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Abstract
Changes in gene expression are important for responses to abiotic stress. Transcriptome profiling of heat- or cold-stressed
maize genotypes identifies many changes in transcript abundance. We used comparisons of expression responses in multi-
ple genotypes to identify alleles with variable responses to heat or cold stress and to distinguish examples of cis- or trans-
regulatory variation for stress-responsive expression changes. We used motifs enriched near the transcription start sites
(TSSs) for thermal stress-responsive genes to develop predictive models of gene expression responses. Prediction accuracies
can be improved by focusing only on motifs within unmethylated regions near the TSS and vary for genes with different
dynamic responses to stress. Models trained on expression responses in a single genotype and promoter sequences pro-
vided lower performance when applied to other genotypes but this could be improved by using models trained on data
from all three genotypes tested. The analysis of genes with cis-regulatory variation provides evidence for structural variants
that result in presence/absence of transcription factor binding sites in creating variable responses. This study provides
insights into cis-regulatory motifs for heat- and cold-responsive gene expression and defines a framework for developing
models to predict expression responses across multiple genotypes.
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Introduction
Plants are regularly exposed to variable environmental con-
ditions throughout their life cycle and must be able to re-
spond and acclimate to these conditions to survive and
reproduce. Recent and rapid changes in climate have led to
an increased frequency of extreme temperature fluctuations
(Madani et al., 2018). Plants have developed sophisticated
mechanisms at the cellular and metabolic levels that allow
them to withstand temperature stress. In recent years, vari-
ous regulatory mechanisms that involve phytohormone sig-
naling, light signaling, circadian clock regulation and reactive
oxygen species homeostasis at the transcriptional, epigenetic,
and posttranslational levels have been identified during cold
and heat stress (Chinnusamy et al., 2007; Nakashima et al.,
2009; Mittler et al., 2012; Ohama et al., 2017; Li et al., 2018;
Guo et al., 2018a; Ding et al., 2019, 2020).

Key players in the ability of plants to respond to tempera-
ture stress have been identified over the past decades.
Members of the C-REPEAT-BINDING FACTOR/
DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN
1 (CBF/DREB1) family of transcription factors (TFs) have
been identified as essential regulators of plant responses to
cold (Agarwal et al., 2006) by activating both cold-regulated
genes and secondary signaling pathways (Fowler and
Thomashow, 2002; Shi et al., 2017; Ding et al., 2019).
Similarly, the HEAT SHOCK TF (HSF) was identified as mas-
ter regulators during heat stress by activating heat stress-

responsive gene expression (Scharf et al., 2012). HSFs also
turn on heat shock proteins that act as molecular chaper-
ones, thus protecting cellular proteins by preventing their
denaturation and aggregation, and facilitating the refolding
of proteins damaged by heat (Wang et al., 2004; Busch et al.,
2005; Charng et al., 2007). In addition, the APETALA 2/
ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN fam-
ily and its largest subfamily—ETHYLENE RESPONSE
FACTORs—participate in many developmental processes
and play pivotal roles in adaptation to biotic or abiotic
stresses including cold and heat stress responses (Dietz
et al., 2010; Mizoi et al., 2012; Cheng et al., 2013; Hsieh et al.,
2013; Licausi et al., 2013; Yao et al., 2017; Huang et al. 2021).

Several prior studies have documented gene expression
changes in response to thermal stress in maize (Zea mays)
seedlings (Li et al., 2017; Waters et al., 2017; Zhang et al.,
2017; Avila et al., 2018; He et al., 2019; Hoopes et al., 2019;
Frey et al., 2020). These studies have found evidence for
transcriptome changes in many of the expected pathways,
and identified TF genes whose expression is upregulated in
response to heat or cold stress at multiple developmental
stages. While substantial progress has been made in under-
standing some of the key TFs and TF binding sites (TFBSs)
that play a role in response to heat and cold stress through
studies of single varieties, the use of genetic variation within
species can provide insights into the diversity of potential
mechanisms by which variable cis-responses arise. Several
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studies have assessed variable responses to drought stress
and revealed widespread cis-regulatory variation (Cubillos
et al., 2014; Lovell et al., 2016; Liu et al., 2020). Analyses of
maize allele-specific responses to several stress treatments
also find evidence for both cis- and trans-regulatory varia-
tion (Waters et al., 2017). These studies have shown that, al-
though there are many genes with consistent responses to
abiotic stress in multiple genotypes, there are also genes
with highly variable responses to abiotic stress within the
same species, which often arises due to cis-regulatory varia-
tion. Promising results have been made to link cis-regulatory
variation with gene expression and even plant phenotypes
(Alonge et al., 2020; Kwon et al., 2020). However, it still
remains largely unknown how sequence differences contrib-
ute to differences in responsiveness of promoters in general.

Machine learning approaches have provided new and pow-
erful ways for understanding and predicting gene expression
in plants (Washburn et al., 2019; Azodi et al., 2020b; Wang
et al., 2020b). These approaches have been used to predict
expression levels (Sartor et al., 2019; Washburn et al., 2019),
regulatory architecture (Mejı́a-Guerra and Buckler, 2019), as
well as gene expression responses to abiotic stress (Zou et al.,
2011; Uygun et al., 2017, 2019; Schwarz et al., 2020; Azodi
et al., 2020a). These studies highlight the potential to develop
predictive models that use putative cis-regulatory motifs to
predict gene expression responses to stress. However, whether
these models can be applied to different genotypes other
than the reference to predict consistent or variable expression
response is not well understood.

We sought to investigate potential avenues for under-
standing transcriptome responses to heat and cold stress in
several maize genotypes. We identified many genes that
exhibited altered expression after a heat or cold stress event.
Comparisons of inbred and hybrid genotypes revealed many
examples of cis- and trans-regulatory variation that lead to
varied expression responses to heat or cold stress. We mined
genes with changes in transcript abundance in response to
heat or cold stress to identify potential cis-regulatory motifs,
which we also used to develop machine learning models to
predict responsiveness of gene expression. Our findings high-
light which parameters are important in motif detection
and modeling of expression responses. We discovered both
the potential uses and possible pitfalls in how data from
one genotype can be used to predict expression responses
in other genotypes. The analysis of genes with variable re-
sponse due to cis-regulatory variation highlight the impor-
tance of insertion/deletion (InDel) polymorphisms or other
structural variants that create presence/absence of key
motifs in different haplotypes.

Results

Characterization of gene expression responses to
heat and cold stress in seedling leaves of several
maize inbreds
We studied the changes in the transcriptome in response to
heat or cold stress in maize seedlings from three maize

inbred genotypes with de novo genome assemblies (B73,
Mo17, and W22) and F1 hybrids representing all three com-
binations of the parental genotypes (B73xMo17, W22xB73,
and W22xMo17). The specific stress treatments used in this
study result in slower growth of maize seedlings but do not
result in plant death or necrosis. Prior studies have shown
differential responses of these inbreds to similar cold stress
treatments (Waters et al., 2017; Enders et al., 2019). These
differential responses were, however, subtle and likely repre-
sented quantitative variation in response to the stress rather
than “tolerant” and “sensitive” genotypes. We selected the
three parental genotypes due to both subtle variation in re-
sponse to these stress conditions as well as the availability
of high-quality genome resources. The experimental design
included three biological replicates for each treatment; the
specific growth conditions are described in “Materials and
methods” (Figure 1, A and B). We sampled each of the six
genotypes a time 0 (prior to application of the stress) as
well as at 1 and 25 h into treatment for both stressed and
control plants to document early and late responses to the
stress at the same circadian point. We collected 126 samples
and subjected their RNA to transcriptome deep sequencing
(RNA-seq), generating �30 M reads per sample
(Supplemental Data Set S1). We determined per-gene ex-
pression levels based on alignments to the B73 reference ge-
nome using a variant-aware approach (see “Materials and
methods” for details).

The initial analyses focused on comparison of the tran-
scriptome data for the three parental genotypes. We
assessed the quality and structure of the data by clustering
using principal component analysis (PCA) with count per
million (CPM) values for all genes (Figure 1C; Supplemental
Figure S1). When all three genotypes were included in the
same PCA, we observed a significant influence of genotype
on the clustering pattern (Supplemental Figure S1A). The
analysis of the different conditions for B73 (Figure 1C),
Mo17 or W22 (Supplemental Figure S1, B and C) revealed
very similar effects from treatments in all three genotypes.
The control samples generally clustered together, suggesting
relatively minor changes based on the 1-h difference in cir-
cadian sampling or one day of growth (Figure 1C;
Supplemental Figure S1, B and C). The cold and heat treat-
ments all resulted in a shift from the control samples but
showed different patterns for the 1- and 25-h treatments.
The effect of 1 h of cold treatment was not as pronounced
as the 25-h cold treatment (Figure 1C; Supplemental Figure
S1, B and C). In contrast, a 1-h heat treatment resulted in a
shift that was similar to the 25-h treatment.

