
1

Design and Performance Characterization of
RADICAL-Pilot on Leadership-class Platforms

Andre Merzky1∗, Matteo Turilli1∗, Mikhail Titov1, Aymen Al-Saadi1, Shantenu Jha1,2
1 Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA

2 Brookhaven National Laboratory, Upton, NY 11973, USA
∗ Joint First Authors

Abstract—Many extreme scale scientific applications have
workloads comprised of a large number of individual high-
performance tasks. The Pilot abstraction decouples workload
specification, resource management, and task execution via job
placeholders and late-binding. As such, suitable implementa-
tions of the Pilot abstraction can support the collective execu-
tion of large number of tasks on supercomputers. We introduce
RADICAL-Pilot (RP) as a portable, modular and extensible pilot-
enabled runtime system. We describe RP’s design, architecture
and implementation. We characterize its performance and show
its ability to scalably execute workloads comprised of tens of
thousands heterogeneous tasks on DOE and NSF leadership-class
HPC platforms. Specifically, we investigate RP’s weak/strong scal-
ing with CPU/GPU, single/multi core, (non)MPI tasks and Python
functions when using most of ORNL Summit and TACC Fron-
tera. RADICAL-Pilot can be used stand-alone, as well as the
runtime for third-party workflow systems.

Index Terms—Middleware, high performance computing,
RADICAL-Pilot, Python.

I. INTRODUCTION

An analysis of workloads and applications [1], [2] on pre-
exascale platforms suggests that scientific workloads increas-
ingly require multiple heterogeneous tasks, instead of a mono-
lithic single task. This trend was confirmed by the 2020 ACM
Gordon Bell Special Prize for High Performance Computing-
Based COVID-19 Research, where all four finalists [?] in-
volved sophisticated workflows.

Even as HPC simulations increasingly become important
generators of data for powerful and expensive ML mod-
els, ML/AI components are substituting traditional HPC sub-
components [3], and innovative methods coupling ML compo-
nents to steer HPC simulations are emerging [?]. Thus, work-
flows with diverse components (e.g., physics-based simula-
tions, data generation and analysis, and ML/AI tasks) will be-
come increasingly common on extreme-scale platforms. Such
workflows will encompass high-throughput function calls, en-
sembles of MPI-based simulations, and AI-driven HPC sim-
ulations. There are no “turnkey solutions” to support di-
verse tasks across multiple heterogeneous platforms, with the
necessary performance, scale and required throughput. As
workflows emerge as an important development paradigm for
extreme-scale applications, the role and importance of run-
time systems to support the resource management and execu-
tion requirements [4] of concurrent heterogeneous tasks will
increase.

Pilot systems [5] address two apparently contradictory re-
quirements: accessing HPC resources via their centralized

schedulers, and letting applications independently schedule
tasks on the acquired portion of resources. By implementing
multi-level scheduling and late-binding, pilot systems lower
the overhead of task scheduling, enable higher task execution
throughput, and allow greater control over the resources ac-
quired to execute workloads. As such, pilot systems provide
a promising starting point for the resource management and
execution requirements of concurrent heterogeneous tasks.

Traditionally, pilot systems were used to enable high-
throughput task execution on HPC platforms [6]. Pilot systems
now implement both pilot and runtime capabilities to serve a
much wider phase space of use cases [7]. Specifically, pilot
systems must support the effective and efficient execution of
single/multi core/GPU/node tasks, implemented either as exe-
cutables or functions, on diverse HPC platforms, with hetero-
geneous hardware and execution environments. In fact, a com-
putational task is a generalized term, usually indicating either
a stand-alone process with input, output, termination criteria,
and dedicated resources; or a function executed in a dedicated
environment. A task can be used to represent an independent
simulation or data processing analysis, running on one or more
nodes of a HPC machine, may require MPI or OpenMP but,
often, may be executed within a single compute node. Further,
pilot systems need to meet the unprecedented requirements of
upcoming exascale computing, supporting dynamic partition-
ing of resources, adaptive task scheduling policies and diverse
placement and launching methods.

In response to the aforementioned requirements, we intro-
duce RADICAL-Pilot (RP) [8], a Pilot-enabled runtime system
that implements the pilot paradigm as outlined in Ref. [5],
alongside advanced runtime placement and launching capa-
bilities. RP is implemented in Python and provides a well-
defined API and usage modes. RP serves as a runtime sys-
tem for workflow management systems [9]–[11], and it has
been integrated with EnsembleToolkit, Parsl, Swift/T, PanDA
and QCFractal. More in general, RP is designed as a building
block [12] that can be integrated with any workflow manage-
ment system implementing the task abstraction, e.g., Pegasus,
BeeFlow or Taverna. Further, RP pilot and runtime capabili-
ties are independent and can also be integrated with third-party
systems like, for example, the Flux runtime system [13]. Once
integrated, RP provides pilot capabilities to Flux’s scheduler
and task-launching mechanisms.

This paper has two main contributions: (i) a detailed de-
scription of the design and architecture of RP, with an analysis
of RP unique features and capabilities; and (ii) a detailed anal-

2

ysis of RP’s scaling performance when executing workloads
comprised of homogeneous and heterogeneous tasks, imple-
mented as executables or functions, on leadership class plat-
forms. Together, those two contributions allow to uncover the
overheads of specific RP components and illustrate how they
were avoided in order to optimize overall scale and perfor-
mance. Specifically, we characterize RP weak and strong scal-
ing performances on most of the resources available on Titan,
Frontera and Summit, using up to 392,000 cores and 24,582
GPUs to execute 24,552 heterogeneous executable tasks and
126× 106 Python function tasks.

RP works on multiple HPC platforms. We focus our experi-
ments on open academic research machines — Titan, Summit
and Frontera, that offered and still offer the highest degree of
concurrent execution in the open science community. We con-
figured RP to overcome existing bottlenecks, so that both the
performance and scalability of RP are determined by system
software limits. Specifically, we show that the launch rate of
tasks is dominated by overheads arising from the use of the
OpenMPI Runtime Environment (ORTE) and PMIx Reference
RunTime Environment (PRRTE), or by the file system perfor-
mance of the HPC platforms. The results of our experiments
support the idea that partitioning resources at pilot-level will
enable better scaling on the upcoming exascale platforms.

Although RP is a vehicle for research in scalable com-
puting, it also supports production-grade science. Currently,
RP is used by applications from diverse domains, including
high-energy physics, earth and climate sciences, biomolecu-
lar sciences and drug discovery. Since 2018, RP has been
used to support more than 107 node-hours on DoE (Andes, Ti-
tan, Rhea, Summit, Lassen, Theta), NSF (Blue Waters, Fron-
tera and XSEDE Stampede, Stampede2, SuperMIC, Comet,
Bridges), and European (Archer and SuperMUC) HPC plat-
forms. RP has been the core runtime system for eight DoE
INCITE awards and one NSF PRAC award. It has also served
as the workhorse for DoE’s National Virtual Biotechnology
Laboratory COVID19 drug discovery pipeline [?], collectively
consuming a further estimated lower bound of 107 node-hours
on several of the DoE and NSF HPC machines listed above.

In §II, we discuss existing pilot systems and highlight the
distinctive capabilities of RP. §III discusses the design and ar-
chitecture of RP and §IV describes the core experiments and
results of the paper. Overall, the contributions of this paper
show the benefits and limitations of using the pilot abstrac-
tion and architectural pattern for executing applications with
heterogeneous tasks on HPC platforms, including leadership-
class machines. Further, our analysis and results clarify the
role that pilot systems will play in the upcoming exascale su-
percomputers.

II. RELATED WORK

Runtime systems support the execution of units of work
on computing resources. Specifically, runtime systems can be
designed to operate at different levels of a software stack. In
this paper, we focus on a type of runtime system that sits
above the operating system and can manage the execution of
both executable and function tasks.

Charm++ [14], HPX [15] and Cilk [16] are runtime systems
that enable scalable multi-task execution but assume verti-
cal and dedicated programming models, depending on specific
compilers and/or application programming interfaces (APIs).
Flux [13] is an example of a more general-purpose runtime
system that supports scalable execution of executable tasks on
HPC platforms. Flux supports task scheduling, placement and
execution. RADIAL-Pilot belongs to the same class of run-
time systems as Flux but focuses on the efficient management
of heterogeneous tasks and HPC resources via pilots.

Many scientific workloads have heterogeneous tasks [17],
[18] that can benefit from being executed at scale on
leadership-class HPC platforms. Nonetheless, a tension exists
between these workloads’ requirements and HPC systems
capabilities as, traditionally, HPC systems are designed to
best support monolithic workloads. Several software systems
address this tension, but their adoption presents limitations,
including type of workloads and resources supported, how
resources are selected and acquired, the scale at which work-
loads can be executed, the programming paradigm they
support, and the lack of development and maintenance.

