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Abstract

Plants respond to wounding stress by changing gene expression patterns and inducing the production of hormones including
jasmonic acid. This wounding transcriptional response activates specialized metabolism pathways such as the glucosinolate
pathways in Arabidopsis thaliana. While the regulatory factors and sequences controlling a subset of wound-response genes
are known, it remains unclear how wound response is regulated globally. Here, we how these responses are regulated by in-
corporating putative cis-regulatory elements, known transcription factor binding sites, in vitro DNA affinity purification se-
quencing, and DNase | hypersensitive sites to predict genes with different wound-response patterns using machine learning.
We observed that regulatory sites and regions of open chromatin differed between genes upregulated at early and late
wounding time-points as well as between genes induced by jasmonic acid and those not induced. Expanding on what we cur-
rently know, we identified cis-elements that improved model predictions of expression clusters over known binding sites.
Using a combination of genome editing, in vitro DNA-binding assays, and transient expression assays using native and mu-
tated cis-regulatory elements, we experimentally validated four of the predicted elements, three of which were not previously
known to function in wound-response regulation. Our study provides a global model predictive of wound response and iden-
tifies new regulatory sequences important for wounding without requiring prior knowledge of the transcriptional regulators.

Introduction responses can beimportantto plantsurvivalin their respec-
Plants respond to environmental stresses by reprogramming  tive niches and are likely subjected to selection (Bostock
their pattern of gene expression thattriggers chemicaland et al., 2014). Wound stress is a common stress experienced
physiological responses (Bostock et al., 2014). Thesestress by plants when they are under certain biotic stresses such
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as attack by insects or abiotic stress such as wind damage
and can induce a chemical response that produces com-
pounds of human interest (Jacobo-Velazquez et al., 2015).
Response to stresses such as wounding requires gene expres-
sion reprogramming, a complex process that involves multi-
ple levels of regulation. At the DNA sequence level, short
stretches of DNA (cis-regulatory elements, CREs) are recog-
nized and bound by transcription factors (TFs)that can acti-
vate or repress gene expression (Wittkopp and Kalay, 2012).
Beyond the level of DNA sequence, chromatin structure can
influence whether a regulatory element is accessible to a TF
and can be modified based on stress—response signals
(Asensi-Fabadoetal.,2017). Finally, reprogramming can also
occur by modifying or turning over mRNA (Glisovic et al.,
2008; Hutvagner and Simard, 2008). Stress responses change
over time, adding temporal complexity to transcriptional re-
sponse. For example, after an initial response, genes that are
turned on may act to turn on or off other genes, resulting
in cascading effects. This type of gene expression reprogram-
ming mechanism is beneficial for plants when different
responses are needed at different times. For example, re-
sponse to wounding stress in plants changes over time as
the plant first needs to recognize damaging agents, then
responds by sending various hormone signals, and ultimately
repairs the wound (lkeuchi et al., 2017). This means that
stress-responsive genes may be regulated differently depend-
ing on when they need to beexpressed.

The production of various hormone signals allows plants
to coordinate their response to different stresses because
the interactions of certain hormones can regulate a specific
response from the plant by changing the expression of cer-
tain genes. For example, response to wounding stress
involves several hormones, with the most ubiquitous signal
being jasmonic acid (JA; Howe and Jander, 2008). After
wounding, JA levels increase and bind to Jasmonate ZIM
(JAZ) domain repressor proteins, which allows MYC2 TFs
and other basic helix-loop-helix (bHLH) TFs to become ac-
tive (Chung et al., 2008). MYC2 TFs then activate wounding
responses, such as JA biosynthesis, to amplify the JA signal
and activate other defensive processes (Chung et al., 2008).
Additional hormones interact with JA to moderate wound-
ing response. For instance, while JA induces the expression
of certain wound-response genes, ethylene simultaneously
represses the expression of these genes at the damaged site
inorderto make sure the correct spatial response patternis
produced (Rojo et al., 1999). Ethylene also works synergisti-
cally with JA to fine-tune wounding response by inducing
the expression of proteinase inhibitor genes (O’Donnell
et al., 1996) and by activating ETHYLENE RESPONSE
FACTOR 1, another TF that triggers defense responses
(Lorenzo et al., 2003). Abscisic acid (ABA), which is induced
in response to many abiotic stresses, is also induced by
wounding (Ledn et al, 2001). While ethylene, ABA, and |A
rapidly respond to wounding, other hormones such as auxin
and cytokinin, starttoaccumulate around 12 hours (h) after
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wounding occurs and are involved in signaling for the regu-
lation of expression of genes that work to repair the wound
(Ikeuchi et al., 2017). While a great deal is known about hor-
mone signaling in response to wounding, it is unclear what
other regulatory mechanisms are involved in response to
wounding and how these mechanisms interact with hor-
mone signals.

Wounding can also induce the production of specialized
metabolites that can deter further stress. For example, after
wounding stress, Arabidopsis thaliana (Arabidopsis) activates
glucosinolate pathways. The glucosinolates and the bioprod-
ucts generated from their degradation affect the plant’s
interactions with biotic stressors, such as microbes and her-
bivores (Yan and Chen, 2007). Additionally, mutants with
decreased glucosinolate levels show greater susceptibility to
the necrotrophic fungus Fusarium oxysporum (Tierens etal.,
2001). Glucosinolate production is regulated by JA, salicylic
acid, and ethylene. These hormones work together to modu-
late glucosinolate levels in response to stress, by activating
MYB (myeloblastosis) and DNA-binding with one finger TFs
(Yan and Chen, 2007). Additionally, glucosinolates can be di-
vided into different types, such as indole or aliphatic glucosi-
nolates, and the production of these may be induced by
various stresses and regulated in different ways (Yan and
Chen, 2007). While specific TFs have been shown to turn on
glucosinolate biosynthesis (Frerigmann and Gigolashuvili,
2014), the regulatory elements or chromatin structure of
how and when these TFs bind has not been resolved.

At the cis-regulatory level, a few CREs underlying wound-
response regulation have been discovered experimentally.
An example is CGCGTT, found in the promoters of genes
which rapidly respond to wounding (as well as other
stresses) within an hour after treatment (Walley et al., 2007).
Another example is the G-box, CACGTG, which is bound by
Myc TFs in response to wounding and JA treatment after 1
h (Fernandez-Calvo et al,, 2011). Other elements implicated
in early wound response include W-box (TTGACC), GCC
box (AGCCGCC or GCCGCC), jasmonate and elicitor-re-
sponsive expression element (AGACCGCC) and drought-re-
sponse element (TACCGACAT; Rushton et al., 2002; Godoy
etal.,2011). Most wound regulatory element studies focus
on response to wounding after 1 h or validation of the
derivatives of the G-box element, with only a few studies fo-
cusing on later time-points that are not G-box related (He
and Gan, 2001). Studies that have compared early and late
time points have focused on changes in gene expression
overtime (lkeuchietal., 2017), not on how regulatory ele-
ments change or have found only regulatory elements re-
lated to the G-box element across time points (Delessert
et al., 2004). There are likely additional CREs that remain to
be discovered at both early and late time points. Notably,
the earlier studies have demonstrated the feasibility of estab-
lishing computational models capable of predicting plant
spatial stress responses to, e.g. high salinity, using known
and newly discovered CREs (Uygunetal., 2017). In doing so,
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the computational model provides a means to globally as-
sess the extent to which included CREs are sufficient to pre-
dict stress response and to pinpoint the most relevant CREs.
Nonetheless, such a model is yet to be established for
wound response. Thus, while several studies have found spe-
cific regulatory elements related to wounding, a global
model of wound-response regulation across time has not
emerged. In addition, wound response has been shown to
have JA-dependent and JA-independent components
(Schilmiller and Howe, 2005). However, existing studies on
this area focus on comparing wound-inducible genes that
are JA-dependent or JA-independent (e.g. Reymond et al,
2000), roles of regulators controlling JA-independent re-
sponse (Stotz et al., 2013), signaling components of JA-
dependent response involving COI1 (Bomer et al, 2018).
There is not yet a study comparing the cis-regulatory pro-
gram of JA-dependent and JA-independent response.

The goals of this study were to uncover the cis-regulatory
code involved in regulating temporal responses to wounding
stress, to see how wounding stress independent of the
wound-induced hormone JA is regulated, and finally to un-
derstand how genes in certain specialized metabolism path-
ways are regulated. Here, we assessed the extent of
divergence in gene expression among various time-points
following wounding by correlating wounding data with
other types of stress or hormone treatment using an existing
modeling framework (Liu et al., 2015; Uygun et al., 2017). By
using a time course data set, where transcriptional response
was recorded over a 24-h period (Kilian et al., 2007), we cap-
tured differences in differential gene expression among vary-
ing time-points and the global regulatory pattern required
to regulate these transcriptional responses. While this data
set has been used before to identify regulatory elements
(Ma and Bohnert, 2007), the CREs identified were limited to
only known motifs from the PLACE database (Higo et al.,
1999), and the focus was on general stress response. In this
study, we expand on earlier studies by including CREs de-
rived from model predictions, applying a system-wide
modeling approach, and focusing on responses to specific
stress i.e., wounding. Because most regulatory elements oc-
cur 1,000-bp upstream of the transcriptional start sites in
the promoter region of the gene in Arabidopsis (Weirauch
etal., 2014; Yu et al., 2016), we focused on this region to
identify putative CREs (pCREs). In addition, by clustering
wound-responsive genes into groups based on whether they
respond to JA, we were able to single-out differences be-
tween JA and non-JA regulatory mechanisms regarding
wounding. Furthermore, we identified important regulatory
elements for the wound-responsive genes in the pathway
glucosinolate biosynthesis from tryptophan, which is in-
duced by wounding. Finally, by using machine learning
modeling, we were able to identify the most important reg-
ulatory elements for each time-point and experimentally val-
idate one known and three previously unknown elements
regulating wounding response.
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Results and discussion

