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carbon stocks requires long-term perspectives because tundra fires have been rare historically. Here we inte-
grated the process-based Dynamic Organic Soil version of the Terrestrial Ecosystem Model with paleo-fire re-
cords to evaluate the responses of tundra carbon stocks to changes in fire return interval (FRI). Paleorecords
reveal that mean FRIs of tundra ecosystems in Alaska ranged from centennial to millennial timescales
(200-6000 years) during the late Quaternary, but projected FRIs by 2100 decrease to a few hundred years to sev-
eral decades (70-660 years). Our simulations indicate threshold effects of changing FRIs on tundra carbon stocks.
Shortening FRI from 5000 to 1000 years results in minimal carbon release (<5%) from Alaskan tundra ecosys-
tems. Rapid carbon stock loss occurs when FRI declines below 800 years trigger sustained mobilization of ancient
carbon stocks from permafrost soils. However, substantial spatial heterogeneity in the resilience/sensitivity of
tundra carbon stocks to FRI change exists, largely attributable to vegetation types. We identified the carbon stocks
in shrub tundra as the most vulnerable to decreasing FRI because shrub tundra stores a large share of carbon in
combustible biomass and organic soils. Moreover, our results suggest that ecosystems characterized by large car-
bon stocks and relatively long FRIs (e.g. Brooks Foothills) may transition towards hotspots of permafrost carbon
emission as a response to crossing FRI thresholds in the coming decades. These findings combined imply that fire
disturbance may play an increasingly important role in future carbon balance of tundra ecosystems, but the net
outcome may be strongly modulated by vegetation composition.
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1. Introduction

Wildfire occurrence in high-latitude tundra ecosystems has in-
creased over past decades (French et al., 2015), joining the surge of ex-
treme fire events burning across other types of ecosystems and climatic
zones (e.g. boreal Eurasia, Scholten et al., 2021; American west, Radeloff
et al.,, 2018; and tropical savanna, Lindenmayer and Taylor, 2020). The
activation of wildfire in the far north attracts special attention because
it may bring unprecedented consequences in a region that has rarely
burned in the past (Hu et al., 2015). In particular, tundra ecosystems
are underlain by permafrost of various ground-ice content that pre-
serves ~50% of global organic soil carbon (Schuur et al., 2015). The dy-
namics of this enormous carbon pool may have global-scale
repercussions, but its responses to the projected shifts in fire regime re-
main highly uncertain (Genet et al., 2018; McGuire et al., 2018).

Previous studies revealed complex feedbacks between fire distur-
bance and tundra carbon stocks (Abbott et al., 2016; Mack et al.,
2011). On the one hand, the organic-rich soils and flammable tundra
vegetation imply potential sensitivity (defined as the degree to which
an ecosystem responds to disturbance, Seddon et al., 2016) of tundra
carbon stocks to fire disturbance (Higuera et al., 2008, 2011). This is
well manifested by the 2007 Anaktuvuk River Fire that scorched across
1039 km? of tundra landscape and released a pulse of ~2.1 Tg carbon to
the atmosphere (Mack et al., 2011). As climate warming continues, sim-
ilar events may become more common, raising the possibility of mas-
sive carbon stock loss from tundra ecosystems. On the other hand,
vigorous regeneration of tundra vegetation, even in severely burned
areas (Bret-Harte et al., 2013), implies a degree of resilience (defined
as the ability to return to pre-disturbance state following fire, Poorter
et al., 2016) of tundra ecosystems to fire disturbance. Specifically, pri-
mary productivity of vascular plants equaled that of unburned tundra
four years after fire, and total biomass of graminoids returned to pre-
burn levels within five years (Bret-Harte et al., 2013; Jiang et al,,
2015). The rapid ecosystem recovery associated with biotic feedbacks
starkly contrast with the estimated mean fire return interval (FRI) of
~5000 years over the past 12 millennia in this region (Chipman et al.,
2015), illuminating the prospect of carbon restoration via biomass.
Therefore, it remains unclear whether predicted fire-regime shifts will
convert tundra ecosystems to large atmospheric carbon sources, or
only introduce transient carbon stock loss without long-term conse-
quences.

