those non-
interacting fermions all carry charge-1. But the left-
moving and right-moving fermions form different SU(2)
representations. Let SF be the n x n hermitian matrix
for the S.-spin of the right-moving fermions, and S be
the n X n hermitian matrix for the left-moving fermions.
For the low energy fermions to be free from perturbative
SU(2) anomaly, the SU(2) representations must satisfy

Tr(S%)% = Tr(SL)2 (53)



Then combining the results in Ref. 48 and 59, we find that
such a chiral metallic phase is free of all U(1) x SU(2)
anomalies, and can be realized by interacting fermions
on a 1d lattice.

Eqn. (53) has solutions only when n > 16, if we require
all the fermions to have half-integer spins. At n = 16, we
only have the following two solutions:

right-movers | left-movers | v, = 4Tr(SF)?| ¢

: 1119 T T

Spin 35319319 555 336 16
: 111115 3 3 3 3

SPin || 5.5,5:3:3:5| 5:5:373 80 16

All the above fermions carry charge-1. The spin-1/2
fermions correspond to the spin-1/2 electrons. The
fermions with higher spins can be viewed as bound states
of several spin—% electrons and spin—% holes.

The chiral metallic phases of charge-1 fermions carry-
ing the above lists of spins can be realized by interacting
electrons on a 1d lattice, according to the argument pre-
sented in Ref. 48 and 59. However, such chiral metal-
lic states cannot be smoothly deformed into the non-
interacting spin-1/2 electron systems since v; (defined
in eqn. (5)) and the chiral central charge ¢ are not equal.

VI. CHIRAL “NON-ABELIAN” METALLIC
PHASES

A. The construction

In this section, we are going to construct another stable
chiral metallic phase which is also “non-Abelian”. We
start with a non-interacting 1d electron system described
by

Ho = 0 () 10000 0a () — Brg (2) 100050 (x), (54)

where o and a are the spin SU(2) and flavor SU(2) la-
bels, and vg is the Fermi velocity. At low energy, the
model has an emergent [SUs(2) x SUf(2) x U(1)]r X
[SUs(2) x SU¢(2) x U(1)]r, symmetry for right movers
and left movers. The right movers of the above system

are described by a CFT
su25 @ su2£ @ ul®, (55)

where the excitations in su2j carry SUs(2) spin quan-
tum numbers, the excitations in su2£ carry SUy(2) fla-
vor quantum numbers, and the excitations in ul carry
the U(1) charges. Similarly, the left movers of the above
system are described by a CFT

su2 @ su2l @ ule. (56)
In the above, sulN; denotes both the level-k su(N)
Kac-Moody algebra and the CFT built from it. The CFT
has central charge
k(N2 —1)

e (57)
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FIG. 3. The band structure of free fermions to construct chiral
metallic phase. The two bands are for two flavors. Each band
is double degenerate corresponding to two spin—%. Velocites
v(k) at k = 0 are the same, and likewise v(%) = v(n).

Likewise ul,; denotes the U(1) current algebra, and the
associated CFT, whose central charge is ¢ = 1. For de-
tails, see Appendix B.

In eqn. (54) the fermions also carry crystal momenta.
In particular, 9, carry crystal momentum kp = 0, 9,
carry crystal momentum kp; = 7, and v, carry crystal
momentum kpo = 7 /2. Such free fermion model is easily
realized, for example, with band structure shown in Fig.3.
In particular, the low energy fermion operator ¥nq, k—k
can be represented in terms of lattice fermion operator
Caa,k s follows. For k ~ kp

3
Coak = <Z ei"(kkp)> Caak ~ Vaak—kp> (58)

pn=0

and for k ~ Epa,

3
_ (=T _
Ccya,k = <§ Clu( " )> Caa,k ™~ waa,kfzz«"a' (59)
pu=0
And in real space,
3 3 _
,(/) R —ipkra . E _ —ipkrq .
aayi = e Caayitp Yaa,i = € Caa,itp-
pn=0 p=0

(60)

Caq,k reach the maximum at £ = 0 and vanish at k£ =
m; Ca1,k reach the maximum at k = 7 vanish at k =

s
20 ¥
0,3; Cazk reach the maximum at k = 5 vanish at k =
0,7.

To obtain the chiral metallic phase from the above free
fermion model, we add interactions that respect the spin
SU(2), charge U(1), and translation symmetry. We will
add interactions in three steps and finally lead to the

Hamiltonian
H="Ho+0H+H+H, (61)

It is crucial here that the interactions are different for
left movers and right movers. For the right movers, we
add interaction

OH = gsds(x) - Is(x) + geJe(x) (), (62)



where
Jc(l‘) = '(/Jla(x)waa(x)v

1
Ji(x) = §¢La($)‘7a/ﬂ/’6a(x):

(63)

are the U(1) charge and SU(2) spin current (or density),
and o are the Pauli matrices. As a current-current in-
teraction, when the coupling constant ¢’s are not too
large, the above interaction term [with scaling dimension
(h,h) = (2,0)] is always ezactly marginal. It does not
open up any energy gap, but only modifies the velocities
in the corresponding sector. With the interactions, the
right movers have SU(2) x SU(2) x U(1) symmetry, and
are described by a CFT

su2l @ su2y @ ul®. (64)

The three sectors, each containing the flavor, spin and
charge degrees of freedom respectively, can have separate
velocities, while the excitations within each sector have
the same velocity.

For left-movers we add interactions

0H = ?sljsl(x) : jsl(x) + §52782 (x) T2 (m)
+ gcljcl (55)701 (z) + §c2702 (z)jc2 (z). (65)

Here
Te1(2) = Py (@) (),
Tea() = Pl (@) oz (@),
Tal@) = STh@oastn@,
To2() = 5Phal)Taslpa(2).

Such current-current interactions also do not open up
gaps, but modify the velocity in the corresponding sector.
With the interaction, the left movers have the symmetry
SU(2) x U(1) x SU(2) x U(1), and are described by a
CFT

su2; © ul® @ su2j ® ul®. (67)

The chiral metallic phase that we have constructed
so far (see eqn. (64) and eqn. (67)) can be smoothly
connected to TL liquids (i.e. interacting 1d Fermi
liquids)1 as we reduce g’s to zero. To construct a
chiral chiral metallic phase that is not connected to TL
liquid, we add an additional interaction term

oH' = 9(1/’117%1 - 1/’11¢41)(E¢1E¢1 — 1 ¥4) + e
(68)

We note that the above operator carries a crystal mo-
mentum £ = 04+ 0+ 7+ 7 = 0 mod 2n. Thus the
term respects the translation symmetry. Such a term is
not a current-current interaction and can induce energy
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gaps for some excitations and drive the system into a new
phase.

To understand the new phase, note that the above
operator respects the spin SU(2), the diagonal charge
U(1), and the translation symmetry (since the crystal
momentum carried by the operator vanishes). Such
an operator only causes interaction within the sector

su2£ @ ul® @ ul®. If the interaction g is strong enough,
it will gap out the ul' and part of the su2£ @ ul® sec-

tor, which reduces su2} & u1° @ ul°! down to Is & ul®’,
where Is denotes Ising CFT. In this way, we obtain a
chiral metallic phase described by CFT

su2s @ ul® @ Is ® su2y ® su2; d ul, (69)
which is beyond TL liquids.