Transcriptional response to wounding across time-
points
To understand how transcriptional response to wounding
varies across time-points, we used the wounding treatment
data from an existing expression data set, which contains
seven abiotic stress treatments and where the wounding
treatment was applied to 18-day-old Arabidopsis seedlings
(Kilian et al., 2007). Samples were harvested at multiple
time-points ranging from 15 min to 24 h after wounding
treatment. The sampling of control treatment was per-
formed in parallel to exclude circadian effects (Kilian et al.,
2007). We identified genes that were up- or downregulated
at the different time-points (diagonal values; Figure 1A)
and how frequently the same genes were differentially
expressed in these different time-points (lower triangle;
Figure 1A). The type of wound-responsive genes was
named with two components: (1) time-point after wound-
ing, (2) up- or downregulated after wounding treatment, e.g.
0.25hr_up, 1hr_down (Figure 1A). There was a cascading ef-
fect, where the majority of 0.25hr_up and 0.5hr_up genes
overlap with each other (84% and 61%, respectively) and
were still upregulated at 1 h (63% and 70%, respectively),
but by 3 h 525% of those genes were still upregulated
(Figure 1A, also see Supplemental Data Set S1 for genes
presentin each wound-responsive cluster). Thus, different
time-points after wounding have overlapping but distinct
sets of genes, which are up- or downregulated, suggesting
temporal variationin how wounding response is regulated.
To determine how response to wounding differs from re-
sponse to other environmental conditions, we measured
how similar the pattern of differential gene expression was
between different wounding time-points and other abiotic
stress, biotic stress, and hormone treatments (see “Materials
and Methods”). The Pearson’s correlation coefficient (PCC)
was used tomeasure the correlation of the logz fold change
(log2FC) values across genes between wounding and other
stress/hormone treatments. The PCC values of genes were
used to group treatment data sets with similar differential
gene expression using hierarchical clustering (Figure 1B).
We found thatwound response correlated with both abiotic
and biotic stress responses (Figure 1B). Early patterns of
wounding differential gene expression (DGE; 15, 30 min or 1
h after wounding) were more highly correlated with those
of early abiotic stress response compared with later wound-
ing time-points (12 or 24 h after wounding). Gene expres-
sion patterns at 30 min and 1 h after wounding were also
more similar to early responses (30 min to 3 h) under abi-
otic stresses, such as cold, UV-B, osmotic, and genotoxic
stress (Figure 1B; Supplemental Data Set S2). Additionally,
early DGE 15minand 1 hafterwoundingwere more similar
toeach other (PCC =0.39)and to 30 min afterwounding
(PCC =0.33and 0.30, respectively) than to later wounding
time-points (for PCC results, see Supplemental Data Set S2).
Thus, transcriptional responses were more similar among
some comparable time-points between treatments than
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Figure 1 Gene expression correlation across stress and hormone data
sets and the overlap of wound and JA differentially expressed genes.
A, Heatmap showing the number of genes overlapping in each
wound-response cluster. The order of rows and columns are the same,
based on time-points and directions of differential regulation. Number
of genes range from 0 (white) to 760 (red) and actual values are pro-
vided in the heatmap. B, Heatmap of PCC based on the log.FC be-
tween treatment and control among different conditions (stress or
hormone treatment) at different time-points. PCC values in heatmap
range from 1 (red) to—1 (blue). The rows and columns were ordered
based on hierarchical clustering. The stress and hormone treatments
as well as treatment time-points are labeled by colors.
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among largely differing time-points within a particular treat-
ment. This indicates that temporal patterns can influence
gene expression more than the type of abiotic stress, and
thatwounding can elicita similar response to other types of
abiotic stress. When observing wounding-response patterns
in relation to biotic stress, 15-min, 1-, 12-, and 24-h time-
point wounding responses all correlated with different types
of biotic stress (Figure 1B; Supplemental Data Set S2). Thus,
early wounding response is correlated with both abioticand
biotic stress. However, at later time-points (12 and 24 h),
wound responses are more highly correlated with late biotic
stresses than with any other stress (PCC for biotic stress P.
infestans at 12 h was 0.48 and 0.38 for 12 and 24 h). On the
other hand, wounding DGE responses at 3 and 6 h after
wounding do not correlate with biotic stress response (PCC
range—0.09t00.07; Supplemental Data Set S2). Our findings
confirm that the initial wounding response is akin to general
stress response as previously suggested in Walley et al.
(2007).

In terms of the relationships between wounding and hor-
monal responses, DGE 15 min after wounding was not simi-
lar to DGE 30 min after hormone treatment (PCC range
—0.07 to 0.14 for all treatments). By 30 min after wounding,
however, DGE was similar to DGE 30 min after treatment
with ABA, amino-cyclopropane carboxylate (ethylene pre-
cursor, ACC), brassinosteroid (BL), gibberellic acid (GA), and
JA, PCCs ranging from 0.37 to 0.52 (Figure 1B;
Supplemental Data Set S2), indicating that initial response
to wounding triggers the production of multiple hormones.
The DGEresponses at 3 and 6 h afterwounding were even
more similar to the DGE response after 30-min treatment of
ABA, ACC, BL, GA, and JA (PCC range, 0.39-0.54), than
were most other wounding time-points (PCC range, —0.04
to 0.21; Figure 1B; Supplemental Data Set S2). Finally, 12
and 24 h after wounding, transcriptomic responses showed
little correlation with DGE responses after 30 min of hor-
mone treatment (PCC range, —0.15 to 0.26; Supplemental
Data Set S2). Overall, the high correlations of DGE patterns
in early and 3- to 6-h time-points after wounding to early
hormone treatment suggests wounding activates a hor-
monal response, recruiting hormone-responsive genes
among other genes.

Modeling temporal wound response using machine
learning

The temporal differences in transcriptional response to
wounding described above suggest that the regulation of
wounding-response changes over time, with regulatory con-
trol being more similar within early and mid-range time-
points (0.25, 0.5, 1, 3, and 6 h), and within late time-points
(12 and 24 h) compared to between these time-points
(Supplemental Data Sets S1 and S2). Thus, wound-
responsive genes were divided into 12 clusters depending on
each time-point and the directions of response, for example
1hr_up refers to being upregulated at 1 h while 3hr_down
refers to being downregulated at 3 h (Figure 1; see
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“Materials and Methods”). To compare what regulatory
mechanisms were important across different time-points/
response directions, we estimated the regulatory code of
transcriptional response to wounding for each cluster using
machine learning approaches. Here, the regulatory code for
a cluster was defined as a machine learning model that
could classify a gene as being differentially regulated or non-
differentially regulated in a cluster based on likely regulatory
sequences. Note that the regulatory code of downregulation
3 and 6 h after wounding were not modeled because too
few genes (510) were in these clusters.

First, we tested how well known regulatory sequences
were able to model wounding response. We collected 52
known cis-regulatory elements (referred to as CREs) associ-
ated with JA, wounding, or insect responses identified previ-
ously using experimental or computational approaches (see
“Materials and Methods”; Supplemental Data Set S3). We
mapped each putative regulatory sequence to the putative
promoter regions (see “Materials and Methods”) of each
geneinacluster,aswellastogenesina“null” cluster, con-
sisting of genes that are not significantly upregulated or
downregulated under any stress or hormone treatment.
Two algorithms, random forest (RF) and support vector ma-
chine (SVM)were used to build models foreach wounding-
response cluster using cross-validation (see “Materials and
Methods”). In all sections, RF results were reported unless
noted otherwise. To measure model performance, F-measure
was used which jointly considers precision and recall (see
“Materials and Methods”). Using known CREs, the F-meas-
ures for models built for each wound-response cluster
ranged from 0.67 to 0.71 (median = 0.68), scores that show
our models performed better than random guessing (F-mea-
sure =0.5) but were not perfect predictors (F-measure = 1;
for RF models: Figure 2A, for SVM models: Supplemental
Figure S1A and Supplemental Data Set S4). Note that the
cluster 12hr_down was not analyzed because no known reg-
ulatory elements were defined as present in the promoters
of the genes in this cluster.

Next, we incorporated additional regulatory information
to see if our model could be furtherimproved. We included
in vitro DNA binding data of 510 TFs in Arabidopsis gener-
ated with DNA affinity purification sequencing (DAP-seq;
O’Malley et al., 2016) and information about DNase |
hypersensitive sites (DHSs) in Arabidopsis sampled at differ-
ent developmental stages including seedling (leaf samples)
and 2-week-old plants (flower buds; Zhang et al., 2012).
Each DAP-seq and DHSs feature was considered present if
its peak coordinates overlapped with the promoter region
ofagene. Models trained using both known sequence and
DAP-seq and DHSs features generally performed slightly bet-
ter than models using only known CRE, with the F-measure
ranging from 0.66 to 0.74 (median = 0.69; Figure 2;
Supplemental Data Set S4). Models for genes upregulated in
early wounding response (0.25, 0.5, and 1 h) benefited the
most from the addition of these two data sets, withan
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increase of 0.03, 0.03, and 0.02 in F-measure, respectively.
This may be because early wound-response clusters have
larger gene numbers than clusters for later time-points.
Having a larger gene set may allow for a higher degree of
overlap with DAP-seq or DHSs features. Thus, more known
information in the form of the DAP-seq data may improve
the performance of early time-point clusters more than later
time-points. Overall, while known sequence-based informa-
tion together with DAP-seq and DHSs information is predic-
tive of differential gene expression in response to wounding
across time-points, the models still have substantial room
for improvement.

Determining the relative importance of known
motifs and additional regulatory information for
predicting temporal wound response

To understand what known elements, TFs (based on DAP-
seq), and DHSs are particularly important for predicting
responses at different times after wounding, we determined
the importance of each feature in each model (see
“Materials and Methods”; Supplemental Data Set S5). In
Figure 2B, the top 10 features for upregulated time-point
clustersare shown. Forearlywoundresponse (genes upregu-
lated 0.25, 0.5, and 1 h afterwounding), the mostimportant
known CREs were CGCGTT (first ranked), a known regula-
tory element for rapid wound response (RWR; Walley et al.,
2007)and CACGTG (second ranked) thatis bound by TFs
in the bHLH family in response to wounding and JA treat-
ment (Ferndndez-Calvo et al, 2011). Genes with the RWR
elements are known to respond quickly to wounding and
have a variety of functions in the downstream responses, in-
cluding chromatin remodeling, signal transduction, and
mRNA processing (Walley et al., 2007). TFs that respond to
wounding stress such as MYC2, MYC3, and MYC4 bind the
CACGTG motifand respond to both JA and wounding, and
induce other JA-responsive genes, ultimately triggering de-
fense response to herbivory (Fernandez-Calvo et al, 2011).
In addition to the important contribution to the regulatory
code for genes upregulated 0.25-1 h post wounding,
CACGTG was stillimportant (ranked 1 or 2) among genes
upregulated 3, 6, and 12 h after wounding, while the RWR
element was no longer the most important contributor. By
24 h after wounding, the CACGTG element was no longer
highly ranked.

