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Fast detection of weak signals at low energy
expenditure is a challenging but inescapable task for the evolutionary
success of animals that survive in resource constrained environments.
This task is accomplished by the sensory nervous system by exploiting
the synergy between three astounding neural phenomena, namely,
stochastic resonance (SR), population coding (PC), and population
voting (PV). In SR, the constructive role of synaptic noise is exploited
for the detection of otherwise invisible signals. In PC, the redundancy
in neural population is exploited to reduce the detection latency.
Finally, PV ensures unambiguous signal detection even in the
presence of excessive noise. Here we adopt a similar strategies and
experimentally demonstrate how a population of stochastic artificial
neurons based on monolayer MoS, field effect transistors (FETSs) can
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use an optimum amount of white Gaussian noise and population voting to detect invisible signals at a frugal energy
expenditure (~10s of nano-Joules). Our findings can aid remote sensing in the emerging era of the Internet of things (IoT)

that thrive on energy efliciency.
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arly detection of weak signals is essential for the survival

of many animals, especially those living in resource

constrained environments. Both experimental and
numerical studies have found that inherent neural noise can
play a constructive role in the detection of subthreshold
sensory signals, allowing animals to escape from predators or
locate prey. This phenomenon is more popularly known as
stochastic resonance (SR) and is observed at molecular,
cellular and behavioral levels."™ For example, the electro-
receptors in paddlefish use SR to detect zooplankton for food,”
mechanoreceptors in crickets use SR to escape from predatory
wasps,” and infrared (IR) sensilla in jewel beetles use SR to
locate forest fires for breeding.5 However, reliable and timely
detection of subthreshold signals using SR can be severely
limited if the nervous system employs individual neurons for
such tasks. At low noise levels, the likelihood that the
subthreshold sensory signal will cross the neural detection
threshold, that is, probability of true positive (TP) remains
low, whereas at high noise levels the likelihood of false positive
(FP), that is, neurons firing even in the absence of any
stimulus, becomes high. Furthermore, the stochastic nature of
the signal processing does not guarantee instantaneous
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detection of the subthreshold sensory signal since threshold
crossing will not occur every time the same stimulus is
presented.

While SR experiments overcome this challenge by relying on
periodic signals to present the subthreshold stimulus multiple
times to the neuron and evaluate the detection probability to
show the constructive role of noise in signal detection, these
experiments do not provide complete understanding of the
animal behavior since survival strongly depends on immediate
response to weak stimulus. The evolutionary answer for this
challenging problem may lie in population coding (PC) and
population voting (PV), where instead of relying on a single
neuron, the synergistic activity of the neural population is
exploited for accurate and immediate detection of subthreshold
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Figure 1. Artificial Neural Population. (a) Schematic of biological neuron and artificial neuron based on monolayer MoS, field effect
transistor (FET). MoS, was grown over large area using metal organic chemical vapor deposition (MOCVD) technique on sapphire
substrate at 1000 °C and subsequently, transferred to the device fabrication substrate using the PMMA-assisted wet transfer process. Atomic
layer deposition (ALD) grown 50 nm Al,O; on Pt/TiN/p**-Si was used as the back-gate stack for the fabrication of MoS, FET. Device has 1
pm channel length, S gm channel width, and 40 nm Ni/30 nm Au as the source/drain contacts. Presynaptic voltage (Vpgy) is applied to the
back-gate terminal, whereas, postsynaptic current (Ipgc) is measured at the drain terminal. (b) Transfer function, that is, Ipg versus Vigy of a
representative artificial neuron measured at drain bias, Vi, = 1 V, in the logarithmic and linear scales. (c) Neural detection threshold:
Recording of postsynaptic spikes in Ipsc (lower panel) in response to presynaptic Vpgy pulses of different magnitudes (upper panel).
Postsynaptic firing disappears as the magnitude of Vygy pulses falls below the detection threshold (Viy), which in the present case was found
to be Vy = —1.25 V. Vpy is determined by the minimum I,gc measurable by the neuron that is above the instrument noise floor of few pico
Amperes. This corresponds to the deep OFF state of the MoS, FET. (d) Population transfer function of N = 16 artificial neurons. Variation
in the transfer function is a key feature of any neural population, which is naturally present in MoS, FET array. Inset shows the histogram of
the Viy for the neural population with population mean and standard deviation of be —1.05 V and ~0.1 V, respectively. (e) Colormap of
probability of true positive (prp), that is, the likelihood of a postsynaptic spike when a presynaptic stimulus is present for each neuron in the
population as a function of Vygy. In the absence of any noise each neuron behave deterministically, that is, prp = 1, for suprathreshold
signals, and p1p = 0, for subthreshold signal.
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sensory inputs. Extensive studies on the visual cortex of

macaque monkeys,'’ auditory midbrain of guinea pigs,” and
somatosensory cortex of rats' ' provide direct evidence of PC
for suprathreshold signal detection as several thousand of
neurons are found to respond to similar stimuli. Evidence of
PV was found in motor cortical neurons.'”'® However, the
benefits of PC and PV for subthreshold signal detection is
relatively underexplored.14 Furthermore, the interdependence
between neural stochasticity, neural population strength,
neural voting mandate, neural detection limit, and subthres-
hold signal strength is not well understood and is a subject of
intense research in modern sensory neurobiology.

Here, we attempt to answer these fundamental questions
using an array of nanoscale field effect transistors (FETs) based
on atomically thin monolayer MoS, that mimics a stochastic
neural population. Our experimental findings validated by
numerical simulations suggest that in the presence of an
optimum amount of white Gaussian noise a sensor population
of optimum size can decisively vote to accurately detect
otherwise invisible signals with significantly reduced detection
latency and miniscule energy expenditure. Our demonstration
highlights the benefits of adopting SR, PC, and PV for next
generations of remote sensors, which will be deployed at
inaccessible, and resource-constrained terrestrial and extra-
terrestrial locations as a part of the rapidly proliferating
Internet of things (IoT) ecosystem. Note that while the
concept of SR has been demonstrated using electronic and
optoelectronic devices such as tunnel diodes,”” photo-
detectors,'® and field effect transistors (FETs) based on
carbon nanotubes,'”'® GaAs nanowires,"® and organic semi-
conductors,”® the benefits of synergy between SR, PC, and PV
is yet to be exploited in solid state sensors.

