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Abstract—Crowdsourcing has become an effective tool to utilize
human intelligence to perform tasks that are challenging for
machines. Many incentive mechanisms for crowdsourcing systems
have been proposed. However, most of existing mechanisms
assume that there are enough participants to perform the
crowdsourcing tasks. This assumption may not be true in large-
scale crowdsourcing scenarios. To address this issue, we diffuse
the crowdsourcing tasks via the social network. We study two
task diffusion models, and formulate the problem of minimizing
the total cost such that all tasks can be completed in expectation
for each model. The topology based influence estimation and
history based influence estimation based on the limited knowledge
of social network are presented in this paper. Further, we
present the global influence estimation method to measure the
influence over the whole community with the full knowledge
of social network. We design two sealed reverse auction based
truthful incentive mechanisms, MTD-L and MTD-IC, for both
diffusion models. Through both rigorous theoretical analysis
and extensive simulations, we demonstrate that the proposed
mechanisms achieve computational efficiency, individual rational-
ity, truthfulness, and guaranteed approximation. Moreover, the
global influence estimation based mechanisms always output the
least social cost and overpayment ratio, and the history influence
estimation based mechanisms show significant superiority in
terms of task completion rate.

Keywords—crowdsourcing; incentive mechanism design; reverse
auction; social network

I. Introduction

Crowdsourcing takes advantage of the wisdom of individ-
uals, teams, and communities to complete tasks. One famous
example is Wikipedia [1]. Recently, crowdsourcing has been
widely used in many fields, including video analysis [2],
knowledge discovery from web tables [3], conducting human
robot interaction studies (e.g., RMS [4]), image quality assess-
ment [5], and online marketplace (e.g., Amazon Mechanical
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Turk, AMT [6]). Moreover, with the rapid proliferation of
smartphones, mobile crowdsourcing has become an efficient
approach for large-scale sensing applications. Due to the high
mobility of vehicles or the controllability of the unmanned ve-
hicles, e.g., drones and driverless cars, vehicular crowdsourc-
ing shows great superiority for large-scale tasks. There have
been many vehicular crowdsourcing paradigms, such as energy
crowdsourcing from AEVs (Autonomous Electric Vehicles)
during peak time periods [7], vehicular crowdsourcing (VC)
campaign for long-term and hash tasks in remote or dangerous
areas [8], vehicular fog computing for real-time analytics of
crowdsourced dash camera video [9].

Incentive mechanism design is important to many network
computing paradigms [10], such as edge computing [11],
transparent computing [12] and mobile crowdsourcing com-
puting [13]. Particularly, incentive mechanisms are crucial
to crowdsourcing while crowdsourcing workers may have
associated costs for performing tasks. A lot of research ef-
forts [13, 14, 15] have been focused on developing incentive
mechanisms to entice users to participate in crowdsourcing.
However, most of existing studies assume that there are
enough participants to perform the crowdsourcing tasks. This
assumption may not be true in real situations. First, at the early
beginning, the crowdsourcing platform faces the cold-start
problem and cannot provide sufficient workers for completing
tasks. Moreover, the crowdsourcing platform also benefits
the developed platform when it cannot find enough workers
interested in some specific tasks. The platform can resort
to our worker recruitment process to ask help from users
in social networks. In addition, the bases of participants of
crowdsourcing applications are still not big enough. According
to [16], mobile crowdsensing applications have rarely scaled
up to more than 1000 participants. Our statistical results show
that there are 618.65 uncompleted HITs (Human Intelligence
Tasks) in Amazon Mechanical Turk [6] per day on average
from 2016-05-01 to 2016-05-20. Thus how to diffuse crowd-
sourcing tasks efficiently is a nontrivial issue. However, most
of existing incentive mechanisms aim to stimulate the users
to perform the crowdsourcing tasks rather than diffuse the
tasks. As far as we known, there is no off-the-shelf incentive
mechanism designed in the literature for the crowdsourcing
task diffusion.

In reality, the celebrities have shown powerful influence
in crowdsourcing campaigns. As an example of the “Digital
Death” campaign [17] launched December 1, 2010 for World
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TABLE I
Social Network Owned Crowdsourcing Systems

Crowdsourcing
system Service Operator Social

Network

Stepes [21] global shared interpreting
services on Mobile Facebook Facebook

Google Image
Labeler [22]

label images as a side-
effect of playing a game Google Google+

Translate
Community [23]

improve google’s
translation quality Google Google+

Amazon Mechanical
Turk [6] online marketplace Amazon Amazon

Spark

QQ-Crowd [24] enhance the quality of
products Tencent QQ

AIDS Day, the stars sacrifice their digital lives on Twitter and
Facebook until their fans donate one million dollars to buy
their lives back. Among the other celebrities featured in the
campaign were Alicia Keys, Lady Gaga, Justin Timberlake,
Usher and Serena Williams. The million dollar donation goal
was reached in six days. It is intuitive to select influential users
to diffuse large-scale tasks in the social network for improv-
ing the crowdsourcing participation level. Here, “large-scale
tasks” represents that the workload of crowdsourcing tasks is
huge for the current user base of the platform. For example,
collecting sensing data from a large-scale area, complicated
computation or data processing and collecting multiple sensing
data/answers of crowdsourcing task to improve the variety and
robustness. Thus, it is necessary to recruit participants from
the social network through the task diffusion.

Online social network has become one of the most effective
and efficient solutions for marketing and advertising. The
extreme boom of online social network sites like Facebook,
Twitter, Google+, Microblog and Wechat has been witnessed
in the past decade. In social networks, one of the most
significant events is called diffusion, such as the diffusion of
news, innovations and product adoptions. Kempe et al. [18]
proposed the two most popular influence diffusion models:
independent cascade model and linear threshold model. A
lot of research efforts have been focused on maximizing the
spread of influence [18] or selecting minimum initial user
set to diffuse influence [19, 20] in online social network.
However, the existing studies mainly consider the scenario,
where there is only one diffusion object. Moreover, the cost
of diffusion and the corresponding incentive to diffusers are
largely neglected in current research literature.

Many social network service sites have developed their own
crowdsourcing systems. There are some realistic examples
of existing crowdsourcing systems as shown in TABLE 1.
These crowdsourcing systems can utilize the knowledge of
the social network. It is intuitive to select the influential users
to diffuse large-scale tasks in the social network for improving
the crowdsourcing participation level.

In this paper, we consider the crowdsourcing with multiple
large-scale tasks is launched in the platform, which is operated
by an online social network site. Each of large-scale tasks
requires a specific number of users to perform in order to
ensure the variety and robustness of crowdsourced data. We
term such tasks cooperative tasks. We consider the number

of registered users is insufficient to complete the multiple
cooperative tasks. The objective is designing truthful incentive
mechanisms to minimize the total diffusion cost such that each
of large-scale tasks can be completed in expectation through
the task diffusion in online social network. To address the
insufficient participation problem, we model the crowdsourc-
ing task diffusion process as a sealed reverse auction. In our
system model, each registered user bids for the tasks he/she
can diffuse. The platform selects a subset of registered users
and notifies the selected winners. The winners diffuse the tasks
to their social neighbors. Then the influenced social neighbors
perform the tasks. Finally, each winner obtains the payment,
which is determined by the platform. The whole process is
illustrated by Fig.1.

Fig. 1. Crowdsourcing task diffusion process through social network

The incentive mechanisms for the workers (influenced social
neighbors in this paper) to perform the multiple cooperative
tasks in crowdsourcing was proposed in [25]. Thus, we focus
on addressing the insufficient participation problem in crowd-
sourcing, and only consider the incentive to the registered
users for diffusing tasks in this work.