DAP-seq binding sites were less important in predicting
wound response than the known CREs or DHSs (Figure 2B;
Supplemental Data Set S5). A few DAP-seq binding sites
ranked among the top 10 most important features, includ-
ing the calmodulin binding transcription activator (CAMTA)
TFsthatbindto AAGCGCGTG and were ranked third most
important for genes upregulated 0.25 or 0.5 h after wound-
ing but dropped to 11th at 1 h after wounding, and were
evenlower in later time-points. Consistent with earlier find-
ings, CAMTA TFs are general stress-response factors trig-
gered early during multiple stresses, includingwounding
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Figure 2 Performance of wound-response cluster prediction models. A, Each row indicates models for a specific wound-response cluster using dif-
ferent input features (columns). The models were generated with RF. Known CREs refers to those reported in the literature (Supplemental Data
Set S3). The F-measure ranges from 0.5 (white) to 1 (red). The bar chart next to the heat map represents the numbers of genes in clusters. B, The
top 10 most important features in models built using known CREs, DAP-seq sites, and DHSs for upregulated time-point clusters. The bars are col-

ored in the same way as Figure 1B.

(Benn et al., 2014). The CBF TF in the AP2/EREBP family
that binds to GGCGGCGGCGG ranked 10th in the 1 h/
upregulation model and 4th at 3 h after wounding.
Interestingly, it has been reported that CAMTA TFs regulate
CBFs (Doherty et al., 2009). Thus, the ranked importance of
these TFs at each time-pointis consistent with their regula-
tory interactions. Nonetheless, all DAP-seq sites became less
important for predicting genes upregulated 6, 12, and 24 h
after wounding. Because known CRE sites in response to
wounding were ranked in these clusters but DAP-seq sites
were not, this may reflect the fact that DAP-seq identifies
TF binding sites (TFBSSs) in vitro, regardless of whether the
sites are accessible in vivo or not. Together with the medio-
cre model performance (Figure 2A), these findings show
temporal differences in wounding regulatory codes, but also
that known CREs and DAP-seq data do not fully capture
how wounding response is regulated, especially at later
time-points.

In addition to known CREs and DAP-seq sites, open chro-
matin sites (DHS) were important for predicting expression
regulation at all time-points after wounding (top-ranked
DHS sites for each cluster ranged from ranks 1-4), particu-
larly atlatertime-points (Figure 2B; Supplemental Data Set
S5). For example, at 24 h after wounding, the top 12 most
important features were all DHS-related. We hypothesize
two potential explanations for this finding. First, at later
time-points, the functional diversity of expressed genes has
increased so that their transcriptional regulatory mecha-
nisms have become more complicated (due to both wound-
ing and repair mechanisms) and thus no single CRE or DAP-
seqfeature can be found with high importance. The second
possibility is that the known CRE or DAP-seq features

important for later time-points are not presentin ourdata
set. Although important, DHS sites do not provide addi-
tional information toimprove the F-measures of our models
especially at later time-points. Thus, we hypothesized that
regulatory sequences not yetidentified could be important
regulators of wound response, especially for later wound
response.

Finding important temporal putative cis-regulatory
elements for wound response

Totestour hypothesis that there were unknown regulatory
sequences controlling wounding response, we identified
pCREs with a k-mer finding approach (Liu et al., 2018),
where all possible 6-30-mer sequences were tested for en-
richment in the putative promoters of genes for each
wound-response cluster (see “Materials and Methods”).
Based on this criterion, 42—1,081 pCREs were identified as
enriched in genes from each wound-response cluster, with
the exception of the 12hr_down cluster, which had no
enriched pCREs (for enrichment statistics of pCREs; see
Supplemental Data Set S6). For each wound-response
cluster, the pCREs were used to build five replicate wound-
response prediction models and the reported model perfor-
mance (F-measure) and feature importance were based on
averages of the five models. We found that models built
with pCREs alone (F-measure range = 0.73-0.81; Figure 2A,
Supplemental Data Set S4) perform better than models built
with known CREs, DAP-seqand DHSsfor all clusters (F-mea-
sure range = 0.66-0.74; Figure 2A; Supplemental Data Set
S4). Because the number of pCREs exceeds the number of
known CREs, we modeled the 1hr_up wounding cluster us-
ing only the top 52 pCREs and compared model
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performance to the model using the 52 known CREs. We
found that the top 52 pCRE-based model performs slightly
better (F-measure of 0.72) compared to the known 52 CRE-
based model (F-measure of 0.69). Interestingly, models that
were built by combining pCREs with DAP-seq, and DHS
data (F-measure = 0.67-0.80; Figure 2A; Supplemental Data
Set S4) did not necessarily perform better than models built
using only pCREs, with the exception of the 12hr_up time-
point, perhaps reflecting the increasingly more important
roles of regulation beyond the cis-regulatory level. We also
note thatthe 12-h and 24-h time-points, as well as downre-
gulated gene clusters, have smaller gene numbers overall,
thus while they have high F-measures, this may make these
models less generalizable than models with higher gene
numbers. In addition to building binary models, we also
built a regression model for the 1-h time-point to see if the
level of expression could be predicted using regulatory fea-
tures. The regression models, however, were not predictive
(for SVM = PCC -0.07, RF = PCC -0.44; Supplemental Data
Set S4), revealing the challenges in predicting expression
level but also the benefits of clustering genes based on their
expression to make better binary predictions. Overall, these
findings indicate that these pCREs contributed information
beyond what was available from known DAP-seq and DHSs
datain the regulation of wound response at different time-
points.

To understand why the models improve by using pCREs,
and what influence pCREs have across wounding time-
points relative to known information and open chromatin
sites, we looked at the average importance rank (normalized
importance score, scaled between 0 and 1, see “Materials
and Methods”) of all features in the models (including fea-
tures related to pCREs, DAP-seq sites, and/or DHSs) across
the post-wounding time course (Figure 3). We found that
DHSs tend to be the most important features for most
time-points (Figure 3, A-J) apart from late downregulated
time-points (Figure 3, Kand L). However, in each of these
clusters we found some pCREs to be more important than
DHS features. For example, at 1hr_up 169 out of the top
200 features were pCREs. Finally, DAP-seq sites were less im-
portant than DHSs and pCREs except at 12-h and 24-h
time-points for downregulated genes. Although the DHS
data used was not generated under wounding stress (Zhang
etal., 2012), itis surprisingly useful and we cannot rule out
the possibility that the plants were actually wounded during
sample preparation. To completely capture the importance
of chromatin accessibility in wound response, we will need
DHS data generated with wounded plant samples instead of
using DHSs data generated in a different context. We should
also note that DAP-seq sites are always of the least impor-
tance. With our findings that adding DHS/DAP-seq informa-
tion does notimprove our models (Figure 2A) and the fact
that pCREs are also importantat every time-point, this indi-
catesthattheidentified pPCREs may better uncoverthe reg-
ulatory code complexity underlying wound-response
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regulation than, particularly DAP-seq sites that are available
for a subset of TFs in Arabidopsis.

Correlation to TF families and cis-regulatory
differences across time

Figure 4 shows the importance rank across all time-points
for the top 10 mostimportant pCREs for each wounding
model. Like how similar sets of genes were differentially
expressed at nearby time-points (i.e. the cascading effect),
we found more important pCREs were shared between
closer time-points (Figure 4). Because the pCREs were dis-
covered from genes with similar wound-response patterns,
this cascading effect on the shared number of important
pCREs was expected. However, some pCREs were uniquely
important for a narrow time frame (for the importance rank
of pPCRE and PCC of pCREs with known TF binding motifs
(TFBMs), see Supplemental Data Set S7; for raw importance
scores, see Supplemental Data Set S8). Next, we determined
which pCRE was similar to a known TFBM and which was
likely a previously unknown regulatory element. We first cal-
culated the sequence similarity between each pCRE and
each known binding motif. For this we used DAP-seq sites,
which are generated in vitro, as well as CIS-BP sites
(Weirauch et al., 2014), which are TFBSs found in vivo using
chromatin immunoprecipitation sequencing.

For early time-points after wounding (i.e. 0.25,0.5,and 1
h), many of the top important pCREs were shared and re-
sembled TFBSs in the CG-1/CAMTA, bZIP/BZR, FAR1, LOB,
and bHLH TF families (right two panels; Figure 4;
Supplemental Data Set S7). The finding that different bind-
ing sites resemble multiple TF families is consistentwith the
notion that a variety of signals, and thus TFs, are induced by
wounding (Howe, 2004; Zhang et al., 2016). However, not all
pCREs were highly correlated with known TF binding fami-
lies as 26 correlations between DAP-seq sites and pCREs,
and 77 correlations between CIS-BP sites and pCREs shown
in Figure 4 had PCCs 50.75, indicative of substantial differ-
ences between pCREs and known TFBSs. Focusing on the
top 3 most important pCREs for each time-point (Figure 5,
based on average rank—see “Materials and Methods”), the
pCREs CCGCGT and CACGTG were most similar to the
binding motifs of CG-1/CAMTA and MYC2 bHLH TFs, re-
spectively. Thus, the timing when they were important for
predicting wounding response was consistent with the tim-
ing when known CREs for CAMTA and MYC2 TFs were im-
portant for the models built using only known CREs, DAP-
seq, and DHSs (Figure 2B). The CACGTG element, which is
important in binding TFs for JA response (Fernandez-Calvo
et al., 2011), remained important at both 3 and 6 h after
wounding (ranked 10 and 5, respectively), indicating JA
responses have been activated. Other top 3 important early
pCREs remained important across the wider range of time-
points and were not known as wounding CREs. One exam-
ple is ACACGT, a pCRE most similar to the binding motif
for bZIP family TFs, which are activated by ABA (Yamamoto
et al., 2011) and regulate responses to waterdeprivation
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Figure 3 Scaled importance values for each wound-response model (rows) for all features used in the final model. For (A)—(L), density plots show
normalized importance value on the x-axis and the density of the features on the y-axis. The importance value is scaled from O to 1 for each
model. Only the top 200 features are shown, thus the x-axis varies depending on how many features in total there are for a given time-point.
DAP-seq sites are in purple, DHSs are in yellow, and pCREs are in blue. The higher value correlates with higher importance of a given feature for a
given model. (A—G) models for upregulated wounding-response clusters at (A) 0.25, (B) 0.5, (C) 1, (D) 3, (E) 6, (F) 12, and (G) 24 h. (H-L) models
for downregulated wounding-response clusters at (H) 0.25, (1) 0.5, (J) 1, (K) 12, and (L) 24 h.