Since 1995, more than twenty pilot systems have been de-
veloped [5]. Most of these systems are tailored to specific use
cases, workloads, resources, interfaces or development mod-
els. Some notable examples are: (i) HTCondor with Glidein
on OSG [19], a widely used pilot system for the execution of
mostly single-core tasks; (ii) the pilot systems developed for
the LHC communities (e.g., PanDA [20], GlideinWMS [21],
DIRAC [22] and CernVM Co-Pilot [23]) which execute mil-
lions of jobs a week and are specialized in supporting Large
Hadron Collider (LHC) workloads on specific platforms like
the Worldwide LHC Computing Grid and the CERN cloud;
(iii) Falkon [24], specifically designed to support function-
level parallelism as opposed to process-level parallelism; (iv)
FireWorks [25], designed to support function-level parallelism
and small-scale process-level parallelism on HPC resources;
and (v) GWpilot [26] that enables the use of arbitrary schedul-
ing algorithms with the GridWay meta-scheduler, and supports
a limited number of non-MPI use cases.

Several workflow management systems use pilots to support
the execution of multi-task applications on HPC machines. For
example, Parsl [27] high-throughput executor provides pilot
job capabilities on HPC and cloud platforms but with limited
MPI support. Pegasus [28] uses Glidein and providers like
Corral [29], Makeflow [30] and FireWorks [25] to enable users
to manually start pilots on HPC resources via master/worker
frameworks like Queue [31] or FireLauncher [25]. Swift [32]
can use Falkon [24] or the Coasters [33] pilot system, with
or without JETS [34], to support MPI and non-MPI jobs on
HPC and cloud platforms, but requires an application-level
domain-specific language.

Diverse tools enable the execution of multi-task workloads
on HPC machines, using job arrays and leveraging MPI either
as a launch method or as a container for multiple tasks. All
of them reach limited scale or require low-level programming
for multi-task applications. For example, PBS Job Arrays [35]
enable concurrent execution of multiple instances of the same
executable within a single job submission. The Application

3

Level Placement Scheduler (ALPS) [36] enables the concur-
rent execution of a limited number of different executables
on CRAY systems. CRAM [37] parallelizes the execution of
multiple executables by statically bundling them into a single
MPI executable. TaskFarmer [38] and Wraprun [39] enable
single-core or single-node executables to be run within a sin-
gle mpirun and aprun allocation.

III. DESIGN OF RADICAL-PILOT (RP)

RADICAL-Pilot (RP) is a pilot system designed to address
the main limitations of the tools described in §II, either by
implementing missing capabilities or by enabling integration
among independent software systems. RP addresses research
challenges related to efficiency, effectiveness, scalability and
both workload and resource heterogeneity. RP requires man-
aging the flow of information across multiple components, dis-
tributed across different machines. Further, RP has to enable
scheduling, placement and launching of heterogeneous tasks
on heterogeneous resources, with minimal overheads and max-
imal resource utilization.

Accordingly, RP enables the execution of one or more work-
loads comprised of heterogeneous tasks on one or more HPC
platforms. Tasks can be implemented as stand-alone executa-
bles, free functions or class methods. These tasks can be
placed, launched and executed on CPUs, GPUs and other ac-
celerators, on the same pilot or across multiple pilots. As a pi-
lot system, RP schedules tasks concurrently and sequentially,
depending on available resources, and defines scheduling poli-
cies for executing tasks on the acquired resources.

RP offers five unique features when compared to other pilot
systems that execute workloads on HPC platforms: (1) con-
current execution of tasks with five types of heterogeneity;
(2) concurrent execution of multiple workloads on a single
pilot, across multiple pilots and across multiple HPC plat-
forms; (3) support of all major HPC batch systems to ac-
quire and manage computing resources; (4) support of fifteen
methods to launch tasks; and (5) integration with third-party
workflow and runtime systems. The five types of task het-
erogeneity supported by RP are: (1) type of task (executable,
function or method); (2) parallelism (scalar, MPI, OpenMP, or
multi-process/thread); (3) compute support (CPU and GPU);
(4) size (1 hardware thread to 8000 compute nodes); and du-
ration (zero seconds to 48 hours).

Every pilot system requires scheduling a job on an HPC ma-
chine via its batch system to acquire resources, which makes
supporting diverse platforms with the same code base chal-
lenging. RP uses RADICAL-SAGA [40] to support all the ma-
jor batch systems: Slurm, PBSPro, Torque, LGI, Cobalt,
LSF and LoadLeveler. Further, as a runtime system, RP
supports the following methods to perform task placement and
launching: aprun and ccmrun/mpirun_ccmrun on Cray;
jsrun, dplace/mpirun_dplace, runjob and POE on
IBM; srun on Slurm; ibrun on TACC; and ORTE, PRRTE,
orte_lib, ssh, rsh, mpirun, mpiexec, mpirun_mpt,
mpirun_rsh and fork on multiple platforms.

Supporting the concurrent execution of heterogeneous tasks
via different batch systems and diverse placing/launching

Agent

Workstation/
Resource

HPC
Platform

Pilot

Queue MongoDBQueue

Stager Queue Stager

Queue Scheduler Queue Executer

Task ManagerQueue Scheduler

Queue Stager Stager

Queue Launcher Pilot Manager

Workstation/
Resource

Fig. 1. RADICAL-Pilot architecture.

methods requires specific design features. Particularly chal-
lenging is to enable extensibility and scalability within a single
system, avoiding fragmentation into multiple special-purpose
systems. RP is designed to enable localized changes to the ex-
isting code base to add new capabilities required by tasks, and
new platforms to acquire resources. Further, RP can instantiate
multiple instances of its components, distributing them across
available resources, depending on the platform specifics. Each
component can be individually configured so as to enable fur-
ther tailoring while minimizing code refactoring.

RP improves capabilities already available in other pilot sys-
tems by not adding any software requirement on the HPC
platforms and by exposing an API specific to the pilot ab-
straction. RP does not require the deployment of services and
daemons, nor to access any dedicated interface or port on the
login nodes of the HPC platforms. Instead, RP uses capabil-
ity already available like ssh, gsissh or scp. RP API en-
ables the development of tools on top of the pilot abstraction,
cleanly separating resource selection, acquisition and schedul-
ing from task definition, scheduling, placement and execution.
RP API is implemented in Python, avoiding the need for a
domain-specific language.

The need to support both task and resource-level het-
erogeneity while avoiding the development of independent
special-purpose systems, imposes design trade-offs. RP’s con-
figurability allows it to perform well for diverse resources and
workloads, but RP is not optimized for any specific use case.
Our configuration-based approach is powerful but it can re-
quire extensive tailoring, especially for scenarios other than
those supported by default. Further, the dependence on the
software environment of each HPC platform makes deploy-
ment fragile as every change in the environment may require
changes in RP’s configuration. This is mitigated by a dedi-
cated integration testing framework but remains a main chal-
lenge of RP’s maintainability and portability. Porting RP to
a new platform may require just a new configuration file or
writing a connector for a batch system not yet supported or
an executor for a new (MPI) launching system. While devel-
oping connectors and executors requires system programming
skills, they are standalone components that require no changes
to the rest of RP code base.

4

A. Architecture and Implementation

RP implements two main abstractions: Pilot and Task. Pi-
lots are placeholders for computing resources, where resources
are represented independent from architectural details. Tasks
are units of work, specified either as an application executable,
function or method, alongside resource and execution environ-
ment requirements. Currently, RP implements executors for
Python functions but executors for other languages can be
added without requiring changes in RP architecture.

RP offers an API to describe both pilots and tasks, along-
side classes and methods to manage acquisition of resources,
scheduling of tasks on those resources, and the staging of in-
put and output files. Reporting capabilities update the user
about ongoing executions and tracing capabilities enable post-
mortem analysis of workload and runtime behavior.

Architecturally, RP is a distributed system with four mod-
ules: PilotManager, TaskManager, Agent and DB (Fig. 1, pur-
ple boxes). Modules can execute locally or remotely, commu-
nicating and coordinating over TCP/IP, and enabling multiple
deployment scenarios. For example, users can run the Pilot-
Manager and TaskManager locally, and distribute the DB and
one or more instances of the Agent on remote HPC infrastruc-
tures. Alternatively, users can run all RP modules on a local
or on a remote resource.