The problem of designing truthful incentive mechanisms
to minimize the total cost for diffusing multiple large-scale
crowdsourcing tasks is very challenging. First, the character
of crowdsourcing task diffusion is that the influence of users
not only depends on the network structure, but also the tasks
to be diffused. This is because the uses usually have different
influence for different tasks. However, influence evaluation
methods based on network structure metrics [26, 27, 28]
cannot capture this character of crowdsourcing task diffusion.
In our crowdsourcing scenario, the diffusion models should
enable the registered users diffuse multiple large-scale tasks
simultaneously in order to meet the demands of crowdsourcing
scenarios. Second, the traditional influence evaluation methods
identify influential nodes based on the global knowledge of
network structure metrics, such as degree centrality [28],
betweenness centrality [26] and closeness centrality [27].
However, it is hard to obtain the global knowledge of network
structure in crowdsourcing system. In addition, some studies
[29, 30] need to calculate the influence between the social
uses based on the predefined base influence, which is difficult
to obtain in practice. Although many social network service
sites have developed their own crowdsourcing systems, the
limited knowledge can be obtained in most practical situations.
Moreover, the registered user may take a strategic behavior by
submitting dishonest bid price to maximize its utility.

The main contributions of this paper are as follows:
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• To the best of our knowledge, this is the first work to
design the auction-based truthful incentive mechanisms
for the task diffusers in crowdsourcing systems through
the influence diffusion models in social networks.

• We present two crowdsourcing task diffusion models:
linear task diffusion model and independent cascade task
diffusion model, and formulate the Social Optimization
Task Diffusion (SOTD) problem for both models.

• We present two local influence estimation methods based
on different knowledge of social network. Further, we
extend the local influence estimation method to global
influence estimation, which can estimate the influence
over the whole social network.

• We design an incentive mechanism for each of two
diffusion models to solve the SOTD problem. We show
that the designed mechanisms satisfy desirable properties
of computational efficiency, individual rationality, truth-
fulness, and guaranteed approximation. Moreover, our
incentive mechanisms can largely reduce the total cost
of task diffusion in crowdsourcing.

The rest of the paper is organized as follows. We review
the state-of-art research in Section II. Section III formulates
the diffusion models, and lists some desirable properties.
Two influence estimation methods are proposed in Section
IV. Section V and Section VI present the detailed design
and analysis of our incentive mechanisms for both two dif-
fusion models, respectively. We present the global influence
estimation method in Section VII. Performance evaluation is
presented in Section VIII. We conclude this paper in Section
IX.

II. RelatedWork

A. Incentive Mechanism Design in Crowdsourcing

Many incentive mechanisms for crowdsourcing have been
proposed thus far. Singer proposed a truthful budget feasible
mechanism [31] based on the proportional share allocation
rule. However, the designed mechanism was valid only for
submodular functions. In [32], Singla et al. exploited a link
between procurement auctions and multi-armed bandits to
design mechanisms that are budget feasible, achieving near-
optimal utility for the requester. The incentive mechanisms
for the crowdsourcing system with biased requesters were
proposed in [33]. Pricing mechanisms were also developed
in [34] for the budget feasible maximizing task problem and
the budget feasible minimizing payment problem based on the
method in [31]. Yang et al. proposed two different models for
smartphone crowd sensing [35]: the platform-centric model
where the platform provides a reward shared by participating
users, and the user-centric model where users have more
control over the payment they will receive. In [13], Feng et al.
formulated the location-aware collaborative sensing problem
as the winning bids determination problem, and presented a
truthful auction using the proportional share allocation rule.
Koutsopoulos designed an optimal reverse auction [36], con-
sidering the data quality as user participation level. However,
the quality indicator, which essentially measures the relevance
or usefulness of information, is empirical and relies on user’s

historical information. In [37], Zhao et al. investigated the
online crowdsourcing scenario where the users submit their
profiles to the crowdsourcer when they arrive. The objective
is selecting a subset of users for maximizing the value of the
crowdsourcer under the budget constraint. They designed two
online mechanisms, OMZ, OMG for different user models.
Zhou et al. designed the incentive mechanisms for mobile
crowdsensing systems under the platform’s budget constraint
and users’ capacity constraint, which can ensure approximately
maximized value of services for the crowdsourcer [38]. Zhang
[14] et al. proposed IMC, which consider the competition
among the requesters in crowdsourcing. Wang et al. divided
the life cycle of each crowdsensing task in mobile crowdsens-
ing into four phases: task allocation, incentive, data collection,
and data publishing, and designed a privacy-preserving frame-
work for mobile crowdsensing to protect users’ privacy in the
whole life cycle of mobile crowdsensing [39]. However, all
above studies assume that there are enough participants who
can perform the crowdsourcing tasks.

B. Incentive Mechanism Design in Other Applications

Many incentive mechanisms have been proposed in other
applications, such as Device-to-Device (D2D) based content
distribution [40, 41] and content distribution using Peer-to-
Peer (P2P) protocols [42]. However, the incentive mechanisms
designed for content distribution cannot be used for crowd-
sourcing task diffusion. First, either in D2D communication or
P2P network, the content distribution is a one-hop transmis-
sion, thus there is no propagation process. Second, the content
requester can always receive the content successfully once the
content provider sends the content to it. Thus, the concepts
of influence and diffusion model are not needed. However,
in our crowdsourcing setting, the goal of task diffusion is to
recruit the users to perform the tasks, and the users perform
the task only if they have received sufficient influence. Thus,
an appropriate diffusion model is needed in crowdsourcing
scenario.

C. Influence Evaluation in Social Network

In [18], Kempe et al. proposed the two most popular and
basic influence diffusion models: independent cascade model
(IC) model and linear threshold (LT) model. Cheng et al.
minimized the number of initial users while given quantity
of users are influenced [20]. Zhu et al. studied how influence
may use the initial users with minimum cost to spread its
information to a certain threshold under competitors’ hinder
[19]. However, these classic influence diffusion models only
consider the influence diffusion for single item. In our crowd-
sourcing scenario, we need to diffusion a set of tasks, and the
extension of classic influence diffusion model is necessary.

The influence evaluation methods in social network have
been widely studied. The traditional influence evaluation meth-
ods identify influential nodes based on the global knowledge
of network structure metrics, such as degree centrality [28],
betweenness centrality [26] and closeness centrality [27].
However, the computation complexity of calculating the be-
tweenness and closeness centrality for all node pairs in the
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large-scale social networks, which usually contain millions
of users, is very high [43, 44]. Moreover, it is hard to
obtain the global knowledge of network structure in crowd-
sourcing system. Although many social network service sites
have developed their own crowdsourcing systems, the limited
knowledge, such as local network structure, can be obtained
in most practical situations. Recently, Qiu et al. designed an
end-to-end framework, DeepInf, to learn users’ latent feature
representation for predicting social influence [45]. However,
DeepInf takes the shortest paths between all users, which is
also hard to obtain, as the input of graph neural network. The
character of crowdsourcing task diffusion is that the influence
of users not only depends on the network structure, but also
the tasks to be diffused. This is because the uses usually
have different influence for different tasks. However, influence
evaluation methods based on network structure metrics [26,
27, 28] cannot capture this character of crowdsourcing task
diffusion.

D. Crowdsourcing based on Social Network

Some research works have studied the impact of the social
relationship on the participation of workers by introduction of
positive externality. Nie et al. obtained the Nash Equilibrium
using Stackelberg game in complete and incomplete informa-
tion scenarios, respectively [46]. The basic idea of [47] is to
leverage the social ties among participants to promote global
cooperation. A three-stage Stackelberg game is proposed to
determine the strategy (contribution to the system) of each
participant. These works aim to study the impact of the social
relationship on the crowdsourcing system, rather than the
problem of social user recruitment.

Recently, the method of task diffusion via social network
are proposed to solve the insufficient participation problem
in crowdsourcing systems. Xu et al. proposed a two-tiered
social crowdsourcing architecture, where a set of agents are
selected to diffuse the tasks to the social neighbors [48]. The
objective is maximizing value from the winners’ services un-
der the budget constraint. Han et al. investigated a participant
recruitment problem in which an initial set of recruited nodes
(called seeds) need to make an optimal decision on what other
nodes to recruit to perform the crowdsourcing task with the
objective of maximizing the utility of seeds [49]. However, the
cost of diffusion and the corresponding incentive to diffusers
are neglected in the aforementioned studies.