(Figure 5). This pCRE was enriched in the promoters of
genesfromalltime-points andimportant (rank 5 11)for
models of wounding response at all time-points except 24
h (Figure 4; Supplemental Data Set S7). Two pCREs
(GTCGGC and GTCACA) that did not resemble known
wounding CREs were uniquely important for models built
for mid-range time-points (i.e. 3 and 6 h after wounding),
as the 5th most important pCREs for the genes upregu-
lated at 3 h and 6th most important at 6 h, respectively
(Figure 5). These elements were most similar to binding
motifs of B3 and Homeodomain family TFs, respectively.
Given these TF families are involved in development, re-
sponse to auxin, and secondary wall biogenesis, this indi-
cates that by 3—6 h after wounding, the damageis likely
being repaired. At the last two time-points (12 and 24 h
after wounding), ATATTAT, which was most similar to
binding motifs of TFs in the ARID family, was ranked 24th
and 14th respectively (Figure 5; Supplemental Data Set
S7). The ARID family is involved in regulating glucosino-
late metabolism, indicating that specialized metabolism
pathways are turned on or augmented 12 h after wound-
ing and are still important after 24 h. Another two

important pCREs at the latest time-points, ATAATAA
and AAAATGT, resemble elements that were bound by
TFs from Homeodomain and GRF (Growth-regulating fac-
tors) families, respectively (Figure 5; Supplemental Data
Set S7), which regulate development, which may be im-
portant in repairing the wound (van der Graaff et al.,
2009; Omidbakhshfard etal.,2015; Wuetal.,2019).

In summary, we found that pCREs important for our
models contain some known wounding CREs, but mostly
regulatory sequences that are not known to be involved in
wounding response. Additionally, while similar to TFBSs,
most pCREs are notidentical and contain slight changesin
key positions, which may affect binding specificity. PCREs
important for wound-response models at early time-points
(0.25-0.5 after wounding) tend to be associated with multi-
ple stress and hormone responses, while pCREs important
for models 1-h after wounding tend to be associated with
TFsinvolved in JA and ABA signaling. Finally, 3—24 h after
wounding the important pCREs tend to be associated with
TFsinvolved in growth and pCREs important for very late
responses (12—24 h after wounding) are associated with
some TFs related to metabolic defense. Our models of the

220z Asenuer $z uo 1senb Aq €//819/2824€0%/|1991d/€601"01/10p/3[01E-80UBAPEY|[90]d/WO09"dNO"D1WSPED.//:SA]IY WO} PAPEOJUMOQ



Modeling regulation of plant response to wounding

Wounding timepoints  pCREs DAP-seq TF cisBP TF
Y Down 1 A A
’ \r Ve ¥ X \
1/41/2 1 3 6 12 241/41/2 1 24 Families ~ PCC Families ~ PCC
| CCGCGT [ | CG-1 [ |
- l | CGCGTT CG-1 .
L] ACACGT Q
[ | ACGCGT CAMTA [ e
= m TACGCG cavTA |
| cGCGTTT IRINVIIN | |
= - g
ACCGCGT IONVIVY CG-1
EEEEE B CACGTG bHLH .
AACACG Trihelix bZIP
AACACGT bzIP .
l || TACACG bZIP
| CACACG | ]
|| GACTTTT WRKY | |
| CCGTGT
| | || TTTATAT CPP
] | CCACGT bHLH . bzZIP ||
| L AAAGTC WRKY WRKY [ ]
H_EEN AACGTG . bZIP
- ] GATATTT .
o --l ACGTTA .
ATTAGT Homeobox
|| ACGTAT =
TTTTATA | —— wou
o TATTTAT
H = TATTTAT MYB AT hook
- GTCGGC WA= B3 .
|| | AATAATT Homeodomain
| ATAATAA ARID Homeodomain .
| -! TGGACC TCP
) i
GGACCA TCP
=R
B3 ||
e ATATTAT Homeodomain [l |
| B GTGTGAA Unknown
o TTATATA AThook W |
- TCACGT bHLH ||
ATATAATA ARID Homeodomain
L TCCACGT [E] ||
Eel =
L_NIVYVIVN  Cocodof Dof
o | TATCCA .
N GATAAG GeBP | |
TATGTA .
- TATACT S3fike
| TTATCC e m ||
- TACGAT .
| TGGATAA
e - EAGATAAG .
TGCATG ;
| TCATTTT [AZASELS
|| CCAACT Orphan
| | GCATGT IRV
l- AAAAATG [R5} |
- AAAATGT
CGAATA i
H_  =u AGATAA |
|| CAAGTTG [T | oc |
L GCATTTT bZIP
GACCACA ey I TCP ||
TATCTC AP2
TTTAGCA bHLH bHLH
CCTAAT MYB MADS box
GGATAAG IS
GTCCTA TcP
GCATGTG P
. AGATATTT I .
AGATATT
TCTTATC |
TACATAT VI
aaeat
CATCAT [V bZIP, HD
CATATG [EreRa MADS box
CATCATA bZIP [ ] AP2
GGGACT P TCP
GGACAG [T/
Importance 150 100 150 10.90.80.7 10.90.80.7
rank o POC e PCC

Figure 4 Average importance rank for the top 10 pCREs for each
wound-response model and their association to a TF family. Wound-
response models are the columns while pCREs are the rows. The top
10 pCREs for each model are shown, and how those pCREs overlap
with other models in terms of importance rank. The average impor-
tance rank shown is the rank of average importance of a feature across
five duplicate models ran for the same time-point. Highestrank (1) is
red and ranks 150 or lower are blue. Gray color indicates that the
pCRE is not present at that wound-response time-point. Association
between pCREs and TF families was based on the similarity (measured
using PCC) between sequences of pCREs and the previously reported
binding sites (identified by DAP-seq or cis-BP) of TF families. The TF
family with the maximum PCC to a pCRE was associated with the
pCRE in question. PCC is shown for both DAP-seq (degrees of blue
color) and cis-BP (degrees of green color) sites.

cis-regulatory code in response to wounding demonstrate
how sets of pCREs, which are likely bound by a variety of
TFs, are important at different response times after
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wounding and could work to regulate a dynamic response

to wounding over time.

Experimental validation of important CREs in early
wound response

We validated our findings using the CRISPR/Cas9 system in
planta to evaluate the biological significance of two of the
important pCREs (CCGCGT and CACGTG) based on our
model and prior studies. CCGCGT is the top (most impor-
tant) pCRE found for models of 0.25 (rank = 1), 0.5
(rank = 1), and 1 h (rank = 3) after wounding
(Supplemental Data Set S7). CACGTG, a known CRE in-
volved in wounding response (Figueroa and Browse, 2012),
is ranked 30, 17,and 8 at 0.25, 0.5, and 1 h after wounding
(Supplemental Data Set S7). CCGCGT is a variation of the
CGCG box, that has been previously characterized as re-
sponsive to wounding signals, as well as other hormone
(ABA) and oxidative signals, by binding the TF CAMTAS
(CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 2,
AT4G16150) to the ethylene-responsive gene EIN3
(ETHYLENE-INSENSITIVE3, AT3G20770; Yang and Poovaiah,
2002). The CAMTA-related TF family and its binding to the
CGCG box has also been shown to respond to cold treat-
ment and may impart freezing tolerance in Arabidopsis
(Doherty etal., 2009). However, itis unknown how this mo-
tif affects other wound-responsive genes and has not been
assessed in vivo via CRISPR-Cas9. Thus, we chose CRISPR/
Cas9 target promoters that contain the CCGCGT motif and
sorted out the candidates by the following criteria. First, the
expression level of the gene, which has the target motifon
its promoter region, was relatively highin fold change atthe
early time-points in response to wounding stress. Second,
the pCRE site is near the PAM sequence such that the site
renders susceptible to the CRISPR/Cas9 mutation (Osakabe
et al., 2016). We finally selected genes J4Z2 (JASMONATE-
ZIM-DOMAIN PROTEIN 2, AT1G74950) and GERS (GEM-
RELATED 5, AT5G13200). GERS, although not known to be
involved in wounding response, was highly expressed 0.5, 1,
and 3 h after wounding and contained the CCGCGT motif
in the promoter region. J4Z2 is a well-known JA-responsive
gene (Ferndndez-Calvo et al, 2011) and the promoter region
contained the G-box motif (CACGTG), which can be utilized
as a positive control in our mutation assay (Figueroa and
Browse, 2012), as well as the CCGCGT motif.

Next, we made the CRISPR/Cas9 construct that targets
the pCREsinJAZ2 and GER5 promoters and transformed it
into Arabidopsis with the Col-0 background. From antibiotic
resistance T1 plants, we found a homozygous mutant called
Jjaz2-4 ger5-3. The jaz2-4 ger5-3 mutant had one base pair in-
sertion in the CCGCGT motif on both J4Z2 and GERS pro-
moters, where T insertion in the J4Z2 promoter led to no
significant nucleotide change from CCGCGT to CCGCGTT,
while G insertion in the GERS5 promoter caused a base alter-
ation from CCGCGT to CCGCGGT (Figure 6). Further, we
generated a homozygous mutant called jaz2-5 that harbored
a mutation within the G-box motif of J4Z2 promoter, in
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which the CACGTG motif was mutated to CACGTTG
(Figure 6). To determine the effect of the motif mutations
on their downstream gene expression upon wound treat-
ment, we harvested the seedlings of jaz2-4 ger5-3 and jaz2-5
mutants, as well as Col-0 controls, 1 h afterwounding. The
transcript abundances of both mutants and Col-0 were ana-
lyzed by reverse transcription quantitative polymerase chain
reaction (RT-gPCR).

In the jaz2-4 ger5-3 mutant the expression of the J422
gene was upregulated after wounding, exhibiting the same
phenotype as the Col-0 control (Figure 6). Thus, as
expected, regulation of J472 was not altered in jaz2-4 ger5-3
by wounding, because the CRISPR-Cas9 mutation had
resulted in a synonymous change. Although this in itself
does not show that the G-box affects wounding, it is what
was expected from the CRISPR result since CACGTT is also
consideredtobe a G-box, and this was previously shownto
be important for regulating JA/wound expression (Figueroa
and Browse, 2012). Interestingly, the expression level of
GERS5 was not changed in jaz2-4 ger5-3 upon wound treat-
ment, while the expression of GER5 was significantly upregu-
lated in the Col-0 control (fold increase = 5.52). This
indicates that CCGCGT, a derivative of the stress-responsive
motif CGCG-box, enables the GERS gene to respond to early
wounding and is disabled by the G insertion.