Fabrication and Characterization of Artificial Neural
Population. Monolayer MoS, belonging to the family of
layered two-dimensional (2D) transition metal dichalcogenides
(TMDCs)*' ™ was used as the semiconducting channel
material and atomic layer deposition (ALD) grown S0 nm
Al,O; on Pt/TiN/p**-Si was used as the back-gate stack for
the fabrication of artificial neurons as shown schematically in
Figure la. Presynaptic signals were applied to the back-gate
terminal and, postsynaptic current was measured at the drain
terminal. Note that atomically thin 2D semiconductors such as
monolayer MoS, offer potential for aggressive device scaling
and high dielectric constant of Al,O; compared to conven-
tional SiO, allows for superior electrostatic gate control,
essential for achieving low power device operation.”* The
choice of MoS, is motivated by its technological maturity,
which include high electrical performance, ease of fabrication,
ease of growing over a large area (wafer-scale), high yield, low
device-to-device variation, reliability, and demonstration of
multifunctional sensors as well as biomimetic, neuromorphic,
and hardware security devices.”> >° MoS, used in this study
was grown epitaxially on a sapphire substrate using a metal
organic chemical vapor deposition (MOCVD) technique at
1000 °C and subsequently transferred from the growth
substrate to the device fabrication substrate using a PMMA-
assisted wet transfer process.”’ The large-area MOCVD
growth allows for the fabrication of high-performance
monolayer MoS, FET arrays that serve as the neural
population. See Methods for further details on the synthesis,
film transfer, and fabrication of monolayer MoS, FETs.

Figure 1b shows the transfer function, that is, postsynaptic
current (Ipsc) as a function of presynaptic voltage (Vpgy) of a
representative artificial neuron measured at a drain bias (Vp)
of 1V, in the logarithmic and linear scales. The n-type unipolar
characteristics shown is typical for MoS, FETs owing to the
phenomenon of metal Fermi level pinning close to the
conduction band of MoS$, that facilitates electron injection.”***
The transfer function was used to extract at ON/OFF current
ratio in excess of 107, a subthreshold slope (SS) of less than
300 mV/decade, and a field effect mobility value of ~10 cm?/
V-s from the peak transconductance. These numbers are
comparable to exfoliated single crystal monolayer MoS, based
FETs indicating high-quality MOCVD growth (see Supporting
Information 1 for Raman and PL and AFM measurements).
Note that the device has 1 pgm channel length, S gm channel
width, and 40 nm Ni/30 nm Au as the source/drain contacts.
Since an MoS, FET is a thresholding device, we determine the
detection limit of our artificial neuron by applying Vpsy pulses
of different magnitudes and recording the corresponding spikes
in Ipgc as shown in Figure lc. Clearly postsynaptic firing, that
is, spikes in Ipgc, disappears as the magnitude of the Vpgy pulses
falls below the detection threshold (V) of the neuron, which
in the demonstrated case was found to be Vi = —1.25 V.
Note that Vi is determined by the minimum Ipgc measurable
by the neuron that is above the instrument noise floor of a few
pico-Amperes. This corresponds to the deep OFF state of the
MoS, FET, as shown in Figure 1b.

Figure 1d shows the transfer functions of the N = 16 artificial
neurons used in this study. Variation in the transfer function is
a key feature of any neural population and is naturally present
in our large-area MOCVD-grown monolayer MoS, FET array.
The colormap in Figure le shows the probability of true
positive (prp), that is, the likelihood of a postsynaptic spike
when a presynaptic stimulus is present, for each neuron in the
population as a function of Vpgy. Clearly, in the absence of any
noise each neuron behaves deterministically, that is, the
probability of detecting a suprathreshold signals is unity (prp =
1) whereas the probability of detecting a subthreshold signal is
zero (prp = 0). A histogram of Viy for the neural population is
shown in the inset of Figure 1d. As expected, V1 varies across
the population owing to variation in the subthreshold slopes
and ON currents of the MoS, FETSs. The population mean and
standard deviation of the neural detection threshold was found
to be —1.05 V and ~0.1 V, respectively. Also note that once
the presynaptic signal strength falls below the detection
threshold of the entire neural population, which was found to
be Vpgy = —1.25 V, the signal becomes invisible and
undetectable.

Adding Synaptic Noise to the Artificial Neural
Population. The artificial neurons described above do not
accurately mimic biological neurons since neurons are rarely
deterministic. In fact, neurons are inherently stochastic. Neural
stochasticity, which is a subject of intense research can have
numerous biophysical origins.”> The most dominant and
important one for the present study, however, is the synaptic
noise, which is attributed to the spontaneous release of
neurotransmitter vesicles at the synaptic cleft. The classic
manifestation of synaptic noise is random firing of postsynaptic
neurons even in the absence of presynaptic input. To introduce
stochasticity in our artificial neural population, white Gaussian
noise of various standard deviations (o) was applied to the
presynaptic terminal at 100 Hz for a total duration of 5.12 s,
and corresponding postsynaptic spikes were recorded for each
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Figure 2. Stochasticity in Neural Population. (a) White Gaussian synaptic noise of various standard deviations (6) applied to the presynaptic
terminal at 100 Hz for a total duration of 5.12 s (upper panel) and corresponding postsynaptic spikes recorded from a representative neuron
(lower panel). The mean value for the synaptic noise was set at —1.75 V, which is far below the neural population detection threshold.
Random spiking in Ipgc increases with increasing o as the likelihood of crossing the neural detection threshold increases accordingly.
Normalized distribution or probability mass function (PMF) for (b) interspike interval and (c) firing rate (i.e., inverse of interspike interval)
extracted for the entire neural population, that is, N = 16 neurons. (d) Population mean for interspike interval and firing rate as a function of
6. Lower noise levels lead to sporadic neural spiking manifesting in larger (smaller) population mean in the interspike interval (firing rate),
whereas, higher noise levels lead to more frequent neural spiking resulting in smaller (larger) population mean in the interspike interval