Some incentive mechanisms have been proposed to stim-
ulate the task diffusers. Wang et al. [29] proposed a social-
network-assisted incentive mechanism to maximize the sens-
ing coverage under the monetary budget constraint. In detail,
they selected influential initial seeds from the MCS platform
to recruit their social friends as new workers. The IC model
and LT model with random base influence are extended by
integrating mobile crowdsensing specific factors. Wang et al.
[30] focused on the insufficient participation problem of MCS
systems with limited number of workers, and propose to
leverage social network to recruit workers for task completion
as well as expanding the worker pool. However, the afore-
mentioned two research provide a predefined reward to the

initial users and cannot guarantee the individual rationality of
initial users. In addition, both [29] and [30] need to calculate
the influence between the social uses based on the predefined
base influence, which is difficult to obtain in practice. Based
on a three-layer network model, Chen et al. designed incentive
mechanisms for both intermediaries and the crowdsensing
platform and provided a solution to cope with the problem
of user overlapping among intermediaries [50]. However, they
did not specify the task diffusion model and influence compu-
tation. Different from the research above mentioned, this paper
aims to propose an auction-based incentive mechanism to
achieve the desirable economic properties and the guaranteed
performance of task diffusion.

III. SystemModel and Desirable Properties

Although the traditional linear threshold model and inde-
pendent cascade model for influence diffusion [18] have been
applied in many different contexts, they cannot be directly
applied in crowdsourcing systems. In general, multiple large-
scale tasks need to be diffused simultaneously in crowdsourc-
ing systems. Moreover, the crowdsourcing systems may have
some specific demands for performing tasks, e.g., requiring
multiple copies for each task from different users in order to
improve the diversity or quality.

In this section, we model the crowdsourcing task diffusion
as a reverse auction problem and present two different task
diffusion models. Our task diffusion models derive from
linear threshold model, which is proposed for modeling the
collective behavior from the perspective of sociology [51],
and independent cascade model, which is based on work in
interacting particle systems [52] from probability theory. Both
of them are widely applied in various areas, such as diffusion
of innovations, rumors and diseases, strikes, voting, migration,
and experimental social psychology.

In the research community of social network, Linear thresh-
old model and independent cascade model are two mainstream
models to characterize influence diffusion. Many studies of
influence propagation conducted a comparative study by using
both models [18, 20]. The recent work for crowdsourcing task
diffusion also used the extensions of these two models [29]. In
this paper, we also model the task diffusion process based on
these two mainstream diffusion models to verify the feasibility
of crowdsourcing task diffusion and conduct a comparative
study for both models.

In our linear task diffusion model, a user can be influ-
enced by each neighboring registered user according to the
cumulative probability. While in the independent cascade task
diffusion model, the registered user only has a single chance to
influence each currently social neighbor. Moreover, we present
some desirable properties of incentive mechanisms.

A. Auction Model

We consider a crowdsourcing platform operated by an
online social network site. The platform publicizes a set
T = {t1, t2, ..., tm} of m cooperative tasks. Each task t j ∈ T is
associated with a diffusion requirement r j ∈ Z+, which is the
least desirable number of unregistered users for performing
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t j through the task diffusion. Let r = (r1, r2, ..., rm) be the
diffusion requirement profile for all tasks. Each task t j ∈ T
has a type a j, such as target language and industry involved
in Stepes [21], and image type in Google Image Labeler [22].
The task types are predefined by the platform, and different
tasks can have the same task type. Let a = (a1, a2, ..., am) be
the task type profile.

Assume that a set of registered users UR = {1, 2, ..., n} are
interested in diffusing crowdsourcing tasks. Each registered
user i ∈ UR submits a bid Bi = (Ti, bi), Ti ⊆ T . The task set Ti

is associated with the cost ci, which is the private information
and known only to i. bi is the claimed cost, which is the bid
price that i wants to charge for diffusing Ti. If any registered
user i is selected as a winner for task diffusion, he/she would
diffuse Ti to his/her social neighbors excluding users in UR.
We consider that the registered users can always perform the
tasks. Thus, we only diffuse the tasks to the unregistered users.
To select the winners, the set of influence ϑ of every registered
user when he/she diffuses any task to every social neighbor is
estimated.

Given the task set T , the bid profile B = (B1, B2, ..., Bn),
and the influence set ϑ, the incentive mechanism M (T,B, ϑ)
outputs a winner set S ⊆ UR and a payment profile p =

(p1, p2, ..., pn) for each registered user. We define the utility
of winning registered user i as the difference between the
payment and its real cost:

ui = pi − ci (1)

Specifically, the utility of the losers would be zero because
they are paid nothing in our designed mechanisms and there
is no cost for task diffusion.

Since we consider the registered users are selfish and
rational individuals, thus each registered user can behave
strategically by submitting a dishonest bid price to maximize
its utility.

In order to prevent the monopoly, we assume that all tasks
still can be completed if any single registered user does not
participate in the auction. This assumption is reasonable for
crowdsourcing systems as made in [13, 53]. If a task can only
be completed through the diffusion via a specific registered
user, the platform can simply remove it from T .

B. Linear Task Diffusion Model
Let US be the set of social neighbors of all registered users

excluding themselves, i.e., UR ∩US = ∅. The size of US is q.
We denote ϕi,v(t j) as the influence of when i diffuses task t j

to v ∈ US . Let ϑ be the set of ϕi,v(t j) for ∀i ∈ UR, ∀v ∈ US .
The influence to user v represents the probability that user v
performs t j. In the linear task diffusion model, the influence
is cumulative. Thus, the probability of that user v performs
t j would increase when multiple registered users diffuse t j to
user v.

The objective of the incentive mechanism is minimizing the
social cost such that each of tasks in T can be completed in
expectation through the diffusion. We refer this problem as the
Social Optimization Task Diffusion (SOTD) problem, which
can be formulated as follows:

min
∑

i∈UR
xibi (2)

s.t.
∑

i∈UR
(xi

∑
v∈US

ϕi,v(t j)) ≥ r j, ∀t j ∈ T (3)

xi ∈ {0, 1}, ∀i ∈ UR (4)

where xi is the binary variable for each registered user i ∈ UR.
Let xi = 1 if i is a winner; otherwise, xi = 0.

Remark: Although the real cost ci is only known by regis-
tered user i, we will prove that claiming a false cost cannot
help to increase the utility of registered user i in our designed
mechanisms. Thus we still use bi when we attempt to minimize
the social cost in the mechanisms designed below.

C. Independent Cascade Task Diffusion Model

In this model, the reverse auction process is the same as
those in Section II-A. However, the influence is calculated
differently. In this model, the registered user only has a single
chance to influence the current social neighbors. After that,
he/she cannot make any further attempts to influence the same
social neighbors. Thus the probability that user v performs t j is
not cumulative, but only depends on the registered user, who
is diffusing task to v currently. Essentially, the independent
cascade task diffusion model considers that multiple registered
users diffuse the tasks serially, thus the winners are selected
sequentially. The Social Optimization Task Diffusion (SOTD)
problem in the independent cascade task diffusion model can
be formulated as follows:

min
∑

i∈UR
xibi (5)

s.t.
∑

i∈UR
xi( f j(S 0 ∪ {i}) − f j(S 0)) ≥ r j, ∀t j ∈ T (6)

xi ∈ {0, 1}, ∀i ∈ UR (7)

where xi is the binary variable for each registered user i ∈ UR.
Let xi = 1 if i is a winner; otherwise, xi = 0. S 0 is the winner
set when considering i. f j(S 0) is the influence of S 0 when
diffusing t j.