PilotManager, TaskManager and Agent have multiple com-
ponents where some are used only in specific deployment
scenarios, depending on both workload requirements and re-
source capabilities. Some components can be instantiated con-
currently to enable RP to manage multiple pilots and tasks
simultaneously. This allows to scale throughput and enables
component-level fault tolerance. Components are coordinated
via a dedicated ZeroMQ-based communication mesh, which
introduces runtime and infrastructure-specific overheads, but
improves overall scalability of the system and lowers compo-
nent complexity. ZeroMQ was chosen over other messaging
systems for its superior performance, but also for its com-
munication patterns Publish/Subscriber and Router/Dealer that
match our use case very well. Components can have different
implementations, and configuration files can tailor RP to spe-
cific resources types, workloads or scaling requirements.

PilotManager has a main component called ‘Launcher’
(Fig. 1). The Launcher uses resource configuration files to
define the number, placement and properties of the Agent’s
components of each Pilot. Currently, configuration files are
made available for the major USA NSF and DOE production
HPC resources, but users can provide new files or alter ex-
isting configuration parameters at runtime, both for a single
and multiple pilots. This enables supporting of campus-level
clusters (e.g., Traverse at Princeton University or Amarel at
Rutgers University) and lab-level private clusters.

Agent has four main components: two Stagers (one for in-
put and one for output data), Scheduler and Executor (Fig. 1).
Multiple instances of the Stager and Executor components can
coexist in a single Agent. Depending on the architecture of the
target HPC platform, the Agent’s components can individually
be placed on login nodes, MOM nodes, compute nodes or any
other combination. ZeroMQ communication bridges connect

1 1 1 1 1

2 2

3 3
4 4 4

5 5 56 6

Fig. 2. RADIAL-Pilot execution model.

the Agent components, creating a network to support the tran-
sitions of the tasks through components.

Once instantiated, each Agent’s Scheduler gathers infor-
mation from the resource manager, retrieving the number of
cores/GPUs held by the pilot on which the Agent is run-
ning and the partitioning of cores/GPUs across nodes. De-
pending on requirements, the Agent’s Scheduler assigns cores
and GPUs from one or more nodes to each task. For example,
cores on a single node are assigned to multithreaded tasks,
while cores on topologically close nodes are assigned to MPI
tasks to minimize communication overheads. Three scheduling
algorithms are currently supported: “Continuous” for nodes
organized as a continuum, “Torus” for nodes organized in a
n-dimensional torus, as found, for example, on IBM BG/Q,
and “Tagged” to pin the execution of tasks on specific nodes.

The Agent’s Scheduler passes the tasks on to one of the
Agent’s Executors, which use resource configuration parame-
ters to derive the placement and launching command of each
task. Once the launching command is determined, depend-
ing on the task parameters and characteristics of the execu-
tion environment, the Executors execute those commands to
spawn the application processes. Two spawning mechanisms
are available: Popen (based on Python) and Shell (based
on /bin/sh). Executors collect task exit codes and commu-
nicate the freed cores to the Scheduler.

B. Execution Model

Pilots and tasks are described via the Pilot API and passed to
the RP runtime system (Fig. 2, 1). The PilotManager submits
pilots on one or more resources via the SAGA API (Fig. 2, 2).
The SAGA API implements an adapter for each supported re-
source type, exposing uniform methods for job and data man-
agement. Once a pilot becomes active on a resource, it boot-
straps the Agent module (Fig. 2, 3).

The TaskManager schedules each task to an Agent (Fig. 2,
4) via a queue on a MongoDB instance. This instance is used
as the RP DB module to communicate task descriptions be-
tween the TaskManager(s) and the Agent(s). Each Agent pulls
tasks from the DB module (Fig. 2, 5) and schedules (Fig. 2,
6) each task on an Executor upon resource availability (e.g.,
number of cores or GPUs). The Executor sets up the task’s
execution environment and then spawns the task for execution.

Once a task returns from its execution, the Executor com-
municates to the Scheduler that resources have been freed and
the scheduling loop can proceed. Once the workload has been
executed, the runtime system is terminated to reduce resource
utilization. Multiple workloads can be described and executed
within the time boundaries of resource availability.

5

When required, the input data of a task are either pushed or
pulled by the Agent, depending on data locality and sharing
requirements. Similarly, the output data of a task are staged
out by the Agent and TaskManager to a specified destination,
e.g., a filesystem accessible by the Agent or the user work-
station. Both input and output staging are optional, depending
on task requirements. The actual file transfers are enacted via
RADICAL-SAGA, and currently support (gsi)-scp, (gsi)-sftp,
Globus Online and local filesystem operations.

C. Extensibility and Integration

The design, configurability and execution model of RP en-
able architectural and behavioral customizations alongside the
integration of RP with third-party software systems. Fig. 3 il-
lustrates three paradigmatic examples: (1) Fig. 3a shows the
design of a master/worker framework called RAPTOR built
with RP to support effective and efficient execution of Python
functions and single-node tasks at scale; (2) Fig. 3b shows the
use of multiple PRRTE Distributed Virtual Machines (DVMs)
to partition the concurrent execution of heterogeneous tasks
at scale; and (3) Fig. 3c shows how RP enables integration
with third-party software systems, either by coding just a new
launch method (Flux) or a dedicated connector for RP API
(ParSL).

RP’s execution model supports the execution of arbitrary
tasks, including specialized tasks which can hook into RP’s
communication protocols. That mechanism has been used to
implement RAPTOR (Fig. 3a): first one or more master tasks
are scheduled, placed and launched, followed by one worker
task per compute node. Once both have successfully boot-
strapped, each master directly coordinates its pool of workers
to schedule and execute the specified Python function calls
or tasks. Assuming functions and tasks that require at most a
single compute node, RAPTOR enables unprecedented scaling
and performance on leadership-class HPC platforms.

Specific capabilities can be implemented in an Agent com-
ponent, without modifying the overall execution model of RP.
For example, we extended an Agent’s Executor to support mul-
tiple PRRTE DVMs (Fig. 3b). Available resources are parti-
tioned across the DVMs and the Executor places tasks across
available DVMs. Currently, tasks can be placed round-robin
or by tagging each task to a specific DVM.

Finally, RP execution model is amenable to integration with
third-party software that implement functionalities needed by
RP. For example, in the integration with Flux (Fig. 3c), the
Agent’s Staging in component queues tasks to the Flux’s
scheduler that, in turn, places and launches those tasks across
the resources held by RP’s Agent.

D. Programmability, Tracing and Profiling

RP exposes an API with 5 classes: Session, PilotManager,
PilotDescription, TaskManager, TaskDescription [41]. Users
use those classes and their methods to describe resources, pi-
lots and tasks; create managers for both resources and tasks,
and then launch the execution of the workload. The appli-
cation waits for the workload to complete before returning
control, making RP well suited for stand-alone applications as
opposed to those which require interactive programming [42]).

The API is implemented in pure Python and users import RP
as a module in their Python applications.

The distributed, modular, and concurrent design of RP intro-
duces complexities with both usability and performance over-
heads. We developed a tracer to enable postmortem perfor-
mance analysis, collecting up to 200 unique events across
RP components, and a profiling library called RADICAL-
Analytics (RA). RA synchronizes traces’ timestamps and en-
ables time series analysis that we use to characterize RP’s
performance. The tracer adds some overhead, included in the
results presented in this paper. By using buffered I/O and
small data structures we can keep that overhead manage-
able. For example, a typical run of experiment 1 in §IV lasts
1045.5± 29.4s without tracing and 1069.2± 49.5s with trac-
ing. Tracing thus increases the runtime of about 2.5%, and
also slightly increases the noise of the measurements.

IV. PERFORMANCE CHARACTERIZATION

We characterize the performance of RP with homogeneous
and heterogeneous workloads, executing emulated, synthetic
and real-world tasks implemented both as executables and
Python function calls. We characterize the scaling and per-
formance of RP in terms of mean time to execution (TTX)
of the workload, compute resource utilization (RU), and RP
Agent’s runtime overheads (OVH).

A. Experiments Design

As seen in §III, Figs. 1 and 2, RP reduces every workload to
the execution of a set of tasks on its Agent. The Agent retrieves
tasks individually or in bulk and executes them on the previ-
ously acquired HPC resources. The execution of workloads
requires the interplay of all RP components and their support-
ing infrastructure. As such, the characterization of TTX, RU
and OVH depends on how each Agent component performs.

As explained in §I and §III, the Pilot abstraction and RP
Agent enable the execution of tasks both concurrently and
sequentially. Above a certain number of tasks, the workload
cannot be executed with full concurrency, even on the largest
HPC platforms currently available. In this situation, sequen-
tial “batched” execution incurs overheads determined by the
systems and resources used to manage the execution.

