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Abstract 
Plants respond to wounding stress by changing gene expression patterns and inducing the production of hormones including 
jasmonic acid. This wounding transcriptional response activates specialized metabolism pathways such as the glucosinolate 
pathways in Arabidopsis thaliana. While the regulatory factors and sequences controlling a subset of wound-response genes 
are known, it remains unclear how wound response is regulated globally. Here, we how these responses are regulated by in- 
corporating putative cis-regulatory elements, known transcription factor binding sites, in vitro DNA affinity purification se- 
quencing, and DNase I hypersensitive sites to predict genes with different wound-response patterns using machine learning. 
We observed that regulatory sites and regions of open chromatin differed between genes upregulated at early and late 
wounding time-points as well as between genes induced by jasmonic acid and those not induced. Expanding on what we cur- 
rently know, we identified cis-elements that improved model predictions of expression clusters over known binding sites. 
Using a combination of genome editing, in vitro DNA-binding assays, and transient expression assays using native and mu- 
tated cis-regulatory elements, we experimentally validated four of the predicted elements, three of which were not previously 
known to function in wound-response regulation. Our study provides a global model predictive of wound response and iden- 
tifies new regulatory sequences important for wounding without requiring prior knowledge of the transcriptional regulators. 

 
 
 

Introduction 
Plants respond to environmental stresses by reprogramming 
their pattern of gene expression that triggers chemical and 
physiological responses (Bostock et al., 2014). These stress 

 
responses can be important to plant survival in their respec- 
tive niches and are likely subjected to selection (Bostock 
et al., 2014). Wound stress is a common stress experienced 
by plants when they are under certain biotic stresses such 
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as attack by insects or abiotic stress such as wind damage 
and can induce a chemical response that produces com- 
pounds  of  human  interest  (Jacobo-Velázquez  et  al.,  2015). 
Response to stresses such as wounding requires gene expres- 
sion reprogramming, a complex process that involves multi- 
ple levels of regulation. At the DNA sequence level, short 
stretches of DNA (cis-regulatory elements, CREs) are recog- 
nized and bound by transcription factors (TFs) that can acti- 
vate or repress gene expression (Wittkopp and Kalay, 2012). 
Beyond the level of DNA sequence, chromatin structure can 
influence whether a regulatory element is accessible to a TF 
and can be modified based on stress–response signals 
(Asensi-Fabado et al., 2017). Finally, reprogramming can also 
occur by modifying or turning over mRNA (Glisovic et al., 
2008; Hutvagner and Simard, 2008). Stress responses change 
over time, adding temporal complexity to transcriptional re- 
sponse. For example, after an initial response, genes that are 
turned on may act to turn on or off other genes, resulting 
in cascading effects. This type of gene expression reprogram- 
ming mechanism is beneficial for plants when different 
responses are needed at different times. For example, re- 
sponse to wounding stress in plants changes over time as 
the plant first needs to recognize damaging agents, then 
responds by sending various hormone signals, and ultimately 
repairs the wound (Ikeuchi et al., 2017). This means that 
stress-responsive genes may be regulated differently depend- 
ing on when they need to be expressed. 
The production of various hormone signals allows  plants 

to coordinate their response to different stresses because 
the interactions of certain hormones can regulate a specific 
response from the plant by changing the expression of cer- 
tain genes. For example, response to wounding stress 
involves several hormones, with the most ubiquitous signal 
being jasmonic acid (JA; Howe and Jander, 2008). After 
wounding, JA levels increase and bind to Jasmonate ZIM 
(JAZ) domain repressor proteins, which allows MYC2 TFs 
and other basic helix–loop–helix (bHLH) TFs to become ac- 
tive (Chung et al., 2008). MYC2 TFs then activate wounding 
responses, such as JA biosynthesis, to amplify the JA signal 
and activate other defensive processes (Chung et al., 2008). 
Additional hormones interact with JA to moderate wound- 
ing response. For instance, while JA induces the expression 
of certain wound-response genes, ethylene simultaneously 
represses the expression of these genes at the damaged site 
in order to make sure the correct spatial response pattern is 
produced (Rojo et al., 1999). Ethylene also works synergisti- 
cally with JA to fine-tune wounding response by inducing 
the expression of proteinase inhibitor genes (O’Donnell 
et al., 1996) and by activating ETHYLENE RESPONSE 
FACTOR 1, another TF that triggers defense responses 
(Lorenzo et al., 2003). Abscisic acid (ABA), which is induced 
in response to many abiotic stresses, is also induced by 
wounding (León et al., 2001). While ethylene, ABA, and JA 
rapidly respond to wounding, other hormones such as auxin 
and cytokinin, start to accumulate around 12 hours (h) after 