B. The gapping process

We would like to show the gapping process of the in-
teraction (68) more explicitly. This is accomplished by
using CFT and current algebras. Furthermore, we can
derive the physical properties such as local operators,
correlation functions, and partition functions, which will
be done in the next subsection.

We start with Hy in eqn. (54) plus the interactions
eqn. (64) and eqn. (67). The resulting low energy theory
has the following emergent symmetry

U(1) x SUf(2) x SU,(2)
U1(1) x SU,(2) x Ua(1) x SU,(2)

right movers: (70)
left movers:

Yaa carry the U(1) charge-1, and transform as doublets
of both the flavor and spin SU(2). In contrast, 1, carry
the charge-1 for U; (1), form a doublet of the first SU,(2);
and v, carry the charge-1 for U;(1), form a doublet
of the second SU(2)s. The low energy excitations are
descirbed by the following current algebras:

right movers: u1® @ su2j & su2], (71)

left movers: ull @ su2} @ ul? @ su2?.

The theory is free from gravitational anomaly, since the
left central charge c =1+ % + % = 4 is equal to the right
central chargec=1+1+1+ 1.

The local operators of our theory are powers of the
fermion operators ¥aq,,,. The fermion operators can
be represented in terms of the primary fields of the above
CFT. In particular, they can be written in terms of sim-
ple free boson fields and free Majorana fermion fields in
ul, su2y and su2; CFTs (see Appendix B1):

2:F3 2:L73
- . ?1 i'ﬁ i 2L —su2!
Ban(3) = € e ST, (72
_ i P2 :I:i@ ll—suQ?
Yyg =€ V2e V2 =¢ \/EV%i%.



Here, for right movers,

(1) @, is the bosonic field to describe u1°,

(2) ns,05, ds are the Ising CFT fields and the bosonic
field to describe su23, and

(3) nf,0¢, ¢y are the Ising CFT fields and the bosonic
field to describe 8u2£.
Similarly, for left movers, L

(1) B, is the bosonic field to describe ull,

(2) @, is the bosonic field to describe u12,

(3) ¢, is the bosonic field to describe su2i, and

(4) ¢ is the bosonic field to describe su2?.

We adopt the convention that the correlation function
of all bosonic fields are

(p(21)p(22)) ~ —In(21 — 22), (73)

where z; = 7, + ix; is the complex cooridinate. The
scaling dimensions of operators in (72) all equal %, a nec-
essary condition for chiral fermion operators. In fact, it
fix the ul parts of fermion operator representations in
(72).

Now the gapping term (68) can be rewritten as (via
operator product expansion, see Appendix B 2)

OH' ~ —gcos (g@c + o — \/§¢1) . (74)

When g > 0 is large, the sectors generated by ¢. + ¢y
and @; are fully gapped. Other sectors are not affected.
Consequently, the gapless excitations in the new phase
are described by the following CFT

right movers: ul® @ su2j @ Is’,

oo (75)
left movers: su2} ® ul? @ su2?,
where u1¢/ is ul CFT represented by the field ¢, — of,

the conjugate field of ¢. + ¢ that remains gapless. And

Isf = Su1 J? is Ising CFT with primary fields 1,07 and
7¢. Primary fields of above CFTs are summarised in
Appendix B 1.

The scaling dimension of e!(Petdr=v271) ig (h,h) =
(1,1). We emphasize that, even though the local interac-
tion term gaps out the left-mode and right-mode in equal
numbers, it selects an inequivalent combination of right-
modes, comparing to the left-modes, since the operator
is in the CFT

ul§ ®ull® @ ull Cul§ @ su2f ®ull.  (76)

And the resulting phase is anomaly-free and has a lattice
realization.

C. The local operators

To compute the physical properties of the chiral metal-
lic phase, we first identify local operators in the above
CFT. In the chiral metallic phase, the fermion opera-
tors ¥,1 and v, are gapped (i.e. their imaginary-time
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operators spin | charge | k
L Pc—of s
i1 ¢ su2; 1
Pa2 = € \% o = -1 0
o 1 ,:t% f 2
i@f‘su2§ 1 -
Yop = € ﬁV%yié 2 -1 324
5u22 5u2} -
walwﬁl 7UfV1 ilV%,i% 07 1 0 a

TABLE VII. Quantum numbers of local operators, where k is
the crystal momentum.

correlations have exponential decay), since they contain
. pcte L1
either el ~= "~ or e'VZ. They are local operators but

do not appear in the low energy CFT. All other fermion
operators,

. Pe—df Pc—Pf

. . 93
Yoz =e'" 7 opet P oy = eV B oy,

_ 77
— P2 42 i P2 —su2? ( )
wa2:e Ve V2 — e ﬁV%,i%’

are still gapless, therefore are local operators in CFT.
Operators generated from the OPEs of t,2’s and 1,
are also local operators.

The above local operators are purely chiral with either
only right movers or left movers. Another type of local
operators containing both right movers and left movers
is

_ j Peter— V2¢7 . 4L
1/’311/’51 —e T — o_se:tl¢s/20,fe 1\/57
3 (78)
e i"b— 28 —su2}
Nasei”bé/zafe V2 _U'fvfui%Vl +1

where we have used the knowledge that in the chiral

metallic phase, the cos term in (74) is frozen to the max-
. . ¢L+¢f V2¢1 F
imum value, i.e. e~} ~ 1. Therefore 1,1 3,’s

are also low energy local operators in the chiral metallic
phase.

D. Partition functions

To find modular covariant partition functions (see
eqn. (16)), we use the CFT characters for ulyy, Is & 2422
su21, and su2s (details shown in Appendix B 3):

1
Xm ™, 0<m < M,

Xy, mw=0,1m0

su 1 79
Xp 217 P 07 53 ( )
1
ey =0,-,1.
Xl/ ) v 727

The scaling dimension of the U(1) part in 42,1, in
(77) are both %, thus corresponds to ul primary fields
with R = +/2. This determines the level of ul,; CFT to
be M =2 (See Eq (B9)).
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operators spin |charge| k h,h
[ Pe—Pf oy s ol
+i——5—+i+= su2 su2 .
2 2 1 T |3 3
e ﬁVLl V%,iévé,i% 0,1,2| 0,2 |+ 5|3, %
. Pe—Pf . P2 . 1 2
+i +irt= su2 su2
2 1 1 T |3 3
e ﬁnfvé,i%V%i% 0,1 | 0,£2 |73 |%,%
98
Vil iy 1 0 0 |10
su2§ *su?i 11
V%’i%(ffv%yi% 071 0 m 102
iiwc;wfii%vsu2; VS’U,Q% 0.1 0. 42 4z 11
e %,:ﬁ:% %,:l:% ) ’ 2 PRID)

TABLE VIIIL. Quantum numbers of local gapless bosonic operators in the chiral metallic phase su23 x uls x Is X su2} x su22 x uls.