For each stress treatment, we identified differentially
expressed genes (DEGs) by comparing the stress-treated
sample with a control sample collected at the matched time
point (“matched control,” Figure 1D). In addition, we also
identified DEGs by comparing each stress-treated sample to
a control sample collected prior to the initiation of the
stress treatment (“control 0 h,” Figure 1D). This approach
allowed us to identify genes that exhibit consistent changes
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in expression relative to both the initial time point and to a
circadian-matched sample (shown in red in Figure 1D). This
approach was also important, as some genes that are
deemed upregulated or downregulated based on a contrast
of a 1- or 25-h treatment and a time-matched control may
reflect a change in expression in the control relative to time
zero and not a change induced by the treatment. We identi-
fied DEGs based on transcript abundance, which may reflect
differences in transcription rate and/or in transcript stability,
as both mechanisms likely affect transcript abundance fol-
lowing abiotic stress treatments. The subsequent analyses in

this study focused on genes that show consistent differential
expression relative to both time 0 and the matched time
point (shown in red in Figure 1D).

The analysis of the DEGs found evidence for the expected
transcriptome responses to heat and cold stress. Gene on-
tology (GO) analysis of all upregulated genes following heat
stress identified an enrichment for terms associated with re-
sponse to heat, RNA modification, protein folding, and heat
acclimation (Supplemental Data Set S2). Upregulated genes
following cold stress were enriched for terms associated
with DNA binding, transcription regulation, calcium-binding,

A D

B

C

Figure 1 Experimental design and identification of DEGs in response to heat or cold stress. A, Experimental design for the generation of RNA-seq
data. Three biological replicates were sampled from three maize inbreds and their F1 hybrids at time 0 and two time points during stress. B,
Temperature readings throughout the experiment, as measured from a sensor that was with the plants. The gray shaded area indicates darkness.
C, Principal component clustering of B73 samples from the hybrid experiment under control, cold, and heat conditions. The treatment conditions
are indicated by different symbols/colors in the plot. D, Number of DEGs under cold and heat conditions at the 1 h and 25 h time points. For each
time point, the number of DEGs relative to the control sample collected at time 0 (onset of stress; control 0 h) and the number of DEGs relative
to the control sample collected at the matching time point (i.e. 1 or 25 h; matched control) are shown. Numbers inside the red bars represent
DEGs in both comparisons.
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and serine/threonine kinase activity (Supplemental Data Set
S2). These results confirmed that the samples exhibit the
expected responses to heat or cold stress. We assessed the
responsiveness of several TFs or TF families that have been
previously implicated in response to thermal stress using
time-course data from a separate RNA-seq experiment. The
maize B73 genome encodes 29 HSF TFs (Yilmaz et al., 2009;
Zhang et al., 2020), 11 of which were upregulated in re-
sponse to heat in at least one of the two time points
(Supplemental Figure S2, A–C). Many of the HSFs classified
as DEGs exhibited very rapid increases in transcript levels
(some with 4100-fold rise in 30 min) (Supplemental Figure
S2). We also noticed that several HSF genes (ZmHSF4,
ZmHSF12, ZmHSF13, and ZmHSF20) not classified here as
DEGs showed a very strong activation 30 min into treat-
ment, but had already returned to basal expression levels by
1 h, and were thus not considered as differentially expressed

(DE) in our replicated experiment (Supplemental Figure
S2D). We also assessed expression patterns for a set of 104
TFs previously reported to play a role in cold stress response
in various cereal species (Baillo et al., 2019): we determined
that the expression of 40 of these TFs is induced in our rep-
licated B73 dataset and exhibit a variety of patterns in the
time-course data (Supplemental Figure S3). Together, the
analysis of GO terms and TFs provide evidence that our
heat/cold treatments elicited the expected transcriptional
responses.

Genetic variation for responses to cold and heat
stress
We were interested in exploring the frequency, and underly-
ing causes, of variable expression responses to abiotic stress
in maize seedlings based on comparisons of the transcrip-
tome responses in the three inbreds. We used those

D E

A B C

Figure 2 Characterization of genes with variable stress-responsive patterns among inbreds. A, Venn diagram showing the extent of overlap be-
tween upregulated genes in response to 25 h of cold stress for B73, Mo17, and W22. The overlap of DEGs at the other time points is shown in
Supplemental Figure S1A. B, For genes that show significantly stronger (or weaker) response to cold at 25 h in B73 compared to Mo17, we show
the Log2(Fold-change[cold 25 h/control 25 h]) for both inbreds. The classification of differential responses for other genotype contrasts and time-
points is provided in Supplemental Figure S5. Posthoc tests were used to classify genes with varying differential expression between genotypes, in-
dicated by different colors. C, Number of genes associated with each category shown in (B). For each class, the response in the two genotypes (A
and B) is indicated as upregulated (“ + ”), downregulated (“–”) or not DE (=). D, For the subset of genes classified as having a response in only one
of the two genotypes that also had SNPs, we assessed allele-specific expression in the F1 hybrid. The proportion of allele 1 (B73) change in stress
versus control of the F1 hybrid (x-axis) was compared to the proportion of the change in expression in the parental genotypes (y-axis). A maxi-
mum likelihood model was applied to classify cis and trans inheritance patterns; these classifications are shown in different colors. E, Number of
genes classified into each type of regulatory pattern for response to abiotic stress shown in (D). Similar analyses for other genotypes, stress, and
time points are shown in Supplemental Figure S6.
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nonredundant (nr) DEGs (relative to both time 0 and a
matched time point) at 1 or 25 h of heat or cold stress in at
least one of the inbred lines to classify conserved and vari-
able responses. The results for 25 h cold upregulation are
shown in Figure 2; the full set of responses to all treatments
is shown in Supplemental Figures S4–S6. While some genes
displayed consistent upregulation in all three genotypes, we
also observed many examples of upregulation in only one
genotype (Figure 2A; Supplemental Table S3; Supplemental
Figure S4A). In general, 30%–50% of the nr DEGs from all
three genotypes were DE in two or three parental geno-
types, with the remaining DEGs being specific for one of the
three parental genotypes (Supplemental Table S1).
Hierarchical clustering of upregulated genes in one or two of
the parental inbreds indicated that many of these genes
show minimal expression changes in some genotypes
(Supplemental Figure S4B). However, this analysis also
revealed many examples of genes that respond in multiple
genotypes but are simply not classified as significantly DE in
some genotypes (Supplemental Figure S4B). To identify the
set of genes with a robust response to stress in a subset of
genotypes, we introduced an interaction term (genotype:-
condition) to model the genotype-specific condition effect
under the generalized linear framework of DESeq2 to assess
the responses of genes (Figure 2, B and C; Supplemental
Figure S5). This modeling approach allowed us to classify
genes that exhibit significant upregulation in one genotype
but not the others (A + B= or A = B + ), as well as a set of
genes that respond more strongly in one genotype but do
exhibit responses in both sets of genotypes (A + B + )
(Figure 2, B and C).

Our experimental design allowed us to characterize the
variation in cold- or heat-responsive expression in the three
maize inbreds and to separate cis- and trans-acting regula-
tory variation using their F1 hybrids. We grew the F1 hybrids
at the same time as the inbred parents; they exhibited very
similar responses to the treatments based on clustering
(Supplemental Figure S1, D–F). We proceeded to assess
allele-specific expression for the sets of genes that have a sig-
nificant expression response in one genotype but not in an-
other (A + B=, A = B + , A – B=, A = B–). For these genes,
we asked whether the responsiveness was due to cis-acting
features present in one allele or to trans-acting effects that
might influence responsiveness of both alleles in the F1 hy-
brid. A subset (11%–37%) of these genes with variable
responses contained single-nucleotide polymorphisms
(SNPs) and had sufficient allele-specific read-depth to per-
form allele-specific expression analysis in the F1 hybrid
(Figure 2, D and E; Supplemental Figure S6; Supplemental
Table S2). Using a model that incorporates allele-specific ex-
pression in the F1 and relative expression levels in the two
parents (see “Materials and methods” for details), we sorted
their regulatory patterns as cis only (24%–54%), trans only
(0%–29%), or as a mix of cis and trans (14%–43%)
(Figure 2, D and E; Supplemental Figure S6; Supplemental
Table S2). It is important to note that these classifications of

cis/trans regulation refer here to the responsiveness to the
stress condition rather than regulatory variation within a
specific environment. These cis/trans classifications revealed
many examples of genes with different gene expression
responses to heat or cold stress in these three hybrid geno-
types. The allele-specific data identified many cases of both
cis- and trans-regulatory variation that controls the differen-
tial response to stress. The examples of cis-regulatory varia-
tion suggested that changes in the promoter sequences for
one allele alter the ability to respond to abiotic stress, which
prompted us to assess whether we could identify sources of
this cis-regulatory variation or predict different responses us-
ing only the promoter sequence. It is worth noting that the
number of genes identified with cis-regulatory variation here
is likely an underestimation, since many genes with differen-
tial response did not have SNPs within their coding region,
which thus precluded us from performing allele-specific ex-
pression analyses.

