
Optimizing Huffman Decoding for Error-Bounded
Lossy Compression on GPUs

Cody Rivera?, Sheng Di‡, Jiannan Tian†, Xiaodong Yu‡, Dingwen Tao†?, Franck Cappello‡
?Department of Computer Science, University of Alabama, Tuscaloosa, AL, USA

†School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
‡Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA

Abstract—More and more HPC applications require fast and
effective compression techniques to handle large volumes of data
in storage and transmission. Not only do these applications need
to compress the data effectively during simulation, but they also
need to perform decompression efficiently for post hoc analy-
sis. SZ is an error-bounded lossy compressor for scientific data,
and cuSZ is a version of SZ designed to take advantage of the
GPU’s power. At present, cuSZ’s compression performance has
been optimized significantly while its decompression still suffers
considerably lower performance because of its sophisticated loss-
less compression step—a customized Huffman decoding. In this
work, we aim to significantly improve the Huffman decoding
performance for cuSZ, thus improving the overall decompression
performance in turn. To this end, we first investigate two state-of-
the-art GPU Huffman decoders in depth. Then, we propose a deep
architectural optimization for both algorithms. Specifically, we
take full advantage of CUDA GPU architectures by using shared
memory on decoding/writing phases, online tuning the amount of
shared memory to use, improving memory access patterns, and
reducing warp divergence. Finally, we evaluate our optimized de-
coders on an Nvidia V100 GPU using eight representative scientific
datasets. Our new decoding solution obtains an average speedup
of 3.64× over cuSZ’s Huffman decoder and improves its overall
decompression performance by 2.43× on average.

I. INTRODUCTION

High-performance computing (HPC) applications are gener-
ating increasingly large amounts of data. For example, Hard-
ware/Hybrid Accelerated Cosmology Code (HACC) is a cos-
mological simulation package designed for HPC environments.
For HACC simulations consisting of trillions of particles, one
snapshot of the simulation takes up 220 TB of data, while
an entire simulation run can take up 22 PB of data [12].
Another such application is the pruning and compression of
deep neural networks, which are becoming deeper and wider,
and therefore larger, as computing capacity is increasing and
deep neural networks are becoming more widely used [18].
However, leading supercomputers such as Summit [36] have
limited storage capacities of approximately 50∼200 PB to share
between hundreds of users. Thus, these applications require
data reduction techniques that attain both high performance
and high compression ratios. SZ, for instance, is a lossy data
compressor that aims to achieve these goals. It offers over a 2x
increase in compression ratio over state-of-the-art compressors.
Furthermore, it allows users to specify how much error they

Corresponding author: Dingwen Tao (dingwen.tao@wsu.edu), School of
EECS, Washington State University, Pullman, WA 99164, USA.

wish to tolerate in their data and allows them to make a tradeoff
between data distortion and compression ratios [37].

As a result of the evolution of supercomputer architecture
(e.g., more powerful GPUs on a single node), many HPC
applications are being implemented on graphics processing
units (GPUs) due to their high performance and parallelism.
For example, a recent study of cosmological simulations on the
Summit supercomputer [33] shows a significant performance
improvement compared to prior work without using GPUs [13].
However, even ignoring the time to transfer the uncompressed
data from the GPU to the CPU, CPU-based lossy compressors
would still cause more than 10% overhead of the overall per-
formance, which would limit the I/O performance gain by lossy
compression, according to prior studies [37, 19]. Thus, several
lossy compressor development teams have recently released
their GPU versions to reduce the compression overhead. These
GPU versions can both accelerate the compression computation
and reduce the time needed to transfer the data between the
GPU and CPU after the compression. For example, both SZ
and MGARD [1] have a GPU adaptation (known as cuSZ [39]
and cuMGARD [5]), which have been implemented for GPU
hardware, and more specifically Nvidia’s CUDA platform.

Furthermore, an important use case of lossy compression is
to reduce the memory footprint by storing the data in the com-
pressed format and calculating from the lossy data in memory
[4]. Compared to the amount of data handled in extreme-scale
applications, memory is scarce on HPC systems. Lossy com-
pression can be introduced to ease this pressure in applications
that can tolerate some loss of fidelity in their working data.
An example of in-memory compression is Wu et al.’s work on
quantum circuit simulation [43], where in-memory compres-
sion reduced the total memory usage on 4,096 nodes from 32
exabytes to 768 terabyte. This compression allowed for 2∼16
more qubits to be simulated than if no compression was used.
Another example is Jin et al.’s work on reverse time migration
(RTM) simulation [17], where in-memory compression reduced
the memory usage by about 10× on average. Moreover, for
some applications, in-memory compression can decrease repet-
itive computations and accelerate execution [4]. For example,
Gok et al.’s work on quantum chemistry simulation—GAMESS
[10]—proposes to calculate, compress, and write each unique
data block of two-electron integrals into the memory once; and
whenever a block is needed again in simulations, it is read from
the memory and decompressed. Compared with the original

1

dingwen.tao@wsu.edu


GAMESS, where all blocks are generated and consumed by the
simulation on the fly and are then deleted from the memory,
Gok et al.’s approach achieves a reduction in the block re-
computation costs. Note that all these computations should
be done at runtime because integral blocks are generated and
consumed repeatedly during a simulation. Consequently, in-
memory (de)compression throughputs are critical to the overall
performance. To this end, in this work, we focus on improv-
ing decompression throughputs on GPUs without considering
GPU-to-CPU data-movement overheads, as decompressed data
do not need to be transferred to CPUs or disks.

An important component of both cuSZ and cuMGARD is
Huffman coding, a classic lossless compression technique ini-
tially developed by David Huffman in 1952 [14]. Tian et al.’s
work proposes an optimized Huffman encoder for GPUs[40];
their work has been applied to improve cuSZ’s compression
throughput. Although efficient compression is important to
speedup the overall data movement, efficient decompression
is also important to enable fast and effective post-analysis
based on compressed data. However, Huffman decoders used
by error-bounded lossy compressors currently employ only a
limited degree of parallelism and do not fully exploit the GPU’s
power. Two state-of-the-art works propose improved Huffman
decoding on the GPU: one of these works, Weißenberger and
Schmidt’s [42], uses the self-synchronization property of Huff-
man codes to extract greater parallelism, while the other work,
Yamamoto et al.’s [45], proposes a new data structure called a
gap array to extract greater parallelism. But both works suffer
from two main issues: (1) they do not fully take advantage of the
GPU architecture for performance optimization, and (2) they
must be adapted for use in error-bounded lossy compression.

To facilitate their efficient use in scientific data compres-
sion, we explore both Huffman decoding algorithms in depth.
Furthermore, we identify opportunities for deep optimization
of both algorithms based on GPU architecture considerations.
Finally, we adapt both algorithms for use in error-bounded lossy
compression such as cuSZ, and then evaluate them on eight
representative scientific datasets. The contributions of our work
are summarized as follows:

• We analyze Weißenberger and Schmidt’s and Yamamoto et
al.’s algorithms in depth by evaluating their performance on
scientific datasets and understanding their tradeoffs.

• We perform a deep architectural optimization for both
Huffman decoding algorithms by using shared memory in
the decoding and writing phase, improving memory access
patterns, and reducing warp divergence.

• We propose an efficient approach to online tune the amount
of shared memory used to decode different parts of the data
based on the data characteristics.

• We adapt our optimized decoders to multi-byte data for
cuSZ and evaluate them on eight scientific datasets. Exper-
iments show our solution can improve decoding throughput
by 3.64×, compared with cuSZ’s naïve decoder, and can
improve cuSZ’s overall performance by 2.43×, on average.

In §II, we present background information about scientific

data compression, Huffman coding, and GPU-based lossy com-
pression. In §III, we discuss both Weißenberger and Schmidt’s
and Yamamoto et al.’s Huffman decoding algorithms in detail,
comparing them and discussing their limitations. In §IV, we
describe our architectural optimizations for efficient Huffman
decoding, as well as our adaptations to enable decoding of
scientific datasets. In §V, we show the experimental evaluation
results on scientific datasets. In §VI and §VII, we discuss the
related work and conclude our work.