Our experiments are designed to measure the overhead that
the Agent, third-party systems, and the HPC platform add to
the execution of the workload. Overhead captures the time
spent not executing tasks while the resources were available to
RP. This overhead determines a partial utilization of the avail-
able computing time for executing the workload and, therefore,
a certain degree of inefficiency of its execution. We investigate
its growth with increasing number of tasks and cores.

We designed five experiments to characterize the Agent per-
formance when executing homogeneous and heterogeneous
workloads. Experiment 1 measures the weak scaling of the
Agent by maintaining a constant ratio of homogeneous tasks to
resources. Experiment 2 measures the strong scaling by fixing
the number of homogeneous tasks while varying the amount
of resources. Experiments 3 and 4 also measure the weak and
strong scaling of the Agent but for heterogeneous tasks, using
multiple DVMs (§III) and improved scheduling algorithms to

6

Compute Node 1

CPUs
Master
1 CPU

Launch/Compute node

RP Agent Bootstrapper

GPUs

Compute Node n

GPUs

RP Executor

CPUs

PRTE/JSRUN/...

RP Scheduler

MPI Task 32 CPU

Worker
36 CPU 6 GPU

Worker
18 CPU 6 GPU

PRTE/JSRUN/...

PRTE/JSRUN

Master
Worker

Task
Function

RP component
System/3rd-party Component

1

2 2

3

4

5 5 5

6

6

(a)

Node 1Node 1Node 1Node 1Node 1

Executor

Launch/Compute node

Agent Bootstrapper

CPUs GPUs

prun

Node n

GPUs

JSM daemon

JSRUN

CPUs

PRTE DVM1

prun

...

RP Scheduler

32 CPU

16
CPU

1
GPU

2 CPU 1 GPU 1
 CPU

4 GPU

 12 CPU 1 GPU

...

1

3

4

5

SSH

2

(b)

Node 1

GPUsCPUs

Launch/Compute node

Agent Bootstrapper

Node n

GPUs

Flux daemon

RP Executor

CPUs

RP Scheduler

32 CPU

16
CPU

1
GPU

 2 CPU 1 GPU 1
 CPU

4 GPU

 12 CPU 1 GPU

3

4
6

Flux

Flux daemon

7 8

Workstation/Login node

Pilot API

Task ManagerPilot Manager

Parsl
1

2

5

(c)
Fig. 3. Pilot-based task execution frameworks implemented using RADIAL-Pilot. Numbers indicates the process of task execution. Blue box = RAPTOR
master; red box = RAPTOR worker; green box = tasks; purple box = RP component; gray box = third-party software component. (a) RAPTOR’s masters/workers
are special type of tasks executed via the standard RP capabilities. (b) Each DVM spans multiple compute nodes and one RP Executor is used for each
DVM to execute tasks on those compute nodes. (c) Integration with both user-facing (Parsl) and resource-facing (Flux) software systems, does not alter RP
execution model: task are described in Parsl, scheduled by RP and placed and launched by Flux.

0 5 10 15 20 25 30 35
Number of Cores

100

200

300

E
xe
cu
ti
on

ti
m
e
(s
) BPTI (CrayMPI)

NTL9 (CrayMPI)

BPTI (OpenMPI)

NTL9 (OpenMPI)

Fig. 4. BPTI, NTL9 scaling on Titan.

reach higher scale and better performance. Experiment 5 mea-
sures the performance of RP when using RAPTOR (§III) and
a production workload. Together, experiments 1–5 character-
ize the performance of RP for diverse workloads, on diverse
HPC platforms and at the largest scales that can be currently
reached on HPC resources available to scientific research.

Experiments 1 and 2 execute a workload comprised of
executable tasks simulating the molecular dynamics of the
bovine pancreatic trypsin inhibitor (BPTI), a globular protein
of 20,521 atoms when fully solvated. Fig. 4 shows the scaling
behavior of GROMACS for workloads simulating BPTI and
another protein NTL9 with 14,100 atoms to confirm the gen-
eral scaling behavior. Although the simulations of both pro-
teins scale sublinearly after 8 cores, 32 cores offer the best
relative performance, as measured by execution time. With
larger systems, scaling each task up to 64 cores can become
optimal.

MD simulations with multiple GROMACS tasks executed
on HPC machines can experience large performance fluctua-
tions over the runtime. Such fluctuations would make the sepa-
ration of RP overheads from resource fluctuations and runtime
variations of the application’s tasks difficult, if not impossible.
Thus, we profiled and emulated GROMACS simulations with
Synapse [43]. Synapse profiles the compute, memory and I/O
use of an executable and emulates them. Synapse reproduces
the computing activities of the profiled executable, faithfully
approximating its time to completion and resource utilization.

Synapse offers our experiments several advantages over the
direct use of the executable it emulates: (1) simplified and
self-contained deployment without third parties libraries and
compilers dependences; (2) high-fidelity replication of com-
pute patterns of the emulated executables; (3) profiling capa-

Fig. 5. Distribution of the TTX for Synapse emulation of BPTI.

bilities independent of third-parties applications; (4) control
over the number of FLOPs executed; and (5) selective em-
ulation of the type of profiled resources. As such, Synapse
allows greater control, while simplifying deployment and data
analysis without loss of generality of results.

We emulated the execution of a single GROMACS instance,
simulating BPTI for ∼250ps, the baseline in several studies. In
this way, we controlled the runtime noise inherent to executing
multiple instances of the same executable: we measured only
the variance of Titan and the predictable variance of Synapse.
Further, we did not emulate I/O activities as the performance
fluctuations of Titan’s network file systems would have domi-
nated our experimental results. Fig. 5 shows the narrow distri-
bution of Synapse emulations’ runtime: the mean is 828s with
a standard deviation of ±14s.

Experiments 3 and 4 execute a synthetic workload in which
an executable can be configured to run for an arbitrary amount
of time and on an arbitrary number of cores and/or GPUs,
using MPI when spanning multiple compute nodes. In this
way, we can characterize the weak and strong scaling of the
Agent when concurrently executing tasks with four types of
heterogeneity: amount and type of parallelism (scalar, MPI
and multi-process/thread); type of required compute support;
size; and duration. Together, these types of heterogeneity rep-
resent the requirements of the diverse use cases supported by
RP and offer a worst case scenario for its performance analy-
sis. Heterogeneity stresses the Agent Scheduler and Executor
components more than homogeneous workloads or workloads
with lesser types of heterogeneity.

Experiment 5 executes a production workload which simu-
lates the docking of diverse ligands to a protein receptor. The
experiment performs docking of 126 × 106 molecules to the

7

3CLPro 6LU7 A 1 F receptor, using OpenEye Python func-
tion calls. This workload is a core stage of the DOE NVBL
drug discovery pipeline [?] to find known drug molecules that
can bind to the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Currently, to our knowledge, RP executes
docking calculations at the largest scales, and a throughput
rate that is twice that of highest published rate [44].

Table I shows the parameters of the five experiments. Ex-
periment 1 consists of 8 runs designed to measure the weak
scaling of RP Agent with the chosen workload on Titan. Each
run executes between 32 and 4096 32-cores tasks on a single
pilot with between 1024 and 131,072 cores. The ratio between
the number of tasks executed and the amount of resources ac-
quired is constant across the 8 runs of the experiment. All the
tasks are thus executed concurrently in a single so-called ‘gen-
eration’, i.e., a single set of concurrent executions. As all the
tasks have analogous overheads and all the tasks execute con-
currently, the median of the ideal total execution time (TTX)
of all the tasks should be analogous for all the 8 runs.

Experiment 2 has 3 runs which measure the strong scaling
of RP Agent with the chosen workload on Titan. The ratio
between number of tasks and number of cores of the pilot is the
only difference with experiment 1: each run executes 16,384
tasks on a single pilot with between 16,384 and 65,536 cores.
Because of the disparity between the number of cores required
by the tasks and the number of pilot cores, the workload is
executed on multiple generations, between 32 and 8.

Experiments 3 and 4 measure how RP Agent scales on Sum-
mit, the largest HPC machine currently available in the USA.
We execute between 3098 and 24,784 tasks—heterogeneous
for size, duration, and type of parallelism and compute
support—on between 1024 and 4097 of the 4608 compute
nodes available on Summit. Each compute node has 42 CPU
cores and 6 GPUs, fully utilized and partitioned across our
workload. For these experiments, we measure resource utiliza-
tion (RU) and RP overheads (OVH). In presence of multiple
heterogeneities, the ideal TTX of the workload depends on
considering optimal scheduling policies. RP does not attempt
to realize scheduling optimality as that would depend on the
specifics of each workload and resource. Instead, RP balances
the various performance trade offs so as to improve resource
utilization across a variety of workloads and resources. Thus,
RP privileges generality over optimality.