Here k is the crystal momentum.

We find the simplest solution of covariant partition
functions that contains local operators (77) and (78) is

(1) Anti-periodic boundary condition with even num-
ber of fermions:

1 2
su2s —ulo—su2j _su2y

X6+ X7 )Xe X0 X

ulsg Su2q

Zae =Xo (X0

1 25 1 2, Is\—ule—su2l _su2?
100" X6+ X0 X)X X s Xa s

1 2 —uly—su2] _su2?
+ X0 X 2 Xe X0 X2 Xo

1 25 Ts—ulyg—su2l _su2?
XX Xe X X0 X2 (80)

The primary field corresponding to each term of char-
acters in Z4p is bosonic with integral spin h — heZ.
We list the scaling dimensions of all primary fields in
Appendix E.

(2) Anti-periodic boundary condition with odd number
of fermions:

su2o  Is 771/1275“2% —SU2§

X0+ X320 )X X Xy e

1 2
—uly—su2y —_su2y

F X100+ X0 X)X XY 2 Xo

ulo . su2o Is—u12f8u2ifsu2%

+X0 X1/2 Xo X1 X1/2 Xl/g

ulg su2so

Zr0 =Xx0 > (Xg

X T R (51

The primary field corresponding to each term of char-

acters in Z 4 g is fermionic with half-integral spin h — he

7+ % We list the scaling dimensions of all primary fields
in Appendix E.

(3) Periodic boundary condition with even or odd num-
ber of fermions:

Zpg = Zpo

1 1 1
O XX e X )

T2

—ulo—su2?  _ylo—su2?
(XX + X6 X )

1 __su2?t
+3 X6 2 ("2 X0 + X022 X s

1 25 Ts—su2] 2, Ts—su2}
A )

2

—ulg—su2 —ulg—su2?
.(Xlltlzxgu 1 +X312Xi721)7 (82)

where both terms in Zpg(Zpo) is 8-fold degenerate, es-
sentially contributed from 4 Majorana zero modes for pe-
riodic boundary condition, as explained in Appendix D.
The primary field corresponding to each term of charac-
ters in Zpg (Zpo) is bosonic with integral spin h—h € Z.
We list the scaling dimensions of all primary fields in Ap-
pendix E.

Here we have used the fact that Zpp = 0, since the
chiral metallic phase contains free fermions 1,2 and 1.
The zero modes of free fermions in space-time path inte-
gral cause Zpp = 0.

There is a physical approach that leads to this so-
lution of modular covariant partition functions. Con-
sider the combination of a Heisenberg chain and a spin-
1/2 Dirac fermion (refered as the HD hybrid system).
The low energy theory is for the Heisenberg chain is
su2i @ su2l CFT. The low energy theory of free spin-

1/2 Dirac fermion is su2? @ uls @ su2? @ uly. Its par-
tition function ZH ¥ is thus the product of the partition
functions of the two CFTs,

. 217, 21 N 217, 21 N 22 1 N 22 1
ZHE =00 X0 X Xa e (o Xe X e X )

_su2?_ _su2?_
(X0 R+ X X, (83)
and can be reorganized as
Zan Xo Xo Xo 0o Xij2 X1 0
2! 22 21 22 __su2]
+(Xi721X8u 1X(l)bl2 +Xi772lxi1/"21x11112)x“1‘;721

__su2?__ _su2?_
(X0 R+ X X, (84)

HD: {( su2i su2f u12+Xsu21 su2? u12)fsu2i

The interesting fact is that su2} x su2? characters can
all be represented precisely by su25 x Is characters. More
specifically,

suQ} suQ% su2s  Is su2s  Is

Xo Xo =Xo Xo tX1 Xn>
suQ} su2f o suQ} su2f _ .su2s _Is

Xo X120 =X1 " Xo = X1/2" Xo s (85)
su2}  su2? su2g su22

I I
X1/2 X1/2 =Xo an + X1 XOS'



1 2
su2y  su2y

We find that after replacing x, 'x» ' in the partition
function (84) with these identities above, and rewriting
in the basis with fixed fermion number parity, we reach
partition functions (80), (81) and (82).

The partition function (80) provides us a list of local
gapless bosonic operators and their scaling dimensions
(E1) in the chiral metallic phase. The result is summa-
rized in Table VIII.

The crystal momenta of those local gapless bosonic op-
erators is also an important quantum number. Note that
all right-movers carry zero crystal momentum. For left-
movers, the spin-1/2 operators in the suj sector carry

crystal momentum 7. In the uly @ su? sector, the opera-
P __gy2? .
tor Pao ~ et V%V‘luill carries crystal momentum =47 /2.
22
From these results, we obtain the crystal momenta of the
local gapless bosonic operators in Table VIII.

—uly—su2i _su2} .
From x4 x5" 22 xxe X X, ! term in Zap, we see

that there is no discrete symmetry breaking in the chiral
metallic phase. If there is, say, a Z, symmetry breaking,

uls . su2so 157u12fsu2}fsu2f

2X0 2 Xo X0 Xo “Xo Xo - will appear in Z .

We see that all the local gapless bosonic operators
carry non-trivial quantum numbers. Therefore, the chiral
metallic phase is stable.

E. Phase transition from Tomonaga-Luttinger
liquid to chiral metallic phase

This procedure signals that there can be a direct phase
transition between the HD hybrid system, whose low en-
ergy is described by Tomonaga-Luttinger liquid theory,
and the chiral metallic phase, whose low energy physics
is described by non-Abelian CFTs. The HD phase has 4
emergent SU(2) symmetries. The chiral metallic phase
has 3 emergent SU(2) symmetries.

Indeed, the interaction operator (74) is a marginal
operator with h = h = 1. It is a tempting indica-
tion that the zero-spin marginal perturbation can drive a
transition between two stable gapless (under symmetry)
phases.

VII. EXAMPLES OF STRONGLY
INTERACTING GAPLESS METALLIC STATES
IN HIGHER DIMENSIONS

The fact that the emergent symmetry at low ener-
gies can be anomalous plays a key role in the solution
of the chiral fermion problem®®4°. For example, in the
lattice realization of SO(10) chiral fermions, we start
with a 441d slab, which can be viewed as a 3+1d sys-
tem from far away. We design the gapped fermion state
with SO(10) on-site symmetry in the 441d bulk prop-
erly, such that its surface is described by 16 massless Weyl
fermions, forming a 16-dimensional spinor representation
of the SO(10). On the 4+1d slab, one 34+1d surface gives
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gapping
chiral the mirror . the mirror
fermion et of chiral £ efr?llir;ﬁ gapped of chiral
theory | State fermion theo state fermion
theory Y theory
(a) (b)

FIG. 4.  (Color online) (a) Chiral fermions and mirror of
chiral fermions can appear on the boundary of a 441d slab of
gapped state. (b) Sometimes (such as the SO(10) case) the
boundary mirror chiral fermions can be gapped by interaction,
which leads to a solution of the chiral fermion problem.

rise to 16 chiral Weyl fermions and the other 3+1d sur-
face gives rise to 16 mirror chiral Weyl fermions (see Fig.
4a). Each sector of the Weyl fermions has an emergent
symmetry U(16). Such an emergent U(16) symmetry is
anomalous for each sector®®. In Ref. 48, the sufficient
conditions are given for a sector (such as the 16 mir-
ror chiral Weyl fermions) to be gappable via interactions
without breaking the lattice and on-site symmetry (see
Fig. 4b). Applying to the SO(10) case, we find that the
16 mirror chiral Weyl fermions can be gapped without
breaking the SO(10) on-site symmetry, and this solves
the chiral fermion problem for the case of SO(10) grant
unification. We would like to stress that the gaping of
16 chiral Weyl fermions is very special, in the sense that
there is no fermion mass term that can achieve such a
gapping process without breaking the SO(10) symmetry.
It appears that the anomaly of the emergent U(16) sym-
metry protects the 16 chiral Weyl fermions to be gapless
against any small perturbations that respect the SO(10)
symmetry.