The JAZ?2 expression was upregulated in response to the
wounding treatment in both Col-0 and the jaz2-5 mutant.
Additionally, the GERS transcript level increased after
wounding in the jaz2-5 mutant (Supplemental Figure S2). In
the case of J4Z2, the G-Box CACGTG was changed to
CACGTT, which is a G-Box variant (Dombrecht et al., 2007).
Thus, while significant, the change did not substantially alter
the J4Z2 response (fold increase = 1.04) compared with the
Jjaz2-4ger5-3 mutant (fold increase = —0.08). The GERS ex-
pression was also not markedly different in the jaz2-5 mu-
tant relative to the Col-0 in response to wounding (fold
increase = —1.73, P = 8.07E-05). Taken together, these
results indicate that the CCGCGT CRE is responsible for the
wounding response of GERS.

Experimental validation of important unknown
pCREs at later time-points

In addition to CREs important for early wounding response
ator before 1 h, we validated important pCREs at 3and 6 h
time-points (see Supplemental Data Set S7) using amplified
luminescent proximity homogeneous assay (ALPHA) in vitro
DNA-binding experiments complemented by mutations in
protoplasts coupled with a reporter gene to evaluate in vivo
DNA binding (see “Materials and Methods”). For genes
upregulated after 3 h of wounding, the most important
pCRE to be GTCGGC, a site most similar to sites that bind
the AP2EREBP TF family, and the next most important
pCRE tobe ACACGT, similarto BZR TFBSs. For genes upre-
gulated 6 h after wounding, the most important pCRE is
AACGTG, a derivative of the G-box motif (CACGTG) that
also binds Myc TFs (Fernandez-Calvo et al,, 2011). Thus, we
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decided to test the next most important unknown pCRE,
GTCACA, which is most similar to NAC TFBSs. The next
most important pCRE for the 6-h time-point is ACACGT,
which was alsoimportantatthree hours. Inthe end, we tar-
geted three additional pCREs: GTCGGC, ACACGT, and
GTCACA from the promoters of three genes AT5G07010,
AT2G02990, and AT5G13220, respectively, for further
testing.

For each pCRE, we firstidentified candidate TF of which
the binding site is the most similar to the CRE sequence
(see “Materials and Methods” and Supplemental Data Set
S7). For the ALPHA assay, recombinant proteins for TF can-
didates were purified (Supplemental Figure S3A) and tested
against their predicted motif for binding. For GTCACA and
GTCGGC, more than one of the TF candidates were tested
(Supplemental Data Set S9) where a subset did not bind
(Supplemental Figure S3, B-D). For all three pCREs, the WT
probes produced strong Alpha signals indicating protein
binding to the DNA at all tested TF protein concentrations
(Figure 7). In contrast, the probes containing the mutated
pCRE sequences either did not produce signals or at a signif-
icantly lower level compared to WT probes (Figure 7).
These findings indicate thatthe WT pCRE sequence isim-
portant for binding the candidate TFs.

Next, we checked in vivo binding using a protoplast as-
say for GTCGGC and GTCACA important for 3-h and 6-h
post-wounding, respectively. For each gene containing ei-
ther the GTCGGC or GTCACA pCRE in their promoters,
we first measured mRNA accumulation levels in
unwounded and wounded Arabidopsis plants and in
Arabidopsis protoplasts (Supplemental Figure S4). We
found expression for each gene increased after wounding
compared to unwounded plants. In addition, we found
expression in protoplasts for each gene exceeded the
amount of expression in unwounded plants, and some-
times that of wounded plants. Therefore, transcript levels
increased due to wounding was similar to the expression
increase seen in protoplasts, relative to unwounded
plants. We hypothesize that because of the similarity in
gene expression there may be similarities in how the
genes of wound response and protoplasts are regulated.
Next, we assembled each pCRE site or its mutated version
as atetramer in a head-to-tail orientation upstream ofa
luciferase reporter gene (harboring a minimal CaMV 35S
promoter, see “Materials and Methods”; Figure 8A) that
was co-transfected into the Arabidopsis protoplasts. For
both pCREs, we found significantly higher luminescence
levels in protoplasts with WT sequences than with mu-
tated ones (Figure 8B). This indicates that each motifis
sufficient to induce expression in Arabidopsis protoplasts
while the mutated motifs are not. Thus, the predicted
GTCGGC and GTCACA motifs regulate reporter gene ex-
pression in vivo, providing evidence for their functionality
in wound-response regulation, but stress that this does
not experimentally show these pCREs to be directly in-
volved in wound response.
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Figure 5 Motif logos for the top three pCREs for each upregulated wound-response cluster. Chart is divided by time-point (0.25-24 h after
wounding). The first column is the top 3 ranked pCREs for each time-point. Note that ranking includes other features such as DHSs and DAP-seq
sites, therefore the actual pCRE rank may be lower. The second column shows the average rank fora pCRE in the given model. The third and
fourth columns show the best matched TFBM logos, with forward and reverse complement sequences, respectively. PCC values between pCREs
and the TFBMs are indicated in the third column. Columns 5-7 are the TF that binds to a given binding site (column 6), the TF family the TF
belongs to (column 5), and GO categories of the TF (column 7).
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Figure 6 Mutation in predicted cis-regulatory motif abolished the induction of GER5 by wounding. A, CRISPR/Cas9 mutation in the CCGCGT mo-
tifin the JAZ2 promoter region (resulting in the jaz2-4 ger5-3 line). B, CRISPR/Cas9-mediated mutation in the CCGCGT motifin the GERS pro-
moter region in jaz2-4 ger5-3. Chromatogram represents the sequence of the J4Z2 or GER5 promoter region modified by CRISPR/Cas9 (upper
chromatograms), and the corresponding region in Col-0 (lower chromatograms). Blue and red boxes indicate PAM sequence and gRNA target
regions, respectively. C and D, Wound responses of J4Z2 (C) and GERS5 (D) expression in Col-0 and in jaz2-4 ger5-3. Transcript abundances of J4Z2
or GERS evaluated by RT-qPCR were normalized to ACTIN2. NW and W indicate no wound, collection after 1 h, and wound treatment after 1 h,
respectively. Values for biological triplicates are shown using individual bars, while values for three technical repeats for each biological replicate
were depicted with error bars. Significance levels of differences from the one-way analysis of variance were indicated with asterisks (Non-

Significant [NS] P4 0.05, *P 5 0.05, **P 5 0.01).

Modeling the regulatory code of JA-dependent and
JA-independent gene response across wounding
time-points

Having demonstrated pCREs important for predicting
wound response, we next studied the regulatory differences
between JA-dependent and JA-independent genes in the
context of wound response. JA-independent wounding
responses include those induced by RNase and nuclease ac-
tivities that are triggered by wounding but not by the appli-
cation of JA (LeBrasseuretal., 2002). Thus, to understand
how JA-independent wound responses are regulated, we
used the hormone treatment data (Goda et al., 2008) to
identify wound-responsive genes that were also responsive
toJAornotat0.5, 1, and 3 h, for which data for both JA
and wounding treatments are available. For these three
time-points, 84%, 74%, and 72% of genes were upregulated
after wounding but not after JA treatment, respectively
(Supplemental Figure S5), consistent with the findings of a
prominent JA-independent component in wounding re-
sponse in other studies (Leon et al, 1998; LeBrasseur et al,,

2002). With this information, we divided the wound-re-
sponse clusters from the 0.5-, 1-, and 3-h time-points into
JA-dependent and JA-independent gene subclusters and
generated model predicting wound response for each cluster
using known CREs, DAP-seq sites, DHSs, and/or pCREs.
Similar to our earlier results, pPCRE-based models (F-meas-
ures: 0.73-0.87) outperformed both known CREs (0.67-0.74)
and known CREs/DAP-seq/DHSs-based models (0.66-0.73;
Figure 9; for SVM models: Supplemental Figure S1B and
Supplemental Data Set S4). Thus, pCREs were able to better
model the regulation of JA-dependent and JA-independent
wounding response across time-points, than known TFBSs.
By comparing the importance of known CREs, DAP-seq
sites, DHSs, and pCREs across models, we identified how JA-
dependent and JA-independent responses differed in which
known CREs and pCREs were important. At 30 minand 1 h
after wounding, for example, CGCGTT, the RWR element,
and CACGTG, the G-box recognized by many bHLH factors
(Heim, 2003; Dombrecht et al., 2007), were the most impor-
tant known elements for the JA-independent and JA-
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Figure 7 Binding of three TFs to identified cis-regulatory motifs. WT
probes containing motifs ACACGT (A) from promoter AT2G02990,
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moter AT5G13220, and their corresponding mutant probes were incu-
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representative was shown with error bars indicating the standard devi-
ation oftechnicalreplicates. The tested cis-regulatory motifs and the
mutated sequences within the motifs are indicated shaded and under-
lined, respectively. The different letters indicate significant differences
between groups evaluated by one-way analysis of variance followed by
the Tukey’s multiple comparisontestat5% significancelevel.
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dependent models, respectively (see Supplemental Data Set
S10 for pCREs, DHSs, and DAP-seq sites and their respective
importance scores for JA-independent and JA-dependent
models). Interestingly, the G-box element also ranks as the
third most important feature in the JA-independent models.
This could be because other TFs thatare not involvedin JA
response (e.g. Myc-LIKE and BIM3 TFs) can also bind to this
element (O’Malley et al., 2016) or because the Myc element
may be necessary to facilitate TF binding to a different regu-
latory element important for JA-independent response. For
pCREs, with the exception of the G-box motif and the 6ZIP
binding site (ACGTGT), there was little overlap in the rank-
ing ofimportant motifs between the JA-dependent and JA-
independent models (Supplemental Figure S6). For example,
AACGTG and CACGTTT were ranked from 15t to 7" across
time-points in JA-dependent models but were not present
or were ranked much lower (69" to 157™") for JA-
independent models (Supplemental Figure S4 and
Supplemental Data Set S8). In contrast, CCGCGT and
GCCGAC were the most important pCREs 0.5 and 3 h after
wounding in the JA-independent models but were not pre-
sentorwere ranked much lower (232" importance)for JA-
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Figure 8 Mutation in the GTCACA and GTCGGC motifs attenuate
expression of a reporter gene, when placed as tetramers upstream
ofaminimal 35S promoter. A, Firefly luciferasefused to the cis-reg-
ulatory motifs (WT or mutant-WT constructs are shown) were co-
electroporated into Arabidopsis Col-0 protoplasts together with
p35S:Renilla reporter, and luminescence levels were evaluated by
dual bioluminescence assay. B, Luciferase activity was normalized
by Renillaluciferase activity. Datarepresentmean+sp of three bio-
logical replicates of each WT and respective mutant construct, and
an asterisk indicates P 5 0.05 (Student’s ¢ test).
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dependent models (Supplemental Data Set S10). Finally, we
found that, of the top 10 most important features for each
model, four to eight were DHSs for JA-independent models
but none for JA-dependent models (Supplemental Data Set
S10). Taken together, these findings highlight how JA-
dependent and JA-independent responses were regulated by
different sets of regulatory elements and were characterized
by distinct chromatin accessibility patterns.