We need define f j(S 0) for any registered user subset S 0
according to the constraint of SOTD problem: each of tasks
in T can be completed in expectation through the diffusion.
Therefore, f j(S 0) should exactly represent the number of users
in expectation in US to perform t j when the registered users
in S 0 diffuse t j to US . We define f j(S 0) as the summation of
joint probability of each user in US to perform t j:

f j(S 0) =
∑

v∈US
(1 −

∏
i∈S 0,t j∈Ti

(1−ϕi,v(t j))) (8)

D. Desirable Properties

Our objective is to design the incentive mechanisms satis-
fying the following four desirable properties:
• Computational Efficiency: An incentive mechanism M

is computationally efficient if the outcome can be com-
puted in polynomial time.

• Individual Rationality: Each registered user will have a
non-negative utility when bidding its true cost, i.e., ui ≥

0,∀i ∈ UR.
• Truthfulness: An incentive mechanism is truthful if

reporting the true cost is a weakly dominant strategy for
all registered users. In other words, no registered user can
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improve its utility by submitting a false cost, no matter
what others submit.

• Social Optimization: The objective is minimizing the
social cost. We attempt to find optimal solution or ap-
proximation algorithm with low approximation ratio when
there is no optimal solution terminated in polynomial
time. For the latter, the approximation ratio is the ratio
between approximation solution and the optimal solution.

The importance of the first two properties is obvious,
because they together assure the feasibility of the incentive
mechanism. The last two properties are indispensable for
guaranteeing the compatibility and high performance. Being
truthful, the incentive mechanisms can eliminate the fear of
market manipulation and the overhead of strategizing over
others for the registered users.

We list the frequently used notations in Table. II.

TABLE II
Frequently Used Notations

Symbol Description

T, m, t j task set, number of tasks, task j
r, r j diffusion requirement profile, diffusion requirement of task t j
a, a j task type profile, type of task t j
UR, n set of registered users, number of registered users

Ti task set of registered user i
bi, ci bidding price of registered user i, cost of registered user i
B, Bi bid profile, bid of registered user i
US , q set of social neighbors, number of social neighbors

ϕi,v
(
t j
) influence of registered user i to social neighbor v

when diffusing task t j
vi(t j) influence of user i when diffusing t j
p, pi payment profile, payment of registered user i

ui utility of registered user i
S winner set

f j(S 0) influence of S 0 when diffusing t j
Jac(i, v) Jaccard Similarity Coefficient of i and v
Ni, Nv set of social neighbors of i and v

UG set of all social users
S hell(i) K − shell index of registered user i

Path(i, v) shortest path from i to v

IV. Influence Estimation

Before introducing our incentive mechanisms, we present
the methods for estimating influence ϕi,v(t j), which is a key
parameter of our incentive mechanisms for every social neigh-
bor pair (i, v), i ∈ UR, v ∈ US , t j ∈ T . The influence should
reflect the real-life relationships from the registered users to
their social neighbors. Since we consider the crowdsourcing
platform is operated by a social network, the crowdsourcing
platform can obtain the social information with a certain level.

In this section, we propose two influence estimation meth-
ods: Topology based Influence Estimation (TIE) and History
based Influence Estimation (HIE). The TIE estimates the
influence solely based on the topology of the social network.
Therefore, it outputs the identical influence for all tasks. While
the HIE estimates the influence according to the diffusion
history between registered users and their social neighbors.
The HIE can provide different influence values for different

tasks. In general, the influence estimated by TIE is larger than
that by HIE, and the social cost of TIE based mechanisms
is smaller that of HIE based mechanisms. However, HIE
based mechanisms can complete more tasks than TIE based
mechanisms. Thus, the choose of influence estimation methods
depends on the preference of crowdsourcing platform over
social cost and task completion rate. We will give the detailed
analysis in simulation section. In this paper, we present both
TIE and HIE to fulfill the different requirement of crowd-
sourcing platform, improving the flexibility of our incentive
mechanisms.

A. Topology based Influence Estimation

The TIE method relies on the observation that the relation-
ship between two social neighbors is closer if they share more
common social neighbors [54]. We use the Jaccard Similarity
Coefficient to measure the relationship between two social
users:

Jac(i, v) =
|Ni ∩ Nv|

|Ni ∪ Nv|
, i ∈ UR ∩ Nv, v ∈ US (9)

where Ni and Nv represent the set of social neighbors of i and
v, respectively.

Then the influence of user i to user v when user i diffuses
task t j to user v can be calculated as:

ϕi,v(t j) =
Jac(i, v)∑

d∈UR∩Nv
Jac(d, v)

, i ∈ UR ∩ Nv, v ∈ US (10)

Note that the influence estimated by TIE is irrelevant to the
tasks since TIE only utilizes the topology information of the
social network.

B. History based Influence Estimation

In the HIE, the influence ϕi,v(t j) is considered as the
proportion contribution of user i when user v is influenced
to perform the tasks with type a j in the history.

We introduce a binary variable ηi,v(a j). ηi,v(a j) = 1 iff
registered user i diffused tasks with type a j to social neighbor
v historically, and user v performed the task after the diffusion.
Let Θv(a j) be the set of registered users satisfying ηi,v(a j) = 1:

Θv(a j) = { i | ηi,v(a j) = 1 }, i ∈ UR, v ∈ US (11)

Then we define the influence ϕi,v(t j) as follows:

ϕi,v(t j) =


1∑

d∈Θv(a j) ηd,v(a j)
, if i ∈ Θv(a j)

0, else
(12)

V. IncentiveMechanism for the Linear Task Diffusion
Model

In this section, we present an incentive Mechanism for Task
Diffusion in the Linear Model (MTD-L).
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A. Mechanism Design

First of all, we attempt to find an optimal algorithm for
the SOTD problem presented in (2)∼(4). Unfortunately, as the
following theorem shows, the SOTD problem is NP-hard.

Theorem 1. The SOTD problem in the linear task diffusion
model is NP-hard.

Proof: We consider a special case of SOTD problem in the
linear task diffusion model, where the diffusion requirements
for all tasks in T are the same. Let r j = σ for ∀t j ∈ T, σ > 0,
where σ is sufficiently close to 0. This means that, in this
special case, any task t j ∈ T can be completed upon there is
any registered user i ∈ UR with

∑
v∈US

ϕi,v(t j) > 0. In this way,
the problem can be simplified as selecting a subset S ⊆ UR

with minimum total cost such that the registered users in S
can diffuse each of tasks in T with positive influence. Since
each registered user can bid for a subset of T with a cost, this
special problem is actually an instance of the Weighted Set
Cover (WSC) problem, which can be formulated as follows:

min
∑

i∈S
bi (13)

s.t.
∑

i∈S

∑
v∈US

ϕi,v(t j) > 0, ∀t j ∈ T (14)

Since the WSC problem is a well-known NP-hard problem,
the SOTD problem in the linear task diffusion model is NP-
hard. �

Algorithm 1: MTD-L
Input: task set T , bid profile B, influence set ϑ, registered

user set UR, social neighbor set US , diffusion require-
ments r
//Winner Selection Phase

1: S ← ∅, r j
′ ← r j;

2: while
∑

t j∈T r j
′ , 0 do

3: i← arg mink∈UR\S
bk∑

t j∈Tk
min{r j

′, vk(t j)}
;

4: S ← S ∪ {i};
5: foreach t j ∈ Ti do
6: r j

′ ← r j
′ −min{r j

′, vi(t j)};
7: end for
8: end while

//Payment Determination Phase
9: foreach i ∈ UR do pi ← 0;

10: foreach i ∈ S do
11: UR

′ ← UR\{i}, S ′ ← ∅, r j
′′ ← r j;

12: while
∑

t j∈T r j
′′ , 0 do

13: ik ← arg mink∈UR
′\S ′

bk∑
t j∈Tk

min{r j
′′, vk(t j)}

;

14: S ′ ← S ′ ∪ {ik};

15: pi ← max{pi,

∑
t j∈Ti

min{r j
′′, vi(t j)}∑

t j∈Tik
min{r j

′′, vik (t j)}
bik };

16: foreach t j ∈ Tik do
17: r j

′′ ← r j
′′ −min{r j

′′, vik (t j)};
18: end for
19: end while
20: end for
21: return (S ,p);

Since the SOTD problem in the linear task diffusion model
is NP-hard, it is impossible to compute the winner set with
minimum social cost in polynomial time unless P=NP. In fact,
there is no (1−ε) ln n approximate polynomial time algorithm
for WSC problem [55]. In addition, we cannot use the off-
the-shelf VCG mechanism [56] since the truthfulness of VCG
mechanism requires that the social cost is exactly minimized.
We design our incentive mechanism in the linear task diffusion
model, MTD-L, which follows a greedy approach. Illustrated
in Algorithm 1, MTD-L consists of winner selection phase and
payment determination phase.