In the above example, each sector of 16 massless Weyl
fermions is free of all anomalies. It was also pointed out
in*® that even when each sector is anomalous, it is still
possible that an anomalous sector can be in a topologi-
cally ordered gapped phase®?. This offers a more general
way to solve the chiral fermion problem. In general, for
a gapless system, the low energy effective theory for the
gapless modes can be anomalous. Even such an anoma-
lous low energy effective theory can sometimes be realized
by a well-defined lattice model in the same dimension,
since the anomaly can be canceled by a gapped (anoma-
lous) topological sector.

One such example is the 2d gapless theory of one single
Weyl fermion with U(1) (fermion number Ng) and time
reversal (T') symmetry. The time reversal transforma-
tion satisfies 72 = (—)V7. Such a single-Weyl-fermion
theory has a parity anomaly (time reversal is a space-
time parity transformation). It was believed (incorrectly)
that there was no 2d lattice theory with on-site U(1) and
time reversal symmetries that can produce low energy ef-
fective theory of a single-Weyl-fermion. Indeed, there are
no non-interacting lattice theories with on-site U(1) and
time reversal symmetries that can produce low energy
effective theory of a single-Weyl-fermion. However, if we



include interaction, then there are interacting lattice the-
ory with on-site U(1) and time reversal symmetries that
can produce low energy effective theory of a single-Weyl-
fermion without breaking those symmetries. One way to
construct such an interacting 2d lattice model is to start
with a slab of 3d lattice model, which can be viewed
as a 2d lattice model from far away. Omn the 3d slab
we have the topological insulator with U(1) symmetry
and T? = (—)NF time reversal symmetry. The fermions
do not interact near one surface of the slab, which give
rise to the low energy effective theory of a single-Weyl-
fermion. Near the other surface of the slab, fermions in-
teract strongly, which give rise to a gapped non-Abelian
topologically ordered state and do not contribute to low
energy modes (see Fig. 4b).

This research was partially supported by NSF DMS-
1664412. This work was also partially supported by the
Simons Collaboration on Ultra-Quantum Matter, which
is a grant from the Simons Foundation (651440).

Appendix A: Tomonaga-Luttinger liquids as Abelian
gapless phases

We define the Tomonaga-Luttinger liquid as the lig-
uid, containing only excitations with integral (or bosonic)
statistics. It can always be written as

10
Kp = :

Thus the LL has the property that I' = I'y. For sim-
plicity, we assume Ny = Ngr = 1, there is only one
left and one right mode. The essence of the proof does
not depend on Np(= Ng), and can be generalized to
Ny > 1. The task is to prove that once all excitations
in the Lagrangian subgroup are condensed, the partition
function of the low energy theory is the same as that of
LLS7 i.e. the u11 @ﬁl CFT.

We consider one kind of Abelian state, constructed
from double-layered FQH stripe, and gap sectors along
one edge totally (the top part of Fig. 1), and sectors
from the other edge remain gapless (the bottom part of
Fig. 1). The claim is that Abelian states realized by such
construction, are always LLs, whose low energy theory is
uly @ uly CFT.

The edge theory of Abelian FQH state, is described
by a symmetric integer matrix K. Quasiparticles, cre-

ated by operator eil"¢ are labeled by an integer vector
I. Given two quasiparticles I,m € Z?2, the self-statistics
of [ quasiparticle and the mutual statistics of two quasi-
particle are

(A1)

o _ ITK=14, Oim _ ITK='m.
T 2T

(A2)

In particular, a local excitation is that can be created by
local operators, i.e. bosonic or fermionic operators. One
set of local excitations is I'g = K7Z2. We see that basis
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vectors are columns of K = (k1,ks). It follows that K
matrix encodes the statistics of these local operators,

..
L =k Kk = Ky,

o (A3)

which is integral. Another set of local operators are

el 0+0) e 72 (A4)

where ¢ are fields of the other edge, described by —K.
We see that the statistics of

0

Am K 'm —1"K 'm =0, (A5)
2
and
Oim _ I"K'm e 7° (A6)
27 ’

since m € K72

The gappable condition for a single edge is there are
a set of quasiparticles m € 72 that forms a “Lagrangian
subgroup” M9%. One way to fully gap the edge is to add
perturbation

0L = Z gn cos(m™ ).

meM

(A7)

We see that when g, > 0 are sufficiently large, the
quasiparticles labeled by m are condensed, i.e. eim™é o
1. The question is what is the gapless theory for the
other edge that remains gapless.

When all m are condensed, the local excitations in (A4)
become

eim’ (010) _y gim"e (A8)
Now the lattice of local opetors is
I'= Dmem (m + KZZ) (Ag)

This is still a two dimensional integeral lattice, and can
thus be represented by I' = UZ?, where U is a inte-
gral matrix. Levin proved that now P = UTK~U is
a symmetric integral matrix with vanishing signature,
det P = £1. In fact, P is the effective K now

P=UTK™'U. (A10)
Next by another linear superposition,
WhH=t =uw,, WTKW =, (A11)

this means that when the null vectors become local op-
erators as well. Meanwhile, we tune the interactions at

the upper edge appropriately, so that IZJ = v;5,

V=w"Htvw-l (A12)



Let us illustrate the proof with two examples. First,

we consider
K= (m 0 ) :
0 —m

Pick a null vector I = (1,1)7

basis,
U— 1 m
10

has mutual statistics

p:(g ;).

By a second basis transformation Wy we find the basis .

1-m 14m 1/1 1—
Wo={"2 "2 |, uwp==z(.F"" "™,
1 -1 2\1-m 1+m

(A13)

, and kq to form the new

(A14)

(A15)

(A16)
With this basis, the statistics is
Kepr = Krp. (A17)
The interaction is tuned to
2 2
s ) e
In this basis, all vectors are mutually trivial.
elu’d — i TW e _ oinTe (A19)
where v = W7 it contributes
=" In(q)l2q27 (g3 (A20)
~eT
to Z(7).
v is in the lattice
r=wluz? =wylu—'vz? =w;'z?.  (A21)

Since Wy is an integer matrix with det Wy = +£1, so is
Wy !, Then from the theorem of lattice theory,

I =72 (A22)

Therefore

o 1a2 i1l _
Z(r) =3 In(@| 25 (¢") % = gyt
yeZ?