Identification of enriched motifs for each cluster of
heat/cold stress-induced genes
One objective of this study was to develop models to pre-
dict gene expression responses to heat/cold stress in maize.
DNA motifs that provide TF TFBSs are expected to provide
a significant portion of the input information that influences
gene expression responses. We identified significantly
enriched motifs for heat or cold by assessing sequences of
all significant DEGs using the STREME algorithm (Bailey,
2020). We used a variety of different potential “promoter”
sequence space parameters, including different lengths,
directions relative to the transcription start site (TSS), and
chromatin filters, to increase the potential to identify
enriched motifs (Figure 3, A and B). In all cases, we assessed
enrichment of sequence motifs through a comparison to a
control set of expressed genes that does not show evidence
of differential expression after heat or cold stress.

We collapsed the resulting full set of 1,188 motifs from
the B73 reference genome into 419 motif groups based on
sequence similarity, 110 of which were assigned to known
TFBSs in the catalog of inferred sequence Binding
Preferences (cis-BPs) (Weirauch et al., 2014), while the
remaining 309 did not correspond to previously described
motifs. An assessment of the top 40 most significantly
enriched motifs from the search that used ±2-kb sequences
for each set of DEGs revealed that a subset of the enriched
motifs reflects previously characterized TFBSs, while others
represented novel motifs not captured by the current collec-
tion of plant TFBSs (Figure 3C). The motifs that represented
known TFBSs included some of the expected sites such as
HSF binding sites for heat or CBF/DREB binding sites for
cold (Figure 3C). For the subsequent application of using
enriched motifs as features in a predictive model, it was not
critical that all motifs be valid, as the models can be trained
to utilize the most predictive features, but it was reassuring
to note that we identified many of the expected motifs in
the top set of features.
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Generation of models to predict heat- and
cold-responsive gene expression
We sought to generate and assess predictive models of B73
stress-responsive expression using the potential cis-
regulatory elements (motifs) as “features” to classify a gene’s
expression response to heat or cold stress and assess
whether the presence of sequence motifs might be used to
accurately predict stress response. We used presence/ab-
sence of the motifs within different sets of search spaces
(Figure 3A) to develop random forest models to assess how
the use of different potential “promoter” regions would af-
fect model performance. We implemented a previously de-
scribed approach (Zou et al., 2011; Uygun et al., 2017, 2019;
Azodi et al., 2020a) to utilize the motif features to predict
whether genes will exhibit cold- or heat-responsive expres-
sion (Figure 4A). We developed separate models for the
upregulated and downregulated genes for each stress. For
each set of nr responsive genes from both time points, we
also included an equivalent number of nonresponsive

expressed genes that are not classified as DE (Figure 4A—
Scheme 1). We performed the sub-sampling of balanced
numbers of DE and nonDE genes 100 times and each time
we divided the genes as 80% for model training and 20% for
model testing (Figure 4A; see “Materials and Methods” for
details).

Overall, we were able to achieve moderate accuracies for
predicting which genes would respond to heat (0.63–0.75)
or cold stress (0.57–0.78) in B73, with higher accuracies for
cold upregulated genes (area under the receiver operating
characteristic [AUROC]: 0.68–0.78) and heat downregulated
(AUROC: 0.69–0.75) genes (Figure 4B). In general, the use
of sequences both upstream and downstream of the TSS
(±2 kb, ±500 bp) provided higher prediction accuracies than
when using the upstream or downstream sequences alone
(–2 kb or + 2 kb, –500 bp, or + 500 bp). Similarly, using lon-
ger sequences surrounding the TSS (±2 kb) provided higher
prediction accuracies than the use of only ±500-bp sequen-
ces (Figure 4B). For subsequent analyses, we assessed several

A

B

C

Figure 3 Identification of enriched motifs in cold- and heat-responsive genes. A, Varying potential “promoter” sequence spaces were used to
search for motifs enriched in different sets of genes. The schematic diagram indicates a representative gene with the TSS indicated. The potential
regions include different lengths of sequences upstream the promoter [Q](–500 bp, –1 kb, –2 kb) as well as sets of sequence that include both up-
stream and downstream sequence (i.e. ±500 bp). In addition, for each of these potential regions, we also subsetted the sequence to only include
regions that are unmethylated (UMRs) or that are classified as accessible based on ATAC-seq analysis (ACR, accessible chromatin region) in leaf or
ear tissue (Ricci et al., 2019). B, Number of nr motifs found using different B73 promoter spaces (x-axis) and different DEG sets (y-axis). Numbers
include motifs identified in all sequence contexts (“all genomic,” “UMR,” “ACR Leaf,” and “ACR Ear”). Darker colors indicate more motifs identified,
with the exact numbers marked in each cell. Numbers in parentheses to the left of the heatmap indicate the number of genes used for motif min-
ing; numbers to the right indicate the total number of nr motifs found for each set of genes. C, Top 40 enriched motifs identified in each set of
DEG calls include known TFBSs as well as novel motifs. For each set of DEGs, up to the top 40 most enriched motifs found using B73 promoter
space are shown (P-value for enrichment is indicated by color). If the enriched motif matched a previously characterized TFBS (Pearson’s correla-
tion coefficient 40.8), the name of the TF is shown. In each case, there was a mixture of previously characterized motifs and novel motifs.
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Figure 4 Training scheme and performance (AUROC) evaluation of different machine learning models predicting cold and heat-responsive ex-
pression. A, Training workflow (upper) and three training schemes (below). B73-only training scheme: DE and nonDE genes in B73 are highlighted
as positive (orange) and negative (blue), respectively. BMW nr training scheme: a gene showing DE in 51 genotypes is labeled positive, while a
DEG in all three genotypes is labeled as negative. Nr, nr, meaning that for each gene triplet, promoter sequence was only picked from one of the
responsive (dark orange) or nonresponsive (dark blue) genotypes. BMW variable genes training scheme: only genes showing variable responsive
pattern were kept for training, where promoter sequences from the responsive genotypes are labeled positive (orange) and those from the non-
responsive genotypes labeled negative (blue). B, Performance comparison of models trained using small promoter spaces (–500 bp, + 500 bp,
±500 bp) against larger promoter spaces (–2 kb, + 2 kb, ±2 kb). In each case, the same chromatin filters (UMRs) and number of features (top100)
were used for training. Within each stress-responsive category (e.g. cold upregulated), performance comparisons were made between the model
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additional parameters while using motifs within 2 kb of the
TSS. We tested whether only using motifs present within
unmethylated regions (UMRs) or accessible chromatin might
improve prediction accuracy compared to using all sequen-
ces within the ±2-kb window (Figure 4C). Indeed, the pre-
diction accuracies increased significantly for three (cold up,
cold down, and heat downregulated genes) of the four
groups tested when focusing only on the motifs within
UMRs, even though substantially less sequence was used
(Figure 4C). In contrast, the use of motifs only within acces-
sible regions, as defined in a prior study of maize seedling
tissue (Ricci et al., 2019), exhibited significantly lower perfor-
mance for nearly all of the groups of genes (Figure 4C).