Experiments 3 and 4 also pose a feasibility challenge. Exe-
cuting at the scale of near full Summit requires large amount
of resource allocations that, in turn, might not be available on
a production, leadership-class machine. Thus, we reduced the
number of runs to two per experiment: a baseline run with a
1/4 of the total available compute nodes, and a run on almost
the whole machine. Those runs, including the necessary testing
and repeated runs for statistical confidence, consumed around
10,000 node hours, i.e., a full director discretional allocation
on Summit. Thus, we also limited the duration of the tasks to
between 500s and 900s, reducing the pilot job walltime and
thus resource allocation usage to the viable minimum.

Experiment 5 characterizes RP performance when executing
126,471,524 Python function calls via RAPTOR on 7000 of
the 8008 available compute nodes of Frontera, the largest HPC

32
/1

02
4

64
/2

04
8

12
8/

40
96

25
6/

81
92

51
2/

16
38

4

10
24

/3
27

68

20
48

/6
55

36

40
96

/1
31

07
2

Number of Tasks/Cores

0

1000

2000

T
im

e
(s

)

TTX

Mean Ideal TTX

16384/16432 16384/32816 16384/65584
Number of Tasks/Cores

0

10000

20000

T
im

e
(s

)

TTX

Mean Ideal TTX

Fig. 6. Experiments 1–2: RP weak (top) and strong (bottom) scaling.

platform offered by NSF, for a total of 392,000 CPU cores.
For the experiment, we used 70 masters and 6930 workers,
i.e., 99 workers for each master. As we used the Texascale
Days at TACC, we execute experiment 5 without incurring
allocation limitations of experiments 3 and 4.

B. Experiments 1–2: Weak and Strong Scaling with Homoge-
neous Workloads on Homogeneous Resources

Fig. 6 shows the scaling of RP for the workloads of experi-
ments 1 and 2 (Table I). An ideal TTX (broken line) represents
execution time without RP and resource overheads, and corre-
sponds to the mean value in Fig. 5. In experiment 1, the ratio
between number of tasks and core is constant, enabling fully
concurrent executions.

Fig. 6 (top) shows that the actual TTX scales almost lin-
early between 1024 and 4097 cores, and sublinearly between
4097 and 131,072 cores. The average value of TTX for runs
with between 1024 and 4097 cores is 922±14 seconds (s),
indicating an average overhead of 11% over the mean of
the ideal TTX. This overhead grows between 18%/160% at
8192/131,072 cores.

Fig. 6 (bottom) shows the strong scaling of 16,384 tasks
executed from 16,384 to 65,536 cores; this results in the
number of generations varying from 32 to 8. When executed
over 16,384, 32,816 and 65,536 cores, they have a TTX of
27,794s±70, 14,358s±259, and 7612s±29 respectively. The
deviation from ideal TTX is relatively uniform across differ-
ent pilot sizes (1,158s±150), which indicates that RP is less
efficient at higher pilot core counts.

Fig. 7 shows RU for experiment 1 (first 8 bars) and experi-
ment 2 (last 3 bars). RU is represented as the percentage of the
available core-time spent executing the workload, RP compo-
nents, third party software (i.e., ORTE, the lunch method used
on Titan to execute tasks) or idling. Note the relation between
TTX and RU: The more core-time is spent executing the work-
load, the shorter TTX.

Fig. 7 (first 8 bars) shows for experiment 1 a relatively con-
stant percentage of core-time utilization for runs with between
32–128 tasks and 1024–4097 cores, consistent with TTX of

8

TABLE I
EXPERIMENTS SETUP AND RESULTS. WEAK AND STRONG SCALING OF RADICAL-PILOT FOR HOMOGENEOUS TASKS (EXPERIMENTS 1–2),
HETEROGENEOUS TASKS WITH MULTIPLE DVMS (EXPERIMENTS 3–4), AND PEAK PERFORMANCE OF RP AND RAPTOR (EXPERIMENTS 5).

ID HPC
Platform

#Tasks #Generations Task
Runtime (s)

#Cores/
Task

#GPUs/
Task

#Cores/
Pilot

#GPUs/
Pilot

#Runs Scaling OVH
(%)

RU
(%)

1 Titan 25..12 1 828±14 32 - 210..17 - 8 Weak 9..26 81..34
2 Titan 214 25..3 214−16 3 Strong 9..5 85..93
3 Summit 3098; 12,276 1 600..900 1..42 0; 6 43,008; 172,074 6144; 24,582 2 Weak 7;9 77;41
4 Summit 24,552; 24,784 ∼8; 2 500..600 Strong 2;8 76;38
5 Frontera 126× 106 ∼300 1..120 1 - 392,000 - 1 - 8 80..98

32
1056

64
2080

128
4128

256
8224

512
16416

1024
32800

2048
65568

4096
131104

16384
65568

16384
32800

16384
16416

Number of Tasks/Cores

0

50

100

U
ti

liz
at

io
n

(%
of

to
ta

l
re

so
u

rc
es

)

RP Overhead Workload Execution RP Idle

Fig. 7. Experiments 1 and 2: Resource utilization (RU) of RADICAL-Pilot.
First 8 bars: experiment 1; Last 3 bars: experiment 2.

Fig. 6 (top). The percentage of utilization decreases with the
growing of the number of tasks/cores, also consistent with
Fig. 6 (top). Interestingly, our analysis of the traces shows
that there are three main reasons for the decreasing of re-
source utilization: scheduling, ORTE and idling.

For experiment 2, Fig. 7 (last 3 bars) shows progressively
shorter values for RP scheduling, ORTE and idling for runs
with multiple generations (as defined in §IV-A). When tasks
of one generation terminate, those of the following genera-
tion immediately start executing. This eliminates the idling of
cores for all generations but the last. Further, RP and ORTE
overheads increase with the number of cores, indicating that
the reduced performance of RP measured in Fig. 6 (top) de-
pends on the size of the pilot. Note that the more generations
in a strong scaling run, the longer the runtime and that, the
longer the runtime, the less relevant RP Overhead and RP Idle
become for the percentage of overall resource utilization.

Together, the data of experiments 1 and 2 show that the chal-
lenges of scaling homogeneous task execution beyond 4097
cores mostly depends on the efficiency of RP’s scheduler and
of ORTE’s launching system at managing concurrent execu-
tions on pilot of growing size.

C. Improving Performance and Scale

Fig. 8 clarifies the relation between the performance of the
Scheduler and the Executor, the two Agent components that,
alongside ORTE, contribute to RP’s overhead in experiments
1 and 2. We measure the time spent by each task in each
component of the Agent. Tasks are pulled from RP DB into the
Scheduler’s queue (Fig. 8, DB Bridge Pulls, black); after, the
Scheduler queues each task into an Executor (Fig. 8, Scheduler
Queues Task, blue); the Executor starts processing the queued
task (Fig. 8, Executor Starts, orange), starting task’s executable
(Fig. 8, Executable Starts, green) and waiting for it to stop
(Fig. 8, Executable Stops, red) executing. Finally, the Executor
marks the task as done (Fig. 8, Task Spawn Returns, purple).

Fig. 8 shows that all the tasks of the workload, pulled in
bulk from the DB (DB Bridge Pulls), enter Scheduler’s queue

approximately at the same time; i.e., all the tasks are approx-
imately at the same height compared to the y-axes, forming
an almost horizontal “line”, parallel to the x-axis. The angle
between the black line (DB Bridge Pull) and the blue line
(Scheduler Queues Task) is a measure of the time taken by
RP to schedule each task. The wider the angle, the more time
scheduling takes. Ideally, tasks should be immediately sched-
uled for execution as in experiment 1 there are as many cores
available as needed by all the tasks.

Fig. 8 also shows two overheads in Executor that depend
on ORTE and not RP: (1) the time spent to prepare a task for
its execution (Executor Starts), i.e., the time between when
a task is passed to ORTE and when it starts to execute;
and (2) the time required for the Executor to be informed
that a task has been executed (Task Spawns Return), i.e., the
time from when a task stops executing and the time when
ORTE passes a message to the Executor about the task be-
ing done or failed. The mean time to prepare the execu-
tion of 512 tasks on 16,384 cores is 37s±9; 37s±6 with
1024 tasks/32,768 cores; 35s±8 with 2048 tasks/65,536 cores;
and 41s±30 with 4096 tasks/131,072 cores. Thus, in spite of
the high jitter, the mean is essentially invariant across scales.