In the winner selection phase, the registered users are
sorted according to the effective influence unit cost. Given
any task t j ∈ T , the influence of registered user i is vi(t j) =∑

v∈US
ϕi,v(t j). The effective influence unit cost of registered

user i is defined as
bi∑

t j∈Ti
min{r j

′, vi(t j)}
. In each iteration

of the winner selection phase, we select the registered user
with minimum effective influence unit cost over the unselected
registered user set U\S as the winner until the winners’
influence can meet the diffusion requirement for each task in
T .

In payment determination phase, for each winner i ∈ S , we
execute the winner selection phase over U\{i}, and the winner
set is denoted as S ′. We compute the maximum price that
registered user i can be selected instead of each registered
user in S ′. We will prove that this price is a critical payment
for registered user i later.

B. Mechanism Analysis

In the following, we present the theoretical analysis, demon-
strating that MTD-L can achieve the desired properties of
computational efficiency, individual rationality, truthfulness,
and low approximation ratio.

Lemma 1. MTD-L is computationally efficient.
Proof: Finding the registered user with minimum effective

influence unit cost takes O(nmq), where computing the value
of

∑
t j∈Tk

min{r j
′, vk(t j)} takes O(mq). Hence, the while-loop

(line2-8) takes O(n2mq). In each iteration of the for-loop
(line10-20), a process similar to line2-8 is executed. Hence
the time complexity of the whole auction is dominated by this
for-loop, which is bounded by O(n3mq).

Note that the influence estimated by TIE is irrelevant to the
tasks, i.e., ϕi,v(t j) = ϕi,v(tk) for all t j ∈ Ti, tk ∈ Ti, t j , tk.
Hence computing the value of

∑
t j∈Tk

min{r j
′, vk(t j)} can only

take O(q). Therefore, the time complexity of the auction is
O(n2 ·max{nq,m}) when using TIE. �

Lemma 2. MTD-L is individually rational.
Proof: Let ik be registered user i’s replacement which

appears in the ith place in the sorting over UR\{i}. Since
registered user ik would not be at ith place if i is considered,

we have
bi∑

t j∈Ti
min{r j

′, vi(t j)}
≤

bik∑
t j∈Tik

min{r j
′, vik (t j)}

. Hence

bi ≤

∑
t j∈Ti

min{r j
′, vi(t j)}∑

t j∈Tik
min{r j

′, vik (t j)}
bik =

∑
t j∈Ti

min{r j
′′, vi(t j)}∑

t j∈Tik
min{r j

′′, vik (t j)}
bik ,

where the equality relies on the observation that r j
′ = r j

′′

for every k ≤ i, which is due to the fact that S = S ′
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for every k ≤ i. This is sufficient to guarantee bi ≤

maxk∈UR\S ′

∑
t j∈Ti

min{r j
′′, vi(t j)}∑

t j∈Tik
min{r j

′′, vik (t j)}
bik = pi. �

Before analyzing the truthfulness of MTD-L, we first intro-
duce the Myerson’s Theorem [57].

Theorem 2. ([32, Theorem 2.1]) An auction mechanism is
truthful if and only if:
• The selection rule is monotone: If user i wins the auction

by bidding bi, it also wins by bidding bi
′ < bi;

• Each winner is paid the critical value: User i would not
win the auction if it bids higher than this value.

Lemma 3. MLT-L is truthful.
Proof: Based on Theorem 2, it suffices to prove that the

selection rule of MLT-L is monotone and the payment pi

for each i is the critical value. The monotonicity of the
selection rule is obvious as bidding a smaller value cannot
push registered user i backwards in the sorting.

We next show that pi is the critical value for regis-
tered user i in the sense that bidding higher pi could
prevent registered user i from winning the auction. Note

that pi = maxk∈{1,...,e}

∑
t j∈Ti

min{r j
′′, vi(t j)}∑

t j∈Tik
min{r j

′′, vik (t j)}
bik . If registered

user i bids bi ≥ pi, it will be placed after e since

bi ≥

∑
t j∈Ti

min{r j
′′, vi(t j)}∑

t j∈Tie
min{r j

′′, vie (t j)}
bie implies

bi∑
t j∈Ti

min{r j
′′, vi(t j)}

≥

bie∑
t j∈Tie

min{r j
′′, vie (t j)}

. Hence, registered user i would not win

the auction because the first e registered users have met the
diffusion requirement for each task in T . �

Then, we provide our analysis about the approximation ratio
of the MTD-L auction using the dual fitting method [58]. We
formulate the linear program relaxation of the SOTD problem
defined in (2)∼(4) as the normalized primal linear program P.
The dual program is formulated in program D.

P : min
∑

i∈UR
bixi (15)

s.t.
∑

i:i∈UR,t j∈Ti
(vi(t j)xi) ≥ r j, ∀t j ∈ T (16)

0 ≤ xi ≤ 1, ∀i ∈ UR (17)

D : max
∑

t j∈T
r jy j −

∑
i∈UR

zi (18)

s.t.
∑

t j∈Ti
(vi(t j)y j) − zi ≤ bi, ∀i ∈ UR (19)

y j ≥ 0, ∀t j ∈ T (20)

zi ≥ 0, ∀i ∈ UR (21)

We define any task t j ∈ T as alive at any iteration in winner
selection phase if its diffusion requirement is not fully satisfied.
We define that task t j is covered by Ti if t j ∈ Ti and t j is alive
when registered user i is selected. The coverage relationship
is represented as t j ≺ Ti. Moreover, we define the minimum
influence as ∆v. Suppose when registered user i is selected, the
residual diffusion requirement profile is {r1

∗, r2
∗, ..., rm

∗} and
Ti is the i jth set that covers t j, the corresponding normalized

effective influence unit cost in terms of unit influence can be
represented in (22):

w(t j, i j) =
bi∆v∑

t j∈Ti
min{r j

∗, vi(t j)}
(22)

We assume that t j is covered by h j sets. Then we have
w(t j, 1) ≤ ... ≤ w(t j, h j). We then define two constants Ω =

1
∆v

∑
t j∈T r j and ε = max vi(t j) |Ti| bi, i ∈ UR, t j ∈ T .

Lemma 4. The following pairs (y j, zi), j ∈ T, i ∈ UR are
feasible to the dual program D.

y j =
w(t j, h j)
2εHn∆v

, ∀t j ∈ T,

zi =


∑

t j≺Ti

(
min{r j

∗, vi(t j)}(w(t j, h j) − w(t j, i j))
)

2εHΩ∆v
, i ∈ S

0, i < S

where Hn = 1 +
1
2

+ ... +
1
n
, HΩ = 1 +

1
2

+ ... +
1
Ω

.
Proof: Suppose for any registered user i ∈ UR, there are si

tasks in Ti. We reorder these tasks in the order in which they
are fully covered.