wounding occurs and are involved in signaling for the regu- 
lation of expression of genes that work to repair the wound 
(Ikeuchi et al., 2017). While a great deal is known about hor- 
mone signaling in response to wounding, it is unclear what 
other regulatory mechanisms are involved in response to 
wounding and how these mechanisms interact with hor- 
mone signals. 
Wounding can also induce the production of specialized 

metabolites that can deter further stress. For example, after 
wounding stress, Arabidopsis thaliana (Arabidopsis) activates 
glucosinolate pathways. The glucosinolates and the bioprod- 
ucts generated from their degradation affect the plant’s 
interactions with biotic stressors, such as microbes and her- 
bivores (Yan and Chen, 2007). Additionally, mutants with 
decreased glucosinolate levels show greater susceptibility to 
the necrotrophic fungus Fusarium oxysporum (Tierens et al., 
2001). Glucosinolate production is regulated by JA, salicylic 
acid, and ethylene. These hormones work together to modu- 
late glucosinolate levels in response to stress, by activating 
MYB (myeloblastosis) and DNA-binding with one finger TFs 
(Yan and Chen, 2007). Additionally, glucosinolates can be di- 
vided into different types, such as indole or aliphatic glucosi- 
nolates, and the production of these may be induced by 
various stresses and regulated in different ways (Yan and 
Chen, 2007). While specific TFs have been shown to turn on 
glucosinolate biosynthesis (Frerigmann and Gigolashvili, 
2014), the regulatory elements or chromatin structure of 
how and when these TFs bind has not been resolved. 
At the cis-regulatory level, a few CREs underlying wound- 

response regulation have been discovered experimentally. 
An example is CGCGTT, found in the promoters of genes 
which rapidly respond to wounding (as well as other 
stresses) within an hour after treatment (Walley et al., 2007). 
Another example is the G-box, CACGTG, which is bound by 
Myc TFs in response to wounding and JA treatment after 1 
h (Fernández-Calvo et al., 2011). Other elements implicated 
in early wound response include W-box (TTGACC), GCC 
box (AGCCGCC or GCCGCC), jasmonate and elicitor-re- 
sponsive expression element (AGACCGCC) and drought-re- 
sponse element (TACCGACAT; Rushton et al., 2002; Godoy 
et al., 2011). Most wound regulatory element studies focus 
on response to wounding after 1 h or validation of the 
derivatives of the G-box element, with only a few studies fo- 
cusing on later time-points that are not G-box related (He 
and Gan, 2001). Studies that have compared early and late 
time points have focused on changes in gene expression 
over time (Ikeuchi et al., 2017), not on how regulatory ele- 
ments change or have found only regulatory elements re- 
lated to the G-box element across time points (Delessert 
et al., 2004). There are likely additional CREs that remain to 
be discovered at both early and late time points. Notably, 
the earlier studies have demonstrated the feasibility of estab- 
lishing computational models capable of predicting plant 
spatial stress responses to, e.g. high salinity, using known 
and newly discovered CREs (Uygun et al., 2017). In doing so, 
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the computational model provides a means to globally as- 
sess the extent to which included CREs are sufficient to pre- 
dict stress response and to pinpoint the most relevant CREs. 
Nonetheless, such a model is yet to be established for 
wound response. Thus, while several studies have found spe- 
cific regulatory elements related to wounding, a global 
model of wound-response regulation across time has not 
emerged. In addition, wound response has been shown to 
have    JA-dependent    and    JA-independent    components 
(Schilmiller and Howe, 2005). However, existing studies on 
this area focus on comparing wound-inducible genes that 
are  JA-dependent  or  JA-independent  (e.g.  Reymond  et  al., 
2000), roles of regulators controlling JA-independent re- 
sponse (Stotz et al., 2013), signaling components of JA- 
dependent  response  involving  COI1  (Bömer  et  al.,  2018). 
There is not yet a study comparing the cis-regulatory pro- 
gram of JA-dependent and JA-independent response. 
The goals of this study were to uncover the cis-regulatory 