We assessed whether the most highly enriched motifs
were also the most predictive features. We thus compared
the motif enrichment ranks (least enriched to the most
enriched) with the feature importance of that motif in the
predictive models for each of the sets of genes responding
to heat or cold stress (Figure 4D). We generally observed a
positive correlation between feature importance score and
motif enrichment rank, such that on average the motifs
with a higher enrichment rank had higher feature impor-
tance (Spearman correlation between 0.13 and 0.68,
Figure 4D). This observation was particularly true for the
genes that are upregulated in response to heat, for which
the HEAT SHOCK TF C1 (HSFC1) motif was the most
enriched and also had the highest feature importance score
in models (Figure 4D). While we obtained an overall posi-
tive correlation for the other groups of genes, the most
highly enriched motif was not necessarily highly informative
and some of the more informative motifs in the model did
not rank highly for enrichment (Figure 4D). This observa-
tion suggested that while the level of enrichment is generally
correlated with predictive power, there are exceptions when
the most enriched motifs often are not the most predictive
features for determining responsive gene expression.

We developed the models described above to predict
genes that exhibit significant upregulation or downregula-
tion based on data from two time points. We were curious
if the models would display variable performance based on
the dynamic pattern of expression changes during a time

course of stress response. We thus generated an unrepli-
cated time-course dataset that sampled gene expression at
nine time points in the three inbred lines (Supplemental
Figure S7A). Hierarchical or t-distributed stochastic neighbor
embedding (t-SNE) clustering based on the expression levels
of all genes revealed patterns that are consistent with geno-
type and type of treatment (Supplemental Figure S7B).
Since this data were not replicated, we were not in a posi-
tion to define DEGs but instead used this data to classify
the dynamic pattern of response for the genes that were
previously classified as significant DEGs in the initial repli-
cated experiment at 1or 25 h. We then used these significant
DEGs from each genotype to define co-expression clusters
based on their time-course differential expression profiles
(see “Materials and methods” for details) (Figure 5). We
identified a set of co-expression clusters that exhibit upregu-
lation or downregulation of their constituent genes in re-
sponse to heat or cold. These clusters included examples of
early or late responses, as well as transient responses and
stable responses (Figure 5A). We used the models devel-
oped for all upregulated or downregulated genes to predict
responses in each of these subsets of co-expression clusters.
Co-expression clusters showed better predictions in the
model trained for the same directional response, as expected
(Supplemental Table S5). There was variation for whether
the genes within specific co-expression clusters exhibited
higher prediction accuracies than all upregulated or downre-
gulated genes. A subset of co-expression clusters had signifi-
cantly higher performance than all upregulated or
downregulated genes, but in other cases, the performance
was similar or lower (Figure 5B; Supplemental Table S3).

Association of variable response to heat or cold
stress with model predictions or features
In the sections above, we focused on generating predictive
models based on the B73 reference genome and on changes
in expression in the B73 background. An important long-
term objective is the ability to develop models that can pre-
dict conserved or variable responses to abiotic stress in dif-
ferent genotypes. We thus sought to assess how several
factors might influence predictions of response to heat or

Figure 4 (Continued)
using promoter sequences both upstream and downstream of the TSS (i.e. “ + /–”) and the models using only upstream or downstream sequences
(“–“ and “ + ”) using t test followed by multiple test correction (“Benjamini and Hochberg”) with significance levels indicated (*P5 0.05;
**P5 0.01; ***P5 0.001). Within each group an extra test was made between the “ + /–500 bp” model and the “ + /–2 kb” model. C, Performance
comparison of models using all genomic sequence (“all”), UMR regions only (“umr”) or using leaf-accessible regions only (“acrL”) with the same
sized promoter spaces (±2 kb) and number of features (top100). In each setting, average AUROC (N = 100 downsampling and model trainings) is
shown along with the standard deviation. Within each stress-responsive category, performance comparisons were made between the “umr” model
and the other two models (“all” and “acrL”) using t test followed by multiple test correction with significance levels indicated. D, Relationship be-
tween motif enrichment level and feature importance score in different categories of stress-responsive genes. All significantly enriched motifs
were assessed for each group of DEGs. Motif enrichment levels were determined by a hypergeometric test, using motif occurrences in positive and
negative gene sets and ordered from least significant to most significant (x-axis). Permutation-based feature importance scores from 100 random
forest models are shown on the y-axis with error bar indicating 25%–75% quantiles. The top five feature importance scores are labeled with motif
names (known motif) or consensus sequences (novel motif). In each panel, the Spearman’s correlation coefficient (rho) between feature impor-
tance score and motif enrichment rank is reported and the level of significance is also indicated. All feature importance score estimates are based
on the models trained using “ + /–2 kb,” “UMR,” “top200,” and “binary” parameters.
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A

B

Figure 5 Identification and prediction of cold- and heat-responsive gene clusters. A, Expression profiles of cold- and heat-responsive gene clusters.
B73, Mo17, and W22 genes that exhibit significant differential expression 1 or 25 h into stress treatment were used to perform co-expression clus-
tering based on their time-course expression pattern (see “Materials and methods”). The median expression level of control and stress conditions
for the genes within each module is shown and the number of B73, Mo17, and W22 genes in each module is listed on the right. The shaded area
at each time point represents 25%–75% quantile expression levels. B, Model prediction accuracy (AUROC) on all stress-responsive DEGs and dif-
ferent co-expression clusters (as defined in (A)). Trained models (cold-up, cold-down, heat-up, and heat-down) were used to predict different co-
expression clusters using promoter sequences. The best performing model in each stress-responsive gene category was used for prediction.
Evaluation datasets were downsampled 100 times to achieve balance; the final mean and standard deviation of AUROC scores are reported.
Prediction accuracies (AUROC scores, see Supplemental Data Set S1 for all metrics) on specific co-expression clusters were compared with model
accuracy on “all” DEGs in each category with the level of significance reported after multiple test correction (“Benjamini & Hochberg” adjustment;
*P5 0.05; **P5 0.01; ***P5 0.001).
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cold stress across multiple genotypes (Figure 6). The initial
models described above were trained using B73 DEGs and
motifs (Figure 4A—Scheme 1). These models performed
more poorly when applied to the DEGs and using the pres-
ence of motifs in the promoter sequence from the other
inbreds Mo17 or W22 (Figure 6A). However, even in these
cases, we obtained AUROC scores 40.7 for most groups of
DEGs in these other two genotypes, suggesting that informa-
tion from B73-based models can be useful for predicting
responses in other genotypes. We then trained models that
utilized DEGs and significantly enriched motifs from all three
genotypes (Figure 4A—Scheme 2), as well as control genes
from each genotype. To remove redundant responses, we
randomly selected only one ortholog if two or three

genotypes exhibited differential expression for the same
gene; we refer to this model as the BMW (B73, Mo17, and
W22)-nr model. This approach offered increased prediction
accuracies for all Mo17 and W22 responses, such that all
three genotypes reached roughly similar accuracy
(Figure 6A). These results suggested that while there is
some accuracy in untrained predictions from one genotype
to others, the accuracies are substantially improved by train-
ing using data from all genotypes.

While these overall accuracies were high, we further tested
the ability of these models to correctly predict variation for
responses to heat or cold stress. We were interested in doc-
umenting how accurately we might predict genes with
stress-responsive expression in one genotype but not

A B C

Figure 6 Cross-genotype performance of machine learning models predicting cold or heat-responsive expression. Models were trained only using
B73 sequence and DE labels (“B73 model”) or data from all three genotypes after redundancy removal (“BMW_nr model”). A, AUROC for models
predicting stress-responsive expression in B73, Mo17, and W22. Average AUROC (N = 100 model permutations) is shown along with the standard
deviation for both the B73 and BMW_nr models. B, Model prediction accuracy for genes showing consistent (“Both respond”) or variable (“Only
B73 or Mo17/W22 respond”) response patterns among genotypes. In each observed category, the number and proportion of predictions are indi-
cated in the plot with the correct predictions highlighted with red boxes. C, Dissection of regulatory patterns for genes showing variable response
patterns among genotypes. Variable response genes were first grouped by whether model prediction agrees with the observed status (“Correct” if
the model correctly predicts one genotype responds but the other does not, “Incorrect” if the model predicts oppositely, “Both respond” and
“Neither respond” if the model predicts both or neither genotypes respond—although in reality only one genotype responds). Then within each
group, the number of proportion of different regulatory patterns (“cis,” “trans”) were marked.
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another. We used the classification of the relative responses
in multiple genotypes (Figure 2C; Supplemental Figure S3)
and assessed the prediction for these genes relative to the
observed patterns (Figure 6B). We obtained similar results
using either a model trained only on B73 or a nr BMW set
of DE genes (Figure 6B). The majority of genes that exhibit
conserved transcript abundance responses in both geno-
types were correctly predicted to respond in both geno-
types, with relatively few of these genes predicted to not
respond in either genotype. The correct prediction accura-
cies (highlighted in red boxes) were much lower when fo-
cusing on the subset of genes that only responds in B73 or
in another genotypes (Figure 6B).