If i < S , then we have zi = 0. Suppose when the last unit
diffusion requirement of t j is covered, the residual diffusion
requirement profile is {r1

+, r2
+, ..., rm

+}, then the total residual
diffusion requirements of alive tasks contained by Ti are
represented as

∑si
k= j min{rk

+, vi(tk)}. We have

w(t j, h j) ≤
bi∆v∑si

k= j min{rk
+, vi(tk)}

Therefore, we have∑S i

j=1
(vi(t j)y j) − zi ≤

∑S i

j=1

vi(t j)bi

2εHΩ

∑si
k= j min{rk

+, vi(tk)}
− 0

≤
bi

HΩ

(
1 +

1
2

+ ... +
1
Ω

)
≤ bi

If registered user i ∈ S , then we assume that when registered
user i is selected as a winner, s′i tasks in Ti already been fully
covered. We have∑S i

j=1
(vi(t j)y j) − zi

=

∑si
j=1 (w(t j, h j)vi(t j))

2εHΩ∆v

−

∑si
j=si

′+1 min{r j
∗, vi(t j)}

(
w(t j, h j) − w(t j, i j)

)
2εHΩ∆v

=

∑si
′

j=1 (w(t j, h j)vi(t j))

2εHΩ∆v
+

∑si
j=si

′+1 min{r j
∗, vi(t j)}w(t j, i j)

2εHΩ∆v

+

∑si
j=si

′+1 (vi(t j)) −min{r j
∗, vi(t j)}w(t j, h j)

2εHΩ∆v

≤

∑si
′

j=1 (w(t j, h j)vi(t j))

2εHΩ∆v
+

∑si
j=si

′+1 min{r j
∗, vi(t j)}w(t j, i j)

2εHΩ∆v

=
∑si

′

j=1

vi(t j)bi

2εHΩ

∑si
k= j min{rk

∗, vi(t j)}
+

bi

2εHΩ

≤
bi

HΩ

(
1
si

+ ... +
1

si − si
′ + 1

+ 1
)
≤ bi
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Hence, the pairs (y j, zi), j ∈ T, i ∈ UR are feasible to the
dual program D. �

Lemma 5. MTD-L can approximate the optimal solution
within a factor of 2εHΩ.

Proof: By substituting the dual solution given in Lemma 4
into (18), we have∑

t j∈T
r jy j −

∑
i∈UR

zi

=

∑
i∈S

∑
t j≺Ti

(
min{r j

∗, vi(t j)}
(
w(t j, h j) − w(t j, i j)

))
2εHΩ∆v

+

∑
t j∈T r jw(t j, h j)

2εHΩ∆v

=

∑
i∈S

∑
t j≺Ti

min{r j
∗, vi(t j)}

bi∆v∑
t j∈Ti

min{r j
∗, vi(t j)}

2εHΩ∆v

=

∑
i∈S bi

2εHΩ

≤ OPT �

The above lemmas together prove the following theorem.
Theorem 3. MTD-L is computationally efficient, individu-

ally rational, truthful and 2εHΩ approximate for the linear
task diffusion model.

VI. IncentiveMechanism for the Independent Cascade Task
DiffusionModel

In this section, we present an incentive Mechanism for Task
Diffusion in the Independent Cascade Model (MTD-IC).

A. Mechanism Design

We first analyze the hardness of the SOTD problem in
the independent cascade task diffusion model. The following
theorem shows that it is hopeless to find the optimal solution
in polynomial time.

Theorem 4. The SOTD problem in the independent cascade
task diffusion model is NP-hard.

Proof: The proof is similar with that of Theorem 1. We
consider a special case of SOTD problem in the independent
cascade task diffusion model, where any task t j ∈ T can be
completed upon there is any registered user i ∈ UR with f j(S 0∪

{i}) − f j(S 0) > 0. This problem can be formulated as follows:

min
∑

i∈S
bi (23)

s.t. f j(S ) > 0, ∀t j ∈ T (24)

This is actually the WSC problem, which is a well-known
NP-hard problem. Hence the SOTD problem in the indepen-
dent cascade task diffusion model is NP-hard. �

Since the SOTD problem in the independent cascade task
diffusion model is also NP-hard, we use the similar algorithm
framework in Algorithm 1 to design MTD-IC, which also
follows a greedy approach and consists of winner selection
phase and payment determination phase.

Different from MTD-L, the registered users are sorted ac-
cording to the marginal influence unit cost. Given arbitrary
task t j ∈ T and any register user subset S 0, the marginal
influence of registered user i is f j(S 0 ∪ {i}) − f j(S 0). The

marginal influence unit cost of registered user i is defined

as
bi∑

t j∈Ti
min{r j

′, f j(S 0 ∪ {i}) − f j(S 0)}
. The payment rule is

similar with that of MTD-L.

B. A Walk-Through Example

We use an example in Fig.2 to show how MTD-IC works.
In this example, there are two tasks with r1 = r2 = 2 and
three registered users with B1 = ({1, 2}, 6), B2 = ({1, 2}, 5),
B3 = ({1, 2}, 4). US = {1, 2, 3, 4, 5}.

Fig. 2. Illustration for MTD-IC. The disks represent tasks, the squares
represent registered users and the hexagons represent social neighbors. The
numbers above the disks represent the diffusion requirements. The numbers
above the squares represent the claimed prices. The first number above the
lines connecting any registered user i and its social neighbor v represents
the influence for task 1, i.e., ϕi,v(t1), and the second number represents the
influence for task 2, i.e., ϕi,v(t2).

Winner Selection:
• First round: S = ∅, r′1 = 2, r2

′ = 2.

b1

min{r1
′, f1(∅ ∪ {1}) − f1(∅)} + min{r2

′, f2(∅ ∪ {1}) − f2(∅)}
= 6/(min{2, f1({1})} + min{2, f2({1})}) = 6/2.1;

b2/(min{2, f1({2})} + min{2, f2({2})}) = 5/3.8;
b3/min{2, f1({3})} + min{2, f2({3})} = 4/2.5. User 2 wins.

• Second round: S = {2}, r1
′ = 0.2, r2

′ = 0.

b1

min{0.2, f1({1, 2}) − f1({2})} + min{0, f2({1, 2}) − f2({2})}
= 6/min{0.2, 2.89 − 1.8} = 6/0.2;

b3

min{0.2, f1({3, 2}) − f1({2})} + min{0, f2({3, 2}) − f2({2})}
= 4/min{0.2, 2.6 − 1.8} = 4/0.2.

User 3 wins. r1
′ = 0, r2

′ = 0. S = {2, 3}.

Payment Determination:
• Payment for user 2: the winners are 3, 1 orderly.

r1
′′ = 2, r2

′′ = 2.
min{2, f1({2}) − f1(∅)} + min{2, f2({2}) − f2(∅)}
min{2, f1({3}) − f1(∅)} + min{2, f2({3}) − f2(∅)}

b3 =
3.8
2.5
× 4.

r1
′′ = 0.8, r2

′′ = 0.7.
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min{0.8, f1({2, 3}) − f1({3})} + min{0.7, f2({2, 3}) − f2({3})}
min{0.8, f1({1, 3}) − f1({3})} + min{0.7, f2({1, 3}) − f2({3})}

b1

= 1 × 6 = 6.

r1
′′ = 0, r2

′′ = 0. p2 = max{
3.8
2.5
× 4, 6} ≈ 6.08.

• Payment for user 3: the winners are 2, 1 orderly.

r1
′′ = 2, r2

′′ = 2.
min{2, f1({3}) − f1(∅)} + min{2, f2({3}) − f2(∅)}
min{2, f1({2}) − f1(∅)} + min{2, f2({2}) − f2(∅)}

b2

=
2.5
3.8
× 5.

r1
′′ = 0.2, r2

′′ = 0.
min{0.2, f1({2, 3}) − f1({2})} + min{0, f2({2, 3}) − f2({2})}
min{0.2, f1({1, 2}) − f1({2})} + min{0, f2({1, 2}) − f2({2})}

b1

= 1 × 6 = 6.

r1
′′ = 0, r2

′′ = 0. p3 = max{
2.5
3.8
× 5, 6} = 6.