(A23)

and is the same as the partition function of ul; CFT.

Zir) =33 Inlg)| g3 (g") .

meM ~vel,,

(A24)
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We point out that for the velocity matrix

V:(v 0>7
0 v

the matrix to make K — n and V' diagonal is

(A25)

1
ﬁﬁ,

and in this case, the partition function is

Z Zm(T)

mePZ

W= (A26)

(A27)

It is modular invariant, since

> SwnZa(r)

m,nePZ

1 : —1
o = det P i, (A28)

The low energy theory is uly x uly CFT. And

1 1 -1
(W’)71W _ +m +m : (A29)
2ym \~-1+m 1+m
is a boosting matrix in SO(1,1).

Second, we consider a general case with non-trivial La-
grangian subgroup,

-11
K_< ) (A30)
1 3
We can choose a Lagrange subgroup M =
{(0,0)T,(1,1)*}. And we find

()

We conclude that from the double-layered FQH and
gapping one edge, the gapless phase obtained is still a
Tomonaga-Luttinger liquid.

(1)> . (A31)

N[ D=

Appendix B: Conformal field theory extended with
current algebras

The theory of conformal field theory with extended
symmetry is well-known. In this section, we summa-
rize some defining knowledge to introduce our conven-
tion. We refer the readers to Francesco’s textbook%* for
further details.



1. Current and primary fields

The ul, su2;, and su2, CFT’s are not only invari-
ant under conformal symmetry, but also invariant under
current algebras. Current algebras are generated by cur-
rents, chiral primary fields with scaling dimension 1, and
denoted as J%(z). The defining OPE of the level-k cur-
rent algebra gy is

T )~ e S

B1
where fup. is the structure constant of the corresponding
Lie algebra g. In particular, for ul,; current algebra,

M

JO(Z)JO(U’) ~ m:

(B2)

for su2y current algebra, in the spin basis, whose su2
generators satisfying

[JT, 071 =2J° [J° J%] = +J7, (B3)
the OPEs are
+ w
PP )~ s P w) ~ T
0 w
THET () ~ _kw)2 ?j_(w)). (B4)

Analogous to highest weight representations of Lie al-
gebras, the highest weight representations of the current
algebras are labeled by primary fields. The defining OPE
of a primary field Vi (2) is

o (2)Va () ~ BIA),

zZ—w

(B5)

where t$ is the representation matrix for J¢ of g in the
representation labeled by .

Current algebras can be represented in terms of dif-
ferent quantum fields, as long as the different represen-
tations produce the same correlation functions (so-called
quantum equivalence). In particular, primary fields of
the above current algebras can be expressed in terms of
the chiral compactified bosonic field ¢ and primary fields
in Is CFT. The representations of current fields and pri-
mary fields, and their scaling dimensions h are listed in
Table IX. Table X lists the primary fields and the scaling
dimensions h.

2. Operator product expansion

The OPE of fermion operators is
1

Z—w

n(zn(w) ~ (B6)
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CFT | field h

ulp | J° = ivVMOg 1

iicb k2

V =e VM k =0, .,M -1 M

su2q | JO = %8(}3 1

JE = eFiV2e 1
+iLlg

Vjep=e V2 i

su2q | J° = 10¢ 1

JE = Vome*tt? 1
+ip/2

Vizy =oe o i

Vi = eti? %

1

Vio=n 5

TABLE IX. Fields of CFTs with current algebras. J* are cur-
rent fields, and others are primary fields (except the identity
field with scaling dimension 0) of the current algebra. ao is
the cut-off length scale.

Primary field h
1 0
o 1
" 2

TABLE X. Primary fields of Ising CFT

The OPE of Ising primary fields are

where p denotes the disorder operator dual to the spin
operator o, and it has the same OPE and conformal di-
mensions as . All other OPEs can be derived from (73),
(B6) and (BS).

3. Characters and modular transformations

Each primary field corresponds to a highest weight-
representation of the current algebra. The character of a
highest weight-representation encodes the degeneracy, or
multiplicities of states with the same quantum numbers.

a. ulpy character

The ulys character %™ is given by

e’} 1(m R)?
_ 1 Zn:—oo qz(R+n )

ul 2
Xm M (T) =q 2 E3) ; R = M’ (BS)
Hn:l(l - qn)




which contains primary fields of conformal symmetry,

el(F+nR)®, (B9)
When M = even, under modular transformation, y%l™
transform as

ulM

1 i
ZSZ ulM 7 Sij: Me 127T1u’

XM (14 1) :eIZW(%iﬁfi)xz‘lM( ). (B10)

When M = odd, x“'™ corresponds to the partition
function of a fermlomc system.

b. su2i character

The su(2)y character XWQ’“ (1) is

q(2j+1) /4(k+2)

su2yp
X;
i (n(q)]?
ST 25+ L+ 2n(k + 2)] g
nez

(B11)

where j € P = {0 ,%} The modular transforma-

R
tions are

su2;C Squ
XS (=1/7) = S );

lepP
2 [m@2j+D(20+1)
it \/k+2bm[ k+ 2 (B12)
o (GFD e
X;qu T+ 1 Z lX?uzk 7 le — 5jl6127r( k;r; —ﬁ).
lepP
_ 3k
and ¢ = s
c. Ising characters
The Ising characters are
— n r—3s 2 n r+3s 2
Xos(q) =1 I(Q)Z (q(z4 +4r=35)° /48 _  (24n+4r+35) /48) 7
ne”z
(B13)
where
X1 =X11, Xo =X1,2, Xy = X2,1- (B14)
In the basis (x1,Xo, Xn), the S matrix is
e V2 o1
2
1 —V2 1
and the T operation is
Txu = ei%(h“_i)xm (B16)

where hqy =0, h, = % and hy, = %
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Appendix C: Exactly marginal operators

Consider a perturbation 65 = 5= 3. g; [ d®2¢:(z,%),
where ¢;(z,Z) is the marginal Virasora primary field with
weights (h;, h;). The correction of the correlations of
O(z,%), a product of primary fields, are

0 1

50 =5 [ Ewmmo). (@

In particular, by taking O = ¢;(z1,%1)¢;(22,%2), one can
show that to the first order in dg;, the correction to the
weights are

(C2)

Sh; = 6h; = Zcmég]

The necessary condition for a marginal operator to be ex-
actly marginal, i.e., preserving conformal symmetry when
gi is turned on continuously, is that ¢;;; = 0, for any pri-
mary field ¢;.