II. BACKGROUND

A. Scientific Data Compression

Scientific data compression has been studied for decades
and categorized into two types of compression: lossless com-
pression and lossy compression. Lossless compressors such as
FPZIP [29] and FPC [3] keep the data intact but can only
provide a compression ratio of about 2× on scientific data [35].
Lossy compression, on the other hand, can compress data
beyond lossless compression (typically one or more orders of
magnitude) but introduces information loss in the reconstructed
data. In recent years, a new generation of high accuracy lossy
compressors for scientific data have been proposed and devel-
oped for scientific floating-point data, such as SZ [8, 37, 25],
ZFP [28], and MGARD [1]. These lossy compressors provide
parameters that allow users to finely control the information
loss introduced by lossy compression. Unlike traditional lossy
compressors such as JPEG [41] for images (in integers), SZ,
ZFP, and MGARD are designed to compress floating-point
data and can provide a strict error-controlling scheme based on
the user’s requirements. Generally, lossy compressors provide
multiple compression modes, such as error-bounding mode and
fixed-rate mode. Error-bounding mode requires users to set an
error type, such as the point-wise absolute error bound and
point-wise relative error bound, and an error bound level (e.g.,
10−3). The compressor ensures that the differences between the
original data and the reconstructed data do not exceed the user-
set error bound level. Fixed-rate mode means that users can
set a target bit-rate (the number of bits to represent each data
point), and the compressor guarantees the actual bit-rate of the
compressed data to be lower than the user-set value.

B. Huffman Coding

Huffman Coding is a classic technique developed by David
Huffman in 1952 for performing lossless compression [14]. It
encodes a fixed-length value as a variable-length code. We call
the fixed-length input value an input symbol, and we call the
variable-length output value a codeword. In Huffman coding,
space savings result from the fact that more frequently occur-
ring symbols are represented by codewords with fewer bits,
and vice versa for less frequently occurring symbols. Huffman
codewords are also prefix-free; no one codeword can be a prefix
of any other codeword.

C. CUDA Architecture

Thread: The thread is the basic programmable unit that
allows programmers to use massive numbers of CUDA cores.

2



CUDA threads are grouped at different levels including warp,
block, and grid.

Warp: The warp is a basic-level scheduling unit in CUDA as-
sociated with SIMD (single-instruction multiple-data). Specifi-
cally, the threads in a warp achieve convergence when execut-
ing exactly the same instruction; otherwise, warp divergence
happens. In the current CUDA architecture, the number of
threads in a warp is 32, hence, it works as 32-way SIMT
when converging. However, when diverging happens, diverged
threads add extra overhead to the execution [44].

Block: Unlike the warp, the thread block (or simply block) is
a less hardware-coupled description of thread organization, as
it is explicitly seen in the kernel configuration when launching
one. Threads in the same block can access the shared memory,
a small pool of fast programmable cache. On one hand, shared
memory is bound to active threads, which are completely
scheduled by the GPU hardware; however, on the other hand,
a grid of threads may exceed the hardware-supported number
of active threads at a time. As a result, the data stored in the
shared memory used by the previous batch of active threads
may be invalid when the current or following batch of active
threads are executing. Thus, we must carefully tune the shared
memory size for different workloads toward high performance.

Grid: A grid encompasses the entire set of blocks that are
launched as part of a CUDA kernel. Usually, the grid of threads
describes either the entire problem or a working set of the
problem at hand. Moreover, all the blocks within a grid share
a common configuration; each block within a grid contains
the same amount of shared memory and the same number of
threads per block.

D. Error-bounded Lossy Compression on GPU

SZ, ZFP, and MGARD were first developed for CPU ar-
chitectures, and all started rolling out their GPU-based lossy
compression recently. The SZ team, the ZFP team, and the
MGARD team released their CUDA versions, called cuSZ [39],
cuZFP [7], and cuMGARD [5], respectively. All the versions
provide much higher throughputs for compression and de-
compression compared with their CPU versions [39, 19, 38].
Compared with cuSZ and cuMGARD, cuZFP provides slightly
higher compression throughput, but it only supports fixed-
rate mode [19], limiting its adoption in practice. Both cuSZ
and cuMGARD use Huffman encoding to achieve high com-
pression ratios and their decompression throughput is greatly
limited by slow Huffman decoding on GPUs, but cuSZ has a
much higher throughput than cuMGARD [38, 5]. Thus, in this
work, we focus on optimizing Huffman decoding for cuSZ.

III. ANALYSIS OF EXISTING HUFFMAN DECODERS FOR
ERROR-BOUNDED LOSSY COMPRESSION

A. Coarse-Grained Versus Fine-Grained Parallelism

The current implementation of parallel Huffman decoding
in cuSZ requires a number of fixed-size chunks containing
thousands of codewords to be decoded sequentially by many
threads [39]. Such a solution is called a coarse-grained solu-
tion, as there are fewer threads performing a relatively large

amount of work. Although such a solution may provide good
performance on a multi-core CPU, as multi-core CPUs tend to
have either tens or hundreds of powerful, independent cores,
GPUs have thousands of interdependent cores that work best
when running together in lock-step. Since GPU cores are inter-
dependent, and parallel Huffman decoding is not particularly
amenable to lock-step parallelism, the apparent performance of
a single thread is relatively weak compared to a CPU thread.
Nevertheless, since GPUs have so many cores, we can improve
performance by proposing a fine-grained solution—a solution
that launches many threads that operate on fewer data elements.

It is possible to extract greater parallelism from cuSZ’s
existing coarse-grained Huffman decoder by decreasing the
size of each chunk; however, since Huffman codes are variable
length, very small chunks may not be able to be filled, leaving
empty space in chunks that degrade the compression ratio. One
avenue for increasing the parallelism in Huffman decoding is
to determine a starting point in the bitstream for each thread;
two connected strategies for doing this are described in the
following subsections.

B. Self-Synchronization Based Huffman Decoding

Weißenberger and Schmidt proposed a parallel algorithm for
Huffman decoding on the GPU using a property of Huffman
codes called SELF-SYNCHRONIZATION [42]. Their technique is
in turn based on an earlier CPU-based parallel Huffman decoder
by Klein and Wiseman [22]. This algorithm is designed to
work on pure Huffman codes; no modifications to the Huffman
encoding step need to be done. It uses the self-synchronization
property of Huffman codes to determine where in the bitstream
each thread starts decoding, allowing for finer-grained paral-
lelism than a chunk-based approach.

1) Self-Synchronization: The self-synchronization prop-
erty of Huffman codes is the tendency for a Huffman
decoder to correct itself even if a few bits of the in-
put were skipped in error [9]. An example of self-
synchronization is as follows: consider the bit pattern
‘‘111000010111000’’ with the Huffman codebook from [9],
shown in Listing 1. A correct decoding of this pattern
is ‘‘(11)(10)(00)(010)(11)(10)(00)’’, or ‘‘CBADCBA’’.
However, if one bit is skipped in the input, then the pat-
tern is decoded as ‘‘(11)(00)(00)(10)(11)(10)(00)’’, or
‘‘CAABCBA’’. The first four characters’ outputs are incor-
rect, but after decoding four erroneous characters (8 bits), the
decoder starts decoding the correct characters, i.e., it self-
synchronizes. There is a possibility that for a given Huffman
codebook, there are codestreams that never self-synchronize,
but Klein and Wiseman [22] demonstrated that for practical
datasets, self-synchronization was achieved in less than 72 bits
on average.

symbol → codeword = {
’A’: ’00’, ’B’: ’10’,
’C’: ’11’, ’D’: ’010’, ’E’: ’011’ }

Listing 1: Example self-synchronizing codebook from [9].

3



source
letter codeword
A 00
B 10
C 11
D 010
E 011

synchronization point
OK verified sync. point

Thread0 Thread1
Thread2 Thread3

subseq.
0,1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1

OKOK OK

subseq.
2,3 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0

OK

Fig. 1: Illustrating the final step of the self-synchronization phase of
Weißenberger and Schmidt’s decoder

2) Fast Decoding via Self-Synchronization: Although self-
synchronization is most often examined in the context of error
correction, it can be used to determine starting locations for
many-threaded Huffman decoders. This is the basic technique
used in Weißenberger and Schmidt’s decoder [42]. To deter-
mine where each thread starts, first, each thread is placed
at evenly-spaced intervals throughout the Huffman bitstream.
Then, each thread decodes but does not write, a certain num-
ber of bits in the Huffman bitstream, and stores the location
where it stopped decoding, called a synchronization point. This
decoding gives each thread an opportunity to self-synchronize;
if this is the case, the stored location points to a valid code-
word. Each thread’s synchronization point is validated by the
previous thread. If the previous thread ‘meets’ up with the
current thread’s synchronization point, then the synchroniza-
tion point refers to a valid codeword; otherwise, the threads
continue decoding until a valid synchronization point is found.
For example, Figure 1 illustrates the conclusion of the self-
synchronization phase of the algorithm, when each thread has
had its synchronization point verified; if a thread starts decoding
at one of these points, it will decode valid characters in the
encoded string “BACACCBDBAAEBBA”.