Here we conducted a diagnostic analysis for contemporary tundra
ecosystems to gain insights into three fundamental questions regarding
carbon stock resilience/sensitivity. First, where are the most resilient
and sensitive tundra ecosystems to fire-regime change? Second, what
are the attributes underpinning carbon stock resilience in tundra eco-
systems? Third, how close are contemporary tundra ecosystems to los-
ing this resilience, and if lost, what are the consequences on tundra
carbon stocks? To isolate the impacts of changing fire regime on tundra
carbon stocks, we modeled carbon stocks as a function of FRI by
constraining all other variables using the process-based Dynamic Or-
ganic Soil version of Terrestrial Ecosystem Model (DOS-TEM). We
used FRI as proxy for fire-regime, because (1) FRI represents one of
the most ecologically significant metrics of fire disturbance (Hoffmann
et al,, 2012; Kelly et al., 2016), (2) FRI is the most well-characterized
metric of tundra fire-regime with reconstructed history dated back to
35,000 years BP (Chipman et al., 2015; Higuera et al., 2011), and
(3) fire rotation period (an index closely related to FRI) is projected to
shift substantly in the 21st century (Young et al., 2017). This study is
built upon paleoecological analyses of natural FRI variations over the
late Quaternary, modern FRI observations (1950-2020), and predicted
FRI in response to climate change by 2100. Our results illustrate how
carbon stock resilience to shifting fire regime may play out across heter-
ogenous tundra landscape. The improved information may facilitate
better understanding of future terrestrial-atmospheric feedbacks in
one of the most fast-changing biomes on Earth.
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2. Materials and methods
2.1. Study area

Our study area encompasses four Alaskan tundra ecoregions that
differ in fire history, vegetation type and climate regime (Fig. 1): Brooks
Foothills, Noatak River Watershed (Noatak), Brooks Range Transition
(Brooks Transition) and Yukon-Kuskokwim Delta (YK Delta). The
Brooks Foothills is characterized by a paucity of fire disturbance
(Fig. 1a), with an estimated mean FRI of 5300 years during the late Qua-
ternary (Fig. 1c). The region is dominated by shrub and tussock tundra
(Fig. 1b) with mean summer (June-September) temperature (MST) of
10.1 °C, and total summer precipitation (TSP) of 123.7 mm (Fig. 1d).
The Noatak is situated in northwestern Alaska, characterized by rela-
tively warm and humid climate (MST of 11.6 °C and TSP of 191.3 mm,
Fig. 1d). The Noatak has a relatively active fire-regime in the flammable
tundra lowlands, where reconstructed fire history based on lake sedi-
ment cores revealed a mean FRI of ~200 years over the past
6000 years (Fig. 1c), a regime comparable to those of modern boreal for-
ests (Higuera et al., 2011; Kelly et al., 2013). Vegetation in the Noatak is
predominately shrub tundra and tussock tundra (Fig. 1b). The Brooks
Transition is an ecotone between Arctic tundra and boreal forests of
central Alaska (Fig. 1a). The regional MST and TSP is 11.3 °C and
185.5 mm, respectively (Fig. 1d). Vegetated area in the Brooks Transi-
tion is characterized by a mixture of shrub, tussock and heath tundra
(Fig. 1b), and regional mean FRI is estimated to be ~1600 years during
the late Quaternary (Fig. 1¢). The YK Delta is the warmest and wettest
tundra ecosystem among the four ecoregions, with MST of 12.2 °C and
TSP of 202.8 mm (Fig. 1d). The estimated mean FRI of YK Delta is
~6000 years during the late Quaternary (Fig. 1c, Chipman et al., 2015),
and the landscape is largely characterized by wetsedge tundra and
shrub tundra (Fig. 1b).

2.2. Model description

We used the DOS-TEM to simulate the relationship between FRI and
ecosystem carbon stocks across Alaskan tundra ecosystems (Fig. 2). The
DOS-TEM is a process-based, spatially-explicit ecosystem model that
has been extensively validated in tundra and boreal forests (Genet
etal, 2018; Yietal., 2013). The DOS-TEM has been widely implemented
in the studies of carbon and nitrogen cycling between soil, vegetation,
and the atmosphere, and it is capable of realistically reproducing the
temporal patterns of postfire carbon recovery and hydrothermal dy-
namics in permafrost soils (Euskirchen et al., 2016; Genet et al., 2018).
Specifically, the model has been well calibrated for a diversity of tundra
ecosystems to represent the vertical complexity of structured soil hori-
zons in the unique permafrost environment (Genet et al., 2013, 2018).

The DOS-TEM has four interacting modules (Fig. 2). The environ-
mental module (EnvM) takes inputs of climate (e.g. monthly tempera-
ture and precipitation) and topography (e.g. slope and elevation)
coupled with the outputs from the ecological module (EcoM) and dy-
namic organic soil module (DOSM) to compute biophysical processes
in soil and the atmosphere. In particular, the EnvM adapts the two-
directional Stefan Algorithm to simulate soil temperature and soil mois-
ture conditions within each soil horizon ranging from the surface moss
layer through the organic soil to the deep mineral soil horizons. It has
been used to satisfactorily reproduce the dynamic movement of the
freeze-thaw front and the active-layer thickness in variable Arctic and
sub-Arctic ecosystems (Yi et al., 2013; Yuan et al., 2012).