(firing rate).

neuron of the entire population being recorded. Figure 2a
shows the results for a representative neuron. The mean value
for the white Gaussian noise was set at —1.75 V, which is far
below the neural population detection threshold. Note that the
random spiking in postsynaptic current increases with
increasing ¢ as the likelihood of crossing the neural detection
threshold increases accordingly. Figure 2b,c, respectively, show
the normalized distribution, or probability mass function
(PMF), for interspike interval and firing rate (i.e., inverse of
interspike interval) for the neural population, that is, N = 16
neurons. Lower noise levels lead to sporadic neural spiking,
resulting in larger (smaller) population mean in the interspike
interval (firing rate). Conversely, higher noise levels lead to
more frequent neural spiking resulting in smaller (larger)
population mean in the interspike interval (firing rate) as
shown in Figure 2d. Nevertheless, our artificial neurons mimic
the stochastic spiking of biological neurons with the added
feature that noise level can be programmed independently.
Stochastic Resonance: Benefits of Noise. Noise is an
intrinsic feature of the nervous system with diverse roles in
neural information processing and transmission. In classical
electronic devices and systems, noise is considered to be a
nuisance for signal detection. Interestingly, however, noise is
not always a problem for neurons and can become a solution
for processing critical information pertaining to the survival of
the species. SR is a process by which nonlinear threshold-like

16175

systems can detect otherwise invisible subthreshold signals in
the presence of an optimum amount of noise. Here we exploit
SR in our biomimetic neurons. Figure 3a shows a presynaptic
subthreshold signal with additive synaptic white Gaussian
noise of various standard deviations () and the corresponding
postsynaptic spikes from a representative neuron (see
Supporting Information 2 for similar results for the entire
neural population). Colormaps in Figure 3b—d shows the
probability of true positive (prp), false positive (ppp), and
neural detectivity (D = pp — pgp) as a function of o for N = 16
neurons, respectively. At a low noise level, there is hardly any
false firing (low ppp), though the likelihood of detecting the
subthreshold presynaptic signal is also restricted due to limited
threshold crossing events (low prp), thus leading to low
detectivity. At a high noise level, the subthreshold signal
frequently crosses the threshold and invokes postsynaptic
spikes (high prp), but the detectivity still remains low due to
excessive false firing (high pgp). However, with an optimum
amount of noise, it is possible to achieve maximum detectivity
for any individual neuron in the population. Figure 3e shows
the population mean for prp, ppp, and D as a function of 6.
Note that the population mean for D exhibits classical SR type
behavior.

Figure 3f,g shows normalized PMF for interspike interval
and firing frequency as a function of o for the entire neural
population, respectively. Since the subthreshold presynaptic
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Figure 3. (a) Presynaptic subthreshold signal with additive synaptic white Gaussian noise of various standard deviations, 6, (upper panel)
and the corresponding recording of postsynaptic spikes from a representative neuron (lower panel). Colormaps of probability of (b) true
positive (prp), (c) false positive (pgp), and (d) neural detectivity (D = pyp — prp) as a function of ¢ for N = 16 neurons. (e) Corresponding
population means. At low noise level, there is hardly any false firing (low pgp), but the likelihood of detecting the subthreshold presynaptic
signal is also limited due to limited threshold crossing events (low prp) leading to low detectivity. At high noise level, the subthreshold signal
frequently crosses the threshold invoking postsynaptic spikes (high prp), but the detectivity still remains low due to excessive false firing
(high pgp). However, with optimum amount of noise, it is possible to achieve maximum detectivity for any individual neuron in the
population. Note that the population mean for D exhibits classical SR type behavior. Normalized distribution or probability mass function
(PMF) for (f) interspike interval and (g) firing frequency as a function of & for the entire neural population. At optimum synaptic noise, any
individual neuron of the neural population can identify the subthreshold presynaptic stimulus, which is presented every 40 ms
corresponding to a signal frequency of 25 Hz, with maximum likelihood.

stimulus is presented every 40 ms corresponding to a signal
frequency of 25 Hz, it is important that the interspike interval
and firing frequency of the postsynaptic neurons reflect such
information. This is indeed the case as indicated using the
arrows in Figure 3f,g, when compared to random neural
spiking in the absence of any stimulus (Figure 2b,c). With
optimum noise it is possible to reach maximum likelihood for
identifying the signal frequency.

Population Coding: Benefits of Collective Detection.
While SR aids in the detection of subthreshold signals, it does

16176

not guarantee timely and unambiguous signal detection, which
can be critical for the survival of the animals in resource
constrained environments. This is because the subthreshold
sensory signal may not necessarily cross the detection
threshold of a given neuron every time the same stimulus is
presented. This is also reflected in the mean detectivity value in
Figure 3e, which does not reach unity for any given noise.
Similarly, the maximum likelihood for identifying the signal
frequency is far from unity (Figure 3g). However, if, instead of
studying the activity of neurons in the population individually,
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Figure 4. (a) Vote counts, that is, the number of postsynaptic neurons firing in response to the presynaptic subthreshold stimulus with
various amount of synaptic white Gaussian noise added to the signal. A true positive is counted if the number of votes is nonzero when the
subthreshold presynaptic stimulus is present. Similarly, a false positive is counted even if only one neuron votes in the absence of any
presynaptic stimulus. Population mean for the probability of (b) collective true positive (pcrp), (c) collective false positive (pcpp), and (d)
collective detectivity (Dc) as a function of 6 and the population size, N = k, where, k = 1,2,3-16, extracted from the corresponding
probability distributions shown in Supporting Information 3. Three key features can be observed in D¢. (1) For any finite amount of noise,
there is a nonmonotonic trend in D as a function of the population size, that is, maximum D¢ is achieved for an optimum population size.
This can be attributed to the fact that a smaller population is less likely to detect the subthreshold signal, whereas, larger population is more
likely to fire falsely in the absence of the signal. (2) For smaller population sizes, classic SR type behavior is seen, that is, there is an optimum
noise that allows the population to achieve maximum D¢. (3) For larger population sizes, higher noise is detrimental due to excessive false
positive (pcpp = 1) despite higher likelihood of detecting a true positive (pcrp = 1). Nevertheless, an optimum neural population in the
presence of an optimum noise can offer a collective probability for subthreshold signal detection (D), which is significantly better than what

individual neurons in the same population can achieve.