Regardless of which model we used, we determined that
most genes with genotype-specific responses are incorrectly
predicted to respond in both genotypes (Figure 6B). Since

our predictions were largely based on the presence of puta-
tive cis-regulatory motifs, it might be expected that predic-
tion accuracies would be higher for genes with cis-regulatory
variation for responsiveness when compared to genes with
trans-regulatory variation. We thus assessed the classification
of cis- and trans-regulatory variations for genes with variable
prediction in each group (Figure 6C). Genes with the cor-
rect predictions did show slight, but not significant (NS),
higher proportions of cis-regulation (cis versus noncis;
P = 0.207, Fisher’s exact test) than incorrectly predicted
genes and were depleted for trans-regulation (trans versus
nontrans; P = 0.036, Fisher’s exact test), as expected.
However, the enrichments were fairly subtle and many genes
with cis-regulatory variation were still predicted incorrectly.
We also attempted to develop models that only use genes
with variable response and training based on allelic variation

A

C

D

B

Figure 7 Identification of TFBS variation associated with variable stress-responsive expression patterns. A and B, Presence of an HSF TFBS
(GAANNTTC motif) in the promoter region that is associated with activation of the target gene. C and D, Presence/absence of a TFBS motif asso-
ciated with the Log2(Fold-change) under cold treatment for a panel of 25 maize genotypes. In each panel, the upstream and downstream 2-kb
sequences around TSS were extracted for each genotype, aligned to each other, and plotted as (light blue) synteny blocks. Gene structures were
also plotted for each genotype (blue boxes represent exons and gray segments represent introns/untranslated regions). Motif logo is shown on
the top left of each panel, and the presence of the motif in the 4-kb regions was determined using find individual motif occurrences (FIMO) and
marked as red dots. A phylogenetic tree derived from the multiple sequence alignment is shown on the left. On the right of the alignment are the
actual aligned sequences in the motif as well as four additional columns showing the Log2(Fold-change) of each genotype under cold treatment
(“log2fc”), whether differential expression was called for the genotype (“DE”), whether a full motif was detected in this region (“motif”) and
whether the machine learning model predicts a stress response for this genotype (“model”).
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(Figure 4A—Scheme 3). However, we were not able to gen-
erate informative models, likely due to the relatively low
amount of useful data available for training these models.

TFBS variation associated with differences in
stress-responsive gene expression
We sought to utilize the enriched motifs and/or model pre-
dictions to understand the sources of variable responses for
different haplotypes. There is substantial variation, including
both SNPs and structural variants (InDels and transposon el-
ement insertions) between maize haplotypes that often
make it difficult to identify specific causal variants. The upre-
gulated genes in response to heat stress exhibited a signifi-
cant enrichment for the presence of an TFBS for an HSF
(Figure 3C). We identified 21 genes with cis-regulatory vari-
ation for response to heat that we correctly predicted in all
three genotypes by the BMW-nr model. Of these, 15 genes
had an HSF TFBS within 1 kb of the TSS and we sought to
assess whether their observed variation for responsiveness
correlated with variation in the presence or position of the
HSF TFBS (Supplemental Table S4). For five genes, the pres-
ence/absence of an HSF TFBS correlated with response or
lack of response. In each of these cases, the HSF TFBS pres-
ence/absence was the result of an InDel rather than an SNP
changing the sequence (Figure 7, A and B). Another seven
genes had at least one HSF TFBS in all three inbred alleles.
However, in several cases, the allele that did not respond to
heat stress had an InDel resulting in a shift of the HSF TFBS
further away from or closer to the TSS.

To assess the sources of variation for response to cold
stress, we generated an additional dataset consisting of a
single replicate of control and cold-stressed plants at two
time points (1 and 25 h) for 23 maize genotypes with ge-
nomic resources, including SNP calls relative to B73. We in-
cluded an additional replicate of B73, Mo17, and W22 in
this panel, which all exhibited expression changes that are
consistent with the initial replicated transcriptome analysis
and supported the classification of variable responses for
these genes (Supplemental Figure S8A). We focused on the
set of 2,147 (1,088 upregulated and 1,059 downregulated)
genes that exhibit variable response to cold in the three
initial genotypes. To identify examples of clear classification
as “response” or “no response” to cold, we assessed the dis-
tribution of the ratio (Log2) of transcript abundance in
cold relative to control to identify genes with clear bi-
modal distributions. We identified a subset of 518 genes
with significant bi-modal or multimodal distributions for
which genes can be classified as responding to cold or not
responding (Supplemental Figure S8, B and C). Based on
the selection criteria of these genes, at least one of the
three core genotypes (B73, Mo17, and W22) was always
within both the responding and nonresponding group, as
expected.

To identify potential sequence variants associated with re-
sponse to cold stress, we aligned the genomic sequences of

the 25 maize genotypes to B73 to extract bi-allelic variants
within 2 kb of each gene to perform a local association test
with the cold response pattern (i.e. responding and nonres-
ponding genotypes). We used the PLINK toolset (Purcell
et al., 2007) to perform a standard chi-square association
test for each gene. Many of the genes (299/518) showed at
least one significant association for a local variant and the
expression response. We also assessed whether enriched
cold-responsive sequence motifs with presence/absence
were highly associated with the variable expression response.
We identified 9% (47/529) of genes with a motif that has a
490% accuracy for prediction of the response and 25%
(130/529) of genes with a motif with a 480% response ac-
curacy (Supplemental Data Set S4). Most (110/130) of these
latter genes that can be predicted based on the presence/
absence of a motif were also identified by PLINK as having a
significant local association. Of the 130 genes with 480%
association between a motif and the expression response,
only 13 (10%) illustrated a case where motif variation was
caused by SNP variants only. The other genes all included
InDels, suggesting widespread contribution of InDels to vari-
ation for responsiveness. We highlighted two examples of
variable responses (Figure 7, C and D). The gene
Zm00001d036573 exhibited significant upregulation in B73,
but not in W22 or Mo17. We detected an unknown motif
(CGANCGANCG) in all alleles of this gene that are classified
as responding to cold (Figure 7C). This motif was also pre-
sent in genotype Tx303, even though the expression of this
gene in this genotype did not show responsiveness to cold
treatment. The overall accuracy for prediction of response
to cold for this gene was 0.72 when using the BMW-nr
model. The incorrect predictions were largely due to pre-
dicted responses in several genotypes that failed to respond.
Another interesting example was a maize mitochondrial
transcription termination factor (mTERF17—
Zm00001d017130; Figure 7D), which showed significant
downregulation upon cold stress in all maize genotypes ex-
cept Mo17, B97, EP1, and M162W. The presence of a col2
motif (CACCACACCACNC) appeared to be highly associ-
ated with the expression response. The four genotypes that
failed to respond showed substantial structural variation
and did not share homology to the other haplotypes in the
region containing the col2 motif. However, the BMW-nr
model had quite a limited accuracy in its prediction for this
gene (0.24). The model only predicted a response for a small
set of the genotypes classified as responding to cold. Several
other examples are highlighted in Supplemental Figure S9, A
and B and demonstrate the potential role of both SNPs and
structural variants in creating presence/absence of motifs as-
sociated with expression response changes.

Discussion
Understanding gene expression responses to abiotic stress
will contribute to efforts to develop more resilient crop vari-
eties. In this study, we focused on monitoring transcriptome
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responses to heat and cold stress in the leaves of maize
seedling. The use of paired heat and cold stress with the
same sampling times and genotypes revealed some key dif-
ferences in the dynamics of response. Many of the
responses to the heat stress event used here occurred very
rapidly and were fairly transient. In contrast, the cold stress
employed here tended to have less drastic effects in the
first hours, but included changes in expression that contin-
ued, and often strengthened, over the course of 24 h.
Including two different abiotic stresses with variable pat-
terns of response provides an opportunity to compare
approaches that use cis-regulatory features to predict re-
sponse to abiotic stress.

A key long-term goal is to understand how cis-regulatory
elements, and variation among them, drives variation for
gene expression responses to thermal stress in different gen-
otypes of crop species. This goal has implications for under-
standing the evolutionary sources of regulatory variation for
stress responsiveness. These approaches also may provide
the ability to identify genotypes with particular responses to
abiotic stress. The analyses performed in this study provide
insights into the changes in transcript abundance that occur
in response to heat and cold stress, the applications of pre-
dictive models of gene expression responses as well as the
potential opportunities and associated risks when attempt-
ing to predict expression responses across genotypes.