The EcoM explicitly simulates the dynamics of carbon and nitrogen
production, decomposition and transportation between vegetation,
soil and the atmosphere driven by input data on climate, vegetation
and atmospheric CO, concentration. The model computes carbon and
nitrogen stocks in each soil horizon and in the above- and below-
ground vegetation. Specifically, the vegetation inputs carbon and nitro-
gen to the soils via litterfall. The aboveground litterfall is only
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Fig. 1. Study area. (a) Map of the four Alaskan tundra ecoregions. The fire perimeters shown in red refer to the Alaska Interagency Coordination Center (AICC, http://fire.ak.blm.gov/)
observational data archive. (b) Composition of vegetation types in each ecoregion. (c) Paleoecological analyses (Chipman et al., 2015; Higuera et al., 2011) of long-term fire return
intervals (means + ranges). (d) Boxplot of summer temperature and precipitation by ecoregion.

incorporated into the surface organic soil, whereas belowground
litterfall (i.e. dead roots, assumed to be proportional to aboveground
litterfall based upon the aboveground to belowground net primary pro-
ductivity ratio) is assigned to different soil horizons depending on the
distribution of fine roots with soil depth (Yi et al,, 2013). The simulation
of carbon and nitrogen is informed by outputs from the other three
modules regarding soil environments (by EnvM), soil structures (by
DOSM) and fire occurrence (by the disturbance module, DSBM). In
turn, the EcoM outputs information on litterfall and leaf area index to
the DOSM and the EnvM, respectively.

The DOSM is at the center of DOS-TEM. It defines soil structure and
divides soil column from top to bottom into distinct horizons (Fig. 2):
the fibrous organic soil horizon (slightly decomposed fibric organic
matter), the amorphous organic soil horizon (moderately to heavily
decomposed organic matter), and the mineral soil horizon (i.e. perma-
frost soil). The DOSM updates the thickness and the carbon stocks of
each organic horizon on annual basis after they are modified by ecolog-
ical processes (e.g. litterfall and decomposition, from EcoM) or by fire
disturbance (e.g. vegetation and organic layer consumption, from
DSBM) (Yi et al., 2010, 2013). In the DOSM, the carbon stocks move
downwards along the soil column with the accumulation of organic
matter, and are eventually incorporated into the mineral horizons
(Fig. 2). Fire disturbance removes part of the organic soils, and converts
the remaining fibrous layers to amorphous layer. Meanwhile, a thin fi-
brous layer (2 cm) is immediately added on top of the amorphous
layer for organic matter to re-accumulate after fire (Yi et al., 2010).

The DSBM uses information on topography, fire disturbance, soil en-
vironments (output from the EnvM), and soil structures (output from
the DOSM) to calculate the dynamics of carbon and nitrogen associated
with fire disturbance (Fig. 2). The dynamics of nitrogen is computed
based upon the carbon to nitrogen ratio in vegetation and soils (Yi
et al., 2010). The nitrogen lost to the atmosphere by fire consumption
is reintroduced to the system annually via productivity. The simulated
carbon emission as well as the fate of unburned carbon in the ecosystem
is influenced by fire severity. Due to the scarcity of fire severity data in
tundra ecosystems, our study assumes that fire severity is uniform
across tundra ecosystems with a median 32% of plant biomass and soil
organic carbon loss in each fire (Mack et al., 2011).

2.3. Model application

We ran the DOS-TEM at a 10 km x 10 km resolution (n = 2288
pixels) across all vegetated area of the four tundra ecoregions to encom-
pass sufficient spatial heterogeneity while maintaining computational
feasibility. The model was forced with long-term mean climate data
(1980-2010) based on downscaled CRU TS v.4.05 dataset accessible at
the Scenarios Network for Alaska and Arctic Planning (Yuan et al.,
2012). There are four climatic inputs, monthly air temperature, precip-
itation, vapor pressure, and incoming shortwave radiation (Table S1 in
supplementary materials). The soil texture and vegetation type inputs
were derived from the Global Gridded Soil dataset (Hengl et al., 2017)
and the NLCD Land Cover dataset (Homer et al., 2015), respectively
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Fig. 2. Model structure. (a) Schematic representation of data exchange among modules (Yuan et al., 2012) in the Dynamic Organic Soil version of the Terrestrial Ecosystem Model (DOS-
TEM). (b) Key carbon (C) and nutrient (N) pools/processes represented in DOS-TEM. The DOSM, EcoM, EnvM and DSBM respectively correspond to the dynamic organic soil module,

ecological module, environmental module and disturbance module.

(Table S1 in supplementary materials). The DOS-TEM does not incorpo-
rate dynamic vegetation change, and vegetation type is treated as con-
stant in the model. Each pixel was assigned to one vegetation type,
determined by aggregating the NLCD dataset to 10 km by 10 km using
“majority”. The topography inputs (e.g. elevation, aspect, and topo-
graphic slope) were accessed from the ArcticDEM Database (Table S1
in supplementary materials). The simulated ecosystem carbon stocks
in the DOS-TEM are distributed among four carbon pools: vegetation
pool, fibrous organic soil pool, amorphous organic soil pool, and mineral
soil pool (Fig. 2).