An overview of Weißenberger and Schmidt’s algorithm is
described as follows:
• Use self-synchronization to determine the synchronization

points within each sequence;
• Use self-synchronization to adjust the synchronization

points between sequences;
• Use a prefix sum to determine where each thread writes to

in the output array;
• Have each thread decode data, starting at a synchronization

point, and write it to the output array.
To understand the steps of the above algorithm, we define a
SEQUENCE to be a chunk of the input data that a single CUDA
thread block operates on. A subsequence is a subdivision of a
sequence that a single CUDA thread works on. A subsequence
in turn is divided into UNITS: unsigned 32-bit numbers that
contain the individual codewords. The number of synchroniza-
tion points within a given dataset is equal to the number of
subsequences in the input data. Steps 1 and 2 ensure that all the
synchronization points reference valid codewords. During this
process, the number of valid codewords in each subsequence is

recorded. These numbers are then prefix-summed in step 3 to
determine the first output index for each subsequence. Finally,
in step 4, each thread starts decoding at its synchronization
point and outputs data starting at the index generated by the
prefix sum. We refer readers to [42] for more details.

Limitation: Although the self-synchronization based Huff-
man decoding allows for finer-grained Huffman decoding,
it contains some major performance bottlenecks. One major
bottleneck is determining synchronization points; to do this,
the algorithm needs to decode the input data multiple times
depending on the particular dataset to be decoded.

C. Gap Arrays

To address the self-synchronization’s performance issue, Ya-
mamoto et al. work proposed a new data structure called a
gap array to eliminate this decoding bottleneck, in exchange
for some extra encoding overhead [45]. Note that although
the work also proposes an optimized encoding scheme, our
main focus is its decoding scheme. Similar to Weißenberger
and Schmidt’s algorithm, Yamamoto et al.’s decoder divides its
input data into sequences, subsequences, and units as defined
above. However, instead of finding out where each thread starts
decoding within a subsequence by determining synchronization
points, this information is stored alongside the compressed data
in a gap array. A GAP ARRAY is a byte array, with one byte per
subsequence, that indicates to each thread how many bytes it
must skip before accurate data can be decoded. For example, a
gap array for the codewords in Figure 1 would be [0, 0,−2,−1],
as these are the offsets from the subsequence boundaries that
each thread would have to keep track of in order to decode
correctly. The gap array is used in combination with a technique
called Single Kernel Soft Synchronization (SKSS) to determine
output indices, decode the codewords, and write output symbols
to memory. We refer readers to [45] for more details.

Limitation: Although the gap array removes the necessity
of performing the self-synchronization phase and speeds up
the decoding, gap arrays introduce other overheads. These
overheads include the extra space required to store the gap array
as well as extra work for the encoder. Nevertheless, the extra
space required to store a gap array is minimal, as Yamamoto et
al. has shown that the size of the gap array is less than 3% of the
size of the data on their tested datasets of varying compression
ratios [45]. However, the extra work the encoder must perform
in generating the gap array means that the encoder and the
decoder must be coupled. This reduces the flexibility of gap-
array-based Huffman decoding, as it will not be able to decode
Huffman codes generated by encoders not designed to create
gap arrays. Nevertheless, since there are compelling reasons to
use both self-synchronization and gap arrays in practice (will
be discussed in detail in §V-C), we consider both solutions in
our optimization work.

D. Challenges of Using Existing Huffman Decoders

Both Weißenberger and Schmidt’s and Yamamoto et al.’s
works have been evaluated across a wide range of general-
purpose datasets [42, 45]. However, in error-bounded lossy

4



‘
Fig. 2: Decoding performance versus error bounds on HACC dataset.
Note that the larger the error bound, the larger the compression ratio.

compression such as cuSZ, since input data are quantization
codes, the resulting quantization codes are often highly com-
pressible, especially in a well-predicted dataset. Our exper-
iments show that both their works underperform on high-
compressible datasets, as can be seen in Figure 2. Note that
in general, as error bound increases, the resulting quantization
codes become easier to compress. The figure illustrates a drop
in the throughput of both decoders as data becomes more easily
compressible. Thus, not only do we optimize both their solu-
tions in general, but we also specifically focus on techniques
to optimize high compression-ratio cases commonly seen in
scientific data reduction.

IV. DESIGN METHODOLOGY

To allow efficient Huffman decoding of multi-byte input such
as quantization codes in cuSZ, we perform a series of architec-
tural optimizations on both Weißenberger and Schmidt’s and
Yamamoto et al.’s solutions. We start with Weißenberger and
Schmidt’s implementation as a baseline and adapt it to multi-
byte input. We continue by examining the bottlenecks in the
current algorithm: (1) the intra-sequence synchronization phase
(i.e., Step 1), for self-synchronization based Huffman decoding;
and (2) the decoding and writing phase (i.e., Step 4), for both
self-synchronization and gap-array-based Huffman decoding.
Details of our decoders can be found both in this subsec-
tion as well as in our online repository at https://anonymous.
4open.science/r/ipdps22-pap131-7D21/README.md (will be
changed to open source for camera-ready version).

A. Optimized Self-Synchronization

We note that although the average behavior of self-
synchronization is well-predictable, the amount of data each
thread needs to decode to achieve self-synchronization can
vary, as aforementioned. More severely, although each thread
needs to decode only two subsequences on average to find
and validate a synchronization point1, up to 5% of threads
decode greater than two subsequences, and individual threads
can decode up to 125 subsequences on the test datasets in
order to find and validate synchronization points. As a result,

1Note that one subsequence containing four 32-bit units results in 128 bits
decoded per subsequence.

the local unpredictability of self-synchronization hinders GPU
implementation because if one thread decodes more subse-
quences than other threads in the same CUDA warp, the other
threads are held up until the longest-running thread finishes
its job. This inefficiency is exacerbated by the fact that, in the
self-synchronization phase, a CUDA block-wide thread barrier
is required for correctness. Thus, the longest-running thread
determines the running time of the entire block; and other
threads within a block remain idle.

A potential solution to this issue is to perform load balanc-
ing to ensure that threads in a block are not idle; however,
due to the overhead of load balancing and the relatively low
occurrence of exceptionally long-running threads, we do not
pursue the load balancing approach. Instead, we do optimize
the intra-sequence self-synchronization kernel to minimize the
impact of long-running threads and conform more closely to the
CUDA architecture. Specifically, in the original code for self-
synchronization based Huffman decoding, after each thread dis-
covers and validates a synchronization point, it busy-waits not
only until the longest-running thread in the thread block finishes
but also until the maximum possible number of subsequences
that a thread may decode until self-synchronization is reached
(e.g., 128 subsequences in this case). To allow thread blocks
to exit as early as possible, we record each thread’s “finished”
status in a Boolean variable. By using the CUDA warp primitive
__all_sync, we can determine whether all the threads have
finished finding their synchronization points; and if so, we will
terminate the kernel immediately, freeing up warps within a
CUDA Streaming Multiprocessor to execute other blocks in
the kernel. This optimized intra-sequence self-synchronization
runs, on average, 11% faster than the baseline code, and these
benefits are concentrated in lower compression ratio datasets,
in which this phase is a more significant bottleneck than in high
compression-ratio datasets.

B. Optimized Decoding and Writing of Codewords

In both presented decoders, threads decode and write code-
words directly to the GPU’s global memory. There is a stride
between different threads’ output indices; this stride reflects
the number of codewords that can be found between the two
threads’ input locations. This counters one of the characteris-
tics of CUDA’s memory architecture: coalesced memory loads
and stores. Specifically, a coalesced memory access is when
sequential global memory transactions are combined with each
other to reduce the number of memory transactions actually
performed. For example, in CUDA, a 32-thread warp writing
32-bit values to sequential locations in memory have its write
requests processed as a single 128-byte transaction. Note that
inefficient memory access patterns result in many more transac-
tions being made, which decreases the throughput of the global
memory.