C. Mechanism Analysis

Theorem 5. MTD-IC is computationally efficient, indi-
vidually rational, truthful and 2εHΩ approximate for the
independent cascade task diffusion model, where ε =

max |Ti|bi f j({i}), i ∈ UR, j ∈ T.
Proof: Finding the registered user with minimum marginal

influence unit cost takes O(n2mq), where computing the value
of

∑
t j∈Tk

min{r j
′, f j(S 0 ∪ {k}) − f j(S 0)} takes O(mqn). Updat-

ing r j
′ takes O(m) time since each registered user can bid at

most m tasks. Hence, the while-loop (line2-8) takes O(n3mq).
In each iteration of the for-loop (line10-20), a process similar
to line2-8 is executed. Hence the time complexity of the whole
auction is dominated by this for-loop, which is bounded by
O(n4mq).

Based on the similar analysis in Lemma 1, the time com-
plexity of the auction is O(n2 · max{n2q,m}) when using the
influence estimated by TIE.

The proof of the individually rational, truthful and approx-
imation ratio of MTD-IC is similar to that of MTD-L. �

VII. Global Influence Estimation

So far, we have proposed two incentive mechanisms, which
stimulate the registered users to diffuse the crowdsourcing
tasks to their social neighbors. In practice, the diffusion be-
havior of a social user not only influences its social neighbors
but also other users in the whole social community. In the
scenario of crowdsourcing task diffusion, the social neighbors
of winning registered users can continue the task diffusion due
to the high influence of winning registered users. In the view
of incentive mechanism design, we need a global influence
estimation method for the registered users before executing
the reverse auction. In this section, we propose the Global
Influence Estimation (GIE).

In section III, we have proposed TIE, which uses the Jaccard
Similarity Coefficient to measure the relationship between
two social neighbors. For the global influence estimation,
it is straightforward to calculate the multiplicative Jaccard

Similarity Coefficient of all social neighbors in the path from
any registered user i to any user v ∈ UG, where UG is the set
of all social users excluding the registered users. However, in
the context of global influence estimation, the influence of a
user not only depends on the affinity with other users but also
the social influence in the community.

To address this problem, we propose our GIE by integrating
Jaccard Similarity Coefficient and K − shell decomposition
[59]. K − shell decomposition has been widely used as a tool
to analyze the structural properties of large graph.

We first give two definitions about K − shell decomposition:
Definition 1 (K − core). Given a graph G = (V, E), the

subgraph G′ is a k− core of G if and only if it is the maximal
subgraph of G such that the degree of every node in G′ is at
least K .

Definiton 2 (K − shell). A node is said to belong to the K
shell if and only if it belongs to the K − core subgraph but
not to the K + 1− core subgraph.

Given the graph G = (V, E), where V = UR ∪ UG.
The K − shell decomposition can be performed iteratively as
follows. We prune all nodes with degree one and the arcs
incident on them from the graph. We repeat pruning nodes with
degree one on the graph iteratively until there is no node with
degree one on the graph. The K − shell index of the deleted
nodes is 1. The same is done for K = 2 ulteriorly and so on,
until all nods are pruned from the graph.

Let S hell(i) be the K − shell index of any registered user
i ∈ UR. Then, for all i ∈ UR, v ∈ UG, we find the shortest path
Path(i, v) from i to v, and the influence of any registered user
i to any social user v when i diffuses task t j to user v can be
calculated as:

ϕi,v(t j) =

S hell(i) ×
∏

k,k′∈Path(i,v),(k,k′)∈E
Jac(k, k′)∑

d∈UR

(S hell(d) ×
∏

k,k′∈Path(d,v),(k,k′)∈E
Jac(k, k′))

(25)

Then, we can still use MTD-L and MTD-IC given in Section
IV and Section V, respectively, to design the incentive mech-
anisms based on the global influence.

Lemma 6. The time complexity of GIE is O(|V |3).
Proof: Since finding the K − shell decomposition can be

computed in O(|V | + |E|) [60], the time complexity of GIE is
dominated by finding the shortest path for all nodes in graph
G, which is bounded by O(|V |3).

Remark: Although GIE can measure the influence of any
registered user i to any social user v, the time complexity is
quite high. Moreover, GIE requires global social information
of the community. Thus, GIE is suitable for small community.

VIII. Performance Evaluation

We have conducted thorough simulations to investigate the
performance of proposed incentive mechanisms. We use the
naming rule of MTD-L/IC-T/H/G to represent the incentive
Mechanisms for Task Diffusion in the Linear/Independent
Cascade model using TIE/HIE/GIE in our simulations. We
evaluate the performance of our incentive mechanisms against
Fast-Selector [29], which utilizes greedy-based seed selection
to maximize the coverage of tasks. We replace the constraints
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of winner number and worker number with diffusion require-
ment proposed in our SOTD problem, i.e., Fast-Selector will
keep selecting winners until all requirements are met. Fast-
Selector sets a fixed reward for each task. We compare our
mechanisms with extended IC-based Fast-Selector since the
thresholds in LT-based mechanism are difficult to determine
and have little connection with our mechanisms. Note that
Fast-Selector is not a truthful seed selection method.

All the simulations were run on a Windows machine with
Intel Xeon Platinum 8269CY and 8 GB memory. Each mea-
surement is averaged over 100 instances.

A. Simulation Setup

The simulations are based on Twitter Dataset [61], which
has been built after monitoring the spreading processes of
retweets on Twitter. We allocate the retweets to m crowd-
sourcing tasks with dm/2e task types. We set the default
value of parameters as follows: The bidding price of users is
randomly selected from the auction set [62], which contains
5017 bid prices for Palm Pilot M515 PDA from eBay. The
diffusion requirement and the number of bidding tasks of
each registered user are uniformly distributed in [2, 5] and
[5, 10], respectively. Let n = 200, m = 20 be the default
settings. Since the time complexity of GIE is quite high, we
fix |V | = 2000, which is the number of all users in social
network. However, we will vary the value of key parameters
to explore the impacts of these parameters respectively. For
HIE, we randomly choose 30% of retweets in the dataset as
the diffusion history. For Fast-Selector, we randomly select the
reward of each task from the auction set to incentivize users.
We transform the two-dimensional task (temporal-spatial task)
into multiple single-dimensional tasks without negative effect
on calculating coverage in order to simulate the multiple
cooperative tasks in our system model. Other parameters in
Fast-Selector are set according to the original work.

We define overpayment ratio and completion rate to quanti-
tatively measure the frugality and task diffusion performance,
respectively.

Overpayment Ratio: The overpayment ratio is defined as(∑
i∈S pi −

∑
i∈S bi

)
/
∑

i∈S bi.
Completion Rate: let R(S ) be the total number of retweets

from all users except the registered users in the social net-
work for all crowdsourcing tasks based on the dataset. The
completion rate is defined as R(S )/

∑
t j∈T r j.

We first measure the influence estimated through our in-
fluence estimation methods. Then we measure the number of
winners, social cost, overpayment ratio, and completion rate,
and reveal the impacts of the key parameters, including the
number of registered users (n), the number of tasks (m) and
diffusion requirement (r). Finally, we measure the running time
of proposed influence estimation methods.

B. Influence Estimation

We first investigate the influence of 200 registered users,
who are selected randomly from the Twitter network, es-
timated through TIE, HIE and GIE, respectively. The TIE
and HIE influence of any registered user i is calculated as
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Fig. 3. Estimated influence of TIE, HIE and GIE

∑
t j∈T

∑
v∈US

ϕi,v(t j)/m. The TIE and HIE influence of any
registered user i is calculated as

∑
t j∈T

∑
v∈UG

ϕi,v(t j)/m.
As shown in Fig.3, the average TIE influence (1.50) is larger

than that of HIE (0.59). This is because the influence of TIE
is estimated only using the topology, and the registered user
will obtain significant influence if he/she has many common
neighbors with his/her social neighbors. While in HIE, the
registered user obtains the influence only if he/she retweets.
As an example, the registered user 52 has the TIE influence
of 3.95, however, the HIE influence is only 0.76. The average
GIE influence (9.00) is quite high since it is the summation
of all influence to all users in the social network, not only
the social neighbors. In fact, the GIE influence towards a
single social user is smaller than those of other two influence
estimation methods.