Appendix D: Partition functions of free spin-% Dirac
fermions

The spin—% Dirac fermions can be considered as the
representation of the uls @ su2; current algebra. The
partition functions are

ZDlraC 7X312X8u21yglgxgu21 + Xulgxi7gly1flgyi7§1’
_1(]6s(q >‘4+ 94<q>’
2\ | n(q) na) | )’
4 Maj Maj\4—
- 3 ()@
k=0,2,4
ZDlrdC _Xu12X8u21X§L12X;1/L§1 o Xl X;7§1Y812YSU217
4
1 (]| 94(61)’
2\ | n(a) na) | )’
4 Maj Maj\4—
- ¥ ()@,
k=1,3
2By =25,
1 u su. u su U SU. U —su
2(><012><1/§1 TG ) (XG X X NG ),
92((1) Maj
== =8(Zpp)*, D1

where we have used Jacobi’s theta functions 6,(7) to
track the various identities between characters. To un-
derstand the multiplicity in ZBia¢(ZBa) we compare
it with

ZMaj

_ 7 Maj
pE =Z

PO —




Since 3 /1 has 2-fold degeneracy, there are no degeneracy
in Z}\D/Igj, but a 8-fold degeneracy in ZB&ac. Physically,
in n chains of Majorana fermion with periodic boundary
condition, there is a ground state degeneracy of 2" due
to n zero modes. For fixed fermion number parity, the
degeneracy is

£ 0 5, () o

k=0,2,- k< k=1,3, k<n

Appendix E: Scaling dimensions of primary fields in
chiral metallic phase

Here we list the scaling dimensions (h,h) of primary
fields corresponding to each term of characters Z4 g (80),
are

(1) In Zag (80):
3 3 3 3 11 11
(070)7 <47 4> ) <4a 4> ) (170) <4a 4> ) (2,2> .
(E1)
(2) In ZAO (81):
1 31 31 1 13 1
(03)- (3): (3 (+3) Go)- (5o,
(E2)
(3) In ZPE or ZPO (82)
11 11 11 11
4’4)° 4’4)° 2°2)° 2°2)°
11 11 51 51
2°2)7 2°2)° 4’4)° 4’4 )’
11 11 11 11
i) (1) (G2) (33) =
Appendix F: Computation of modular invariant
partition functions
1. Fusion algebra in chiral metallic phase

Fields generated from OPEs of fermion operators can
be summarised in terms of fusion algebras. The primary
fields in the partion functions can be organized in the
following fashion. We denote the vacuum and local op-
erators as

ulo —su2?! su22
=V Ve 1,V PV,
- o VulQVSUQZ]_ Vu12V5u2 Vsu21
V) = = Vg 0 IsV1 0 )
ul su2, Tuls su21 su22
M1 —wa2 - V1 2V2 2 V VO V s

21

ulsg —su2! su22

K2 %11/}51 VOU12VSUQ20'V V1 Vo (F1)

All the primary fields generated from the fusion of
them are

su22

—su2}
Vo ! V ,

u12

/,,L3 — 1/2 X ,ul mulzvsu% V
2

—ulg —su2! .su22

M4 = Vg X 2 ‘/uh‘/&u22 V V1 1‘/1

(F2)
The other fields are v;;,1 <7 < 4,0 < j < 3 defined as
Vio =V,
v =Vg 2V L X vy,
vio =Vg" 2V X v,

1 2
vis =V 2V X v.

(F3)

vy, Vo has been given. And v, vy is determined by

3 3
= Zl/gj, M1 X g = Z Vaj. (F4)
=0 =0

B X pi2

The solution is

—uls —su2! 5u22

Vs :V1u12 Vosu22 1ISV0 1% 1 ! VO 5
ulo —su2! 5u22 (F5)
vy =V VRV VTV

Note that all ;9 = v; has the partial vacuum Vosu22 1,
thus the fusion in (F'3) is Abelian and trivial.

The primary fields defined above form a complete set
such that the fusion algebra is closed. We denote this
fusion algebra as

C:{/J,l,l/ij‘1§l7i§4,0§j§3}. (FG)

2. A receipt to look for modular invariant partition
functions

From the fusion algebra C, we can look for solutions of
modular covariant Z.

1. Assign non-negative integeral multiplicities for the
characters x., for ¢; € C, and sum over them to get
an initial partition function z.

2. Generate a set of partition functions,

z Sz, TSz, STSz, Tz, STq (F7)
Since S? = 1,55 T2 = 1,(T'S)? = 1, they are all the
partition functions generated by modular transfor-
mations. Next one check that all the multiplicities
in these vectors are non-negative integer, and the
primary fields in these partition funcitons are either
bosonic or fermionic fields.



3. There are three basis vector of S invariant partion
funcitons,

21=2z+8z, 271 =Tz+ STz, zrs =TSz + STSx.
(F'8)

3
Therefore all vectors Zjs = Zi:l a;z;, a; €
Z,a; > 0 are invariant under S transformation.

4. The other sectors of partion function can be gener-
ated by ZAP = TZAA7ZPA = SZAP.

5. Zpp is to find Zle a;z;, a; € Z,a; > 0 that is
purely bosonic.

The only free choice in the receipt is in the first step,
the general guide is to assign small integers to the mul-
tiplicities.

a. Another modular covariant partition function

There is another independent solution for modular co-
variant partition functions, as shown below.

ulo  su2o  Is— u12f8u21f5u22

Zap = X0 X0 *XoXo *Xo 'Xo

+Xu12 XiuQQ Xésyqfhyiq;;lyi}gz
AR ey ey
+Xu12 XiuQQ Xzfxghﬁuzlﬁuﬁ
XX X
R
+Xu12 XSuQQ X};y?lgygiﬂ Y;?;Z
+Xu12 SU22X}7$X812Y191;§1YSU21- (F9)

The scaling dimensions of primary field corresponding to
each term are

oo, (32). (22, o
() (2 (2 Gl ww

uls . su2s . Is—ulo—su2l —_su2?

Zho =X0 *X0" X0 X1 *Xo X1/2

uls su22 Is—u12f5u21fsu22

+X1 Xo Xo Xi/2 Xo

uly  su2s  Is—ulo—Su2p f‘su22

+X1 "Xo XyXo Xis2 Xo

uls su22 Is—ulsg Su21fsu22

+X X’q X1 “Xo X1/2

uly  su2o  Is—ulg—Su2; fsu22

+X1 "Xo T Xo X1 Xij2 Xij2

ulsg su22 Is— u12f8u21fsu22

+ Xo XoXo "Xo Xo

22

ulsg su22 Is—ulsg Su21fsu22

+ X X'r] XO XO XO
_su2l_su2?
XX XX X e X e (F11)

The scaling dimensions of primary field corresponding to
each term are

(03) () (v4) (3)

) (F12)
13 1 0 1 0 5 3
4’4)° 2’7 ) 2° ) 4’ 4
Z;’E :Z;’07
uly . su2s Is—ulo—su2] _su2]
=Xo "Xy12"Xoe X1 "Xo Xo
2
R ST ot R Ry
+ x“12Xi??x?xi”zﬁlj;“s“f
—ule—su2] —su2?
XX XEXG X o Xy g (F13)

The scaling dimensions of primary field corresponding to
each term are

(D) G2 (G () o

Appendix G: Solutions of eqn. (25)

Using the characters of ul, CFT, x%4, and the char-
acters of Ising CFT, X}f, we can construct many solution
of eqn. (25). The following is a list of 36 solutions. (The
list may not be complete.)