code involved in regulating temporal responses to wounding 
stress, to see how wounding stress independent of the 
wound-induced hormone JA is regulated, and finally to un- 
derstand how genes in certain specialized metabolism path- 
ways are regulated. Here, we assessed the extent of 
divergence in gene expression among various time-points 
following wounding by correlating wounding data with 
other types of stress or hormone treatment using an existing 
modeling framework (Liu et al., 2015; Uygun et al., 2017). By 
using a time course data set, where transcriptional response 
was recorded over a 24-h period (Kilian et al., 2007), we cap- 
tured differences in differential gene expression among vary- 
ing time-points and the global regulatory pattern required 
to regulate these transcriptional responses. While this data 
set has been used before to identify regulatory elements 
(Ma and Bohnert, 2007), the CREs identified were limited to 
only known motifs from the PLACE database (Higo et al., 
1999), and the focus was on general stress response. In this 
study, we expand on earlier studies by including CREs de- 
rived from model predictions, applying a system-wide 
modeling approach, and focusing on responses to specific 
stress i.e., wounding. Because most regulatory elements oc- 
cur 1,000-bp upstream of the transcriptional start sites in 
the promoter region of the gene in Arabidopsis (Weirauch 
et al., 2014; Yu et al., 2016), we focused on this region to 
identify putative CREs (pCREs). In addition, by clustering 
wound-responsive genes into groups based on whether they 
respond to JA, we were able to single-out differences be- 
tween JA and non-JA regulatory mechanisms regarding 
wounding. Furthermore, we identified important regulatory 
elements for the wound-responsive genes in the pathway 
glucosinolate biosynthesis from tryptophan, which is in- 
duced by wounding. Finally, by using machine learning 
modeling, we were able to identify the most important reg- 
ulatory elements for each time-point and experimentally val- 
idate one known and three previously unknown elements 
regulating wounding response. 

Results and discussion 
Transcriptional response to wounding across time- 
points 
To understand how transcriptional response to wounding 
varies across time-points, we used the wounding treatment 
data from an existing expression data set, which contains 
seven abiotic stress treatments and where the wounding 
treatment was applied to 18-day-old Arabidopsis seedlings 
(Kilian et al., 2007). Samples were harvested at multiple 
time-points ranging from 15 min to 24 h after wounding 
treatment. The sampling of control treatment was per- 
formed in parallel to exclude circadian effects (Kilian et al., 
2007). We identified genes that were up- or downregulated 
at the different time-points (diagonal values; Figure 1A) 
and how frequently the same genes were differentially 
expressed in these different time-points (lower triangle; 
Figure 1A). The type of wound-responsive genes was 
named with two components: (1) time-point after wound- 
ing, (2) up- or downregulated after wounding treatment, e.g. 
0.25hr_up, 1hr_down (Figure 1A). There was a cascading ef- 
fect, where the majority of 0.25hr_up and 0.5hr_up genes 
overlap with each other (84% and 61%, respectively) and 
were still upregulated at 1 h (63% and 70%, respectively), 
but  by  3  h  525%  of  those  genes  were  still  upregulated 
(Figure 1A, also see Supplemental Data Set S1 for genes 
present in each wound-responsive cluster). Thus, different 
time-points after wounding have overlapping but distinct 
sets of genes, which are up- or downregulated, suggesting 
temporal variation in how wounding response is regulated. 
To determine how response to wounding differs from re- 