The Executor takes variable amount of time to acknowledge
that the execution of a task has completed. This variance in-
creases with scale, depending on the time taken by ORTE to
communicate with RP about the task’s state and the time taken
to process the message. The distribution of the Task Spawn Re-
turns event is both broad and long-tailed across all the scales.
The mean time to communicate the completion of 512 tasks
on 16,384 cores is 29s±16; 34s±28 with 1024 tasks/32,768
cores; 59s±46 with 2048 tasks/65,536 cores; and 135s±107
with 4096 tasks/131,072 cores.

Based on that analysis, we improved RP performance by
implementing a more efficient scheduling algorithm, using
PRRTE instead of ORTE and reducing the time spent idling
while resources are available to execute tasks. Experiments 3
and 4 measure the improved performance at scale of RP and
execute heterogeneous workloads on heterogeneous resources,
moving away from the homogeneity of experiments 1 and 2.
Note that, due to the workload, platform, RP scheduler and
RP executor, the results of experiments 1 and 2, and 3 and 4
are not directly comparable.
D. Experiments 3–4: Weak and Strong Scaling with Hetero-
geneous Tasks on Heterogeneous Resources

Fig. 9 shows RP resource utilization (RU) for experiments
3 and 4. Pilot Startup (blue) shows the time in which the re-
sources are blocked while RP starts up; and Warmup (orange)
the time in which resources are blocked by RP while collecting

9

Fig. 8. Experiments 1: Tasks events. Scheduler (blue) and Executor (purple) events limit the weak scaling of RP. Different Y axes to improve readability.

tasks and scheduling them for execution. Prepare Exec (pur-
ple) indicates the resources blocked while waiting for PRRTE
to initiate task execution; Exec Cmd (black) marks the time in
which tasks use resources for execution; and Idle (green) the
time in which available resourced idled.

Compared to experiments 1 and 2, we improved the sched-
uler performance from 6 to 300 tasks/s, eliminated the delay
in the acknowledgment of task completion by using PRRTE
instead of the now deprecated ORTE, and partitioned the exe-
cution across multiple DVMs. As a result, RP scheduled 3098
tasks on 1024 compute nodes (43,008 cores/6144 GPUs) in
∼10s (Fig. 9a, yellow area) and 12,276 tasks on 4097 com-
pute nodes (172,074 cores/24,582 GPUs) in ∼100s (Fig. 9b,
yellow area), achieving linear scaling performance. Both runs
used PRRTE with up to 256 nodes per DVM, thus 4 DVMs
for 1024 nodes and 16 DVMs for 4097 nodes with 1 node
reserved to RP Agent. In this configuration, we measured a
negligible overhead for acknowledging task completion and
thus addressed the performance issue measured with ORTE.
Note that in the second run of experiment 3, two DVMs failed
(Fig. 9b, unused resources on the top) but, due to RP fault-
tolerance, all the tasks were executed on the remaining DVMs.

Figs. 9a and b show that, once RP Executor has passed the
tasks to PRRTE, the time PRRTE takes to launch those tasks
increases with the number of the available resources (purple
area). Based on Ref. [45], we know that PRRTE and DVM
overheads are relatively small when managing up to 16,000
tasks on up to 400 Summit compute nodes. Our analysis con-
firmed that the observed performance degradation depends on
the performance of the file system. When executing at full ca-
pacity, the distributed filesystem on which PRRTE is installed
shows that it was not designed and optimized for large amounts
of (relatively) small concurrent I/O. This problem might be
mitigated by installing PRRTE on each compute node when
bootstrapping RP but that would affect both overheads and
resource utilization.

Experiment 3 runs reached 77% and 41% resource utiliza-
tion with 3098/12,276 tasks and 1024/4097 nodes respectively.
The lower utilization of the run with 4097 nodes is due to the
file system overheads described above: the delayed starting of
task execution wastes resource availability but also increases
the time spent waiting for those tasks to complete (Fig. 9b,
green area). As a consequence of how HPC resource managers
work, RP has to wait for all the tasks to complete before re-
leasing all the acquired resources. Another ∼10% of utilization

is lost due to the failure of 1148 tasks. That is mostly due to
PRRTE mishandling processes under the pressure of concur-
rency, something that needs to be improved in PRRTE/PMIx.

Figs. 9c and 9d confirm that improved scheduling rate and
reduced PRRTE task acknowledging time hold also with the
strong scaling runs of experiment 4. RP reached 76% re-
source utilization with 24,784 tasks / 1024 nodes and 38%
with 24,552 tasks / 4097 nodes. The filesystem issues already
observed in experiment 3 multiply in experiment 4 due to the
presence of multiple generations (Fig. 9d, multiple purple ar-
eas) and compound to the overheads of managing workload
heterogeneity over multiple generations, affecting the overall
resource utilization. RP scheduler could use better bin pack-
ing algorithms but the best results would require accurate task
duration estimation which is difficult to obtain in production
scenarios. Currently, the best approach would be to use RP
multi-pilot capabilities to partition the workload across 4 in-
dependent pilots and benefit from the better performance mea-
sured with 1024 nodes.

RP overhead (OVH) for experiments 3 and 4 is: 61s
(3098 tasks / 1024 nodes), 131s (12,276 tasks / 4097 nodes),
115s (24,784 tasks / 1024 nodes), and 251s (24,552 tasks /
4097 nodes). Barring the scheduling overhead (yellow areas
in Fig. 9) most of the overhead is due to the time taken to
bootstrap the agent (blue areas in Fig. 9). Bootstrap overhead
is invariant to walltime and thus it becomes less relevant for
production-grade workloads that usually run for many hours.
In Fig. 9d, PRRTE took more time than usual to tear down
the DVMs (green area), increasing the OVH of that run.

Overall, the performance and scalability limits outlined by
experiments 3 and 4 are those of PRRTE/PMIX which we use
as system execution layer. RP itself behaves as expected: it
timely schedules tasks and passes them on to the execution
layer. It should also be noted that Summit’s native execution
layer (LSF/jsrun) has much lower scalability limits of about
800 concurrent tasks [45].

Resources partitioning is the way forward to improve the
performance of RP on the upcoming exascale platforms, while
reducing the impact of other systems’ overheads as expe-
rienced with PRRTE. We will partition RP Agent, add a
Metascheduler component and deploy a Scheduler and Execu-
tor for each partition. The size and lifespan of each partition
will be dynamic, allowing to minimize the amount of resources
assigned to each partition, based on the requirements of the
tasks that will execute on those resources. Barring workloads

10

Fig. 9. Experiments 3–4: Weak (a,b) and strong (c,d) scaling of RP resource utilization when executing 3098, 12,276, 24,784 and 24,552 tasks on 1024 and
4097 Summit compute nodes. Tasks are heterogeneous for duration, number of CPUs/GPUs, number of threads/processes, and use of MPI.

with unusually large MPI tasks and given the current capabil-
ities of HPC platforms, the aggregated performance of all the
partitions will be higher than that of a single, machine-wide
partition. That is the approach we started to explore with mul-
tiple DVMs and multiple masters/workers in experiment 5.

E. Experiment 5: Function Calls Execution on Multiple Pilots

Fig. 10 shows resource utilization (Fig. 10a), task execution
concurrency (Fig. 10b) and task execution rate (Fig. 10c) over
the time taken by RP and RAPTOR to execute the 126,471,524
OpenEye Python function calls of experiment 5. Partitioning
the resources across 70 masters, each managing 99 work-
ers, RP and RAPTOR utilize 90% of the available resources,
reaching 98% utilization after ∼300s and keeping that rate for
∼3000s, i.e., 80% of the overall runtime. RP takes less than
300s to bootstrap and to launch the 70 masters and 6930 work-
ers. The tapering down of the resource utilization towards the
end of the execution depends on the differences in each of the
data processed by the function call (i.e., the physical prop-
erties of the receptor that is docked) and on the progressive
exhaustion of the calls that still need to be executed.

Figs. 10b and 10c are consistent with the resource utilization
plotted in Fig. 10a. After initial warm up, RP and RAPTOR
reach steady state, executing ∼390,000 concurrent tasks/s at
every point in time until the 3000s mark of the runtime, sat-
urating the available 392,000 cores. Task execution rate indi-
cates the number of tasks completed over time and Fig. 10c
shows that it averages 37,000 tasks/s with peaks of 40,000
tasks/s. This is consistent with the concurrency rate, the aver-
age task execution time of 34s, the number of cores concur-
rently available and the total number of tasks to compute.

Experiment 5 and the use of multiple masters and work-
ers confirms what already observed with experiments 3 and
4: partitioning of resources is a promising approach to limit
global overheads, while improving resource utilization within
each partition. Further, our experiments on Frontera showed
the importance of tailoring the HPC platform capabilities to the
requirements of many-tasks workflows. TACC system admin-
istrators configured one of the shared filesystem so to better
support the load of our type of workload, and tailored libraries
and Python to reduce I/O to a minimum.