Identification of TFs and TFBSs associated with
response to heat and cold stress
Environmental stresses induce significant differential gene
regulation, and these large-scale changes likely include exam-
ples in which activation of a relatively small set of stress-
responsive TFs can activate, or repress, a much larger num-
ber of stress-responsive genes (Reményi et al., 2004; Song
et al., 2016; Vihervaara et al., 2018). We identified a number
of TFs whose encoding genes exhibited increased transcript
abundance following heat or cold stress, including a subset
activated very early upon exposure to stress (Figure 5;
Supplemental Figures S2 and S3). In many cases, we also ob-
served connections between the upregulated TF genes and
some of the TFBSs that were enriched in the promoters of
upregulated genes. Genes upregulated by heat were signifi-
cantly enriched for both HSF TF genes and the previously
identified HSFC1 binding site (Franco-Zorrilla et al., 2014) in
the early activation cluster, as well as in the full set of heat
upregulated DEGs. Among cold upregulated genes, we ob-
served a significant enrichment for both WRKY TF genes
and several previously identified WRKY binding sites, as well
as a significant enrichment for both MYB TF genes and sev-
eral previously identified MYB binding sites (Franco-Zorrilla
et al., 2014). Members of each of these TF families have
demonstrated roles in stress responses. HSF TFs are thor-
oughly characterized regulators of heat stress responses
(Scharf et al., 2012), while members of both WRKY and
MYB TF families have been implicated in cold stress
responses (Chen et al., 2012; Li et al., 2015).

“Promoter” definitions influence ability to identify
motifs and predict responses
Our understanding of the architecture of regulatory regions
in plants remains limited (Long et al., 2016; Weber et al.,
2016). It is tempting to use a simple criterion such as the
1 kb of sequence immediately upstream of the core pro-
moter when searching for potential regulatory elements.
However, there is evidence that important regulatory ele-
ments can be further upstream or located in regions within
the gene or downstream of the gene (Jeong et al., 2006;
Laxa, 2016; Weber et al., 2016; Gallegos and Rose, 2019).
Models that attempt to predict changes in transcript abun-
dance in response to stress likely should utilize motifs that
may predict transcriptional changes as well as motifs within
the RNA that influence the stability of transcripts. We used
a variety of different parameters to identify or filter the
sequences that were used to discover enriched motifs or
predict expression responses. We noted several important
take-away messages from our attempts to document
enriched motifs or predict responses to stress in B73. The
use of larger regions and the inclusion of sequences within
the transcribed region resulted in the discovery of more
motifs, which was expected. More importantly, we also dis-
covered that using these larger regions also improves the
prediction accuracy of the models. However, analyses that
only utilized UMRs suggested that prediction accuracies are
not solely based on the amount of sequence used. Our find-
ings also suggest that Assay for Transposase-Accessible
Chromatin followed by sequencing (ATAC-seq) data from
control tissues is not particularly useful for finding regions
important for predicting responses.

The functional binding of TFs often requires both the
presence of a matching motif (TFBS) and a proper chroma-
tin state (Weirauch et al., 2014). Recent studies on accessible
chromatin or chromatin modifications have documented
many potential cis-regulatory elements in maize (Oka et al.,
2017; Ricci et al., 2019); however, surveys of potential regula-
tory elements in unstressed plants have likely missed key po-
tential stress-induced regulatory elements. The location of
regulatory elements can be inferred through analyses of ac-
cessible chromatin, especially when focused on regions that
are accessible only following stress treatments (Maher et al.,
2018; Han et al., 2020; Raxwal et al., 2020). Alternatively,
DNA methylation signatures are stable across tissues, devel-
opmental stages, and environmental conditions, and can
provide effective filters in mining functional regulatory ele-
ments (Crisp et al., 2020). Predictive models that only used
the presence of motifs within UMRs or accessible regions
performed better for some groups of genes, even though
this filter removed 450% of the sequence that is methyl-
ated. In contrast, the use of regions defined as accessible
chromatin in a previous study (Ricci et al., 2019) did not im-
prove prediction accuracies. Recent work suggested that
UMRs may provide a catalog of potential regulatory ele-
ments in plants (Crisp et al., 2020). Many regions that con-
tain stress-specific regulatory elements are likely
unmethylated even in control conditions, while many of the
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regions of accessible chromatin may be more dynamic and
only become accessible under specific conditions (Zeng
et al., 2019; Parvathaneni et al., 2020; Wang et al., 2020a).

Predictions of response to the environment across
genotypes
A key goal in this work was to investigate the variation in
response to abiotic stress in different maize genotypes and
to assess approaches for predicting this variation. Local ad-
aptation of plant populations likely involves changes to the
cis-regulatory elements that allow for gene expression
responses to environmental challenges. There are open
questions about the nature of molecular variants that will
create cis-regulatory changes in responsiveness to stress.
SNPs within critical motifs may change the response, but
are more likely to result in loss of a response rather than a
gain of responsiveness. Alternatively, structural variants such
as deletions or transposon insertions may provide novel ele-
ments or change the spacing between potential cis-
regulatory elements and the TSS. We identified hundreds of
genes that exhibit a response to abiotic stress in one geno-
type but not another. The cis-regulatory variation for re-
sponse to stress indicated that one allele contains the
elements necessary for response while the other does not.
Further studies of these examples will provide insights into
the molecular basis for changes in response to the
environment.

The availability of genes with documented variation for re-
sponse to heat or cold stress offered an opportunity to as-
sess how well we can predict variation within germplasm for
these responses. Ideally, we would be able to use data from
a single genotype to effectively predict expression responses
in other genotypes, as the value of predictive models is par-
tially due to the reduction in which data need to be col-
lected. However, we obtained substantially lower prediction
accuracies when models trained solely on B73 expression
responses were used to predict Mo17 or W22. If we use ex-
pression responses from all three genotypes, we achieved
much higher prediction accuracies for the other genotypes.
A truer estimate of the accuracy for cross-genotype predic-
tions arose from focusing on the ability to accurately predict
genes with variable response. While we were able to predict
some of these examples of variable response, the rates were
relatively low (�10%–20%). Most genes with variable expres-
sion responses between genotypes were predicted to re-
spond in both genotypes. For a subset of the genes, we used
the allele-specific expression data to document cis- and
trans-acting regulatory variation. We expected to see that
the model would make accurate predictions for genes with
cis-regulatory variation at a much higher rate than genes
with trans-acting regulatory variation. We saw minor enrich-
ments for cis-acting regulatory variation and depletions for
trans-acting regulatory variation in the genes with correct
predictions, but there were examples of correct predictions
for trans-acting regulatory prediction as well. The alleles
with trans-regulatory variation likely still contain motifs

necessary for the response, even if the trans-acting factor
might be absent, which may lead to predicted responses
even when the trans-acting factor is missing. We also con-
sidered generating models that were trained only using
genes that have a variable response to stress in which the
negative control set reflected the alleles that did not re-
spond to stress; however, these models would not have in-
cluded enough examples for proper training of models.
Substantial improvements in cross-genotype prediction ac-
curacies for genes with a variable response would be needed
before this approach can be valuable in generating informa-
tion to inform breeding decisions.

A closer examination of variation for motif presence/ab-
sence associated with variable responses for heat or cold
highlights the potential role of structural variants. For both
heat responsiveness and cold responsiveness, we obtained
many more examples of InDels that caused presence/ab-
sence of the TFBS rather than SNPs or small sequence
changes that might influence binding. The high levels of
structural diversity among maize haplotypes may create sub-
stantial variation for motif presence in different alleles. It is
important to understand the molecular sources that drive
variation for responses in gene expression as we seek to pre-
dict potential variation for response to the environment.