sponse to other environmental conditions, we measured 
how similar the pattern of differential gene expression was 
between different wounding time-points and other abiotic 
stress, biotic stress, and hormone treatments (see “Materials 
and Methods”). The Pearson’s correlation coefficient (PCC) 
was used to measure the correlation of the log2 fold change 
(log2FC) values across genes between wounding and other 
stress/hormone treatments. The PCC values of genes were 
used to group treatment data sets with similar differential 
gene expression using hierarchical clustering (Figure 1B). 
We found that wound response correlated with both abiotic 
and biotic stress responses (Figure 1B). Early patterns of 
wounding differential gene expression (DGE; 15, 30 min or 1 
h after wounding) were more highly correlated with those 
of early abiotic stress response compared with later wound- 
ing time-points (12 or 24 h after wounding). Gene expres- 
sion patterns at 30 min and 1 h after wounding were also 
more similar to early responses (30 min to 3 h) under abi- 
otic stresses, such as cold, UV-B, osmotic, and genotoxic 
stress (Figure 1B; Supplemental Data Set S2). Additionally, 
early DGE 15 min and 1 h after wounding were more similar 
to each other (PCC = 0.39) and to 30 min after wounding 
(PCC = 0.33 and 0.30, respectively) than to later wounding 
time-points (for PCC results, see Supplemental Data Set S2). 
Thus, transcriptional responses were more similar among 
some comparable time-points between treatments than 
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A among largely differing time-points within a particular treat- 
ment. This indicates that temporal patterns can influence 
gene expression more than the type of abiotic stress, and 
that wounding can elicit a similar response to other types of 
abiotic stress. When observing wounding-response patterns 
in relation to biotic stress, 15-min, 1-, 12-, and 24-h time- 
point wounding responses all correlated with different types 
of biotic stress (Figure 1B; Supplemental Data Set S2). Thus, 
early wounding response is correlated with both abiotic and 
biotic stress. However, at later time-points (12 and 24 h), 
wound responses are more highly correlated with late biotic 
stresses than with any other stress (PCC for biotic stress P. 
infestans at 12 h was 0.48 and 0.38 for 12 and 24 h). On the 
other hand, wounding DGE responses at 3 and 6 h after 
wounding do not correlate with biotic stress response (PCC 
range –0.09 to 0.07; Supplemental Data Set S2). Our findings 

B confirm that the initial wounding response is akin to general 
stress response as previously suggested in Walley et al. 
(2007). 
In terms of the relationships between wounding and hor- 

monal responses, DGE 15 min after wounding was not simi- 
lar to DGE 30 min after hormone treatment (PCC range 
–0.07 to 0.14 for all treatments). By 30 min after wounding, 
however, DGE was similar to DGE 30 min after treatment 
with ABA, amino-cyclopropane carboxylate (ethylene pre- 
cursor, ACC), brassinosteroid (BL), gibberellic acid (GA), and 
JA, PCCs ranging from 0.37 to 0.52 (Figure 1B; 
Supplemental Data Set S2), indicating that initial response 
to wounding triggers the production of multiple hormones. 
The DGE responses at 3 and 6 h after wounding were even 
more similar to the DGE response after 30-min treatment of 
ABA, ACC, BL, GA, and JA (PCC range, 0.39–0.54), than 
were most other wounding time-points (PCC range, –0.04 
to 0.21; Figure 1B; Supplemental Data Set S2). Finally, 12 
and 24 h after wounding, transcriptomic responses showed 
little correlation with DGE responses after 30 min of hor- 
mone treatment (PCC range, –0.15 to 0.26; Supplemental 
Data Set S2). Overall, the high correlations of DGE patterns 
in early and 3- to 6-h time-points after wounding to early 
hormone treatment suggests wounding activates a hor- 
monal response, recruiting hormone-responsive genes 
among other genes. 

 
 
 
 
Figure 1 Gene expression correlation across stress and hormone data 
sets and the overlap of wound and JA differentially expressed genes. 