To estimate the baseline carbon stocks (the fire-free scenario), we
ran the model with the DSBM turned off. By comparing simulations
forced with different fire scenarios to the baselines, we were able to as-
sess the impacts of fire disturbance on tundra carbon stocks (Fig. S1 in
supplementary materials). We computed fuel load of each ecosystem
using results of the baseline simulations. Fuel load (%) is defined as
the ratio of fuel (sum of combustible carbon pools: vegetation and or-
ganic soils) to overall ecosystem carbon pool (sum of combustible and
noncombustible mineral soil carbon pools). Fuel load reflects the strat-
ified structure of carbon stocks within an ecosystem, and thus influ-
ences landscape flammability. Under the same amount of total carbon
stocks, ecosystems of high fuel load tend to lose more carbon to fire con-
sumption than those of low fuel load.

We then turned on the DSBM and ran the model for a range of FRIs.
The input FRIs were informed by paleoecological FRI records (Chipman
et al., 2015), modern FRI estimates (Rocha et al., 2012), and predicted
FRI by 2100 (Young et al., 2017). We simulated ecosystem carbon stocks
at each FRI, ranging from 10 to 5000 years at 50 years increment (i.e.
101 simulations per pixel) (Figs. S1-S2 in supplementary materials).
For each FRI, we ran the model by repeatedly burning the tundra until
reaching equilibrium (i.e. constant soil and vegetation carbon stocks).
All simulations were initiated as unburned and ran for 45,000 model
years (Fig. S1 in supplementary materials). The carbon stocks averaged
across the span of FRI at equilibrium was then used as the stocks associ-
ated with the specific fire (FRI) regime (Fig. S2 in supplementary mate-
rials). We then assembled the simulations of each FRI scenario, and
plotted the simulated carbon stocks against the range of FRIs to evaluate
how ecosystem carbon stocks change as a function of FRI.

2.4. Model validation

We extracted the spatially-explicit FRI predictions of modern Alas-
kan tundra (1950-2010) by Young et al. (2017) corresponding to the
four tundra ecoregions (Fig. 1). The resulting dataset was resampled
to 10 km by 10 km resolution using bilinear interpolation. We ran the
DOS-TEM for each pixel forced with the predicted FRI to model
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present-day soil carbon stocks. The simulated carbon stocks from the fi-
brous, amorphous, and mineral soils were summed as total soil carbon,
and the results were compared to the Northern Circumpolar Soil Carbon
Database (NCSCD v2) for model validation (Hugelius et al., 2014).

2.5. Data analysis

Piecewise regression was conducted on the simulated carbon stock
of each pixel to identify the break point (i.e., threshold FRI) where the
change of carbon stock begins to accelerate with decreasing FRI. The
threshold FRI was used as an indicator of carbon stock resilience/sensi-
tivity to fire-regime change. To be specific, ecosystems with relatively
small (short) threshold FRIs imply that abrupt carbon stock loss from
the system is unlikely unless future FRI decreases substantially from
the present FRI, whereas ecosystems exhibiting relatively large (long)
threshold FRIs suggest that rapid carbon stock loss may initiate with a
small shift of FRI from present. After the threshold FRIs of all pixels
were identified, we normalized the results to the range of 0 to 1 (the
S-score, a unitless measure of carbon stock resilience), with 1 represent-
ing the greatest sensitivity and 0 the greatest resilience of tundra carbon
stocks to shortening FRI.

To identify potential drivers and their relative contribution to carbon
stock resilience, we analyzed the S-scores with a set of candidate predic-
tors using multiple linear regression. We selected a total of 12 predictors
(Table S1 in supplementary materials) based upon previous studies on
carbon cycling and fire emissions in high latitudes (Abbott et al., 2021;
Higuera et al., 2008, 2011; Hu et al., 2010; Jiang et al., 2017; Kelly
et al., 2016; Klupar et al., 2021; Mcguire et al., 2009; Parker et al.,
2015; Rocha et al.,, 2012; Rocha and Shaver, 2011; Rocha and Shaver,
2011; Walker et al., 2019, 2020; Young et al., 2017). These variables
can be broadly categorized into two groups: (1) meteorological vari-
ables, including summer air temperature, summer precipitation, length
of growing season, solar radiation, vapor pressure deficit (Harris et al.,
2014), and surface soil temperature (Luo et al., 2014); and (2) biophys-
ical variables, such as vegetation type, permafrost probability (Pastick
et al, 2015), topographic position, elevation, slope, and aspect
(Table S1 in supplementary materials). All variables were resampled
to the same spatial resolution (10 x 10 km) using bilinear or nearest-
neighbor interpolation for continuous and categorical data, respectively.
Our approach was to initially fit the model with all candidate variables,
and remove insignificant variables in a stepwise fashion following the
principle of maximum parsimony and avoiding cross-dependent or
cross-correlative variables (Pearson correlation test, |p| > 0.7). Eventu-
ally, we achieved a single reduced model that retains only significant
variables at the level of o < 0.05. All statistical analyses were performed
in R (v 4.1.1) with the packages of gbm (Ridgeway, 2019), raster
(Hijmans et al., 2021) and segmented (Muggeo, 2008).