For high compression-ratio datasets, this memory ineffi-
ciency is even worse, because not only are the gaps between
adjacent threads’ output indices large, but also the number of
values written to global memory, and hence the number of
transactions are large. This is a significant factor in the dra-

5

https://anonymous.4open.science/r/ipdps22-pap131-7D21/README.md
https://anonymous.4open.science/r/ipdps22-pap131-7D21/README.md


matic drop in performance with high compression-ratio datasets
shown in Figure 2. Although Yamamoto et al.’s work has each
thread write multiple symbols at a time to global memory [45],
performance still eventually degrades at high ratios, as can be
seen in the same figure.

Algorithm 1: Decoding and writing using a shared memory buffer.

• DecodeWrite— decode and write using shared memory
1 sharedBuffer[n] . The shared memory buffer of size n

2 si <- outIndex[blockIdx.x · blockDim.x]
3 ei <- outIndex[(blockIdx.x + 1) · blockDim.x]
4 gid <- threadIdx.x + blockDim.x · threadIdx.x
5 tempEnd <- ei
6 while si < ei do
7 start <- outIndex[gid] - si, end <- outIndex[gid + 1]
8 if si ≤ start and end ≤ si + n then
9 outArray[start . . . end) <- Decode(inArray, startPoint[gid])

. If symbols can fit into the buffer, decode them
10 else if start < si + n and end ≥ si + n then
11 tempEnd <- outIndex[gid]

. Executed by one thread if buffer is not large enough; results in another iteration
12 end if
13 outArray[si . . . tempEnd) = sharedBuffer[0 . . . tempEnd - si)

. This write is performed cooperatively by threads in the block
14 si <- tempEnd
15 end while

To solve this issue, we propose to first decode the input
data into a thread block-local buffer, and then write it out
sequentially to global memory to attain coalesced and hence
efficient writes. For the thread block-local buffer, we use shared
memory. Specifically, first, given the global output index of
each thread, the kernel will compute the local index where each
thread will put the decoded symbol within the shared memory
buffer. Then, the kernel will decode and have each decoder
write its data into the shared memory. Finally, all threads in the
thread block cooperatively write the data in the shared memory
to the global memory output array. Note that the codebook
that is used for decoding is kept in global memory; since this
codebook is shared across all thread blocks, it is kept in cache,
so we do not need to consider keeping a codebook in shared
memory and can dedicate the shared memory for the decoding
buffer. Note that if the shared memory is not large enough to
store all the data that threads inside the block will decode, that
the shared memory will be filled up with the initial chunk of
decoded data by the initial group of threads, that data will be
written, and then the rest of the threads will fill up the shared
memory with the rest of the decoded data. More details about
this procedure can be found in Algorithm 1.

C. Shared Memory Tuning for Decoding and Writing

The method proposed for decoding the codewords and writ-
ing the decoded symbols back to memory requires a certain
amount of shared memory to be allocated to the appropriate
kernel. Choosing this amount of shared memory can signifi-
cantly impact the performance of this phase of the decoder,
because (1) allocating too little shared memory can reduce
parallelism, and (2) allocating too much shared memory can
reduce occupancy. This can be illustrated in Figure 3, evaluated
on our HACC dataset described in § V-A, with an error bound of
10−3. Note that the difference between the lowest and highest
throughput is around 32% (i.e., 233 GB/s vs. 158 GB/s).

Fig. 3: Throughput of the decoding and writing phase with different
shared memory sizes on the quantization codes generated by cuSZ on
HACC dataset with relative error bound 10−3.

A first approximation to the amount of shared memory al-
located would be to allocate an amount of shared memory pro-
portional to the compression ratio: in this case, the compression
ratio is 3.86, and the corresponding buffer size, rounding up 256
spots, would be 4096 16-bit integers. However, the optimal size
of the shared memory buffer, in this case, is 5120. Therefore,
an improved strategy of allocating shared memory is needed.

To this end, we propose a strategy that more effectively
reflects the characteristics of actual data, where some portions
of the data are highly-compressible but others are not so highly-
compressible. We launch separate kernels for decompressing
input sequences with different compression ratios. We deter-
mine which sequence is to be decoded by each kernel using an
online selection process. That way, each sequence is decoded by
a kernel launched with an optimal amount of shared memory.

Algorithm 2: Our proposed shared memory optimization that partitions
input sequences among kernels launched with different amounts of
shared memory. Lines implemented by host code are in blue, while
lines implemented by CUDA kernels are in red.

• ShmemOptDecodeWrite — decode and write with optimal
shared memory use

1 compRatio[n] . The precomputed compression ratios of the n sequences
2 for all i in [0 ...n) concurrently do
3 compClass[i] <- ClassifyCR(compRatio[i])
4 end for . Classifies all the compression ratios into one of the Thigh + 1 groups
5 compClassFreq <- ParHistogram(compClass)

. Finds out how many sequences fall into each group
6 compIndex <- [0, 1, ..., n - 1]
7 ParKeyValueSort(compClass, compIndex)

. Allows decoding kernels to access sequences in its compression ratio group
8 compClassStart[0] <- 0
9 for i in [1 ...Thigh + 1) do
10 compClassStart[i] <- compClassStart[i - 1] + compClassFreq[i - 1]
11 end for . Determines where in compIndex each compression ratio group starts
12 for all i in [0 ...Thigh + 1) asynchronously do
13 DecodeWrite(optShmem(i), compClassStart[i], compClassFreq[i])
14 end for . Launches decoding kernels for each of the compression ratio groups. Each

kernel gets an amount of shared memory optimized for its compression ratio group.

We now give more details about this strategy, which are
illustrated in Algorithm 2. First, this strategy requires each
sequence’s compression ratio as input. This is taken from
an earlier phase of each algorithm: the self-synchronization
phase for Weißenberger and Schmidt’s algorithm and redundant
decoding in Yamamoto et al.’s algorithm required to deter-
mine where each thread writes its data. After this is done,
(1) the shared memory optimization starts by classifying each

6



sequence’s compression ratio into Thigh + 1 groups, where
Thigh is an architecture-specific threshold, on lines 2-4. This
classification is then stored inside an on-device array. Thigh

of these groups are the compression ratios in the intervals
(0, 1], (1, 2], ..., (Thigh − 1, Thigh], and the Thigh + 1-th group
encompasses compression ratios in the interval (Thigh, 16].
Thus, at most Thigh +1 different kernels with varying amounts
of shared memory are launched. (2) The array is then his-
togrammed on the GPU, in order to see how many sequences
fall into each compression ratio group. The algorithm used is
the same variation of Gómez-Luna et al. [11] that is used in
cuSZ. (3) Once the classification array is histogrammed, on line
5, it is then sorted on the GPU as part of a key-value sort, with
the classification being used as the key and a sequential list of
indices being used as the values. The resulting values will be the
primary means by which sequences in a particular compression
ratio group are accessed and decoded. The algorithm used is
the DeviceRadixSort routine in CUB [30]. Furthermore, since
Thigh is fairly small, sorting Thigh + 1 groups is fast using
CUB (will be proved in Table II). (4) After being transferred
back to the CPU, the histogram is then used to generate a prefix
sum that indicates where in the list of indices the sequences
belonging to that compression ratio group begin. (5) Finally, up
to Thigh + 1 kernels are launched with an amount of shared
memory (mostly) proportional to their corresponding compres-
sion ratio group’s upper bound. For example, sequences in the
(3, 4] compression ratio group would be decoded by a kernel
with a shared memory buffer of length 4096. Each kernel is
launched on a separate CUDA stream in order to allow the
CUDA driver maximum flexibility in scheduling and running
the Thigh + 1 kernels. These kernels then finish decoding the
data and write their data to the output array.

HACC EXAALT CESM Nyx Hurr. QMC. RTM GAMESS

size in mebibyte 1071.8 951.7 642.7 512.0 381.5 601.52 180.7 306.19
tuned GB/s 217.0 213.4 188.2 143.3 154.2 194.7 137.7 146.9
best brute-force GB/s 235.5 212.2 175.8 147.6 152.5 214.8 147.0 146.6
shared memory buffer size 5120 3584 5632 5632 5632 3072 5632 3584
% diff. from tuned 8.5% -0.5% -6.5% 3.0% 1.1% 10.3% 6.7% -0.2%
worst brute-force GB/s 157.2 159.5 117.8 92.1 92.6 131.5 88.6 88.9
shared memory buffer size 3072 7680 1024 1024 1024 2048 1024 1024
% diff. from tuned 27.5% 25.3% 37.4% 35.7% 40.0% 32.4% 35.6% 39.5%
tuning speed GB/s 2172.3 2126.8 1471.3 1087.0 745.4 1288.2 428.0 625.8
tuned w/tuning overhead GB/s 197.3 194.0 166.8 126.6 127.8 169.1 104.2 119.0
% diff. from best case 19.3% 9.4% 5.4% 16.6% 19.3% 27.0% 41.0% 23.2%
% diff. from worst case 20.3% 17.8% 29.4% 27.3% 27.5% 22.2% 14.9% 25.3%

TABLE I: Comparison between our shared memory optimization and
brute-force search for decoding and writing. The input quantization
codes are generated by cuSZ with a relative error bound of 10−3. Neg-
ative percentages denote cases where our optimization outperformed
the fastest brute-force case.