Modeling metabolic pathway regulation using
wound stress data

We next assessed whether the regulatory sequences identified
allow us to understand wounding response at the level of
metabolic pathways. Here, we asked which specialized metab-
olism pathways were enriched in genes upregulated across
the wounding time series (Supplemental Data Set S11).
Depending on the time-point, 5~11 pathways were signifi-
cantly enriched in wound-response genes. From0.25t0 3 h
after wounding, JA biosynthesis was the most highly enriched
pathway (P-values range from 1.5e-3 to 3.5e—7; Supplemental
Data Set S11). However, by 12 h itis no longer significantly
enriched. Another example was the glucosinolate biosynthesis
fromtryptophan (Gluc-Trp) pathway, its pathway genes were
enriched 0.5 h after wounding (P = 0.008), peaked at 12 h
(P = 0.0008) and were not significantly enriched by 24 h. In
addition, AT2G38240 (JASMONATE-INDUCED OXYGENASE4)
and AT5G05600 (JASMONATE-INDUCED OXYGENASE?)from
the JA biosynthesis pathway were upregulated at 0.5 h after
wounding and remained upregulated throughout the time
course (Supplemental Data Set S11). These examples demon-
strate the effect of wounding on metabolic pathways and
that these wounding-responsive pathways exhibit distinct re-
sponse patterns. Using the Gluc-Trp pathway as an example,
we further assessed the regulatory basis of the wounding
responses of genes in this pathway. By 0.5 h after wounding,
three Gluc-Trp genes were significantly upregulated and at 1
h three additional genes were significantly upregulated (see
stars; Figure 10A). Looking beyond the first hour, we saw a
cascading effect, whereby 3 h after wounding, the genes upre-
gulated at 1 h were still upregulated, but the three genes that
were first upregulated at 0.5 h were no longer upregulated.
Continuing this trend, by 6 h after wounding, only one gene
thatwas upregulated at 1 and 3 h after wounding was still
significantly upregulated (Figure 10A). This pattern could be
because genes upstream in the pathway are involved, directly
or indirectly, in upregulating downstream genes in the
pathway.

To understand how the cascading response was regulated,
we mapped the pCREs found from each of the wounding-
response time-point models built for upregulated genes to
the putative promoters of the Gluc-Trp pathway genes
(Figure 10B). Starting at 0.5 h after wounding, there was lit-
tle overlap of important pCREs (red in Figure 10B) across
time-points except for pCREs present at 6 and 12 h after
wounding. This indicates that for the Gluc-Trp pathway,
genes turned on at different times have different CREs. For

Moore et al.
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Figure 9 Model performance of each JA-dependent and JA-indepen-
dent wounding-responsive cluster. Each row is a single cluster (JA-re-
sponsive [orange] or JA-non-responsive [blue-NC = no change]), for
which a separate model was built using RF. Each column represents
the data sets used as features in the model. Known only refers to CREs
reported in the literature (Supplemental Data Set S3). DAP-seq and
DHS referto the DAP-seq and DHSs, respectively. FET enriched 6-mer
refers to the pCREs, which were enriched for a specific cluster. The F-
measure range is from 0.5 (white) to 1 (red), and gradient as well as
actual F-measureisshownineachcell. The barchartnexttothe heat
map corresponds to each row/cluster and represents the number of
genes in that cluster. Note that the models were not generated for
genes downregulated 3 h after wounding because there were not
enough genes available fortraining.

example, ACACGT, which resembles bZIP binding motif
(PCC=1), is the most important element at 0.5 h after
wounding (Figure 10C) and is not found in Gluc-Trp path-
way genes upregulated at other time-points exceptat 24 h.
The treatment-time-specific nature is generally true among
the top pCREs except for AACGTG, which was enriched in
the promoters of Gluc-Trp pathway genes upregulated 1, 3,
6, 12, and 24 h after wounding. In summary, pCREs responsi-
ble for upregulation of Gluc-Trp pathway genes upon
wounding varied for different time-points after wounding,
indicating that timing of response is an important consider-
ation when identifying CREs. Furthermore, these results
highlightthat a series of regulatory elements acting at differ-
ent times, rather than one canonical element, is central to
regulating pathways triggered by a specific environment.

Conclusion

The aim of this study was to better understand the tempo-
ral differences in transcriptional response to wounding stress
in Arabidopsis. We accomplished this by integrating multiple
levels of regulatory information (e.g. sequence-based and
epigenetic features) into machine learning models of the
regulatory code that could be used to predict if a gene was
up- or downregulated at a specific time-point after wound-
ing. This system-wide, modeling approach adopted in this
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study allows us to address the critical question: how well
the known CREs allow for predicting whether a gene would
be wound responsive or not. We demonstrated thatwound-
ing response is regulated by a diverse set of regulatory ele-
ments thatare likely bound by TFs from awide range of TF
families, in addition to elements that were previously identi-
fied. We identify 4,255 pCREs derived from wounding co-
expression clusters which are upregulated at different time-
points, with 3,493 (82%) having high sequence similarity
(PCC 4 0.8)toknown TFBSs, although they are not identi-
cal and it is mostly unknown whether they are involved in
wound response. These pCREs were more predictive of dif-
ferential expression at each wounding time-point than mod-
els based on known TFBSs (derived from the literature and
the DAP-seq database) and information about open chro-
matin sites. From our machine learning models, we quanti-
fied the relative importance of each pCRE included in the
model for each time-point. While some pCREs were impor-
tant across multiple time-points, we generally found that
pCREs were either important for early or late time-points
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after wounding. Our study also provides a comparison of
the cis-regulatory programs of JA-dependent and JA-inde-
pendentresponses. We identified 2,569 pCREs important for
predicting genes upregulated in response to wounding but
not upregulated in response to JA treatment. Of these, 2,371
(92%) had strong sequence similarity (PCC 4 0.8) to known
TFBSs. Finally, by focusing on genes in the Gluc-Trp path-
way, we identified pCREs important for predicting genes in
this wound-responsive specialized metabolite pathway.
While our models perform notably better than ran-
dom expectation, there remains room for improvement.
One possible reason we could not predict differential ex-
pression more precisely is that we limited our study to
focus on CRE sites in the promoter region (+ 1-kb up-
stream of the transcription start site). However, CREs lo-
cated in other regions, including the downstream
untranslated regions, introns, or coding regions of a
gene, can be useful for predicting whether the genein
question is stress responsive (Azodi et al., 2020) and
could be evaluated in future studies. Another limitation
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Figure 10 Co-expression and regulation of glucosinolate from tryptophan pathway genes. A, Heatmap showing the log2FC values of all genes in
the Gluc-Trp pathway across the seven wounding time-points. Genes are clustered using hierarchical clustering. Genes are on the y-axis, wounding
time-pointsare onthex-axis, andlog2F Cisrepresentedasthe colorgradientfromavalue of2orgreater (red)toavalue of—1 orless (blue). Stars
indicate genes are significantly upregulated at a given time-point. B, Scaled importance score of pPCREs mapped to Gluc-Trp genes, which are upre-
gulated ata given wounding time-point. Importanceis scaled from 0to 1, where 1 is the mostimportantand Ois the leastimportant. Eachrowis
apCRE and each columnisthe wounding time-point. C, The mostimportantpCRE for Gluc-Trp pathway genes atagiventime-point. Firstthree
columns show the wounding time-point, pPCRE, and the correlation of the pCRE to aknown TF binding site shown as a motiflogo, respectively.
The fourth column shows the scaled importance value of that particular pCRE for the Gluc-Trp genes at each time-point.
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is that genes up- or downregulated at a particular time-
point might not be all regulated the same way. This is
especially likely for larger time-point gene groups, like
the 1hr_up cluster, which contained 760 genes. If we
could further break down this group, perhaps based on
the genes’ responses to other stresses, we may be able to
model more specific responses at 1 h and improve the
overall performance. Finally, the data sets regarding
DAP-seq and DHS sites did not come from wounded
plants, and therefore were not capturing any changes
that may occur in TFBSs or chromatin state after
wounding. DAP-seq and DHSs data may indeed improve
predictions if drawn from a similar treatment specific
data set. Other studies have shown that the association
with histone proteins can change under stress response
(Kimetal., 2017)and DAP-seq sites have been shown to
be important in temporal nitrogen signaling gene ex-
pression in Arabidopsis roots and shoots (Varala et al.,
2018).

Mar)1y ofthe important pCREs found in this study have
notbeen shown to be associated with wounding. Thisis es-
pecially true for pCREs found at later time-points, which
have been less well studied. With technologies such as
CRISPR-Cas9, it is feasible to generate precise edits to the
DNA to test the role of these pCREs in temporal wounding
response experimentally. We mutated the pCRE CCGCGT
and this resulted in a significant decrease in expression of
the target gene GER5 under wounding treatment.
Additionally, we show three predicted CREs, GTCGGC,
GTCACA, and ACACGT, to bind to their predicted TF
in vitro, and two of these to control protoplast expression
in vivo, and can be followed up with experiments using sta-
ble transgenic lines to show clear association with wound re-
sponse. Our study demontrates the feasibility of modeling
temporal response to wounding computationally and,
through intepreting the models, identifies a set ofimportant
putative cis-regulatory targets. Finally, the computational
framework in this study can be applied to assess the cis-reg-
ulatory mehanisms in other contexts. We found regulatory
sequences previously unknown butlikely to be importantto
JA dependent or independent responses which should be
tested in future experiments. Another example is the Gluc-
Trp pathway donstrating that we were able to identify
pCREs regulating wound response at the pathway level.
Therfore, we expectthatthe same approach can be applied
generally to any sets of genes commonly regulated in a spe-
cific environment, stage of development, tissue/cell type,
and timing to generate model supported hypotheses of cis-
regulation.