3. Results

The simulated soil carbon stocks generally matched the amount and
the spatial pattern of NCSCD carbon estimates for the four tundra
ecoregions (R? = 0.77, P < 0.001; Fig. S3 in supplementary materials),
showing the highest stocks in the Brooks Foothills and the lowest stocks
in the Brooks Transition (Fig. S4 in supplementary materials). However,
our simulation overestimated soil carbon stocks for shrub tundra
(9.7 kg m—2) and tussock tundra (11.4 kg m—2) in YK Delta and Noatak
due to the fact that the DOS-TEM is primarily calibrated in the relatively
carbon-rich Brooks Foothills ecosystems (Table S2 in supplementary
materials).

Our control simulations (i.e. fire-free scenario) suggest vast spatial
heterogeneity in baseline tundra carbon stocks, reflecting spatially-
variable climate, vegetation and topographical conditions in the study
domain. The greatest proportion of tundra carbon stocks resides in min-
eral soil horizons (i.e. permafrost soils), accounting for ~80% of total car-
bon stocks. Compared at the maximum FRI of 5000 years (an analogy to
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the fire-free scenario), we found that the Brooks Foothills has the largest
tundra carbon stocks (43.7 kg m~2) among all, followed by YK Delta
(40.2 kg m~2), Noatak (30.1 kg m~2), and Brooks Transition
(27.2 kg m—?) (Fig. 3).

As fire regime shifts towards shorter FRIs, tundra carbon stocks ex-
hibit non-linear behavior with changing fire regime (Figs. 3). The esti-
mated mean threshold FRI of all tundra ecosystems is 824 +
112 years (n = 2288). When compared between ecoregions, the
threshold FRI of Brooks Transition is the longest (956 + 132 years),
followed by Brooks Foothills (880 + 91 years), YK Delta (793 +
76 years) and Noatak (724 + 78 years) (Fig. 3). Except for Noatak, the
estimated threshold FRIs are much shorter than the FRIs inferred from
paleofire records (6000 years for YK Delta, 5300 years for Brooks Foot-
hills, and 1600 years for Brooks Transition) or modern observations
(2000 years for YK Delta, 4400 years for Brooks Foothills, and
1200 years for Brooks Transition).

Tundra carbon stocks remain relatively stable before FRIs decrease
below the thresholds (Fig. 3-4). Shortening FRI from 5000 years to
1000 years causes slight carbon stock losses, mostly from the combusti-
ble organic soils, and the mineral carbon stock is comparatively intact
(Fig. 4, and Fig. S1 in supplementary materials). Nonetheless, changes
in FRI modify soil hydrothermal regimes. As compared to FRI at
5000 years, organic layer thickness at FRI of 1000 years decreases by
12.8% and active layer depth increases by 4.1% (Fig. 4). As FRIs shift fur-
ther towards the threshold, carbon stock loss begins to accelerate. Once
the threshold is crossed, rapid thinning of the insulating organic layers
coupled with abrupt deepening of active layers incurs massive carbon
release from deep mineral soil horizons (Fig. 4).

Our analysis with multiple regression model (Rﬁdj = 0.67,
P < 0.0001) revealed that the variation of threshold FRI (i.e. S-score, a
unitless measure of carbon stock resilience) is largely determined by
vegetation type (38%) and to a lesser degree by temperature (14%)
and precipitation (8%). In particular, we found that fuel load (defined
as the proportion of combustible carbon stock to overall carbon stock),
a metric closely related with vegetation type, is a good indicator (r =
0.71) of carbon stock resilience. Particularly, shrub tundra has the
highest fuel load (~25%) and demonstrates the greatest sensitivity (S-
score ~ 0.7) to a shrinkage of FRI (Fig. 5). Rapid carbon stock loss begins
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Fig. 3. Tipping-point behavior of tundra carbon stocks in response to fire-regime shifts.
(a) Ecosystem carbon stocks change as a function of FRI. The shaded envelops represent
95% confidence interval. (b) Reconstructed FRIs of modern (1950-2010 CE) tundra
ecosystems. (c) Predicted FRIs by 2100 CE in the four tundra ecoregions (Young et al.,
2017).
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in shrub tundra when FRI decreases towards ~1000 years (Fig. 5). In
contrast, heath tundra has the lowest fuel load (~10%) and manifests
the greatest resilience (S-score ~ 0.2) to shortening FRI. In these ecosys-
tems, threshold stock loss does not occur until FRIs decrease consider-
ably to ~200 years (Fig. 5). Tussock tundra and wetsedge tundra have
intermediate fuel loads (14-18%) and moderate degree of carbon
stock resilience (S-score between 0.3 and 0.6). Correspondingly, the es-
timated threshold FRIs of these ecosystems span a medium range be-
tween 400 and 850 years.