Materials and methods

Plant materials and experimental design
Three experiments were carried out to study the response
of maize seedlings to cold or heat stress treatments. The first
experiment included three biological replicates (each sample
was a pool of tissue from 3 to 4 individual seedlings) for
three inbred parents (B73, Mo17, and W22) as well as their
F1 hybrids (B73xMo17, B73xW22, and Mo17xW22) at three
time points under control, cold, and heat conditions. A sec-
ond experiment utilized a time-course to assess cold and
heat response at nine different time points (0, 0.5, 1, 1.5, 2,
3, 4, 8, and 25 h) after stress treatment for three maize
inbreds (B73, Mo17, and W22—due to low germination, sev-
eral time points were omitted for W22). This time-course
experiment included a single biological replicate of pooled
individuals (3–4 individuals per sample). The third experi-
ment included a single biological replicate of three pooled
individuals for a diverse panel of 25 maize inbreds at two
time points under control and cold conditions. All three
experiments were performed from late May to early July in
2019. In each experiment, maize seeds of the selected geno-
types were hydrated for 24 h in distilled water and grown in
growth chambers at 30�C/20�C under 16-h light/8-h dark
cycles to the V2/V3 stage (Day 9) for stress treatments and
collection of the V2 leaves. For all three experiments, the
stress treatment (cold or heat) was initiated 2 h after dawn
on Day 9 (i.e. time zero), and samples were collected from
the control, cold, and heat groups simultaneously at the in-
dicated time points. The temperature settings for control,
cold, and heat conditions were 30�C/20�C, 6�C/2�C, and
39�C/29�C, respectively. For each replicate, V2 leaves from

528 | THE PLANT CELL 2022: 34: 514–534 P. Zhou et al.



three maize seedlings were collected and pooled. A total of
292 samples were collected for profiling: 126 samples in the
replicated experiment of the three inbreds and their F1

hybrids, 66 samples in the time-course experiment, and 100
samples for the diversity panel experiment. One sample did
not meet the minimum cDNA content requirement during
RNA-seq library preparation and was omitted
(Supplemental Data Set S1).

RNA-seq data processing
Sequencing libraries were prepared using the standard
TruSeq Stranded mRNA library protocol and sequenced on
a NovaSeq S4 flow cell as 150-bp paired-end reads to pro-
duce at least 20 million reads for each sample
(Supplemental Data Set S1). Both library construction and
sequencing were done at the University of Minnesota
Genomics Center. Sequencing reads were then processed
through the nf-core RNA-seq pipeline (Ewels et al., 2020) for
initial quality control and raw read counting. In short, reads
were trimmed using Trim Galore! and aligned to the B73
maize reference genome (AGPv4, Ensembl Plant release 32)
using the variant-aware aligner Hisat2 (Kim et al., 2015) and
a graph index incorporating 90 million common maize var-
iants to account for mapping bias. Uniquely aligned reads
were then counted per feature by featureCounts (Liao et al.,
2014). Raw read counts were then normalized by library size
and corrected for library composition bias using the
Trimmed Mean of M-values normalization approach
(Robinson and Oshlack, 2010) to obtain CPM reads for each
gene in each sample, allowing direct comparison across sam-
ples. CPM values were then normalized by gene coding se-
quence length to yield fragments per kilobase of exon per
million reads values. Hierarchical clustering, PCA and t-SNE
clustering were used to explore sample cluster patterns and
to remove questionable samples. The two missing time
points in W22 (3 and 8 h) were imputed from the two
neighboring time points using linear imputation. Two sam-
ples from the replicated experiment at the 25 h time point
(HY91 and HY93) were also removed due to poor correla-
tion with other biological replicates and substituted by two
from the time-course samples (TC64 and TC66) that had
the same treatment and genotype.

Identification of DEGs and characterization of
genotypic differences
We used the replicated inbred/hybrid experiment to call
DEGs between stress-treated samples and control samples.
Since each time point in the experiment has two potential
controls (one time 0 unstressed sample; one unstressed
sample at the matching time point), two comparisons were
made: one comparing the stress-treated samples at 1 or 25 h
with unstressed samples at time zero (0 h); and one compar-
ing the treated samples with unstressed samples at the
matching time point (1 or 25 h). This scheme led to two
sets of DEGs identified for each genotype at each time
point, the overlap between which was considered true
stress-responsive genes and retained for downstream

analysis. All statistical tests were done using the DESeq2
package version 1.32.0 in R (false discover rate [FDR] ad-
justed P 50.05 and a minimum fold-change of 2) (Love
et al., 2014).

To characterize the genotypic effect in each gene response
to cold and heat stress, we made use of the Generalized
Linear Model fitting framework in DESeq2 version 1.32.0
(Love et al., 2014). An interaction term between treatment
condition and genotype was introduced and the model de-
sign was formulated as Design = �Genotype + Condition +
Genotype:Condition. Using B73 as a baseline, we identified
genes showing significantly different responses in Mo17 and
W22 (compared to the response of B73) as well as those
showing different responses between Mo17 and W22. In
each comparison, significance was defined as FDR adjusted P
50.05 and a minimum fold-change (between the response
of the two genotypes to cold/heat treatment) of 2. Similar
to calling DEGs for each genotype, this between-genotype
test was also performed twice—once using time 0 un-
stressed samples; once using unstressed samples at the
matched time points. A gene needed to show significance in
both comparisons in order to be deemed as having a signifi-
cant genotype effect.

The list of genes showing genotypic effect in each of the
three pairwise comparisons (B73 to Mo17, B73 to W22, and
Mo17 to W22) in each condition (cold_1h, cold_25h,
heat_1h, and heat_25h) were further grouped into 27 cate-
gories based on their response status in the three genotypes.
We focused on the categories where stress response (either
activation of repression) was lost in one or two genotypes,
and used these as candidates to validate the cis-regulatory
motifs we discovered.

Identification of cold- and heat-responsive
co-expression clusters
The time-course experiment was used to identify co-
expression clusters following cold or heat stress. Our first
analysis only looked at genes showing differential expression
in the replicated inbred F1 hybrid experiment at one of the
two time points in B73. Since each time point of the time-
course experiment has one sample in the treatment group
and one control sample at the matching time point, we ex-
plored three ways to construct the raw expression matrix
for clustering: (1) CPM values of the treated sample at each
time point; (2) CPM differences between treatment and
control; and (3) Log2 ratio of CPMs between treatment and
control. We found that option 2 generally leads to both in-
terpretable and an ideal number of clusters. Expression levels
for the three missing time points in W22 were imputed line-
arly using two neighboring time points. Distance-based hier-
archical clustering was then used to discover gene co-
expression clusters. The matrix of gene expression differen-
ces (CPMstress – CPMcontrol) was normalized using variance
stabilizing transformation (Anders and Huber, 2010). The
Pearson’s correlation coefficient-based distance matrix was
then obtained and used for hierarchical clustering
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(method = “ward.D2”). The resulting gene tree was cut us-
ing the “cutreeDynamic” function (deepSplit = 3,
minGap = 0) to yield 10–30 clusters along with their eigen-
genes (i.e. first principal component of the standardized ex-
pression vectors). Clusters with very similar eigengenes were
then merged using different parameters (cutHeight = 0.1/
0.15/0.2/0.25/0.3), the results of which were visually
inspected to determine the best cutting height.

Identification of enriched motifs in upstream/
downstream regions of stress-responsive gene
clusters
Motif mining was performed using different sets of genes,
including the list of all upregulated and downregulated
genes under cold or heat stress, as well as specific co-
expression clusters showing distinct time-course expression
patterns (e.g. early or late upregulation). STREME (version
5.3.0) was run on each gene set to identify enriched motifs
(8–20-bp ungapped k-mers) using genes not showing differ-
ential expression (P.adj4 0.05, fold-change 51.5 in average
expression) as negative controls (Bailey, 2011). For each gene
set, we explored the effect of different search spaces includ-
ing different promoter size (0.5, 1, and 2 kb) around the TSS,
or a combination of these regions, as well as a methylation-
or accessibility-masked promoter space (i.e. only retaining
regions classified as unmethylated (Crisp et al., 2020) or ac-
cessible in leaves (acrL) or ears, based on (Ricci et al., 2019).

Known TF binding motifs from Arabidopsis (Arabidopsis
thaliana) and maize were obtained from multiple sources
(Weirauch et al., 2014; Ricci et al., 2019; Tu et al., 2020).
Position weight matrices (PWMs) were either directly down-
loaded from the cis-BP website or built from called DNA
Affinity Purification and sequencing peaks using GEM (ver-
sion 3.4; Guo et al., 2018b). All motifs identified by STREME
were compared to these public TF PWMs by calculating an
all-against-all pairwise similarity matrix using bioconductor
package universalmotif version 1.8.3 (method = “PCC,” min.-
mean.ic = .0, min.overlap = 5, score.strat = a.mean”)
(Tremblay). Two rounds of hierarchical clustering (method-
= “average”) were then performed to cluster motifs into
motif groups. Any STREME motif grouping with a public TF
motif was assigned a “known” status and the corresponding
TF label. Motif groups containing only STREME-identified
motifs and no public TF motifs were assigned a “novel”
status.