C. Impact of n

To investigate the scalability of designed mechanisms, we
vary the number of registered users from 200 to 600. As
shown in Fig.4, the number of winners of our six incen-
tive mechanisms increases with increasing registered users,
while number of winners of Fast-Selector decreases. For our
mechanisms, When the number of registered users becomes
larger, the estimated influence becomes smaller, and each task
needs more users to diffuse. However, the total influence of
all registered users stays still. For Fast-Selector, the influence
estimation method used is different from ours. The estimated
influence (called possibility of task performance in [29])
does not change with the variation of number of registered
users. The number of winners of Fast-Selector decreases with
increasing number of registered users because Fast-Selector
can select the seeds with more influence from a large set of
registered users. There are two observations from Fig.4(a).
First, the winners of IC model are more than that of L
model with the same influence estimation method since IC
model does not consider the cumulative effect of influence,
and selects the registered user with minimum unit cost of
joint probability difference iteratively. This implies that the
IC model has to select more winners to satisfy the diffusion
requirements. Second, the winners of HIE based mechanisms
are more than that of TIE based mechanisms when using same
diffusion model. This is because the average influence of HIE
is less than that of TIE, which has been shown in Fig.3. Thus
more winners are needed to meet the diffusion requirements.
The winners of GIE based mechanisms are the least since
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Fig. 4. Impact of the number of registered users (n): (a) Number of winners. (b) Social cost. (c) Overpayment ratio. (d) Completion rate
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Fig. 5. Impact of the number of tasks (m): (a) Number of winners. (b) Social cost. (c) Overpayment ratio. (d) Completion rate
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Fig. 6. Impact of diffusion requirement (r): (a) Number of winners. (b) Social cost. (c) Overpayment ratio. (d) Completion rate

the average influence of GIE is the largest among all three
influence estimation methods.

As observed from Fig.4(b), the social cost of our mecha-
nisms increases with the increasing number of registered users
since there are more winners. The social cost largely depends
on the number of winners. Thus, GIE based mechanisms have
the smallest social cost, and the social cost of TIE based
mechanisms is smaller than that of HIE based mechanisms.
On the contrary, the social cost of Fast-Selector decreases with
the decreasing number of winners.

We can see from Fig.4(c) that the overpayment ratio fluc-
tuates with increasing registered users. In most cases, the
overpayment ratio of our 6 mechanisms is lower than 0.2,
achieving good frugality. The overpayment ratio is also used
to represent the degree of competition among bidders. The
overpayment ratio tends to be smaller with increasing number
of registered users. This is because there are more choices
of winners for platform to make, thus the competition among
registered users is more intense. The payment of Fast-Selector
is randomly chosen and is much higher than our mechanisms.
Besides, the payment of Fast-Selector has little relation with
variation of number of registered users, number of tasks and
diffusion requirement.

We can see from Fig.4(d) that the increasing number of

registered users helps much to complete the tasks in our
mechanisms. This means that the diffusion requirement can
reduce when there are sufficient registered users. Moreover,
HIE based mechanisms show significant superiority in terms
of completion rate. MTD-IC-H shows the best diffusion per-
formance in most cases. The average completion rate of MTD-
IC-H is 0.674, which is 1.4 times as high as MTD-IC-T (0.482)
and 3.09 times as high as MTD-IC-G (0.218) under the default
settings.The completion rate of Fast-Selector decreases with
the decrease of winner number. An observation is that our
mechanisms can achieve higher completion rate by selecting
a fixed number of winners compared with Fast-Selector. In
other words, the completion rate of Fast-Selector does not
benefit from the increase of number of registered users.

D. Impact of m

The number of crowdsourcing tasks can depict the workload
of diffusion. As shown in Fig.5, the number of winners and the
social cost increase severely in our six incentive mechanisms
with increasing m since the platform needs more registered
users to diffuse the tasks. The overpayment ratio also increases
with increasing m since the platform needs to recruit more
registered users to diffuse the tasks, which mitigates the
competition among registered users accordingly. The number



13

of winners, social cost and completion rate of Fast-Selector
increase with the increasing number of tasks.

Fast-Selector has the highest completion rate, but the social
cost is 86.7%, 234.8%, 621.1% higher than HIE, TIE and
GIE based mechanisms on average, respectively. Again, HIE
based mechanisms show significant superiority in terms of
completion rate. The impact of number of tasks is small on the
average completion rate for all mechanisms since we consider
that the diffusion requirements can be always satisfied. The
average completion rate of HIE based mechanisms, TIE based
mechanisms, and GIE mechanisms are 0.65, 0.45, and 0.21
under the default settings.

An interesting observation is that the performance difference
of MTD-L-G and MTD-IC-G is very small. In fact, the two
mechanisms choose almost the same winners. This is because
that the influence estimated by GIE to single social user is
too small such that the previously selected winners has small
impact on the following selection in the winner selection
phase. Thus the diffusion model used does not affect the
selection of winners. In our simulations, only 7% outputs of
the two mechanisms have different winners.

E. Impact of r

To investigate the performance for the tasks associated
with different diffusion requirement, we vary the distribution
interval of cooperative index from [2, 5] to [6, 10]. As can
be seen from Fig.6, the number of winners and social cost
increase slightly in all mechanisms with increasing diffusion
requirement since the platform needs more registered users
to diffuse each task on average, satisfying desirable least
number of users for performing each task. The completion
rate decreases with increasing r. For Fast-Selector, the change
of all four metrics when the diffusion requirement increases
is almost same as that when the number of tasks increases.

F. Running time
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Fig. 7. Running time of TIE, HIE, and GIE

Finally, we test the running time of TIE, HIE and GIE for
calculating ϕi,v

(
t j

)
for all i, v and t j. It can be seen from

Fig.7 that the running time of TIE and HIE increase with
increasing number of registered users. Specifically, for TIE, the
running time of calculating all influence for registered users
is O(n2q + q2n) since for each register user i and each social
neighbor v, a loop of n + q users have to be searched for
common users. For HIE, the time complexity is dominated by
calculating Θv(a j), which is bounded by O(nqm). Since m is

much smaller compared to n and q, the running time of HIE
is the smallest. The running time of GIE is O(|V |3), which is
given in Lemma 6.

Overall, HIE based mechanisms usually leads more social
cost and payment than those of TIE and GIE based mech-
anisms. However, HIE based mechanisms show significant
superiority in terms of completion rate. GIE based mechanisms
always output the least social cost and overpayment ratio,
but the completion rate is much lower than the other two
models. Moreover, the running time of GIE is quite high,
thus GIE is only suitable for small community. In most
cases, the completion rate of Fast-Selector is higher than our
mechanisms, However, given the number of registered users,
the social cost of our HIE, TIE and GIE based mechanisms
is only 40.9%, 23.3%, 10.4% of this untruthful comparison
mechanism on average, respectively.

IX. Conclusion

In this paper, we have designed the incentive mechanisms
for large-scale crowdsourcing task diffusion through the social
network. We have presented two task diffusion models, and
formulated the SOTD problem for each of them. We have
presented two influence estimation methods, TIE and HIE,
based on the limited knowledge of social network. Further-
more, we have designed two incentive mechanisms: MTD-L
and MTD-IC to solve the SOTD problem for the two task
diffusion models, respectively. Further, we have proposed GIE
to estimate the influence of registered users to the global
social users. Through both rigorous theoretical analyses and
extensive simulations, we have demonstrated that the proposed
incentive mechanisms achieve computational efficiency, indi-
vidual rationality, truthfulness, and guaranteed approximation.
Our simulations also show that GIE based mechanisms always
output the least social cost and overpayment ratio, and HIE
based mechanisms show significant superiority in terms of
completion rate.
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