focus is held on their collective activity, the outcome changes
dramatically. Figure 4a shows the vote counts, that is, the
number of postsynaptic neurons that fired in response to the
presynaptic subthreshold stimulus, in the presence of various
amount of synaptic white Gaussian noise. A true positive is
counted if one or more neurons out of the entire population
generate a postsynaptic spike, that is, the number of votes is
nonzero, when the subthreshold presynaptic stimulus is
present. Similarly, a false positive is counted even if only one
neuron votes by generating a postsynaptic spike in the absence
of any presynaptic stimulus. Supporting Information 3 shows
the probability distribution of collective true positive (pcrp),
false positive (pcpp), and detectivity (D¢) as a function of
and the population size, N = k, where k = 1,2,3---16. Figure
4b—d shows the corresponding population means, respectively.
Note that all NC, combinations for the population were
analyzed to derive the results.

There are three key features that can be observed in D¢ in
Figure 4d. The first is that for any finite amount of noise, there
is a nonmonotonic trend in D as a function of the population
size, that is, maximum D¢ is achieved for an optimum
population size. This can be attributed to the fact that a smaller
population is less likely to detect the subthreshold signal,
whereas a larger population is more likely to fire falsely in the
absence of the signal. The second is that for smaller population
sizes, classic SR type behavior is seen, that is, there is an
optimum noise that allows the population to achieve maximum
D¢. (3) Finally for larger population sizes, higher noise is
detrimental due to excessive false positives (pcpp = 1) despite a
higher likelihood of detecting a true positive (pcrp = 1).

Nevertheless, an optimum neural population in the presence of
an optimum noise can offer a collective probability for
subthreshold signal detection (D), which is significantly
better than what individual neurons in the same population can
achieve. See Supporting Information 4 for the distribution of
interspike interval and firing frequency as a function of 6 when
the entire neural population of N = 16 is used for decision
making. The likelihood of identifying the signal frequency is
high for low noise levels but reduces significantly with
increasing noise levels. However, PC improves likelihood of
identification more than what can be accomplished through SR
using individual neurons for ¢ = 0.2 V.

Population Voting: Benefits of Democratic Decision
Making. In simple population coding, as described above,
even a single neuron can change the decision of the entire
neural population regarding the presence or absence of the
subthreshold stimulus. It aids in signal detection when the
subthreshold signal is present and none other than the
“champion” neuron detects the signal. However, it equally
hurts when only the “antagonist” neuron fires in the absence of
the subthreshold stimulus, increasing the count for false
positive. In fact, the poor detectivity of larger neural
populations can be attributed to such “antagonist” neural
firing. In such cases, decision making based on democratic
principles can improve the neural detectivity. Figure Sab
shows the probability distribution for the number of neurons
in the entire population that generate synchronous spikes in
response to the presence (true positive) and absence (false
positive), respectively, of presynaptic subthreshold signal for
different noise standard deviations and for a population size of
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Figure S. Probability distribution for the number of neurons in the entire population that generate synchronous spikes, that is, the number
of votes in response to the (a) presence (true positive) and (b) absence (false positive) of presynaptic subthreshold signal for different noise
standard deviations and for a population size of N = 16. Inset shows the expected number of votes. Note that for any noise standard
deviation, (Nyp) is higher than (Ng,) Probability of voting based (c) true positive (pyrp), (d) false positive (pygp), and (e) detectivity (Dy)
as a function of 6 and the minimum number of votes mandated (INy) for decision making, that is, a true positive or false positive is counted if
at least (Ny neurons vote (generate postsynaptic spikes). Note that the detectivity for any given & reaches its peak value when Ny = (Nyp).
Normalized distribution or probability mass function (PMF) of (g) interspike interval and (h) firing frequency for different ¢ derived based
on population voting. A significant increase in the likelihood of identifying the signal frequency is seen compared to what can be achieved
through SR in individual neurons as well as simple population coding highlighting the importance of population voting in the evolutionary
success of animals surviving in resource constrained ambience.

N = 16. At low noise levels, the probability of crossing the
detection threshold is low and hence only a few neurons fire
simultaneously. This makes the expected number of neurons,

6
<NTP> = 21,=1 nPVTp
of the subthreshold presynaptic signal to be low for a low level
of noise. The expected number of neurons,
6
(NFP> = zi:l anFP
of the subthreshold signal is even lower. Similarly, at high noise

(n), to fire synchronously in the presence

(n), to fire synchronously in the absence

levels, the probability of crossing the detection threshold is
higher and hence more neurons fire synchronously resulting in
larger (Npp) and (Ngp). However, for any noise standard
deviation, (Npp) is higher than (Ngp) (see Supporting
Information S for (Niyp) and (Nrp) as a function of o. Figure
Sc—e shows the voting-based true positive (pyrp), false positive
(pvep), and detectivity (Dy), respectively, as a function of &
and the minimum number of votes mandated (Ny) for
decision making, that is, a true positive or false positive is
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Figure 6. (a) Various factors influencing SR and PC, which include the subthreshold signal strength (S), neural detection threshold (U),
neural population strength (N), and neural stochasticity (). Simulation results based on Virtual Source (VS) model showing the neural
detectivity (D) as a function of N and 6 for (b) U=0.25V,8=0.5V,(c) U=0.25V,8=0.25V,(d) U=0.5V,8=0.5V,and (e) U=0.5V,
§ =0.25 V. In all cases nonmonotonic trends are observed in D as a function of N for any finite 6, and classic SR type behavior is observed in
D as a function of 6 for any N. Furthermore, for a given S, D diminishes with increasing U and necessitates larger N and higher o to achieve

better detectivity, and for a given U, D diminishes with decreasing S.

counted if at least Ny neurons vote (generate postsynaptic
spikes). Note that the detectivity for any given o reaches its
peak value when Ny = (Npp). Figure Sgh shows the
normalized PMF for interspike interval and firing frequency
for different o derived on the basis of population voting,
respectively. A significant increase in the likelihood of
identifying the signal frequency is seen compared to what
can be achieved through SR in individual neurons as well as
simple population coding highlighting the importance of
population voting in the evolutionary success of animals
surviving in resource-constrained environments. Interestingly,
the energy consumption by the biomimetic, stochastic, and
artificial neural population based on the monolayer MoS, FET
array was found to be as frugal as hundreds of femto Joules per
spike per neuron (see Supporting Information 6).