V. CONCLUSIONS

Software systems implementing the Pilot abstraction [5]
provide the conceptual and functional capabilities to support
the scalable execution of workloads comprised of many het-
erogeneous tasks. Whereas there are multiple Pilot systems,
they are geared towards either specific workloads or platforms.

Against this backdrop, RADICAL-Pilot (RP) brings together
conceptual advances [5] with systems and software engineer-
ing [12] showing potential for portability, extendibility and
performance at extreme scale.

This paper describes RP’s design and implementation (§III),
and characterizes the performance of its Agent module on past
and present HPC leadership-class machines for homogeneous,
heterogeneous and production workloads (§IV). Although RP
works on multiple platforms, we focused our experiments on
existing leadership-class platforms that offer the highest de-
gree of concurrency both for CPUs cores and GPUs, and that
are precursors to the first generation of exascale platforms.
The experiments discussed in §IV benefited from RP’s sup-
port for tracing and profiling. Using RADICAL-Analytics, we
were able to pinpoint and reduce RP overheads while isolating
performance bottleneck of the HPC platform and third-party
software tools.

Experiments 1 and 2 in §IV outlined the relevant schedul-
ing performance, the limitations of launching systems and, ul-
timately, indicated the need to partition resources at different
logical levels. Experiment 3 and 4 showed that by address-
ing those limitations, we were able to scale workload execu-
tions on the largest HPC platform with heterogeneous com-
pute resources. Further, experiments 3 and 4 also showed how
RP can manage multiple dimensions of heterogeneity at large
scales, without incurring limiting overheads. Finally, experi-
ment 5 showed how RP can be effectively and efficiently used
to execute hundred of millions of Python function calls on NSF
Frontera. In fact, RP enabled approximately 150× 106 dock-
s/hour, about two times the highest known published rate [44].

The focus of this paper has been on the direct execution
of workloads on HPC machines, but RP also forms the mid-
dleware and runtime system for a range of other tools and
libraries, already used in production. RP was designed follow-
ing the ‘building blocks approach’, enabling integration with
third-party software systems such as Parsl, Swift, PanDA and
Flux. RP is available for immediate use on many HPC plat-
forms [46], accompanied with documentation and an active
developer-user community.

This paper offers several indications of what is needed to en-
able the execution of heterogeneous workloads on the upcom-
ing exascale HPC platforms. Partitioning executions across
multiple third-party launchers (e.g., DVMs) proven to be ef-
fective but limited due to the overheads posed by load balanc-
ing among different launchers. We plan to implement multi-
ple levels of partitioning at the Agent, Scheduler and Executor
level. In this way, we will benefit from multi-stage placement,

11

(a) (b) (c)
Fig. 10. Experiments 5: RP (a) resource utilization (RU), (b) execution concurrency (EC) and (c) task execution rate (TR) with RAPTOR when executing
126,471,524 OpenEye Python function calls on 7000 compute nodes/392,000 cores of Frontera with 70 master and 99 workers per master. RU = 90%; EC =
4× 105 steady state; TR = 144× 106/hour peak.

not only distributing the overheads across different subsys-
tems but also decoupling, as much as possible, the magnitude
of the overheads from the scale of the concurrency at which
the workload will be executed. Further, this approach will also
improve error handling, fault tolerance and resilience.

Another important message of this paper is the need for
considering heterogeneous workloads, and thus workflows, as
a first-order priority of the exascale roadmap. As pointed out
in the introduction, such workflows are becoming ubiquitous
in many scientific domains and the demand for scale and per-
formance had reached critical mass. The performance limits of
Summit’s file system measured in §IV, Experiment 3, under-
line the importance of considering the requirements of hetero-
geneous, many-task workflows when designing the upcoming
exascale machines.

This paper also shows the importance of producing a bench-
mark suite for pilot systems and HPC platforms. Currently,
it is difficult if not impossible to compare RP performance
to other pilot systems because the lack of common metrics,
analogous task implementations, and effective ways to isolate
a platform, pilot system and task overheads. Further, a bench-
mark suite would also be necessary to validate the effective-
ness of future HPC platforms in supporting diverse workflows.
Proposed performance enhancements of RP will benefit from
such benchmarks, while being the runtime system of work-
flow benchmarks used in the procurement of future leadership
platforms.
Acknowledgements This research is supported by NSF NSF-1931512
(RADICAL-Cybertools), NSF-1835449 (SCALE-MS), ECP CANDLE, Exa-
Works, and the Exascale Computing Project (17-SC-20-SC) at BNL (con-
tract DESC0012704). This research used OLCF resources at ORNL (con-
tract DE-AC05-00OR22725), and NSF XSEDE resources (allocation TG-
MCB090174). We thank TACC for the opportunity for scaling runs during
the TexaScale days. We thank Mark Santcroos and Manuel Maldonado for
early stage contributions.

Experiments Data and analysis scripts can be found at: https:
//github.com/radical-experiments/rp.paper

REFERENCES

[1] K. Antypas, B. Austin, T. Butler, R. Gerber, C. Whitney, N. Wright, W.-
S. Yang, and Z. Zhao, “Nersc workload analysis on hopper,” Lawrence
Berkeley National Laboratory, Tech. Rep, vol. 6804, pp. 1–15, 2013.

[2] Z. Liu, R. Lewis, R. Kettimuthu, K. Harms, P. Carns, N. Rao, I. Foster,
and M. E. Papka, “Characterization and identification of hpc applica-
tions at leadership computing facility,” in Proceedings of the 34th ACM
International Conference on Supercomputing, 2020, pp. 1–12.

[3] W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, W. E, and L. Zhang,
“Pushing the limit of molecular dynamics with ab initio accuracy to
100 million atoms with machine learning,” in 2020 SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society, 2020, pp. 47–60.

[4] E. Hwang, S. Kim, T.-k. Yoo, J.-S. Kim, S. Hwang, and Y.-r. Choi,
“Resource allocation policies for loosely coupled applications in hetero-
geneous computing systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 27, no. 8, pp. 2349–2362, 2016.

[5] M. Turilli, M. Santcroos, and S. Jha, “A comprehensive perspective on
pilot-job systems,” ACM CSUR, vol. 51, no. 2, pp. 1–32, 2018.

[6] P.-H. Chiu and M. Potekhin, “Pilot factory–a condor-based system for
scalable pilot job generation in the panda wms framework,” in Journal
of Physics: Conference Series, vol. 219, no. 6. IOP Publishing, 2010.

[7] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter,
“The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, no. 1, pp. 159–175, 2018.

[8] A. Merzky, M. Turilli, M. Maldonado, M. Santcroos, and S. Jha, “Us-
ing pilot systems to execute many task workloads on supercomput-
ers,” in Workshop on Job Scheduling Strategies for Parallel Processing.
Springer, 2018, pp. 61–82.

[9] J. Dakka, M. Turilli, D. W. Wright, S. J. Zasada, V. Balasubramanian,
S. Wan, P. V. Coveney, and S. Jha, “High-throughput binding affinity
calculations at extreme scales,” BMC bioinformatics, vol. 19, no. 18, pp.
33–45, 2018.

[10] D. Oleynik, S. Panitkin, M. Turilli, A. Angius, S. Oral, K. De, A. Kli-
mentov, J. C. Wells, and S. Jha, “High-throughput computing on high-
performance platforms: A case study,” in 2017 IEEE 13th International
Conference on e-Science (e-Science). IEEE, 2017, pp. 295–304.

[11] M. Turilli, Y. N. Babuji, A. Merzky, M. T. Ha, M. Wilde, D. S. Katz,
and S. Jha, “Evaluating distributed execution of workloads,” in IEEE
13th International Conference on e-Science, Oct 2017, pp. 276–285.

[12] M. Turilli, V. Balasubramanian, A. Merzky, I. Paraskevakos, and S. Jha,
“Middleware building blocks for workflow systems,” Computing in Sci-
ence & Engineering, vol. 21, no. 4, pp. 62–75, 2019.

[13] D. H. Ahn, J. Garlick, M. Grondona, D. Lipari, B. Springmeyer, and
M. Schulz, “Flux: A next-generation resource management framework
for large hpc centers,” in 2014 43rd International Conference on Parallel
Processing Workshops. IEEE, 2014, pp. 9–17.

[14] L. V. Kale and S. Krishnan, “Charm++ a portable concurrent object
oriented system based on c++,” in Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and
applications, 1993, pp. 91–108.