Table I examines this shared memory optimization by com-
paring the decoding throughputs achieved by our optimization
and by a brute-force search (in increments of 512 bytes from
1024 to 8192) for the optimal amount of shared memory to
launch in a single grid (the test datasets will be described in
§ V). According to the table, the throughputs of the decoding
using this shared memory optimization on all of the datasets
are within 10% of the maximum throughput in the brute-force
search. Furthermore, some of the datasets tested performed
better under the optimization than the maximum throughput
achieved in the brute-force search; this is because different

sections of the dataset have different compression ratios2. Addi-
tionally note the percent difference between the worst possible
throughput and the optimized throughput; if shared memory is
not used appropriately, the decoder may incur a performance
penalty of up to 40%.

However, when one considers the overhead of the tuning
mechanism itself, as is shown on the last rows of Table I, this
overhead ranges from 10.0%∼32.2%. Note that this overhead
is smaller on large datasets and vice versa. This is because
tuning, in practice, takes approximately 220 microseconds on
all datasets. Nevertheless, even with this tuning overhead,
the decoder avoids a performance penalty of 23.1% on av-
erage. However, note that on the 3D reverse time migration
(RTM) dataset—the smallest dataset—the performance penalty
avoided is only 14.9%, while the performance loss compared
to the best case achieved by brute force is 41.0%. This is be-
cause the relatively constant runtime of tuning impacts smaller
datasets more. Furthermore, several entries in Table I suggest
that one can just use an architecture-specific shared memory
buffer size, like 5632 on the V100. However, on the EXAALT
dataset, if a buffer size of 5632 is used, then decoding happens
at 168.9 GB/s, which is 14.8% slower than the tuned decoder,
even when accounting for tuning overhead. Therefore, it is
worth using our proposed tuning approach to find optimal
buffer sizes for different datasets on different architectures.

Note that in order to prevent a large reduction in occupancy
caused by allocating too much shared memory, there is a thresh-
old up to which we can allocate an amount of shared memory
proportional to the compression ratio: this threshold is called
Thigh, as aforementioned. To attain Thigh for a particular GPU
architecture, calculate the amount of shared memory required
to attain at least 25% occupancy, and divide that amount by
2048 to obtain Thigh. For example, on the Nvidia Tesla V100,
shared memory usage must be under 16384 bytes to attain that
level of occupancy, so the corresponding value of Thigh is 8.
If the compression ratio exceeds Thigh, our experiments have
demonstrated that 3584 symbols are an optimal size for the
buffer in most situations on the V100 GPU.

V. PERFORMANCE EVALUATION

In this section, we present our experimental setup (including
platforms, baselines, and datasets) and our evaluation results.

A. Experiment Setup

1) Evaluation Platforms: We conduct our experimental
evaluation on the Bridges-2 supercomputer [2] at Pittsburgh
Supercomputing Center (PSC), of which each GPU node is
equipped with two Intel Xeon Gold 6248 CPUs and eight 32
GB NVIDIA Tesla V100 GPUs.

2) Comparison Baselines: We compare our optimized Huff-
man decoding with multiple baselines. Specifically, we com-
pare our solution with (1) the original self-synchronization-
based Huffman decoder [42], (2) the original gap-array-based

2Note that in order to achieve maximum throughput, different sections must
be decoded with different amounts of shared memory.

7



HACC EXAALT CESM Nyx Hurr. QMC. RTM GAMESS HACC EXAALT CESM Nyx Hurr. QMC. RTM GAMESS HACC EXAALT CESM Nyx Hurr. QMC. RTM GAMESS
techniques original self-sync., gb/s optimized self-sync., gb/s optimized gap array, gb/s

size in mebibyte 1071.8 951.7 642.7 512.0 381.5 1071.8 601.5 180.7 306.2 951.7 642.7 512.0 381.5 601.5 180.7 306.2 1071.8 951.7 642.7 512.0 381.5 601.5 180.7 306.2
compr. ratio 3.18 2.40 9.60 15.99 9.78 2.46 8.41 12.10 3.18 2.40 9.60 15.99 9.92 2.45 8.62 12.45 3.00 2.26 9.04 15.05 9.33 2.31 8.12 11.71

intra-seq. sync. 155.4 133.8 264.4 469.9 295.3 112.3 245.9 363.4 208.0 169.2 345.9 430.8 253.1 144.0 234.2 352.0 - - - - - - - -
inter-seq. sync. 2295.3 1844.1 4240.8 6097.6 3436.6 1770.4 2086.2 3460.8 2145.6 1783.2 4813.2 4761.9 3443.0 1646.4 1838.4 3036.6 - - - - - - - -
get output idx. 573.8 435.1 1516.0 2293.6 1487.7 439.3 1155.0 1765.1 569.0 432.3 1494.4 2189.1 1405.8 433.2 1060.6 1614.5 268.6 239.7 495.1 694.4 384.5 225.6 355.1 515.7
tune shared mem. - - - - - - - - 2172.3 2126.8 1471.3 1087.0 745.4 1180.0 406.5 683.0 2111.0 2128.8 1473.3 1234.6 741.8 1201.3 442.6 734.7
decode and write 60.3 70.8 7.0 5.6 7.0 59.8 10.2 6.0 219.7 211.4 186.5 143.9 153.7 194.1 138.8 161.3 214.0 210.1 186.1 168.9 153.0 195.4 148.5 173.0

overall, decode 39.7 40.9 6.8 5.5 6.8 35.1 9.6 5.9 83.0 71.5 101.9 92.1 78.1 63.1 64.8 87.3 112.8 106.4 123.9 122.4 95.4 96.3 84.7 110.1
speedup 1.50× 1.57× 0.27× 0.09× 0.27× 1.48× 0.33× 0.16× 3.14× 2.74× 4.05× 1.55× 3.15× 2.66× 2.25× 2.36× 4.27× 4.08× 4.92× 2.07× 3.85× 4.07× 2.94× 2.98×

TABLE II: A comprehensive evaluation of all proposed decoding solutions on V100: Huffman decoders using cuSZ quantization codes generated
with a relative error bound of 10−3 on V100. GB/s is computed relative to the size of the generated quantization codes, i.e, half the dataset size.

Huffman decoder [45], and (3) cuSZ’s naïve Huffman de-
coder [39]. Note that as the original gap-array-based Huffman
decoder [15] cannot be adapted to multi-byte inputs due to a
bug, we estimate its performance by trimming each multi-byte
quantization code to a single byte, considering most quantiza-
tion codes are concentrated in the middle.

datum size #fields
datasets dimensions examples(s)
cosmology 1,071.75 MB 6 in total
HACC 280,953,867 xx, vx
molecular dynamics 951.73 MB 6 in total
EXAALT 2338×106711 dataset2.x
climate 642.70 MB 33 in total
CESM-ATM 26×1800×3,600 CLDICE, RELHUM
cosmology 512 MB 6 in total
Nyx 512×512×512 baryon_density
climate 381.47 MB 13 in total
Hurricane 4×100×500×500 CLDICE, QRAIN
quantum circuits 601.52 MB 2 in total
QMCPack 115×69×69×288 einspline, einspline.pre
petroleum exploration 180.73 MB 1 in total (3600 snapshots)
RTM 449×449×235 snapshot-1000
quantum chemistry 306.19 MB 3 in total
GAMESS 80,265,168 dddd, ffdd, ffff

TABLE III: Real-world float-type datasets used in the evaluation.