Training of machine learning models to predict
stress response based on cis-regulatory elements
Different sets of genes (e.g. all upregulated or downregulated
genes under cold or heat stress, early or late upregulation
under cold or heat stress) were selected as positives, while
nonDE genes were selected as negatives to train machine
learning random forest models to predict stress responsive-
ness. For each round of model generation, downsampling of
DE and nonDE genes was done prior to training to achieve
balance between label groups. To train each model, we first

split data into 80% training set and 20% test set. Training
was done within the 80% training set using 10-fold cross val-
idation. Model hyperparameters (number of predictors,
number of trees, and minimum number of data points in a
node) were determined using a grid search algorithm
(“tune_grid” function) implemented in the R package tidy-
models (version 0.1.3). Downsampling and training were re-
peated 100 times (using a different random seed for
downsampling) and separate model training was performed
for each of these 100 sets of DE/non-DE genes. The model
was then evaluated with the 20% test data. The mean, me-
dian, and standard deviation of performance metrics (F1

score, AUROC, area under the precision-recall curve) for all
100 models were obtained (Supplemental Data Set S1).
Permutation-based feature importance scores of each input
motif were extracted from trained models using the R pack-
age ranger (Wright and Ziegler, 2015). The best performing
model (highest F1 score) was picked for each stress-
responsive gene set and later used for evaluation of external
datasets (e.g. Figures 5, B and 6, A). After assessing the ef-
fect (F1 score) of different model training parameters
(Figure 4), we determined a set of optimal parameters:
“ + /–2 kb TSS and + /–2 kb TTS,” “UMR,” and “top100” fea-
tures and using motif presence/absence (0/1) as feature
representation.

Characterization of genes showing stress-responsive
cis- or trans- regulatory patterns
The relative expression of genes, and alleles, in the parents
and F1 hybrids was used to classify the cis- and trans-
regulatory variation that influences variable expression
responses to heat or cold stress for the subset of genes
exhibiting significant response to stress in one genotype but
not in another. Both cis- and trans-regulatory variation
would result in differential expression responses in one ge-
notype compared to another. However, for cis-regulatory
variation we would expect to see only one of the two alleles
responding in the F1 hybrid, whereas differences in trans-
regulatory variation would be expected to result in changes
to the expression of both alleles in the F1. To classify gene
expression levels into different regulatory categories, for each
gene, we introduced the following notation (using B73 and
Mo17 as examples):

pai = expression of the gene in the ith B73 parent under control

condition.

pbi = expression of the gene in the ith Mo17 parent under control

condition.

haj = number of reads mapping to the B73 allele in the jth F1 hybrid un-

der control condition.

hbj = number of reads mapping to the Mo17 allele in the jth F1 hybrid un-

der control condition.

pai’ = expression of the gene in the ith B73 parent under stress condition.

pbi’ = expression of the gene in the ith Mo17 parent under stress

condition.

haj’ = number of reads mapping to the B73 allele in the jth F1 hybrid un-

der stress condition.
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hbj’ = number of reads mapping to the Mo17 allele in the jth F1 hybrid

under stress condition.

Here i and j take values between 1 and 3. Subsequently, we
make the following distributional assumptions:

pai � NBðl1; cÞ; pbi � NBðl2; cÞ; haj � NBðl3; cÞ; hbj

� NBðl4; cÞ

pai’ � NBðl1’; cÞ; pbi’ � NBðl2’; cÞ; haj’ � NBðl3’; cÞ; hbj’
� NBðl4’; cÞ

The dispersion parameter (c) for each gene was estimated
using the estimateDispersions() function within DESeq2 with
fitType = “parametric” option (Love et al., 2014). The mar-
ginal distributions of ai are negative binomial. Subsequently,
different constraints upon the parameters can be imposed
to describe the following biological situations:

First define : dl1 ¼ l1’ � l1; dl2 ¼ l2’ � l2; dl3 ¼ l3’ � l3; dl4

¼ l4’ � l4

conserved: dm1 = dm2 and dm3 = dm4,

unexpected: dm1 = dm2 and dm3 6¼ dm4,

cis: dm1 6¼ dm2 and dm1/dm2 = dm3/dm4,

trans: dm1 6¼ dm2 and dm3 = dm4,

cis and trans: dm1 6¼ dm2 and dm1/dm2 6¼ dm3/dm4

Each gene was allocated into one of these four categories by
first fitting the five models (conserved, cis only, trans only,
cis and trans, and unexpected) to the data by maximizing
the likelihood function, then calculating the Bayesian
Information Criterion using R package bbmle (version 1.0.24)
to determine which of the five models best fitted the data
for each gene.

Identification of putative variants regulating
cold-responsive expression in a panel of 25 maize
genotypes
Starting from a set of approximately 2,000 genes showing
variable response patterns 25 h into cold treatment between
B73, Mo17, and W22, we checked their response patterns in
a wider set of 25 maize genotypes. The levels of activation/
repression (Log2[Fold-change]) for different maize inbreds
were plotted. A Gaussian finite mixture model was fitted to
the Log2(Fold change) values for each gene to distinguish
unimodal (one cluster), bimodal (two clusters), or multi-
modal (more than two clusters) distributions of data points.
This was done using the densityMclust() function from the R
package mclust version 5.4.7 (Scrucca et al., 2016). Bimodally
distributed genes were further filtered, requiring one cluster
centering around 0 suggesting no DE, with the other cluster
departing from 0 suggesting significant DE. A total of ap-
proximately 500 genes was identified showing significant bi-
modal distribution of their Log2(Fold change) values among
the 25 diverse genotypes that contain at least one nonDE
genotype and one DE genotype. Genomic sequences of the
25 maize genotypes were then aligned to B73 and bi-allelic
variants within 2 kb of each gene were extracted to perform

a local association test with the cold response pattern (i.e.
treating the bi-modal distribution as one group of stress-
responsive genotypes and another group of nonstress-re-
sponsive genotypes). We used PLINK (version 1.90b6.21) to
perform a standard chi-square test for each gene with multi-
ple testing corrections (“–assoc –adjust”) (Purcell et al.,
2007). Significant associations were determined by requiring
the Bonferroni corrected P 50.05. Independently, the pres-
ence/absence status of the top 100 enriched motifs was
checked for their co-occurrence with the response pheno-
type in the 25 genotypes assayed, with the proportion of
correct motif-response associations reported as the predic-
tion accuracy of that motif. The resulting 130 motifs with
higher than 0.8 prediction accuracy were reported.

Accession numbers
Raw RNA-Seq reads have been deposited in NCBI Sequence
Read Archive under accession PRJNA747925. All source
codes used for quantification, normalization, statistical test-
ing, and machine learning training and evaluation, all proc-
essed data sets including gene lists of each stress responsive
pattern, lists of genes under cis/trans stress responsive regu-
lation, lists of enriched motifs in each co-expression cluster
are available on Github: https://github.com/orionzhou/stress.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Principal component clustering
of different set of samples from the hybrid experiment un-
der control, cold, and heat conditions.

Supplemental Figure S2. Expression profile of maize HSFs
response to heat stress.

Supplemental Figure S3. Expression profile of TFs that
have previously been reported to play a role in maize re-
sponse to cold.

Supplemental Figure S4. Comparison of heat- and cold-
response gene expression in B73, Mo17, and W22.

Supplemental Figure S5. Characterization of genes with
variable stress-responsive patterns among inbreds.

Supplemental Figure S6. Cis/trans characterization of
genes showing different stress response among inbreds.

Supplemental Figure S7. Hierarchical (A) and t-SNE (B)
clustering of all samples from the time course experiment
under control, cold, and heat conditions.

Supplemental Figure S8. Identification of cis-regulatory
variants associated with variable cold responsive pattern in a
panel of 25 maize genotypes.

Supplemental Figure S9. Identification of TFBS variation
associated with variable stress responsive expression
patterns.

Supplemental Table S1. Overlap of significantly DE genes
among genotypes.

Supplemental Table S2. Number of genes assigned to cis
or trans categories in different genotype and stress
contrasts.
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Supplemental Table S3. Model prediction accuracy
(AUROC) on different co-expression clusters.

Supplemental Table S4. Genes showing associated HSF
motif presence/absence with heat stress responsive
expression.

Supplemental Data Set S1. Information about samples
used for RNA-Seq.

Supplemental Data Set S2. Enriched GO terms for heat
upregulated and cold upregulated genes.

Supplemental Data Set S3. Performance metrics (F1
score, AUROC, area under the precision-recall curve) for all
models trained in this study.

Supplemental Data Set S4. Motifs associated with vari-
able cold stress responsive expression.
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