4. Discussion

The simulated tundra carbon stocks remain relatively stationary in
response to FRIs changing from 5000 years to 1000 years - a range rep-
resentative of fire regimes in most paleo and modern tundra ecosystems
(Chipman et al., 2015; Higuera et al., 2011; Rocha et al., 2012). The
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resilience of tundra carbon stock to fire regime change is achieved by
vegetation feedbacks, as supported by a number of field and remote-
sensing observations (Bret-Harte et al., 2013; French et al., 2016; Jiang
etal, 2015). Specifically, our simulation elucidates that fire disturbance
introduces temporary attenuation of organic layers that extends
thawing depth into perennially frozen horizons and mobilizes perma-
frost carbon pool (Fig. 4, and Fig. S1 in supplementary materials). None-
theless, rapid returning of tundra vegetation gradually builds up organic
layers that reestablishes soil thermal regime and refills the permafrost
carbon pools (Fig. S1 in supplementary materials). This negative feed-
back gives rise to the simulated ecosystem carbon stock in dynamic
equilibrium in spite of five-fold fire frequency change. However, it also
entails that a net transfer of carbon stocks to the atmosphere may
ensue once this internal vegetation feedback is overwhelmed by suffi-
cient fire-regime shift.

Evidence is accumulating that anthropogenic climate change has in-
duced a departure of contemporary fire regime from long-term norms
in many ecosystems (Demenocal et al., 2000; Kelly et al., 2013). Altered
fire regime can disrupt information and material legacies associated
with ecosystem resilience, triggering directional, and sometimes abrupt
changes in ecosystem functions (Johnstone et al., 2016; Scheffer and
Carpenter, 2003). In this study, we identified a threshold FRI around
800 years, below which tundra ecosystems succumb to rapid stock
loss and head towards atmospheric carbon sources. This non-linear,
tipping-point behavior mirrors those detected in many other ecosys-
tems in response to a variety of press and pulse disturbances. Studies
in the savanna-forest ecosystems illustrate that surpassing certain FRI
thresholds provokes sudden conversion of savanna to forests with po-
tentially large consequences on regional carbon stocks (Hoffmann
et al.,, 2012). More recently, in some boreal forests, increased wildfires
triggered threshold changes in vegetation composition and converted
historical carbon sinks to atmospheric sources (Barrett et al., 2011;
Kelly et al., 2013, 2016; McLauchlan et al., 2014; Stralberg et al., 2018).
Identifying tipping-elements is increasingly recognized as a key re-
search priority as restoring ecosystem function is much more expensive
than maintaining when critical thresholds exist (Arani et al., 2021).

Although our results suggest tipping-point behavior of all tundra
ecosystems, the position of the tipping-point (i.e. S-score) varies consid-
erably between ecosystems. As pointed out by Tepley et al. (2018), car-
bon stock resilience is ultimately determined by the counteraction
between fire-induced stock change and the subsequent recovery. Fol-
lowing this paradigm, factors that amplify stock change elevate ecosys-
tem sensitivity, pushing the system towards a net loss of carbon stocks.
On the contrary, factors facilitating ecosystem recovery enhance

Fuel for fire
r(vegetation &
organic soil)

[N .Z
s o -2
2 0.5 wr” _ [ Mineral soil + 1
wn ;;.(‘ % | (Permafrost) ’_lﬂ
025 | ) 2 g
\T‘ :
e
%
. (b)| 2
0 10 20 30
Fuel Load (%)

® Wetsedge tundra @ Heath tundra

Fig. 5. The resilience/sensitivity of tundra carbon stocks to fire-regime change vary by tundra vegetation type. (a) Simulations of individual pixels (transparent lines), differentiated by
tundra types. Solid lines and shaded areas respectively correspond to mean and 95% confidence interval of different tundra types. (b) The S-score (an unitless measure of carbon stock
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resilience, tipping the balance in favor of carbon stock persistence. By
analyzing the threshold FRIs with a range of environmental drivers,
we identified vegetation type as the most influential factor responsible
for the spatial variations of carbon stock resilience.

Tundra vegetation strongly dictates fuel abundance and ecosystem
productivity (Martin et al,, 2017; Hu et al., 2015), which closely regulate
the magnitude of fire consumption (Mack et al., 2011) and the rate of
postfire carbon recovery (Bret-Harte et al., 2013). In particular, we
found that shrub tundra is the most vulnerable tundra type to shifting
fire regime as it allocates a larger proportion of carbon stocks to the
combustible biomass and organic soils (Sistla et al., 2013; Mekonnen
et al.,, 2021) that elevates ecosystem flammability. Although large vari-
ability in fuel load and productivity exists within the same vegetation
type due to spatially variable climate and topography, on average,
shrub tundra loses 2-15 times more carbon stocks than other tundra
types each fire. Consequently, it takes 0.5-3 times longer for shrub tun-
dra to regain the stock than other tundra types in spite of the compara-
tively high productivity of shrub tundra. Therefore, as fire regime shifts,
slowly recovering ecosystems represented by shrub tundra will allow
subsequent fires to burn deeper and deeper into insulating soils that
eventually mobilizes the enormous ancient carbon pool (Walker et al.,
2019; Veraverbeke et al., 2021). In contrast, under similar magnitude
of fire-regime shifts, relatively resilient ecosystems like tussock tundra
may rapidly replenish organic soils (Bret-Harte et al., 2013) that allows
re-stabilization of permafrost horizons shortly after fire. Thus, returning
fires will only consume newly accumulated organics without long-term
consequences on ancient carbon stocks (Mack et al., 2011).