Neural Interplay between Stochastic Resonance and
Population Coding. In order to extend the conclusion drawn
from our experimental findings, physics-based numerical

simulations were used to elucidate the interplay between SR
and PC, as shown in Figure 6. We have used the Virtual Source
(VS) model to capture the transfer function of our artificial
neurons based on monolayer MoS, FET.**™* In the VS
model, both the subthreshold and above-threshold behavior is
captured through a single semiempirical and phenomenological
relationship (see Supporting Information 7 for the description
of the VS model). Figure 6a—e shows the various factors and
their interdependence influencing SR and PC, which include
the subthreshold signal strength (S), neural detection thresh-
old (U), neural population strength (N), and neural
stochasticity (o). The key features observed in the
experimental data in Figure 4d are also seen in each of the
four simulated case studies presented here. These are the
nonmonotonic trend in D as a function of the population size
for any finite amount of noise, and classic SR type behavior in
D as a function of noise standard deviation (6) for any
population size. In addition, we observe that for a given S, D
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diminishes with increasing U and necessitates larger N and
higher o to achieve better detectivity. This is anticipated as a
smaller number of threshold crossing events occur for a given o
when the signal is far away from U. Similarly, as the signal
becomes weaker (smaller S), the D also diminishes for a given
neural detection threshold. However, in this case, lower noise
and larger population achieves better detectivity as higher
noise can lead to excessive false firing. Nevertheless, by
exploiting the synergy between SR and PC, a biomimetic and
artificial nervous system can accomplish accurate and timely
detection of subthreshold signals, which can benefit edge
sensors in the IoT era.

CONCLUSION

In conclusion, we have used a biomimetic, stochastic, and
artificial neural population based on monolayer MoS, FET
array to demonstrate the benefits of stochastic resonance,
population coding, and population voting for detecting
otherwise invisible subthreshold signals at ultralow energy
expenditure. Our study not only offers insight for the next
generation of bioinspired sensors for deployment in resource-
constrained locations but also demonstrates how such
biomimetic nanoscale devices can be used to advance the
fundamental understanding of intricate neural processes in
sensory neurobiology.

METHODS

Film Growth. Monolayer MoS, obtained from the Two
Dimensional Crystal Consortium (2DCC) at Penn State University
was deposited on epi-ready 2" c-sapphire substrate by metalorganic
chemical vapor deposition (MOCVD). An inductively heated graphite
susceptor equipped with wafer rotation in a cold-wall horizontal
reactor was used to achieve uniform monolayer deposition as
previously described.”> Molybdenum hexacarbonyl (Mo(CO);) and
hydrogen sulfide (H,S) were used as precursors. Mo(CO)s
maintained at 10 °C and 950 Torr in a stainless steel bubbler was
used to deliver 0.036 sccm of the metal precursor for the growth,
while 400 sccm of H,S was used for the process. MoS, deposition was
carried out at 1000 °C and 50 Torr in H, ambient, where monolayer
growth was achieved in 18 min. The substrate was first heated to 1000
°C in H, and maintained for 10 min before the growth was initiated.
After growth, the substrate was cooled in H,S to 300 °C to inhibit
decomposition of the MoS, films.

Film Transfer. After the growth of monolayer MoS, on the
sapphire substrate, the film was transferred onto the FET gate
dielectric substrate using a wet transfer technique. Polymethyl-
methacrylate (A3 PMMA) resist was spun onto the growth substrate
at 400 rpm for 45 s, encapsulating the MoS,, and allowed to sit
overnight. The substrate was then immersed in a 1 M NaOH solution
kept at 90 °C. Capillary action at the PMMA/substrate interface
allowed for intercalation of the NaOH solution, separating the
hydrophobic PMMA/MoS, from the hydrophilic sapphire substrate
and allowing the film to float to the surface of the solution. A clean
glass slide was used to transfer the PMMA/MoS, stack to three
successive deionized water baths for cleaning, before finally fishing out
the film with the target alumina/Pt/TiN/p*" Si substrate.**

Fabrication of Monolayer MoS, FET. Back-gated MoS, field
effect transistors (FETs) were fabricated on S0 nm alumina (ALO;),
which served as the back-gate oxide, and a stack of Pt/TiN/p** Si,
which served as the back-gate electrode. First, MOCVD-grown MoS,
was transferred onto the alumina substrate as previously described.
The sample was then spin-coated with A6 PMMA and patterned via
electron-beam (e-beam) lithography to specify the channels. A 30 s
sulfur hexafluoride (SFg) etch at S °C was then used to define the
channels. Following the etch step, the sample was sequentially rinsed
in acetone for 30 min and isopropyl alcohol (IPA) for 1S min to

remove the PMMA and clean off any residue. To define the source
and drain contacts, the sample was then spin-coated with methyl
methacrylate (MMA) and A3 PMMA, and e-beam lithography was
again used for patterning. 40 nm of nickel (Ni) and 30 nm of gold
(Au) were deposited using e-beam evaporation to serve as the contact
metal, with the Ni-layer serving to improve adhesion. Finally, lift-off of
the evaporated metal was performed by immersing the sample in
acetone for 30 min, with a subsequent IPA bath for cleaning.

Electrical Characterization. Electrical characterization of the
fabricated devices was performed on a Lake Shore CRX-VF probe
station under atmospheric conditions using a Keysight BIS00A
parameter analyzer.