Modeling temporal wound response using machine 
learning 
The temporal differences in transcriptional response to 
wounding described above suggest that the regulation of 

A, Heatmap showing the number of genes overlapping in each 
wound-response cluster. The order of rows and columns are the same, 
based on time-points and directions of differential regulation. Number 
of genes range from 0 (white) to 760 (red) and actual values are pro- 
vided in the heatmap. B, Heatmap of PCC based on the log2FC be- 
tween treatment and control among different conditions (stress or 
hormone treatment) at different time-points. PCC values in heatmap 
range from 1 (red) to –1 (blue). The rows and columns were ordered 
based on hierarchical clustering. The stress and hormone treatments 
as well as treatment time-points are labeled by colors. 

wounding-response changes over time, with regulatory con- 
trol being more similar within early and mid-range time- 
points (0.25, 0.5, 1, 3, and 6 h), and within late time-points 
(12 and 24 h) compared to between these time-points 
(Supplemental Data Sets S1 and S2). Thus, wound- 
responsive genes were divided into 12 clusters depending on 
each time-point and the directions of response, for example 
1hr_up refers to being upregulated at 1 h while 3hr_down 
refers to being downregulated at 3 h (Figure 1; see 
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“Materials and Methods”). To compare what regulatory 
mechanisms were important across different time-points/ 
response directions, we estimated the regulatory code of 
transcriptional response to wounding for each cluster using 
machine learning approaches. Here, the regulatory code for 
a cluster was defined as a machine learning model that 
could classify a gene as being differentially regulated or non- 
differentially regulated in a cluster based on likely regulatory 
sequences. Note that the regulatory code of downregulation 
3 and 6 h after wounding were not modeled because too 
few genes (510) were in these clusters. 
First, we tested how well known regulatory sequences 

were able to model wounding response. We collected 52 
known cis-regulatory elements (referred to as CREs) associ- 
ated with JA, wounding, or insect responses identified previ- 
ously using experimental or computational approaches (see 
“Materials and Methods”; Supplemental Data Set S3). We 
mapped each putative regulatory sequence to the putative 
promoter regions (see “Materials and Methods”) of each 
gene in a cluster, as well as to genes in a “null” cluster, con- 
sisting of genes that are not significantly upregulated or 
downregulated under any stress or hormone treatment. 
Two algorithms, random forest (RF) and support vector ma- 
chine (SVM) were used to build models for each wounding- 
response cluster using cross-validation (see “Materials and 
Methods”). In all sections, RF results were reported unless 
noted otherwise. To measure model performance, F-measure 
was used which jointly considers precision and recall (see 
“Materials and Methods”). Using known CREs, the F-meas- 
ures for models built for each wound-response cluster 
ranged from 0.67 to 0.71 (median = 0.68), scores that show 
our models performed better than random guessing (F-mea- 
sure = 0.5) but were not perfect predictors (F-measure = 1; 
for RF models: Figure 2A, for SVM models: Supplemental 
Figure S1A and Supplemental Data Set S4). Note that the 
cluster 12hr_down was not analyzed because no known reg- 
ulatory elements were defined as present in the promoters 
of the genes in this cluster. 
Next, we incorporated additional regulatory information 

to see if our model could be further improved. We included 
in vitro DNA binding data of 510 TFs in Arabidopsis gener- 
ated with DNA affinity purification sequencing (DAP-seq; 
O’Malley et al., 2016) and information about DNase I 
hypersensitive sites (DHSs) in Arabidopsis sampled at differ- 
ent developmental stages including seedling (leaf samples) 
and 2-week-old plants (flower buds; Zhang et al., 2012). 
Each DAP-seq and DHSs feature was considered present if 
its peak coordinates overlapped with the promoter region 
of a gene. Models trained using both known sequence and 
DAP-seq and DHSs features generally performed slightly bet- 
ter than models using only known CRE, with the F-measure 
ranging from 0.66 to 0.74 (median = 0.69; Figure 2; 
Supplemental Data Set S4). Models for genes upregulated in 
early wounding response (0.25, 0.5, and 1 h) benefited the 
most from the addition of these two data sets, with an 

increase of 0.03, 0.03, and 0.02 in F-measure, respectively. 
This may be because early wound-response clusters have 
larger gene numbers than clusters for later time-points. 
Having a larger gene set may allow for a higher degree of 
overlap with DAP-seq or DHSs features. Thus, more known 
information in the form of the DAP-seq data may improve 
the performance of early time-point clusters more than later 
time-points. Overall, while known sequence-based informa- 
tion together with DAP-seq and DHSs information is predic- 
tive of differential gene expression in response to wounding 
across time-points, the models still have substantial room 
for improvement. 