[15] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “Hpx:
A task based programming model in a global address space,” in Proceed-
ings of the 8th International Conference on Partitioned Global Address
Space Programming Models, 2014, pp. 1–11.

[16] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
ACM SigPlan Notices, vol. 30, no. 8, pp. 207–216, 1995.

[17] J. Preto and C. Clementi, “Fast recovery of free energy landscapes via
diffusion-map-directed molecular dynamics,” Physical Chemistry Chem-
ical Physics, vol. 16, no. 36, pp. 19 181–19 191, 2014.

[18] T. E. Cheatham III and D. R. Roe, “The impact of heterogeneous com-
puting on workflows for biomolecular simulation and analysis,” Com-
puting in Science & Engineering, vol. 17, no. 2, pp. 30–39, 2015.

[19] R. Pordes et al., “The Open Science Grid,” J. Phys.: Conf. Ser., vol. 78,
no. 1, p. 012057, 2007.

[20] T. Maeno and et al, “Evolution of the ATLAS PanDA workload man-
agement system for exascale computational science,” in Proceedings of
the 20th International Conference on Computing in High Energy and
Nuclear Physics (CHEP2013), Journal of Physics: Conference Series,
vol. 513(3). IOP Publishing, 2014, p. 032062.

[21] I. Sfiligoi, “glideinWMS—a generic pilot-based workload management
system,” in Proceedings of the international conference on computing
in high energy and nuclear physics (CHEP2007), Journal of Physics:
Conference Series, vol. 119(6). IOP Publishing, 2008, p. 062044.

[22] A. Casajus, R. Graciani, S. Paterson, A. Tsaregorodtsev et al., “DIRAC
pilot framework and the DIRAC Workload Management System,” in

12

Proceedings of the 17th International Conference on Computing in High
Energy and Nuclear Physics (CHEP09), Journal of Physics: Conference
Series, vol. 219(6). IOP Publishing, 2010, p. 062049.

[23] A. Harutyunyan, J. Blomer, P. Buncic, I. Charalampidis, F. Grey, A. Kar-
neyeu, D. Larsen, D. L. González, J. Lisec, B. Segal et al., “Cernvm
co-pilot: an extensible framework for building scalable computing in-
frastructures on the cloud,” in Journal of Physics: Conference Series,
vol. 396, no. 3. IOP Publishing, 2012, p. 032054.

[24] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: a
Fast and Light-weight tasK executiON framework,” in Proceedings of
the 8th ACM/IEEE conference on Supercomputing. ACM, 2007, p. 43.

[25] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Braf-
man, G. Petretto, G.-M. Rignanese, G. Hautier et al., “FireWorks: a
dynamic workflow system designed for high-throughput applications,”
Concurrency and Computation: Practice and Experience, 2015.

[26] A. J. Rubio-Montero, E. Huedo, F. Castejón, and R. Mayo-Garcı́a, “Gw-
pilot: Enabling multi-level scheduling in distributed infrastructures with
gridway and pilot jobs,” Future Generation Computer Systems, vol. 45,
pp. 25–52, 2015.

[27] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster et al., “Parsl: Perva-
sive parallel programming in python,” in Proceedings of the 28th In-
ternational Symposium on High-Performance Parallel and Distributed
Computing, 2019, pp. 25–36.

[28] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. Da Silva, M. Livny et al., “Pegasus, a work-
flow management system for science automation,” Future Generation
Computer Systems, vol. 46, pp. 17–35, 2015.

[29] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahl, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming, vol. 13,
no. 3, pp. 219–237, 2005.

[30] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in Proceedings of the 1st ACM SIGMOD Workshop on Scalable Work-
flow Execution Engines and Technologies. ACM, 2012, p. 1.

[31] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work
Queue + Python: A framework for scalable scientific ensemble appli-
cations,” in Workshop on Python for High Performance and Scientific
Computing at SC11, 2011.

[32] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Von Laszewski, V. Nefe-
dova, I. Raicu, T. Stef-Praun, and M. Wilde, “Swift: Fast, reliable,
loosely coupled parallel computation,” in 2007 IEEE Congress on Ser-
vices (Services 2007). IEEE, 2007, pp. 199–206.

[33] M. Hategan, J. Wozniak, and K. Maheshwari, “Coasters: uniform re-
source provisioning and access for clouds and grids,” in Proceedings of
the 4th IEEE International Conference on Utility and Cloud Computing
(UCC). IEEE, 2011, pp. 114–121.

[34] J. M. Wozniak, M. Wilde, and D. S. Katz, “Jets: Language and system
support for many-parallel-task workflows,” Journal of grid computing,
vol. 11, no. 3, pp. 341–360, 2013.

[35] S. Simmerman, J. Osborne, and J. Huang, “Eden: Simplified manage-
ment of atypical high-performance computing jobs,” Computing in Sci-
ence & Engineering, vol. 15, no. 6, pp. 46–54, 2013.

[36] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, “The application
level placement scheduler,” Cray User Group, pp. 1–7, 2006.

[37] J. Gyllenhaal, T. Gamblin, A. Bertsch, and R. Musselman, “Enabling
high job throughput for uncertainty quantification on BG/Q,” IBM HPC
Systems Scientific Computing User Group (SCICOMP), 2014.

[38] TaskFarmer, https://docs.nersc.gov/jobs/workflow/taskfarmer/, accessed:
2021-06-07.

[39] Wraprun, https://www.olcf.ornl.gov/olcf-resources/rd-project/wraprun/,
accessed: 2021-06-07.

[40] A. Merzky, O. Weidner, and S. Jha, “SAGA: A standardized access
layer to heterogeneous distributed computing infrastructure,” SoftwareX,
vol. 1, pp. 3–8, Sep., 2015.

[41] RADICAL-Pilot API, https://radicalpilot.readthedocs.io/en/stable/
apidoc.html, accessed: 2021-06-07.

[42] RADICAL-Pilot examples, https://github.com/radical-cybertools/radical.
pilot/tree/devel/examples, accessed: 2021-06-07.

[43] A. Merzky, M. T. Ha, M. Turilli, and S. Jha, “Synapse: Synthetic appli-
cation profiler and emulator,” Journal of computational science, vol. 27,
pp. 329–344, Jul., 2018.

[44] J. V. Vermaas, A. Sedova, M. Baker, S. Boehm, D. Rogers, J. Larkin,
J. Glaser, M. Smith, O. Hernandez, and J. Smith, “Supercomputing
pipelines search for therapeutics against covid-19,” Computing in Sci-
ence & Engineering, 2020.

[45] M. Turilli, A. Merzky, T. Naughton, W. Elwasif, and S. Jha, “Char-
acterizing the performance of executing many-tasks on summit,” in
IEEE/ACM 3rd Annual Workshop on Emerging Parallel and Distributed
Runtime Systems and Middleware (IPDRM). IEEE, 2019, pp. 18–25.

[46] RADICAL-Pilot Github Project, https://github.com/radical-cybertools/
radical.pilot, accessed: 2021-06-07.

Andre Merzky Andre Merzky received his diploma
in Physics in 1998 at the Humboldt University in
Berlin. He has worked since on Grid-related top-
ics concerning data management, visualization, dis-
tributed and high performance computing. He is ar-
chitect and lead developer of RADICAL-Pilot.

Matteo Turilli Matteo Turilli is Assistant Research
Professor at Rutgers University, Electrical & Com-
puter Engineering Department. His research focuses
on merging high-throughput and high-performance
computing, enabling the execution of heterogeneous
workflows on among the largest computing plat-
forms in the world. He holds a DPhil in Computer
Science from the University of Oxford, UK.

Mikhail Titov Mikhail Titov is a Research Asso-
ciate at Rutgers University. He pursued his PhD de-
gree in Computer Science at the University of Texas
at Arlington in 2016. Since 2008, he is an Associated
member of the personnel (Scientist) at the European
Organization for Nuclear Research (CERN, Geneva,
Switzerland). His research areas are grid computing,
cloud computing, high performance computing, data
mining, machine learning, modeling and simulation.

Aymen Al-Saadi Aymen Al-Saadi is a PhD stu-
dent and Junior Research Developer of the RADI-
CAL group. Before that he earned his master degree
in Computer Engineering from Rutgers University.
His research focus currently lies on high throughput
function execution in HPC contexts.

Shantenu Jha Shantenu Jha is a Professor of
Computer Engineering at Rutgers University and the
Chair of the Department (Center) for Data Driven
Discovery at Brookhaven National Laboratory. He
was appointed a Rutgers Chancellor’s Scholar in
2015. Shantenu’s research interests are at the inter-
section of high-performance distributed computing
and computational & data-driven science.