ASSOCIATED CONTENT

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsnano.1c05042.

Material characterization of metal—organic chemical
vapor deposition (MOCVD) grown MoS,, recording
of the postsynaptic currents of the entire neural
population (N = 16) in response to presynaptic voltages,
probability distribution of true positive, false positive
and detectivity of the neural population based on
population coding, distribution of interspike interval and
firing frequency for different standard deviations of noise
(o), expected number of votes as a function of ¢ for N =
16, the average energy expenditure (E) per spike per
neuron as a function of ¢, and the description of virtual
source model and corresponding simulated and
experimental transfer characteristics (PDF)

AUTHOR INFORMATION

Corresponding Author
Saptarshi Das — Department of Engineering Science and
Mechanics, Department of Materials Science and Engineering,
and Materials Research Institute, Pennsylvania State
University, University Park, Pennsylvania 16802, United
States; © orcid.org/0000-0002-0188-945X;
Email: sud70@psu.edu, das.sapt@gmail.com

Author
Akhil Dodda — Department of Engineering Science and
Mechanics, Pennsylvania State University, University Park,
Pennsylvania 16802, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsnano.1c05042

Author Contributions

S.D. conceived the idea. A.D. and S.D. designed and performed
the experiments, analyzed the data, discussed the results, and
agreed on their implications. All authors contributed to the
preparation of the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The work was supported by the Army Research Office (ARO)
through Contract Number W911NF1920338 and the National
Science Foundation (NSF) through CAREER Award under
Grant Number ECCS-2042154. We also acknowledge Mr.
Amritanand Sebastian for help with device fabrication. Authors
also acknowledge the materials support from the National
Science Foundation (NSF) through the Pennsylvania State

https://doi.org/10.1021/acsnano.1c05042
ACS Nano 2021, 15, 16172-16182


https://pubs.acs.org/doi/10.1021/acsnano.1c05042?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsnano.1c05042/suppl_file/nn1c05042_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Saptarshi+Das"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0188-945X
mailto:sud70@psu.edu
mailto:das.sapt@gmail.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Akhil+Dodda"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c05042?ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c05042?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Nano

www.acsnano.org

University 2D Crystal Consortium—Materials Innovation
Platform (2DCCMIP) under NSF cooperative agreement
DMR-1539916.

REFERENCES

(1) Douglass, J. K.; Wilkens, L.; Pantazelou, E.; Moss, F. Noise
Enhancement of Information Transfer in Crayfish Mechanoreceptors
by Stochastic Resonance. Nature 1993, 365, 337.

(2) Russell, D. F.; Wilkens, L. A.; Moss, F. Use of Behavioural
Stochastic Resonance by Paddlefish for Feeding. Nature 1999, 402,
291.

(3) Levin, J. E; Miller, J. P. Broadband Neural Encoding in the
Cricket Cereal Sensory System Enhanced by Stochastic Resonance.
Nature 1996, 380, 165.

(4) Wiesenfeld, K.; Moss, F. Stochastic Resonance and the Benefits
of Noise: From Ice Ages to Crayfish and SQUIDs. Nature 1995, 373,
33.

(5) Schmitz, H.,; Bousack, H. Modelling a Historic Oil-Tank Fire
Allows an Estimation of the Sensitivity of the Infrared Receptors in
Pyrophilous Melanophila Beetles. PLoS One 2012, 7, e37627.

(6) Lindner, B.; Schimansky-Geier, L. Transmission of Noise Coded
versus Additive Signals through a Neuronal Ensemble. Phys. Rev. Lett.
2001, 86, 2934—2937.

(7) Dean, L; Harper, N. S.; McAlpine, D. Neural Population Coding
of Sound Level Adapts to Stimulus Statistics. Nat. Neurosci. 2008, 8,
1684—1689.

(8) Georgopoulos, A. P.; Schwartz, A. B.; Kettner, R. E. Neuronal
Population Coding of Movement Direction. Science 1986, 233, 1416—
1419.

(9) Averbeck, B. B.; Latham, P. E.; Pouget, A. Neural Correlations,
Population Coding and Computation. Nat. Rev. Neurosci. 2006, 7,
358—366.

(10) Pasupathy, A.; Connor, C. E. Population Coding of Shape in
Area V4. Nat. Neurosci. 2002, 5, 1332—1338.

(11) Petersen, R. S.; Panzeri, S.; Diamond, M. E. Population Coding
of Stimulus Location in Rat Somatosensory Cortex. Neuron 2001, 32,
503—-514.

(12) Georgopoulos, A. P.; Kettner, R. E.; Schwartz, A. B. Primate
Motor Cortex and Free Arm Movements to Visual Targets in Three-
Dimensional Space. II. Coding of the Direction of Movement by a
Neuronal Population. J. Neurosci. 1988, 8, 2928—2937.

(13) Georgopoulos, A. P.; Lurito, J. T.; Petrides, M.; Schwartz, A. B.;
Massey, J. T. Mental Rotation of the Neuronal Population Vector.
Science 1989, 243, 234—236.

(14) Stacey, W. C.; Durand, D. M. Synaptic Noise Improves
Detection of Subthreshold Signals in Hippocampal CAl Neurons. J.
Neurophysiol. 2001, 86, 1104—1112.

(15) Mantegna, R; Spagnolo, B. Stochastic Resonance in a Tunnel
Diode. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
1994, 49, R1792.

(16) Dodda, A.; Oberoi, A.; Sebastian, A.;; Choudhury, T. H;
Redwing, J. M.; Das, S. Stochastic Resonance in MoS2 Photodetector.
Nat. Commun. 2020, 11, 4406.

(17) Kawahara, T.; Yamaguchi, S.; Maehashi, K; Ohno, Y;
Matsumoto, K.; Kawai, T. Robust Noise Modulation of Nonlinearity
in Carbon Nanotube Field-Effect Transistors. Jpn. J. Appl. Phys. 2010,
49, 02BDI11.