3) Test Datasets: We conduct our evaluation and com-
parison based on eight typical 1D∼4D real-world HPC sim-
ulation datasets, including six from Scientific Data Reduc-
tion Benchmarks [34]: 1D HACC cosmology simulation [12],
2D LAMMPS (part of the EXAALT ECP project) molecular
dynamics simulation [24], 3D CESM-ATM climate simula-
tion [6], 3D Nyx cosmology simulation [31], 4D Hurricane
ISABEL simulation [16], and 4D QMCPack quantum simula-
tion [32]. They have been widely used in much prior work [37,
26, 27, 47, 46, 38, 40, 39, 20, 4] and are good representatives
of production-level simulation datasets. Additionally, we also
evaluate two datasets that highlight our decoders’ potential to
be used as in-memory compressors as discussed in §I, including
3D RTM simulation data for petroleum exploration [17] and 1D
GAMESS data for quantum chemistry simulation [10]. Each
dataset includes multiple snapshots and diverse fields. Table III
presents the test datasets in detail. The data sizes per snapshot
are 1.1 GB, 952 MB, 643 MB, 512 MB, 381 MB, 602 MB,
181 MB, and 306 MB for the above eight datasets, respectively.
Note that the datasets tested are over 100 MB in size. This
is because larger snapshots are more likely to be found in
scientific applications, especially in in-memory applications
where the datasets to be compressed often take up a significant
portion of the total available memory. However, as we have
verified by truncating and decoding the HACC dataset, datasets
as small as 10 MB can exhibit speedups over the baseline cuSZ
decoder. In addition, the datasets tested are all single-precision
data, because the current cuSZ only works with single-precision

data. However, since our underlying optimizations work on
Huffman decoding of multibyte symbols, our technique applies
to double-precision data as well.

B. Experimental Results

1) Huffman Decoding: Table IV illustrates the compression
ratios of our optimized decoders and the baselines on the test
datasets. We note that the differences between the compres-
sion ratios of different methods are up to around 10%. Thus,
compression ratio is not the primary factor for choosing the
most appropriate Huffman decoding approach; by comparison,
throughput is more important. Note that, although the “original
gap-array” row in Table IV refers to an 8-bit decoder, we
double the compression ratio, so it can be used as a baseline
for comparison with 16-bit decoders.

HACC EXAALT CESM Nyx Hurr. QMC. RTM GAMESS

size in mebibyte 1071.8 951.7 642.7 512.0 381.5 601.5 180.7 306.2
baseline cuSZ 3.20 2.40 9.06 15.64 9.78 2.46 8.41 12.10

1.000× 1.000× 1.000× 1.000× 1.000× 1.000× 1.000× 1.000×
ori. self-sync 3.18 2.40 9.60 15.99 9.92 2.45 8.62 12.45

0.996× 1.000× 1.059× 1.022× 1.014× 0.998× 1.026× 1.029×
opt. self-sync 3.18 2.40 9.60 15.99 9.92 2.45 8.62 12.45

0.996× 1.000× 1.059× 1.022× 1.014× 0.998× 1.026× 1.029×
ori. gap-array* 3.11 2.60 9.42 15.51 9.68 2.41 8.43 12.10

0.972× 1.079× 1.040× 0.992× 0.990× 0.982× 1.002× 1.000×
opt. gap-array 3.00 2.26 9.04 15.05 9.33 2.31 8.12 11.71

0.938× 0.941× 0.997× 0.962× 0.954× 0.939× 0.965× 0.968×

TABLE IV: Compression ratio of eight evaluated methods. The origi-
nal gap-array-based method is of 8-bit symbols, so their compression
ratios are doubled to provide a fair comparison.

On the other hand, Table V shows the throughput of each
decoding method in GB/s. The average speedup of our op-
timized self-synchronization solution compared to the base-
line (in this case cuSZ’s decoder) is 2.74×, and the average
speedup of our optimized gap-array solution is 3.64×. Note
that that the speedup over the original implementations of self-
synchronization and gap-array solutions is more notable on
high compression-ratio datasets. This is because the original
implementations do not write out symbols to global memory
in an efficient manner which is in turn exacerbated by the
fact that high compression-ratio datasets have more symbols
to be written out to memory. This underscores the importance
of the optimizations for efficient memory access and use of
shared memory introduced in §IV-B, especially when consider-
ing quantization codes generated by effective prediction meth-
ods. Note further that the original gap-array solution, although
its GB/s numbers are computed relative to 8-bit quantization
codes, still achieves performance numbers that are greater than
our optimized self-synchronization solution. Nevertheless, in
addition to the practical reasons detailed above, that solution

8



also exhibits the same performance issues on high compression-
ratio datasets described earlier.

HACC EXAALT CESM Nyx Hurr. QMC. RTM GAMESS

size in mebibyte 1071.8 951.7 642.7 512.0 381.5 601.5 180.7 306.2
baseline cuSZ 26.4 26.1 25.2 59.2 24.8 23.7 28.8 37.0

1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
ori. self-sync 39.7 40.9 6.8 5.5 6.8 35.1 9.6 5.9

1.50× 1.57× 0.27× 0.09× 0.27× 1.48× 0.33× 0.16×
opt. self-sync 83.0 71.5 101.9 92.1 78.1 63.1 64.8 87.3

3.14× 2.74× 4.05× 1.55× 3.15× 2.66× 2.25× 2.36×
ori. gap-array 8-bit 84.4 87.7 30.0 17.5 37.3 87.2 31.9 25.9

3.20× 3.36× 1.19× 0.30× 1.50× 3.68× 1.11× 0.70×
opt. gap-array 112.8 106.4 123.9 122.4 95.4 96.3 84.7 110.1

4.27× 4.08× 4.92× 2.07× 3.85× 4.07× 2.94× 2.98×

TABLE V: Decoding throughputs of eight evaluated methods.

Table II illustrates more details of the original self-
synchronization solution as well as our optimized self-
synchronization and gap array solutions, breaking down the
algorithms into multiple phases. The table shows the impact
of our architectural optimizations on our optimized Huffman
decoders in break down. As for the architectural optimizations
for the self-synchronization phase, we obtain average speedups
of 11% for the most expensive self-synchronization phase—
intra-sequence self-synchronization. We can see that significant
speedups of up to 34% are shown on lower compression ratio
datasets, where this phase is a more significant bottleneck in
decoding. The decoding and writing phase of both our opti-
mized solutions, which both use our customized decoder, per-
form on average 7.1× faster than the baseline decoder’s Huff-
man decoding phase and 15.6× faster than the original self-
synchronization based Huffman decoding and writing phase.
Nevertheless, our customized Huffman decoder does decode
at a somewhat reduced bandwidth at high compression ratios,
but this is compensated by performance gains elsewhere while
decoding a high compression-ratio dataset.

We note that our optimized decoder achieves the lowest
speedup relative to the baseline (1.55× and 2.07×) on the Nyx-
quant dataset. This can be explained by examining both the
dataset and the baseline cuSZ decoder: (1) The Nyx dataset
is extremely high-compressible, and the encoded Nyx dataset
consists mostly of codewords of length one. Since cuSZ’s
decoder works one bit at a time, it is able to decode more
codewords. (2) Since fewer threads run on cuSZ’s coarse-
grained decoder, it does not encounter the same issues with high
compression-ratio input that other finer-grained decoders have.
As a result, the baseline cuSZ decoder has a relatively high
performance on the Nyx dataset compared to the other datasets.

2) cuSZ Decompression: Figure 4 demonstrates the im-
pact of our optimized decoders on the overall performance of
cuSZ’s decoder, by comparing the baseline decoder and our
two optimized solutions. On average, substituting the baseline
decoder with our optimized decoders resulted in 2.08× faster
decompression using self-synchronization and 2.43× faster
decompression using gap arrays. Note that in this scenario,
we calculate GB/s with regard to the size of the scientific
dataset itself rather than just the quantization codes. The reason
that such a significant speedup can be attained is that cuSZ
spends a substantial amount of time doing Huffman decoding;
in the HACC dataset, cuSZ spent over 83% of the overall

Fig. 4: Performance comparison between our optimized decompres-
sion and the cuSZ baseline on V100 (with relative error bound 10−3).
GB/s is computed relative to the size of the entire dataset.

Fig. 5: Performance comparison between our optimized decompres-
sion and the cuSZ baseline on V100 (with relative error bound 10−3),
taking into account host-to-device memory transfers of compressed
data. GB/s is computed relative to the size of the entire dataset.

decompression time doing Huffman decoding. As a result, with
our optimized decoders, the optimized cuSZ can decode at
speeds of over 100 GB/s on the V100 on most of the test cases.