ZARf PEs = (|Xol4|2 + |X§14| )(|XIS >+ |X11S|2)
ZPOf,PE (X XU114 u114yvf14) (|XI§ 2 + ‘Xlls|2)
Zpgs pes = (IX T2 P ) (Ix6 P + |X %)
Zaos pee = (X§" XM + x5 xeM) (IXG |2+ \XIS| )
ZARf POs = (| 14|2 +Ixa 142 )|XIs 2

ZPOf,POS (Xu14 u14 + Xu14 u14)|XI:, |2
ZPEf,POS _ (| u14|2 + |Xu14 )|XIS |2

ZAOf,POS ( uly u14 u14 u14)|XIs |2

Zaprape = (IXo™ P+ Ixz " P) XL

ZPOf,AES (Xu14—u14 +Xu14—u14)|XIs |2

ZpEf ABs = (| 14|2 + |Xu14 )|XIb 2 (G1)
ZAOf,AE'S (Xu14—u14 u14—u14)|XIs |2

Zapsao- = (X6 + Ixs™ P )(X{fXIg + XIfXIg)
ZPOf,AO* ( u14fU14 + XU114Y11L14) (XISXIS + XIISXIS)



Is—Is Is Ib)

Zppraoe = (X PP+ ) (XS +XEX0

Zpor,405 =

ZAES PEs =
Zpos,pEs =
Zpps pEs =
Zaof pEs =
ZARS POs =
Zpos pos
Zpps pos =
Za0f,pos =
ZARS ARs =
Zpos, AE*
ZpEf AEs =
ZA0f AEs =
ZAES A0

Zpor,A0¢

Zppt JAOs = (X1

ZA0f A0 =

ZARS PR =
Zpos,PE*
Zpps pEs =
Za0f pEs =
ZARSf pos =
Zpof.pos =
Zppf pos =
Zp07,POs =
ZARS AEs =
Zpof ABs =
ZpEsf ABs =
ZA0f AES =
ZAES A0s =
Zpors,A0s =
ZpEf A0s =

Z 07,405 =

u

(X X2

+ Xu14 u14> (X(I)SXI% + XIIGXIOS)

14 ’U.14

(‘X014‘2+|X214| )(‘X152+|X11s|2>

(Ix

= (¢
= (xo

(Ix

(Ix
(i
=
(Ix
(Ix
= (i
(%o
= (o
(Ix
=
(x5

(
(Ix
(i
(%5
(Ix
(Ix
(xi
(%o
(%5
(i
(Ix
(Ix
(%o
(
(Ix
(

X1
Xo

u

u

PP ) (0 + IXET?)

14—u14 + Xu114ylld4) (|XIS 2 + |XI%S|2)
u14—u14 u14—u14) (|XIS 2 + |X115|2)
2

o7+ e P I 1P
14‘2+|XU14 )‘XIS |2

uly ’U.14 u14 u14>|XIS |2

14 u14 u14 u14)|XIs |2

o P+ P I P

PP I I P (G2)
PR X I P
uly u14 u14 u14>|XIS |2
o7+ s ) (Xt + xEe)
14‘2 + |Xu14| )(X{)SXIIS +XISXIS)
uly u14 u114X71L14)(XésXIS 4 XIISX%)S)

Is—Is

u14—u14 + X;14X70,Ll4) (Xésxls 4 Xl Xo )

o 1P+ e ) (el + IxE1?)

o™ P+ P IR 2.

7J,14 u14

PP P I PP

uly 'u.14 ul4 u14)|XIS ‘2

u14—u14)(|X ‘2+|X1<| )
o P+ ) I P
14|2 + |Xu14| )(|XIS 2 + |XIIS|2)

uly u14 u114X1f14)(|X ‘2_’_|Xls| )
uly u14 u14 u14) Is ‘2
uly u14 u14 u14)(X{)sXIs+X115X%)S)
uly u14 U14 U14) ‘

S )

14|2+|X 14| )(X%)SXIS+XISX%)S)
u14—u14 u14—u14)|XIs ‘2
ul

X" 4—u14 + Xu114yvfl4)(xésxlb =+ XIbXIs)

14|2 + |Xu14| )(X%)%XI; +XI§XI§)

(G3)

ZARS PEs =
Zpos,pEs =
Zpps PE*
ZAof PEs =
ZAES PO
Zpos,pos =
Zpps Po*
ZA0f pos =
ZARS AR =
Zpos AEs =
Zppsf Aps =
ZA0f AES
ZARS A0s =
Zpof,A0¢
ZpRf A0 =

ZA07,A0¢

ZAES PES
Zpos,pEs =
ZpEf pEs =
ZAof pEs =
ZAES pos =
Zpos,pos =
ZpEs pos
Z A0, PO*
ZAES AES
Zpos, AEs
Zppsf Aps =
ZA0F AEs =
ZARS A0S =
Zpos A0s =
Zpps A0s =

ZA0f A0 =

ZAEf,PE*

(
(
(t
(
(x
(
(
(
(Ix
(Ix
(
(X
(x5
(
(Ix
(

(
(
(
(s
(Ix
(
(
(
(
(
(i
(Ix
(
(
(i
(
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o 12+ e ) (e + IxE1?)

’ll,14 7J.14

X1
| u14|2+|xu14 )|XIS |2
X4 uly u14+Xu14 u14)(|X |2+|XIS| )

u14 u14) |XIs ‘2

o7+ ) I P

Xu14—u14 +Xu114x1f14)(|x |2+|XIs| )

X
X
X

Xo

X1

X
X1
X0

X

14|2+|Xu14 )(|Xls2+|X11:a‘ )

61,14—’u,14 u14—u14)|XIS ‘2
’6114—’u,14 U14Y814) (X{)SXIS 4 XISXIS)
|X11L14|2+|X”14|)|XIS 2
X ul —u14 +Xu14—u14)|xls ‘2
6P+ ) (e XE + xExe)
uly u14 ’u.14 ul4)|X15 ‘2
AP+ ) (X + xEe)
PEXE ) (6XT + XX
Do 17+ e P I 2. (G4)
o 1+ e P) (e + )
Lﬂ2+|XMA|NXE|2
uly u14 +X’u14 u14)|xls ‘2
ul 14 +Xu14 u14)( |2+|XIS| )
1514 u14 u14 uL;)(XIObXIs_’_XIlsXéb)
?4 ’il4 ’u.14 ul4) Is ‘2
| u14|2+|XU14 ) I% |2
g™ 1” + Ixs ') )(xésxls +XPX0)
14|2+ |Xgl4| ) IS |2

o 1P+ e ) I 1P

14|2+|Xu14 )(|X |2+|X15‘ )

Xu14—u14 + XU114Y11L14) (|Xls 2 + |XI%S|2)
u14—u14 u14—u14)lxls ‘2
u14—u14 u14—u14)|XIs ‘2
ul Is—Is Is—Is

XX XEEXT) (G XS XX

14|2+ |Xu14| )(X%;XIS+XISXIS)
(G5)

(g™ 12+ ™ ) (e + 1xE1?)