(18) Hakamata, Y.; Ohno, Y.; Maehashi, K.; Inoue, K.; Matsumoto,
K. Robust Noise Characteristics in Carbon Nanotube Transistors
Based on Stochastic Resonance and Their Summing Networks. Jpn. J.
Appl. Phys. 2011, S0, 06GE03.

(19) Nishiguchi, K.; Fujiwara, A. Detecting Signals Buried in Noise
via Nanowire Transistors Using Stochastic Resonance. Appl. Phys.
Lett. 2012, 101, 193108.

(20) Suzuki, Y.; Asakawa, N. Robust Thresholdlike Effect of Internal
Noise on Stochastic Resonance in an Organic Field-Effect Transistor.
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2018,
97, 012217.

16181

(21) Butler, S. Z,; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A;
Gutierrez, H. R;; Heinz, T. F,; Hong, S. S.; Huang, J.; Ismach, A. F,;
Johnston-Halperin, E.; Kuno, m.; Plashnitsa, V. V.; Robinson, R. D,;
Ruoff, R. S.; Salahuddin, S.; Shan, J; Shi, L.; Spencer, M. G;
Terrones, M.; et al. Progress, Challenges, and Opportunities in Two-
Dimensional Materials beyond Graphene. ACS Nano 2013, 7, 2898—
2926.

(22) Bhimanapati, G. R; Lin, Z.; Meunier, V.; Jung, y.; Cha, J.; Das,
S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R;; Liang, L.; Louie, S.
G.; Ringe, E,; Zhou, W,; Kim, S. S,; Naik, R. R.; Sumpter, B. G,;
Terrones, H,; Xia, F.; Wang, Y,; et al. Recent Advances in Two-
Dimensional Materials beyond Graphene. ACS Nano 2015, 9,
11509—11539.

(23) Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M.
Beyond Graphene: Progress in Novel Two-Dimensional Materials and
van der Waals Solids. Annu. Rev. Mater. Res. 2015, 45, 1-27.

(24) Schulman, D. S; Arnold, A. J; Das, S. Contact Engineering for
2D Materials and Devices. Chem. Soc. Rev. 2018, 47, 3037—30358.

(25) Sebastian, A.; Pendurthi, R.; Choudhury, T. H.; Redwing, J. M.;
Das, S. Benchmarking Monolayer MoS2 and WS2 Field-Effect
Transistors. Nat. Commun. 2021, 12, 693.

(26) Daus, A; Vaziri, S; Chen, V.; Kéroglu, C.; Grady, R. W,;
Bailey, C. S.; Lee, H. R;; Schauble, K; Brenner, K,; Pop, E. High-
performance Flexible Nanoscale Transistors Based on Transition
Metal Dichalcogenides. Nat. Electron. 2021, 4495.

(27) Li, H; Li, Y;; Aljarb, A;; Shi, Y.; Li, L. J. Epitaxial Growth of
Two-Dimensional Layered Transition Metal Dichalcogenides:
Growth Mechanism, Controllability, and Scalability. Chem. Rev.
2018, 118 (13), 6134—6150.

(28) Lanza, M.; Smets, Q; Huyghebaert, C; Li, L. J. Yield,
Variability, Reliability, and Stability of Two-Dimensional Materials
Based Solid-State Electronic Devices. Nat. Commun. 2020, 11, 5689.

(29) Lee, G.-H.; Cui, X;; Kim, Y. D.; Arefe, G.; Zhang, X;; lee, C,;
Ye, F.; Watanabe, K.; Taniguchi, T.; Kim, P.; Hone, J. Highly Stable,
Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron
Nitride with Gate-Controllable Contact, Resistance, and Threshold
Voltage. ACS Nano 2015, 9, 7019—-7026.

(30) Wali, A;; Kundy, S.; Arnold, A. J.; Zhao, G.; Basu, K; Das, S.
Satisfiability Attack-Resistant Camouflaged Two-Dimensional Heter-
ostructure Devices. ACS Nano 2021, 15, 3453—3467.

(31) Subbulakshmi Radhakrishnan, S.; Sebastian, A.; Oberoi, A.;
Das, S.; Das, S. A Biomimetic Neural Encoder for Spiking Neural
Network. Nat. Commun. 2021, 12, 2143.

(32) Nasr, J. R;; Simonson, N.; Oberoi, A.; Horn, M. W.; Robinson,
J. A; Das, S. Low-Power and Ultra-Thin MoS2 Photodetectors on
Glass. ACS Nano 2020, 14, 15440—15449.

(33) Jayachandran, D.; Oberoi, A.; Sebastian, A.; Choudhury, T. M.;
Shankar, B.; Redwing, J. M.; Das, S. A Low-Power Biomimetic
Collision Detector Based on an In-Memory Molybdenum Disulfide
Photodetector. Nature Electronics 2020, 3, 646—658.

(34) Arnold, A. J.; Schulman, D. S.; Das, S. Thickness Trends of
Electron and Hole Conduction and Contact Carrier Injection in
Surface Charge Transfer Doped 2D Field Effect Transistors. ACS
Nano 2020, 14, 13557—13568.

(35) Arnold, A. J; Razavieh, A; Nasr, J. R; Schulman, D. S,;
Eichfeld, C. M,; Das, S. Mimicking Neurotransmitter Release in
Chemical Synapses via Hysteresis Engineering in MoS2 Transistors.
ACS Nano 2017, 11, 3110—3118.

(36) Das, S. Two Dimensional Electrostrictive Field Effect
Transistor (2D-EFET): A sub-60mV/Decade Steep Slope Device
with High ON Current. Sci. Rep. 2016, 6, 34811.

(37) Zhang, F.; Erb, C.; Runkle, L.; Zhang, X.; Alem, N. Etchant-
Free Transfer of 2D Nanostructures. Nanotechnology 2018, 29,
025602.

(38) Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High
Performance Multilayer MoS2 Transistors with Scandium Contacts.
Nano Lett. 2013, 13, 100—10S.