Additionally, in many GPU applications, compressed data
is retained on CPU memory, which is a larger resource than
GPU memory. When data is needed for processing on the GPU,
before decompression, compressed data must be transferred
from CPU memory to GPU memory. Thus, in Figure 5, we
incorporate host-to-device “memcpy” into our evaluation. In
this case, our optimized decompression performed, on average,
1.53× faster for self-synchronization and 1.65× faster for gap
arrays over the cuSZ baseline. These speedups are lower than
the results shown in Figure 4 as data transfers are a bottle-
neck due to a relatively slow bandwidth between the GPU
and the CPU. Further note that the datasets with a relatively
high throughput are those with a high compression ratio; this
is because there is less actual data being transferred, so the
compressed data transfer is relatively fast for those datasets.

C. Use-case of Our Two Decoders

In this paper, we introduced two algorithms from the lit-
erature for fast parallel Huffman decoding and implemented
deep optimizations for these two algorithms. Although both
approaches are designed for fine-grained parallel Huffman
decoding, and both approaches benefit from our architectural
optimizations with regard to shared memory and decoding,

9



both self-synchronization and gap array based parallel Huffman
decoding are more suitable in some circumstances than others.
Specifically, on one hand, if raw decoding performance is
essential, our optimized gap array based Huffman decoding
will inherently be faster than the self-synchronization based
approach due to the costly and relatively unpredictable na-
ture of finding synchronization points (particularly on GPUs).
However, on the other hand, to obtain this raw decoding per-
formance, applications must compute and store a gap array,
which adds storage overhead as well as overhead to the en-
coder. Even in situations where these added costs are relatively
insignificant, the encoder and the decoder must be coupled,
meaning the encoder needs to be re-engineered. Therefore, in
applications where flexibility is important, self-synchronization
based Huffman decoding is more transparent to the encoders
having different-source data and can balance this flexibility

VI. RELATED WORK

In addition to works focusing on parallel Huffman decoding
that have been refered to extensively throughout the paper
(namely, Weißenberger and Schmidt’s work [42], Yamamoto
et al.’s work [45], and to a lesser extent Klein and Wiseman’s
work [22]), Johnston and McCreath additionally proposed an
algorithm for massively parallel Huffman decoding [21]. Their
algorithm proposes to deal with the problem of decoding vari-
able length codes by starting decoding from every location in
the bit sequence, eventually decoding the bit sequence cor-
rectly. Taking advantage of the GPU manycore architectures,
the algorithm performs slightly faster on the GPU than a single-
CPU-core Huffman decoder. This approach is not well-suited
for our purposes, as their approach results in large amounts of
computation for only marginal gains over CPU-based decoders.
Thus, in this work we only consider the other two algorithms.

Many works have been done that focus on optimizing parallel
Huffman-type encoding. For example, Lal et al. proposed a
Huffman-based entropy encoding system (E2MC) for GPUs
[23]. More recently, Tian et al. proposed a fast parallel Huff-
man codebook construction algorithm and a parallel Huffman
encoder for modern GPU architectures [40]. Since much work
has already been focused on optimizing Huffman encoding, we
do not presently consider optimizing encoding in our work.

VII. CONCLUSION

In this work, we comprehensively analyze two state-of-
the-art Huffman decoding algorithms for error-bounded lossy
compression of scientific data and propose a deep architectural
optimization for both algorithms. We also propose an efficient
online approach to tune the shared memory to decode different
parts of the data based on the data characteristics. We then
adapt our optimized decoders to multi-byte data and integrate
it into cuSZ. Our evaluation on eight representative scientific
datasets shows that our solution can improve cuSZ’s Huffman
decoding throughput by 3.64× on average and cuSZ’s overall
decoding throughput by 2.43× on average. In the future, we
plan to optimize and evaluate our Huffman decoder for generic
datasets such as text data on Nvidia A100 GPU.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project
(ECP), Project Number: 17-SC-20-SC, a collaborative effort of two
DOE organizations—the Office of Science and the National Nuclear
Security Administration, responsible for the planning and preparation
of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed platforms, to
support the nation’s exascale computing imperative. The material was
supported by the U.S. Department of Energy, Office of Science, under
contract DE-AC02-06CH11357. This work was also supported by
the National Science Foundation under Grants OAC-2003709, OAC-
2034169, OAC-2042084, OAC-2104023, and OAC-2104023.

REFERENCES

[1] M Ainsworth, O Tugluk, B Whitney, and S Klasky. “MGARD:
A Multilevel Technique for Compression of Floating-Point
Data”. In: DRBSD-2 Workshop at Supercomputing. 2017.

[2] Shawn T Brown, Paola Buitrago, Edward Hanna, Sergiu
Sanielevici, Robin Scibek, and Nicholas A Nystrom. “Bridges-
2: A Platform for Rapidly-Evolving and Data Intensive Re-
search”. In: Practice and Experience in Advanced Research
Computing. 2021, pp. 1–4.

[3] Martin Burtscher and Paruj Ratanaworabhan. “FPC: A high-
speed compressor for double-precision floating-point data”. In:
IEEE Transactions on Computers 58.1 (2008), pp. 18–31.

[4] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Mu-
rat Gok, Dingwen Tao, Chun Hong Yoon, Xin-Chuan Wu,
Yuri Alexeev, and Frederic T Chong. “Use cases of lossy
compression for floating-point data in scientific data sets”. In:
The International Journal of High Performance Computing
Applications 33.6 (2019), pp. 1201–1220.

[5] Jieyang Chen, Lipeng Wan, Xin Liang, Ben Whitney, Qing
Liu, David Pugmire, Nicholas Thompson, Jong Youl Choi,
Matthew Wolf, Todd Munson, et al. “Accelerating multigrid-
based hierarchical scientific data refactoring on gpus”. In: IEEE
International Parallel and Distributed Processing Symposium.
IEEE, 2021, pp. 859–868.

[6] Community Earth System Model (CESM) Atmosphere Model.
http://www.cesm.ucar.edu/models/.

[7] cuZFP. https://github.com/LLNL/zfp/tree/develop/src/cuda_
zfp.

[8] Sheng Di and Franck Cappello. “Fast error-bounded lossy HPC
data compression with SZ”. In: IEEE International Parallel
and Distributed Processing Symposium. 2016, pp. 730–739.

[9] T. Ferguson and J. Rabinowitz. “Self-synchronizing Huffman
codes (Corresp.)” In: IEEE Transactions on Information The-
ory 30.4 (1984), pp. 687–693.

[10] Ali Murat Gok, Sheng Di, Alexeev Yuri, Dingwen Tao,
Vladimir Mironov, Xin Liang, and Franck Cappello. “PaSTRI:
A novel data compression algorithm for two-electron integrals
in quantum chemistry”. In: IEEE International Conference on
Cluster Computing. IEEE, 2018, pp. 1–11.

[11] Leonardo A Bautista Gomez and Franck Cappello. “Improving
floating point compression through binary masks”. In: IEEE
International Conference on Big Data. 2013, pp. 326–331.

[12] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel,
Adrian Pope, Katrin Heitmann, Kalyan Kumaran, Venkatram
Vishwanath, Tom Peterka, Joe Insley, et al. “HACC: Extreme
scaling and performance across diverse architectures”. In:
Communications of the ACM 60.1 (2016), pp. 97–104.

[13] Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere,
Katrin Heitmann, David Daniel, Patricia Fasel, Vitali Morozov,
George Zagaris, Tom Peterka, Vishwanath Venkatram, Lukić
Zarija, Sehrish Saba, and Wei-keng Liao. “HACC: Simulating
sky surveys on state-of-the-art supercomputing architectures”.
In: New Astronomy 42 (2016), pp. 49–65.

10

http://www.cesm.ucar.edu/models/
https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp
https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp


[14] D. A. Huffman. “A Method for the Construction of Minimum-
Redundancy Codes”. In: Proceedings of the IRE 40.9 (Sept.
1952), pp. 1098–1101.

[15] Huffman Coding with Gap Arrays. https://github.com/daisuke-
takafuji/Huffman_coding_Gap_arrays.

[16] Hurricane ISABEL Simulation Data. http://vis.computer.org/
vis2004contest/data.html.

[17] Sian Jin, Sheng Di, Suren Byna, Dingwen Tao, and Franck
Cappello. “Improving Prediction-Based Lossy Compression
Dramatically Via Ratio-Quality Modeling”. In: arXiv preprint
arXiv:2111.09815 (2021).

[18] Sian Jin, Sheng Di, Xin Liang, Jiannan Tian, Dingwen Tao, and
Franck Cappello. “DeepSZ: A novel framework to compress
deep neural networks by using error-bounded lossy compres-
sion”. In: Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing. 2019,
pp. 159–170.