Zpos.pEs =
Zpps pEs =
ZA0f PEs =
ZARS POs =
Zpos,pos
Zppsf pos =
Z A0, PO*
ZARS AES
Zpoi,AEs =
ZpEsf AR =
ZA0f AR =
ZAES A0 =
Zpof,A0s =
ZpEf A0s =

Z A0, AO*

ZARS pPES
Zpos,prs =
Zpps prs
Zp0f pEs =
ZARS PO*
Zpos . pos =
ZpEgf pos
Zaof Pos =
ZAES AEs
Zpof ABs =
ZpEpi ARs
ZA0i AR =
ZARf A0s
Zpos,a0s =
Zppf Aos =

Z40F 405 =

ZARS PES
Zpos pEs

Zpps pEs =

uly u14 u14 u14)|XIs ‘2

| U14|2_|_|Xu14 )|XI< |2

uly u14 u14 u14)(|X ‘2+|XIS| )
uly u14 u14xgl4)(xésxls+xllsxés)

(xi

(

(xo

(xo

(DA + [y )2

O X+ s P2

(g™ 2+ Ixs™ 1) (X + x5xe)
(| u14|2+|X 14| )|XIS |2

O ) (e + IeP?)
(12 + XX ) (e + 1)
(xo
(xo
(
(i
(

uly u14 u14 u14)|XIs ‘2

X2
uly u14 u14 u14)|XIs ‘2
| 14|2 + |Xu14| )(X%)%XI; + XIGXIQ)

XX XEEX) (@ X))

D17+ e P I 2.

o 12+ s ) (e + IxE1?)
X! 4—u14 +Xu14—u14)|xls ‘2
AP+ I ) (e + IxET?)
Is ‘2

X0 IXE

ul4—ul4 )

1

14—'u.14
o1 Ixe ) I P
1

u
u
XX R (e + 1)
| 14|2Jr |Xu14| )|XIS |2

7u14 +Xu14—u14)(|x ‘2_’_|Xls| )

(
(
(
(
(Ix
(
(
(xo
(2 + X P IS 1P
(xo
(
(
(
(xo
(
(xi

6N e NG ) (X + X ENG)
o™ P+ e ) I 2
XX XEEXT) (@ XS XX
P+ I ) (X + xEe)

uly u14

u14 u14) |X15 ‘2

| 14|2+ |X214| )(X%)sxls_i_xlsxés)

uly u14+xu14 u14)|XIq ‘2

(g™ + Iz P (a1 + Ix51%)
(™ 2+ I ) s 12
O+ (e + I P?)

(G6)

(G7)

ZAof PES =
ZAps POs =
Zpoi pos =
Zppf pos =
ZA0f,pos =
ZARS AR =
Zpof Aps =
Zppsf ARs =
ZA07  AES
ZABs A0s =
Zpos,a0s =
ZpEf A0s =

ZA0f,A0¢

ZABS pEs =
Zpos,PES
Zpps . PEs
ZA0f PE*
ZAES PO*
Zpos,pos
ZpEs pos
Z A0, PO*
ZARS AES
Zpos, AEs
ZpEs AE*
Z40f AE*
ZAES, AO*
Zpos,A0¢
ZpEs A0+

ZA0F,AO*

ZAps pEs =
Zpof pps =
ZpEs PE:
Za0f pEs =

ZAES,PO*

X

X
X
X
X

(X6
(
(Ix
(
(X6
(O
%
(
(
(
(
(Ix
(

X0
X1
X
X
Xo
X1

(Ix
%
(Ix
(X6
(

Xo

DA P IR PP
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uly u14 u14 u14)|XIs ‘2

2
Xo PP bt P I P

14|2 + |Xu14| )(|Xls 2 + |XIIS‘2)
u14Xu14+Xu14 —uly |XIS ‘2

4—u14+Xu14 —uly ( |2+|X )

X Is ‘2

)
ul )
u14—u14 +XU14—’U,14)
ul u14—u14) (

4—u14 Is Is Is Is)

Xo X1 +X1X

B D P

14|2 + |Xul4| )(X%)SXIS +X118XIS)

—u14 + Xu114y11t14) (X%)SXIS + XIsXIs)

ul

1

1614 u14+xu14 u14)|X15 ‘2
14|2+|X 14| )(Xésxlls_i_xlsxls)

(G8)

|X014|2+|X214| )(|X152+|X118‘2)

X X P) (G + IXEP?)

14 u14+Xu14 u14)|xls ‘2

1 14 +Xu14—u14)|xls ‘2

1“IQ + It P I 2
14|2+|Xu14 )|le |2

14—u14 + Xu114Y11¢14) <|Xls 2 4 |Xlls|2)
14—u14 +Xu14—u14)(|x |2+|XIS| )
14|2Jr |Xu14| )|Xls |2
14|2+|X214| )|XI:> |2

uly u14+xu14 u14)(X55X115+X115X(I]5)

og =g

uly u14 +Xu114X11L14)<X})SXIS +XISXIS)
u14|2 + |Xu14| )(XBSXIS _'_XISX%)S)

617+ P (e XE + x5xe)

X214 +Xu14 u14)|XIs ‘2

uly u14+Xu14 u14)|XI> ‘2 (Gg)

o 1P+ D) (e + IXEP?)
u14—u14 +XU114Y11A4)(|X |2_’_|Xls| )
14|2+|Xu14 )|XIs |2
14—u14 u14—u14)|X1q ‘2

o™ P+ e ) I |



Zpos pos =
ZpEps pos =
ZA0f,pos =
ZAES ARs =
Zpos AR =

Zpps AEs =

ZA0f AE®

ZAES AOs =

Zpor,A0¢
Zpps A0s =

ZA0f A0 =

ZAES PE*

Zpof pEs

Zpps pEs =

Z A0¢ PE*

ZARS PO*

Zpos pos

ZpRs pos

ZAof POs =

ZARS AES

Zpos, AEs

ZpEs AB*

Z A0S AR

ZAES A0

Zpof,A0s =

ZpES,A0*

ZA07,A0¢

ZAES PES

Zpof pEs

Zpps pEs

ZAof PES

ZABS pOs =

Zpof.pos = (X1

Zpps,pos =

(
(Ix
(x5
(
(Ix
(%o
(Ix
(i
(Ix
(%o
(

e e T T s T N o e T R e T e s T

(
(Ix
(Ix
(Ix
(x5
(
(xi

X1 X-1 —

X1

uly u14 u14 u14)|XIs ‘2

14|2 + |Xu14 )(|X1< 2 4 |X11§|2)
uly u14 u14 u14)(|X ‘2+|XIS| )
uly u14 +Xu14 u14)|XIs ‘2

14|2+ |X214| )|Xls |2

u14ygl4) (XIsXIs =+ XISXIS)
14|2+|Xu14 )(X%)sxlls_i_xlsxls)
Is—Is Is—Is

u14—u14

XX XX (@ X))

IxX7

X}
X}
o 17+ e 1) (X + x5xe)
X6

X

Xo ‘X
X6
AP+ I P) (1 + IE1P). (G11)

u14 ’U.14+ ’U,14 u14
X4

u14 u14
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