(39) Faisal, A. A; Selen, L. P. J.; Wolpert, D. M. Noise in the
Nervous System. Nat. Rev. Neurosci. 2008, 9, 292—303.

https://doi.org/10.1021/acsnano.1c05042
ACS Nano 2021, 15, 16172-16182


https://doi.org/10.1038/365337a0
https://doi.org/10.1038/365337a0
https://doi.org/10.1038/365337a0
https://doi.org/10.1038/46279
https://doi.org/10.1038/46279
https://doi.org/10.1038/380165a0
https://doi.org/10.1038/380165a0
https://doi.org/10.1038/373033a0
https://doi.org/10.1038/373033a0
https://doi.org/10.1371/journal.pone.0037627
https://doi.org/10.1371/journal.pone.0037627
https://doi.org/10.1371/journal.pone.0037627
https://doi.org/10.1103/PhysRevLett.86.2934
https://doi.org/10.1103/PhysRevLett.86.2934
https://doi.org/10.1038/nn1541
https://doi.org/10.1038/nn1541
https://doi.org/10.1126/science.3749885
https://doi.org/10.1126/science.3749885
https://doi.org/10.1038/nrn1888
https://doi.org/10.1038/nrn1888
https://doi.org/10.1038/972
https://doi.org/10.1038/972
https://doi.org/10.1016/S0896-6273(01)00481-0
https://doi.org/10.1016/S0896-6273(01)00481-0
https://doi.org/10.1523/JNEUROSCI.08-08-02928.1988
https://doi.org/10.1523/JNEUROSCI.08-08-02928.1988
https://doi.org/10.1523/JNEUROSCI.08-08-02928.1988
https://doi.org/10.1523/JNEUROSCI.08-08-02928.1988
https://doi.org/10.1126/science.2911737
https://doi.org/10.1152/jn.2001.86.3.1104
https://doi.org/10.1152/jn.2001.86.3.1104
https://doi.org/10.1103/PhysRevE.49.R1792
https://doi.org/10.1103/PhysRevE.49.R1792
https://doi.org/10.1038/s41467-020-18195-0
https://doi.org/10.1143/JJAP.49.02BD11
https://doi.org/10.1143/JJAP.49.02BD11
https://doi.org/10.7567/JJAP.50.06GE03
https://doi.org/10.7567/JJAP.50.06GE03
https://doi.org/10.1063/1.4766946
https://doi.org/10.1063/1.4766946
https://doi.org/10.1103/PhysRevE.97.012217
https://doi.org/10.1103/PhysRevE.97.012217
https://doi.org/10.1021/nn400280c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nn400280c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b05556?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b05556?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev-matsci-070214-021034
https://doi.org/10.1146/annurev-matsci-070214-021034
https://doi.org/10.1039/C7CS00828G
https://doi.org/10.1039/C7CS00828G
https://doi.org/10.1038/s41467-020-20732-w
https://doi.org/10.1038/s41467-020-20732-w
https://doi.org/10.1038/s41928-021-00598-6
https://doi.org/10.1038/s41928-021-00598-6
https://doi.org/10.1038/s41928-021-00598-6
https://doi.org/10.1021/acs.chemrev.7b00212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.7b00212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.7b00212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-020-19053-9
https://doi.org/10.1038/s41467-020-19053-9
https://doi.org/10.1038/s41467-020-19053-9
https://doi.org/10.1021/acsnano.5b01341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b01341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b01341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b01341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.0c10651?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.0c10651?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-021-22332-8
https://doi.org/10.1038/s41467-021-22332-8
https://doi.org/10.1021/acsnano.0c06064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.0c06064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41928-020-00466-9
https://doi.org/10.1038/s41928-020-00466-9
https://doi.org/10.1038/s41928-020-00466-9
https://doi.org/10.1021/acsnano.0c05572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.0c05572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.0c05572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.7b00113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.7b00113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/srep34811
https://doi.org/10.1038/srep34811
https://doi.org/10.1038/srep34811
https://doi.org/10.1088/1361-6528/aa9c21
https://doi.org/10.1088/1361-6528/aa9c21
https://doi.org/10.1021/nl303583v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl303583v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nrn2258
https://doi.org/10.1038/nrn2258
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c05042?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Nano Www.acsnano.org

(40) Lundstrom, M. S.; Antoniadis, D. A. Compact Models and the
Physics of Nanoscale FETs. IEEE Trans. Electron Devices 2014, 61,
225-233.

(41) Sebastian, A.; Pannone, A.; Radhakrishnan, S. S.; Das, S.
Gaussian Synapses for Probabilistic Neural Networks. Nat. Commun.
2019, 10, 4199.

(42) Das, S.; Dodda, A,; Das, S. A Biomimetic 2D Transistor for
Audiomorphic Computing. Nat. Commun. 2019, 10, 3450.

(43) Xuan, Y.; Jain, A; Zafar, S,; Lotfi, R; Nayir, N; Wang, Y,;
Choudhury, T. H.; Wright, S.; Fereca, J.; Rosenbaum, L.; Redwing, J.
M.; Crespi, V.; Van Duin, A. C. T. Multi-Scale Modeling of Gas-Phase
Reactions in Metal-Organic Chemical Vapor Deposition Growth of
WSe2. . Cryst. Growth 2019, 527, 527.

(44) Sebastian, A.; Zhang, F.; Dodda, A.; May-Rawdling, D.; Liu, H.;
Zhang, T.; Terrones, M.; Das, S. Electrochemical Polishing of Two-
Dimensional Materials. ACS Nano 2019, 13, 78—86.

16182 https://doi.org/10.1021/acsnano.1c05042
ACS Nano 2021, 15, 16172—16182


https://doi.org/10.1109/TED.2013.2283253
https://doi.org/10.1109/TED.2013.2283253
https://doi.org/10.1038/s41467-019-12035-6
https://doi.org/10.1038/s41467-019-11381-9
https://doi.org/10.1038/s41467-019-11381-9
https://doi.org/10.1016/j.jcrysgro.2019.125247
https://doi.org/10.1016/j.jcrysgro.2019.125247
https://doi.org/10.1016/j.jcrysgro.2019.125247
https://doi.org/10.1021/acsnano.8b08216?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b08216?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c05042?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