[19] Sian Jin, Pascal Grosset, Christopher M Biwer, Jesus Pulido,
Jiannan Tian, Dingwen Tao, and James Ahrens. “Understand-
ing GPU-based lossy compression for extreme-scale cosmo-
logical simulations”. In: IEEE International Parallel and Dis-
tributed Processing Symposium. IEEE, 2020, pp. 105–115.

[20] Sian Jin, Jesus Pulido, Pascal Grosset, Jiannan Tian, Ding-
wen Tao, and James Ahrens. “Adaptive configuration of in
situ lossy compression for cosmology simulations via fine-
grained rate-quality modeling”. In: Proceedings of the 30th
International Symposium on High-Performance Parallel and
Distributed Computing. 2020, pp. 45–56.

[21] Beau Johnston and Eric McCreath. “Parallel Huffman Decod-
ing: Presenting a Fast and Scalable Algorithm for Increasingly
Multicore Devices”. In: 2017 IEEE International Symposium
on Parallel and Distributed Processing with Applications and
2017 IEEE International Conference on Ubiquitous Comput-
ing and Communications (ISPA/IUCC). 2017, pp. 949–958.

[22] S. T. Klein and Y. Wiseman. “Parallel Huffman Decoding with
Applications to JPEG Files”. In: The Computer Journal 46.5
(2003), pp. 487–497.

[23] Sohan Lal, Jan Lucas, and Ben Juurlink. “Eˆ 2MC: Entropy
Encoding Based Memory Compression for GPUs”. In: IEEE
International Parallel and Distributed Processing Symposium.
IEEE, 2017, pp. 1119–1128.

[24] Large-scale atomic/molecular massively parallel simulator.
https://lammps.sandia.gov/.

[25] Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and Franck
Cappello. “An efficient transformation scheme for lossy data
compression with point-wise relative error bound”. In: IEEE
International Conference on Cluster Computing. IEEE. 2018,
pp. 179–189.

[26] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng
Li, Hanqi Guo, Zizhong Chen, and Franck Cappello. “Error-
controlled lossy compression optimized for high compression
ratios of scientific datasets”. In: 2018 IEEE International Con-
ference on Big Data. IEEE, 2018, pp. 438–447.

[27] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Bogdan Nico-
lae, Zizhong Chen, and Franck Cappello. “Improving Perfor-
mance of Data Dumping with Lossy Compression for Scientific
Simulation”. In: IEEE International Conference on Cluster
Computing. IEEE, 2019, pp. 1–11.

[28] Peter Lindstrom. “Fixed-rate compressed floating-point ar-
rays”. In: IEEE Transactions on Visualization and Computer
Graphics 20.12 (2014), pp. 2674–2683.

[29] Peter Lindstrom and Martin Isenburg. “Fast and efficient com-
pression of floating-point data”. In: IEEE Transactions on Visu-
alization and Computer Graphics 12.5 (2006), pp. 1245–1250.

[30] NVIDIA/cub: Cooperative primitives for CUDA C++. https :
//github.com/NVIDIA/cub.

[31] NYX. https://amrex-astro.github.io/Nyx/.

[32] QMCPACK. http://vis.computer.org/vis2004contest/data.html.
[33] Habib Salman. Marching to Exascale: Extreme-Scale Cosmo-

logical Simulations with HACC on Summit. https : / / www .
olcf . ornl . gov / wp - content / uploads / 2018 / 10 / habib _
2019OLCFUserMeeting.pdf. 2019.

[34] Scientific Data Reduction Benchmarks. https : / / sdrbench .
github.io/.

[35] Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit
Agrawal, Wei-keng Liao, and Alok Choudhary. “Data com-
pression for the exascale computing era-survey”. In: Supercom-
puting Frontiers and Innovations 1.2 (2014), pp. 76–88.

[36] Summit supercomputer. https : / / www. olcf . ornl . gov / olcf -
resources/compute-systems/summit/.

[37] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello.
“Significantly improving lossy compression for scientific data
sets based on multidimensional prediction and error-controlled
quantization”. In: IEEE International Parallel and Distributed
Processing Symposium. IEEE, 2017, pp. 1129–1139.

[38] Jiannan Tian, Sheng Di, Xiaodong Yu, Cody Rivera, Kai Zhao,
Sian Jin, Yunhe Feng, Xin Liang, Dingwen Tao, and Franck
Cappello. “Optimizing Error-Bounded Lossy Compression for
Scientific Data on GPUs”. In: IEEE International Conference
on Cluster Computing. 2021.

[39] Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hick-
man Fulp, Robert Underwood, Sian Jin, Xin Liang, Jon Cal-
houn, Dingwen Tao, et al. “cuSZ: An Efficient GPU-Based
Error-Bounded Lossy Compression Framework for Scientific
Data”. In: Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques. ACM,
2020, pp. 3–15.

[40] Jiannan Tian, Cody Rivera, Sheng Di, Jieyang Chen, Xin
Liang, Dingwen Tao, and Franck Cappello. “Revisiting huff-
man coding: Toward extreme performance on modern gpu
architectures”. In: IEEE International Parallel and Distributed
Processing Symposium. IEEE, 2021, pp. 881–891.

[41] Gregory K Wallace. “The JPEG still picture compression stan-
dard”. In: IEEE Transactions on Consumer Electronics 38.1
(1992), pp. xviii–xxxiv.

[42] André Weißenberger and Bertil Schmidt. “Massively Parallel
Huffman Decoding on GPUs”. In: Proceedings of the 47th In-
ternational Conference on Parallel Processing. 2018, pp. 1–10.

[43] Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck
Cappello, Hal Finkel, Yuri Alexeev, and Frederic T Chong.
“Full-state quantum circuit simulation by using data compres-
sion”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis.
2019, pp. 1–24.

[44] Ping Xiang, Yi Yang, and Huiyang Zhou. “Warp-level diver-
gence in GPUs: Characterization, impact, and mitigation”. In:
2014 IEEE 20th International Symposium on High Perfor-
mance Computer Architecture. IEEE, 2014, pp. 284–295.

[45] Naoya Yamamoto, Koji Nakano, Yasuaki Ito, Daisuke Takafuji,
Akihiko Kasagi, and Tsuguchika Tabaru. “Huffman Coding
with Gap Arrays for GPU Acceleration”. In: 49th International
Conference on Parallel Processing-ICPP. 2020, pp. 1–11.

[46] Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D
Tonellot, Zizhong Chen, and Franck Cappello. “Optimizing
error-bounded lossy compression for scientific data by dynamic
spline interpolation”. In: 2021 IEEE 37th International Confer-
ence on Data Engineering. IEEE. 2021, pp. 1643–1654.

[47] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao,
Zizhong Chen, and Franck Cappello. “Significantly Improving
Lossy Compression for HPC Datasets with Second-Order Pre-
diction and Parameter Optimization”. In: Proceedings of the
29th International Symposium on High-Performance Parallel
and Distributed Computing. 2020, pp. 89–100.

11

https://github.com/daisuke-takafuji/Huffman_coding_Gap_arrays
https://github.com/daisuke-takafuji/Huffman_coding_Gap_arrays
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html
https://lammps.sandia.gov/
https://github.com/NVIDIA/cub
https://github.com/NVIDIA/cub
https://amrex-astro.github.io/Nyx/
http://vis.computer.org/vis2004contest/data.html
https://www.olcf.ornl.gov/wp-content/uploads/2018/10/habib_2019OLCFUserMeeting.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/10/habib_2019OLCFUserMeeting.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/10/habib_2019OLCFUserMeeting.pdf
https://sdrbench.github.io/
https://sdrbench.github.io/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

	Introduction
	Background
	Scientific Data Compression
	Huffman Coding
	CUDA Architecture
	Error-bounded Lossy Compression on GPU

	Analysis of Existing Huffman Decoders for Error-Bounded Lossy Compression
	Coarse-Grained Versus Fine-Grained Parallelism
	Self-Synchronization Based Huffman Decoding
	Self-Synchronization
	Fast Decoding via Self-Synchronization

	Gap Arrays
	Challenges of Using Existing Huffman Decoders

	Design Methodology
	Optimized Self-Synchronization
	Optimized Decoding and Writing of Codewords
	Shared Memory Tuning for Decoding and Writing

	Performance Evaluation
	Experiment Setup
	Evaluation Platforms
	Comparison Baselines
	Test Datasets

	Experimental Results
	Huffman Decoding
	cuSZ Decompression

	Use-case of Our Two Decoders

	Related Work
	Conclusion