 
Determining the relative importance of known 
motifs and additional regulatory information for 
predicting temporal wound response 
To understand what known elements, TFs (based on DAP- 
seq), and DHSs are particularly important for predicting 
responses at different times after wounding, we determined 
the importance of each feature in each model (see 
“Materials and Methods”; Supplemental Data Set S5). In 
Figure 2B, the top 10 features for upregulated time-point 
clusters are shown. For early wound response (genes upregu- 
lated 0.25, 0.5, and 1 h after wounding), the most important 
known CREs were CGCGTT (first ranked), a known regula- 
tory element for rapid wound response (RWR; Walley et al., 
2007) and CACGTG (second ranked) that is bound by TFs 
in the bHLH family in response to wounding and JA treat- 
ment  (Fernández-Calvo  et  al.,  2011).  Genes  with  the  RWR 
elements are known to respond quickly to wounding and 
have a variety of functions in the downstream responses, in- 
cluding chromatin remodeling, signal transduction, and 
mRNA processing (Walley et al., 2007). TFs that respond to 
wounding stress such as MYC2, MYC3, and MYC4 bind the 
CACGTG motif and respond to both JA and wounding, and 
induce other JA-responsive genes, ultimately triggering de- 
fense  response  to  herbivory  (Fernández-Calvo  et  al.,  2011). 
In addition to the important contribution to the regulatory 
code for genes upregulated 0.25–1 h post wounding, 
CACGTG was still important (ranked 1 or 2) among genes 
upregulated 3, 6, and 12 h after wounding, while the RWR 
element was no longer the most important contributor. By 
24 h after wounding, the CACGTG element was no longer 
highly ranked. 
DAP-seq binding sites were less important in predicting 

wound response than the known CREs or DHSs (Figure 2B; 
Supplemental Data Set S5). A few DAP-seq binding sites 
ranked among the top 10 most important features, includ- 
ing the calmodulin binding transcription activator (CAMTA) 
TFs that bind to AAGCGCGTG and were ranked third most 
important for genes upregulated 0.25 or 0.5 h after wound- 
ing but dropped to 11th at 1 h after wounding, and were 
even lower in later time-points. Consistent with earlier find- 
ings, CAMTA TFs are general stress-response factors trig- 
gered early during multiple stresses, including wounding 
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Figure 2 Performance of wound-response cluster prediction models. A, Each row indicates models for a specific wound-response cluster using dif- 
ferent input features (columns). The models were generated with RF. Known CREs refers to those reported in the literature (Supplemental Data 
Set S3). The F-measure ranges from 0.5 (white) to 1 (red). The bar chart next to the heat map represents the numbers of genes in clusters. B, The 
top 10 most important features in models built using known CREs, DAP-seq sites, and DHSs for upregulated time-point clusters. The bars are col- 
ored in the same way as Figure 1B. 
 
(Benn et al., 2014). The CBF TF in the AP2/EREBP family 
that binds to GGCGGCGGCGG ranked 10th in the 1 h/ 
upregulation model and 4th at 3 h after wounding. 
Interestingly, it has been reported that CAMTA TFs regulate 
CBFs (Doherty et al., 2009). Thus, the ranked importance of 
these TFs at each time-point is consistent with their regula- 
tory interactions. Nonetheless, all DAP-seq sites became less 
important for predicting genes upregulated 6, 12, and 24 h 
after wounding. Because known CRE sites in response to 
wounding were ranked in these clusters but DAP-seq sites 
were not, this may reflect the fact that DAP-seq identifies 
TF binding sites (TFBSs) in vitro, regardless of whether the 
sites are accessible in vivo or not. Together with the medio- 
cre model performance (Figure 2A), these findings show 
temporal differences in wounding regulatory codes, but also 
that known CREs and DAP-seq data do not fully capture 
how wounding response is regulated, especially at later 
time-points. 
In addition to known CREs and DAP-seq sites, open chro- 