Materials and Methods

Expression data sets and analysis

Microarray data from three different AtGenExpress studies
were downloaded from TAIR and CEL files were processed
using the Affy package (1.68.0; Gautier et al., 2004) inR
(4.0.1). The studies included biotic stress (Wilson et al.,
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2012), abiotic stress (Kilian et al., 2007; Wilson et al., 2012),
and hormone treatment (Goda et al., 2008), where wound-
ing is part of the abiotic stress data set. Arabidopsis plants
used in those studies grew under similar conditions and
were treated 18 days after germination. Those studies were
all part of the AtGenExpress project. Each study had eight
different treatments of either different stresses or hormones,
resulting in a total of 24 data sets. Samples from each data
set were collected after treatment at a range of time-points,
including 15 min, 30 min, 1 h,2h,3h,4h,6h,12h,and
24 h after treatment. Note that not all time-points were
used in this study for each treatment. For each data set,
controls were collected at the same time in order to control
for circadian effects.

Differential expression was calculated using Affy and
limma (3.46.0) packages in R (Gautier et al., 2004; Ritchie
et al., 2015), and significantly differentially expressed genes
were those that had an absolute l0g2FC 51 (log2FC S1:
upregulated, log2FC less than or equal to —1: downregu-
lated) and adjusted (false discovery rate corrected for multi-
ple comparisons) P 50.05. For each treatment within each
expression data set, PCC was calculated for all pairwise
combinations.

Gene clusters

The wounding time-point clusters were determined by two
considerations: (1) time-point after wounding (0.25, 0.5, 1, 3,
6, 12, and 24 h), (2) direction of differential expression (up-
or downregulated). For example, genes that were upregu-
latedat0.25 hafterwoundingbelongtothe 0.25hr_upclus-
ter, while genes that are downregulated at 1 h after
wounding made the cluster 1hr_down. This created a total
of 14 wounding clusters. For wounding and JA clusters,
genes were placedin a clusterbased on whetherthey were
differentially expressed in one or both treatments at the
same time-point. For example, a gene X upregulated in both
1 h after wounding and 1 h after JA treatment would be
placed in cluster 1hr_up/1hr_up, while gene Y upregulated
in 1 h after wounding but not differentially expressed under
1 h after JA treatment would be placed in cluster 1hr_up/
1hr_NC (NC: nochanges). Thus, agene Zupregulatedin 1
h after wounding but downregulated in 1 h after JA treat-
ment would be placed in cluster 1hr_up/1hr_down.
Therefore, for the three time-points available for both
woundingand JAtreatmentdatasets (0.5,1,and 3 h), there
are potentially 18 clusters: 3 time-pointg 2 regulation
directions after wounding (up- or downregulatedx 3 regu-
lation directions after JA treatment (up- or downregulated,
orno changes). Three of these potential clusters contained
no genes and were subsequently omitted (0.5hr_up/
0.5hr_down, 0.5hr_up/1hr_down, 0.5hr_up/3hr_down). In
addition, a nondifferentially expressed cluster was deter-
mined by genes, which were not differentially expressed
across all stress and hormone treatments, including all time-
points. For the information of all gene clusters (genes and
the number of genes for each cluster) and the overlap be-
tween clusters, see Supplemental Data Set S1.
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Known CRE curation and pCRE finding

Known regulatory elements, including elements reported to
be responsive to JA treatment, wounding, or insect stress,
were curated from a literature search (Supplemental Data
Set S3). Both the known CREs with experimental evidence
and predicted by computational approaches were included.
For pCRE finding, putative promoter regions of each gene
(identified as 1-kb upstream of the transcription start site)
were downloaded from TAIR for Arabidopsis. Homemade
python scripts (https://github.com/ShiuLab/MotifDiscovery)
were used to identify all possible combinations of £-mers
(oligomer sequences of length k) present in gene promoters.
The Fisher's exact test (FET) was then used to determine
the overrepresented pCREs in the promoter region (defined
as 1,000-bp upstream of gene start site) for a given wound-
responsive gene cluster compared with the nondifferentially
expressed cluster. Four P-value cutoffs (adjusted P 5 0.01,
P50.01, adjusted P5 0.05,and P5 0.05) were explored
for the FET, and the second one (P50.01) performed best
forthe later machine-learning models. Starting with all pos-
sible 6-mers, pCREs which were found to be significantly
overrepresented in the target clusters were kept. Next, the
k-mer finding was performed for 7-mers, which were
produced by adding one nucleotide to the enriched 6-mers
on either side, thus there were eight possible 7-mers for
each 6-mer. These 7-mers were again tested to see if they
were significantly overrepresented in the given cluster, and if
their P-value was lower than that of the parent 6-mer. If
this was true, the 7-mer was kept and the 6-mer was dis-
carded. If not, the 7-mer was discarded and the 6-merwas
kept. This progressive procedure of “growing” k-mers contin-
ued until the longest k-mer with a P-value lower than its
predecessor was obtained. The enriched pCREs were then
used as features (present or absent for a pCRE in a gene) to
predict whether a gene belongs to a particular wound-
responsive cluster or the non-differentially expressed cluster
in machine-learning models.

Arabidopsis cistrome and epicistrome
Two data sets with in vitro TFBMs were used to correlate

e RiEBERV R RRDEEN FRSR BRI REOHEN Mo

binding arrays (Weirauch et al., 2014) were downloaded
from the CisBP database (http://cisbp.ccbr.utoronto.ca). For
the second, DNA affinity purification sequencing (DAP-seq)
peaks (O’'Malley et al., 2016) were downloaded from the
PlantCistrome Database (http://neomorph.salk.edu/
PlantCistromeDB). The coordinates of the peaks (which are
determined by the previous research group) were then
mapped to the Arabidopsis genome using python scripts. If
the peak overlapped with the promoter of a gene of inter-
est, the peak was considered present as a feature for that
gene. To provide insight into chromatin structure, bed files
for DHSs in Arabidopsis (Zhang et al., 2012) were obtained
from the National Center for Biotechnology Information
database under the ID number GSE34318. The DHS sites
were assessed using samples from leaf and flower of both
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WT and ddm -2 mutant plants. The DHS peak coordinates
were obtained from BED files (https://www.ncbi.nlm.nih.gov/
geol/query/acc.cgi?acc=GSE34318) and then mapped to the
Arabidopsis genome. If the peak overlapped with the pro-
moter of a gene of interest, the peak was considered present
as a feature for that gene.

Machine learning models
Prediction models were built for each wound-responsive clus-
ter as well as for wounding-/A cluster, where the presence or
absence of enriched pCREs from the promoter analysis were
used as features to predict whether a gene belongs to the
clusterin question or the non-differentially expressed cluster.
Two machine learning algorithms implemented in the scikit-
learn package (Pedregosa et al., 2011), RF and SVM, were
used to build the model for each cluster. Python scripts used
to run the models can be found here: https://github.com/
ShiuLab/ML-Pipeline. For each model, 10% of the data were
withheld from training as an independent, testing set.
Because the data set was unbalanced (e.g. there were 760
genes in the 1hr_up cluster while 6,855 genes in the nondif-
ferentially expressed cluster [null genes]), 100 balanced data
sets were created by randomly drawing genes from the null
gene cluster to match with the number of genes in the target
cluster. Using the training data, grid searches over the param-
eter space of RF (max_depth=3, 5, 10, max_features=0.1,
0.5, sqrt, log2, None, n_estimators =100, 500, 1,000) and SVM
(Kernel=Linear, C = 0.001, 0.01, 0.1, 0.5, 1, 10, 50) were per-
formed. The optimal hyperparametersidentified from the grid
search were used to conduct a 10-fold cross-validation run
(90% ofthe training data set were used to build the model,
the remaining 10% were used for validation) for each of the
100 balanced data sets.

We compare model performance using F-measure defined
as:

2 precision - recall

1 149.

kv recalI‘*tt:nprecision‘1 72 precision p recall
1 p .
Atp b, ofppfnp’

Where Precision %2 and Recall %42 and tp = true

positive, fp= false ptggifﬁve, fn = false népgg}[ive. Throughout
the manuscript, we compare the RF models as model
performance can change based on the algorithm, but all
F-measures are reported in Supplemental Data Set S4. Thus,
ina binary model, a perfect prediction has an F-measure of
1 and the F-measure of random expectationis 0.5. The RF
models also provide an importance score for each input fea-
ture, which is determined by the average decrease inimpu-
rity of a node in a decision tree across the forest when the
feature is used. Thus, features with higher importance scores
are more important for a RF model (Breiman, 2001; Louppe,
2014). Importance values were then normalized by scaling
between 0 and 1. Features were ranked based on theirim-
portance scores foramodel, and the average rank of afea-
ture across five duplicate models run for the same time-
point was used as the average importance rank of the
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feature. Percentile rank is calculated as dividing the rank of
a feature by the total number of features. Performance of re-
gression models were measured using Pearson’s correlation
of predicted log2FC to actual log2FC, whereaPCC of 1isa
perfect correlation, 0 indicates no correlation, and —1 indi-
cates an anti-correlation.

For each cluster, models with only known CREs were built,
and then models with known CREs plus DAP-seq and DHSs
information were built. Finally, models with DAP-seq, DHSs
and enriched pCRE information were built. Additionally, for
the final model type, five separate models for each wound-
ing time-point cluster, each with 100 balanced replicates
were run to determine the rank for each feature (pCREsS)
from most important to least important. This was then
used to get an average importance rank of features from
the five models (for average importance ranks, see
Supplemental Data Set S7; for raw importance scores from
each of the five models, see Supplemental Data Set S8).
Before ranking, reverse complement pCREs were removed,
so that essentially the same pCRE was not ranked twice. To
assess random expectation, gene clusters chosen randomly
from the expression data sets, pPCREs were found using the
same methods as above, and were used to build machine
learning models using the methods above. Random gene
clusters were made for genes atn =30, 50, 100, 150, 200,
and 250 at 20 repetitions each. Model results are reported
in Supplemental Data Set S4.

Sequence similarity between pCREs with known
TFBSs

TAMO/1.0 (Gordon et al., 2005) was also used to create a
tamo file for each pCRE, which was then used to measure
the similarity of the pCRE to known TFBSs. To compare
pCREs to known TFBSs, pairwise PCC distance between
pCREs and TFBSs (both DAP-seq and TFBMs from CIS-bp)
was generated using the TAMO program (version 1.0;
Gordon etal., 2005). After calculating the PCC distance to
allpossible TFBSs, the TFBSs with the lowest distance (high-
est PCC) was determined for each pCRE as its best match
and was then used for visualization of the binding site logo.
Code for parsing TAMO output can be found at: https:/
github.com/ShiuLab/MotifDiscovery/tree/master/TAMO _
scripts.