With predicted shrub cover to increase by ~50% by 2050s in Arctic
tundra (Pearson et al., 2013), this result may have profound implica-
tions for future carbon balance in high latitudes. Some studies suggest
that the replacement of native tundra vegetation by more productive
shrubs will enhance tundra carbon stocks (Loranty and Goetz, 2012;
Sistla et al., 2013). Nevertheless, our results imply that restructuring of
tundra carbon profile associated with shrubification (Sistla et al.,
2013) may prime tundra landscape for wildfires, discounting or even re-
versing the benefits of biomass.

Tundra ecosystem has long been characterized by small, infrequent
wildfires that contributes to the formation of substantive carbon reser-
voirs over geologic times (Hu et al,, 2015). Although fire disturbance is
anticipated to increase pervasively across tundra biome in coming de-
cades, the predicted magnitude of fire-regime change is spatially het-
erogeneous (Moritz, 2012; Young et al., 2017). Particularly, the
greatest fire-regime change is projected in areas where fire disturbance
has been historically rare due to extreme climates (Chipman et al.,
2015; Rocha et al., 2012). In the Brooks Foothills where low tempera-
tures have strongly suppressed wildfires to burn every several
millennia, regional carbon stocks have been allowed to accumulate
into enormous size (Hugelius et al., 2014). Assuming FRIs of the Brooks
Foothills will decrease to 300-400 years by 2100 as predicted, the esti-
mated fire threshold will be crossed (Fig. 3). According to our simula-
tions, such a degree of fire-regime change may translate into 13.7 kg C
m ™2 loss from the ecosystem. As a contrast, in ecosystems where fire
disturbance has been historically active such as the Noatak - one of
the warmest and most fire-prone tundra ecosystems on earth
(Higuera et al,, 2011; Hu et al., 2015), shifting fire-regime to the similar
frequency of every ~300 years may cause a much smaller amount of car-
bon stock loss (6.9 kg m™2). Although these estimates are speculative
given uncertainties inherent in fire projections and our simulations, it
underscores that tundra carbon stocks of the 21st century may be inti-
mately linked to fire disturbance, with potentially heightened threat to-
wards large, long-standing carbon sinks.

Process-based models offer a useful tool for analyzing ecosystem re-
silience (Johnstone et al., 2016; Scheffer et al., 2009). However, due to
the inherent stochasticity of mechanisms involved and the numerous
processes driving carbon stock variations, our ability to assess carbon
stock resilience remains limited. Several factors exist that may cause a
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deviation from our expected fire thresholds, including (1) concurrent
changes in other fire metrics, (2) interactions between fire and other
disturbances or processes, (3) shifts in external drivers, and (4) uncer-
tainty intrinsic to models as simplified representation of real ecosys-
tems.

First, changes in other fire metrics, such as fire intensity, severity,
and duration, may accelerate carbon stock loss from tundra ecosystems.
In our simulation, these metrics were assumed to be spatially and tem-
porally uniform, limited by the fact that they are poorly characterized in
tundra landscape (Hu et al., 2015). As Arctic warming continues,
changes in these metrics may greatly augment fire emissions, as already
happening in some boreal forests (Kelly et al., 2013; Yuan et al., 2012).
For instance, a study from interior Alaska detected that it is becoming
more common for fires to burn overwinter that increase organic soil
consumption (Scholten et al., 2021). These emerging fire behaviors
may push high-latitude carbon pools towards early onset of threshold
decline.

Second, synergy between fire and other disturbances/processes may
generate unexpected outcomes. For example, retrogressive thaw
slumps frequently follow after wildfires in ice-rich tundra that strongly
modifies soil hydrology and surface energy balance (Chen et al., 2020;
Jones et al.,, 2017; O’Donnell et al., 2012; Olefeldt et al., 2016; Quinton
et al,, 2011). Similarly, in situ and remote-sensing observations reveal
complex interplay between tundra vegetation and wildfires that may
dynamically modify carbon stock resilience (Abbott et al., 2021;
Klupar et al., 2021; Parker et al., 2015). A study in the Brooks Foothills
revealed that wildfire changed soil nutrient availability, leading to tus-
sock tundra replaced by shrub dominance (Klupar et al., 2021). Such a
shift in vegetation type may reorganize the landscape towards elevated
fire risks. In contrast, a study in lowland Noatak indicated that fire dis-
turbance destabilized soil moisture optima that initiated a transition
from shrub tundra to wetsedge tundra, feeding negatively back to future
fires (Chen et al., 2021). The diverse interactions between fire, perma-
frost and vegetation underscore the complexity of high-latitude ecosys-
tems, and enormous knowledge gap needs to be filled before carbon
stock resilience can be confidently quantified in the remote landscape.