CRISPR—Cas9 mutagenesis

The and CRISPR/Cas9 mutants generated in this study were
grown on soil (Suremix growth medium, Michigan Grower
Products Inc., USA) or Murashige and Skoog (MS) media
(PhytoTech Labs, USA) containing 0.8% agar under a photo-
period of 16-h white light/8-h dark at 23°C, with the light
provided by fluorescent bulbs of~100 mmol m=2 s,
Wound treatments were done on plants grown on MS me-
dium when they were 18 days old as in Kilian et al. (2007).
For each set of three biological replicates, three individual
plants were wounded using hemostats as in Koo et al.
(2009), plant tissues were pooled and harvested 1 h after
wounding, frozen in liquid nitrogen, and then stored at
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—80°C until RNA was extracted. For the construction of
CRISPR plasmids, two gRNAs were simultaneously assembled
into the pHEE401E vector by the Golden Gate assembly
method (Wang et al., 2015). The gRNA sequences used in
this study are shown in Supplemental Data Set S12. The
CRISPR plasmids were transformed into GV3101
Agrobacterium strain, followed by floral dipping into
Arabidopsis (Col-0). The T4 transgenic plants were grown in
MS media containing hygromycin (25 mg L™") for 3 weeks.
Genomic DNA was extracted from the rosette leaf of the
hygromycin-resistant T1 plants, and the promoter regions of
JAZ2 and GERS5 were amplified by genomic PCR using the
primers, which are listed in Supplemental Data Set S12. The
sequences of the regions targeted by CRISPR/Cas9were vali-
dated by Sanger sequencing. All statistical tests for experi-
ments are described in Supplemental Data Set S13.

The expression levels of JAZ2 and GERS5 were analyzed in
the T, generation with three biological replicates, for which
different sets of seedlings were individually collected. Total
RNA from CRISPR-Cas9 mutants was extracted with RNeasy
Plant Mini Kit (Qiagen, USA) following manufacturer's
instructions. Approximately 500 ng of RNA was used for
cDNA synthesis with SuperScript Il Reverse Transcriptase
(Invitrogen, USA). The transcript levels of J4Z2 and GERS
were determined by quantitative real-time polymerase chain
reaction (PCR) (Quantstudio 3 Real-Time PCR, Thermo
Scientific, USA) using SYBR Green PCR Master Mix followed
by manufacturer’s instruction (ThermoFisher Scientific, CA,
USA). The C,values of the genes were normalized to those of
ACTIN2. The PCR primer sets were described in Supplemental
Data Set S12.

Protein expression and purification

For the DNA-binding affinity test, Gateway donor vectors
obtained from the ABRC (Supplemental Data Set S8) were
recombined into pDEST17 vector (ThermoFisher Scientific,
USA) using LR Clonase (ThermoFisher Scientific, USA). The
pDEST17 constructs harboring the TFs were used for the
protein expression and purification. For protein purification,
the Hise-tagged TFs were transformed into Escherichia coli
BL21 (DE3) strain. The cells were cultured in 50 mL until
reached optical density (OD)s00~0.4 at 37°C. For recombi-
nantproteininduction, 0.5-mMisopropyl b-p-1-thiogalacto-
pyranoside was added to the cultured media and incubated
at 37°Cfor 2 h. The cells were collected, resuspendedin 5-
mL modified phosphate-buffered saline (PBS) buffer (500-
mM NaCl, 10-mM NazHPO4, 2-mM KH2PQOg4, 0.05%,and
Triton X-100), and lysed by a sonication (Misonix Ultrasonic
Liquid Processors S-4000, USA). After centrifugation at
3,500¢ for 20 min at 4°C, the supernatant was incubated
with 100 mL of 50% (w/v) slurry of Ni-NTA agarose
(Thermo Fisher Scientific, USA) for 1 hand washed with 10
mL of PBS buffer containing 50-mM imidazole. The resin
was eluted by 200 mL of 400-mM imidazole in PBS buffer
four times. All protein purification procedures were per-
formed at4°C. The quality and quantity of protein was veri-
fied on sodium dodecyl sulfate-polyacrylamide gel
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electrophoresis (SDS-PAGE) gel (15%, 37.5:1 acrylamide:bis-
acrylamide, BioRad, USA) followed by Coomassie Birilliant
Blue (G-250, Thermo Scientific, USA) staining.

Evaluating DNA-binding activity using ALPHA

DNA binding affinity test was carried out by ALPHA accord-
ing to the manufacturer’s protocol (PerkinElmer, USA; Lee
etal., 2021). Briefly, the purified Hiss-tagged proteins (0, 50,
and 100 nM) were incubated with 0 and 10 nM of
streptavidin-conjugated DNA probes for 1 h at room tem-
perature. The mixture of protein and probe was incubated
with anti-Hiss AlphaLISA Acceptor beads (20 1g-mL™",
PerkinElmer, USA)for 1 h atroomtemperature followed by
incubation with AlphaScreen Streptavidin Donor beads (20
1g-mL~", PerkinElmer, USA) for 30 min at room tempera-
ture. The total mixture was transferred into white 384-well
OptiPlate (PerkinElmer, Waltham, MA, USA) and the signal
was read in an Alpha-compatible reader. For two biological
replicates, two sets of recombinant proteins were obtained
from different batches and were subjected to the assays
withthreetechnical replicatesforeach Alphareaction.

Measuring induced gene expression by RT-qPCR in
protoplast

For a luciferase assay, the DNA fragments containing four
copies of cis-regulatory motifs and corresponding mutant
probes were synthesized by Integrated DNA Technologies and
cloned into the pENTR/SD/D-TOPQ vector (ThermoFisher
Scientific, USA). The pENT constructs were subcloned into
the pLUC2 vector (Kimand Somers, 2010). The primers and
DNA probes used in this study are in Supplemental Data Set
S11. Protoplasts were isolated from 3-week-old Col-Oasina
previous study (Arai et al., 2019) with around % 10° cells
for each transformation. The isolated protoplasts were co-
transfected with 500 ng of reporter construct and 100 ng of
Renilla construct containing Renilla luciferase gene driven by
35S promoter (Elomaa et al., 1998) as described previously
(Arai et al., 2019). After co-transfection, protoplasts were incu-
bated for 12 h atroom temperature in darkness and the lucif-
erase activity was measured by dual-luciferase reporter assay
kit (Promega, USA) according to the manufacturer’s protocol
using a microplate luminometer. Total RNA was extracted
from the protoplasts using RNeasy Plant Mini Kit (Qiagen,
USA) following manufacturer’s instructions. Around 10 ng of
RNA was used for cDNA synthesis with SuperScript Il Reverse
Transcriptase (Invitrogen, USA). The transcript abundance of
the gene of interests was determined by quantitative real-
time PCR (Quantstudio 3 Real-Time PCR, Thermo Scientific,
USA) using SYBR Green PCR Master Mix followed by manu-
facturer’s instruction (ThermoFisher Scientific, CA, USA) by
normalizing it to the level of ACTIN. The primers used in this
study are described in Supplemental Data Set S12.

Pathway enrichment and pCRE mapping

Pathway annotations were downloaded from the Plant
Metabolic Network Database (https://www.plantcyc.org/).
Enrichment tests were performed by using python scripts
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(https://github.com/ShiuLab/GO-term-enrichment) and the
Python Fisher 0.1.9 package, which implements the FET. To
map the enriched pCREs to the promoter regions of genes
in the glucosinolate from tryptophan (Gluc-Trp) pathway,
gff files were created that contained the coordinates of
pCREs in the promoters of all Arabidopsis genes. Genes that
were annotated in the Gluc-Trp pathway and expressed at a
wounding time-point were examined for the presence/ab-
sence of the enriched pCREs. Finally, the importance scores
of pCREs, which were mapped to Gluc-Trp genes were de-
termined for each wounding time-point model.

Accession numbers
AtGenExpress data from TAIR: https://www.arabidopsis.org/
portals/expression/microarray/ATGenExpress.jsp

CisBP database: http://cisbp.ccbr.utoronto.ca

Plant Cistrome Database: http://neomorph.salk.edu/
PlantCistromeDB

DHS sites: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE34318

The following genes and promoter elements can be found
in the indicated data sets:

JAZ2 (AT1G74950, Supplemental Data Set S12), GERS
(AT5G13200, Supplemental Data Sets S9 and S12),
RIBONUCLEASE 1 (AT2G02990, Supplemental Data Set
S9), SULFOTRANSFERASE 24 (AT5G07010, Supplemental
Data Set S9).

Supplemental data

The following materials are available in the online version of
this article.

Supplemental Figure 1. Heatmap of the F-measure for all
wounding SVM models (supports Figure 2).

Supplemental Figure 2. Mutation in the CACGTG motif
of the J4Z2 promoter led to the downregulation of J4Z2 ex-
pression following wound treatment (supports Figure 6).

Supplemental Figure 3. Recombinant proteins used in
ALPHA experiments and ALPHA assay for CRE-TF pairs
with no significant binding (supports Figure 7).

Supplemental Figure 4. Wound-responsive expression of
the genes downstream of GTCACA or GTCGGC cis-
regulatory motifs (supports Figure 8).

Supplemental Figure 5. Gene overlap of JA-dependent
and JA-independent clusters (supports Figure 9).

Supplemental Figure 6. Average importance rank for the
top 10 pCREs for each JA-dependent and JA-independent
wound-responsive model and the associated TF families
(supports Figure 9).
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Supplemental Data Set S1. Sample cluster overlap and

genes in each cluster.

Supplemental Data Set S2. Between sample PCC results.

Supplemental Data Set S3. Known cis-regulatory ele-
ments derived from literature.

Supplemental Data Set S4. All machine learning model
results.
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Supplemental Data Set S5. Feature importance for mod-
els using only known elements or sites.

Supplemental Data Set S6. All pCREs enriched for each
wounding time-point cluster and their P-values.

Supplemental Data Set S7. Summary table for the im-
portance rank of each pCRE for each cluster and their corre-
lation to DAP-seq or cis-BP sites.

Supplemental Data Set S8. Raw importance scores for
wounding models.

Supplemental Data Set S9. DNA binding activity of six
TFs.

Supplemental Data Set S10. Overall feature importance
score for wounding JA-dependent and JA-independent
clusters.

Supplemental Data Set S11. Pathway enrichment for
each wounding time-point cluster and P-values.

Supplemental Data Set S12. Primers used for CRISPR-
cas9 and gPCR and promoter sequences of experimental
genes.

Supplemental Data Set S13. Statistical analyses for each
experimental figure.
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