Third, concurrent shifts in external forces, especially climate change
and CO, fertilization, may exert countervailing effects on carbon stock
resilience. For example, while warming may intensify wildfires to
magnify carbon emission, a positive relationship is also found
between temperature and productivity that can accelerate post-fire car-
bon accumulation (Chen et al., 2021; Jiang et al., 2017). Similarly, ele-
vated CO, concentration may enhance plant productivity to boost
post-fire carbon recovery (Higgins and Scheiter, 2012), but it may also
raise fuel abundance and connectivity to escalate fire emissions. There-
fore, comprehensive assessment of carbon stock resilience requires an
integrated framework taking into consideration of all climate-driven
processes at the same time, which may take decades to centuries to
fully unveil.

Finally, model uncertainties in formulation and parameterization
may have large influence on the results. This is especially true for sub-
Arctic ecosystems like YK Delta, where long-term, broad-scale data is
currently lacking for comprehensive model testing (Euskirchen et al.,
2016; Genet et al., 2018). Although our model validation suggests that
the DOS-TEM is generally capable of simulating carbon stocks of tundra
soils without much overall bias (Fig. S3 and S4 in supplementary mate-
rials), substantial uncertainty remains regarding the representation of
important ecosystem processes in response to wildfires, especially post-
fire nitrogen dynamics, soil hydrology, and the transport of dissolved or-
ganic carbon (Genet et al., 2018; McGuire et al., 2018), all of which
strongly influence soil carbon accumulation and therefore tundra car-
bon resilience to fire disturbance (Klupar et al., 2021; Parker et al.,
2015).

Previous study in the extreme Anaktuvuk River Fire found that this
unique event consumed ~50 years of carbon accumulation but emitted
~400 years of nitrogen accumulation (Mack et al., 2011). The excessive
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nitrogen loss may severely limit plant productivity and thus constrain
long-term carbon uptake. However, depletion of soil nitrogen is not rep-
resented in the DOS-TEM due to the scarcity of data regarding tundra
wildfires. In the model, the loss of nitrogen is assumed to be propor-
tional to that of carbon based on the carbon to nitrogen ratio measured
in tundra vegetation and soil. Thus, our simulation likely underesti-
mates the time taken for carbon restoration after fire. Another source
of uncertainty is associated with abrupt and often drastic changes of
soil hydrology as exemplified by localized ponding or wholesale
draining of hillslope tundra (Chen et al., 2020, 2021; Jorgenson et al.,
2015). These disruptive processes exert cascading impacts on a myriad
of ecosystem functions such as nutrient availability, vegetation compo-
sition and soil thermal regimes (Chen et al., 2020; Nauta et al., 2015). In
spite of its significance, disruptive hydrological process is currently
missing from the modeling framework due to enormous uncertainties
surrounding permafrost thawing (McGuire et al., 2018; Schuur et al.,
2015). Unlike gradual thawing conceptualized in the model, abrupt
changes in soil hydrology often disrupt the entire soil profile that may
aggravate carbon stock loss from deep horizons (Abbott and Jones,
2015; Jones et al., 2015; Turetsky et al., 2019). Moreover, postfire ex-
pansion and extension of drainage networks intensify lateral movement
of dissolved organic carbon - a mechanism that may propel carbon ex-
port from the ecosystem (Frost et al., 2018; Jones et al., 2015). However,
the spatial heterogeneity and unpredictability of these processes pose
substantial obstacles for model parameterization. These factors com-
bined may greatly lengthen the time taken for postfire carbon restora-
tion or even prevent the ecosystem from returning carbon stocks to
pre-fire states. Thus, our simulation may overestimate the resilience of
contemporary tundra to fire regime change. However, with data accu-
mulating from the integrated networks of palaeoecological records,
field-based manipulative experiments, and broad-scale remote-
sensing monitoring, we are optimistic that an improved understanding
of the fire-carbon linkage will be endowed for more sophisticated model
parameterization in future efforts.

5. Conclusion

In spite of large uncertainties, our study offers a risk analysis with
clear management implications for tundra ecosystems. By isolating
fire disturbance from other environmental drivers, we were able to di-
agnose when, where, and how tundra carbon stock may be modified
in a shifting fire regime. The result may serve as a benchmark against
which more complicated hypotheses can be tested. These findings, in
combination with the projected fire activation across tundra landscape,
highlight that future carbon balance in high latitudes will be increas-
ingly hinged on fire disturbance with potentially large consequences
on the feedbacks of the Arctic ecosystem to the atmosphere.
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