matin sites (DHS) were important for predicting expression 
regulation at all time-points after wounding (top-ranked 
DHS sites for each cluster ranged from ranks 1–4), particu- 
larly at later time-points (Figure 2B; Supplemental Data Set 
S5). For example, at 24 h after wounding, the top 12 most 
important features were all DHS-related. We hypothesize 
two potential explanations for this finding. First, at later 
time-points, the functional diversity of expressed genes has 
increased so that their transcriptional regulatory mecha- 
nisms have become more complicated (due to both wound- 
ing and repair mechanisms) and thus no single CRE or DAP- 
seq feature can be found with high importance. The second 
possibility is that the known CRE or DAP-seq features 

important for later time-points are not present in our data 
set. Although important, DHS sites do not provide addi- 
tional information to improve the F-measures of our models 
especially at later time-points. Thus, we hypothesized that 
regulatory sequences not yet identified could be important 
regulators of wound response, especially for later wound 
response. 
 
Finding important temporal putative cis-regulatory 
elements for wound response 
To test our hypothesis that there were unknown regulatory 
sequences controlling wounding response, we identified 
pCREs with a k-mer finding approach (Liu et al., 2018), 
where all possible 6–30-mer sequences were tested for en- 
richment in the putative promoters of genes for each 
wound-response cluster (see “Materials and Methods”). 
Based on this criterion, 42–1,081 pCREs were identified as 
enriched in genes from each wound-response cluster, with 
the exception of the 12hr_down cluster, which had no 
enriched pCREs (for enrichment statistics of pCREs; see 
Supplemental Data Set S6). For each wound-response 
cluster, the pCREs were used to build five replicate wound- 
response prediction models and the reported model perfor- 
mance (F-measure) and feature importance were based on 
averages of the five models. We found that models built 
with pCREs alone (F-measure range = 0.73–0.81; Figure 2A; 
Supplemental Data Set S4) perform better than models built 
with known CREs, DAP-seq and DHSs for all clusters (F-mea- 
sure range = 0.66–0.74; Figure 2A; Supplemental Data Set 
S4). Because the number of pCREs exceeds the number of 
known CREs, we modeled the 1hr_up wounding cluster us- 
ing only the top 52 pCREs and compared model 
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performance to the model using the 52 known CREs. We 
found that the top 52 pCRE-based model performs slightly 
better (F-measure of 0.72) compared to the known 52 CRE- 
based model (F-measure of 0.69). Interestingly, models that 
were built by combining pCREs with DAP-seq, and DHS 
data (F-measure = 0.67–0.80; Figure 2A; Supplemental Data 
Set S4) did not necessarily perform better than models built 
using only pCREs, with the exception of the 12hr_up time- 
point, perhaps reflecting the increasingly more important 
roles of regulation beyond the cis-regulatory level. We also 
note that the 12-h and 24-h time-points, as well as downre- 
gulated gene clusters, have smaller gene numbers overall, 
thus while they have high F-measures, this may make these 
models less generalizable than models with higher gene 
numbers. In addition to building binary models, we also 
built a regression model for the 1-h time-point to see if the 
level of expression could be predicted using regulatory fea- 
tures. The regression models, however, were not predictive 
(for SVM = PCC –0.07, RF = PCC –0.44; Supplemental Data 
Set S4), revealing the challenges in predicting expression 
level but also the benefits of clustering genes based on their 
expression to make better binary predictions. Overall, these 
findings indicate that these pCREs contributed information 
beyond what was available from known DAP-seq and DHSs 
data in the regulation of wound response at different time- 
points. 
To understand why the models improve by using pCREs, 

and what influence pCREs have across wounding time- 
points relative to known information and open chromatin 
sites, we looked at the average importance rank (normalized 
importance score, scaled between 0 and 1, see “Materials 
and Methods”) of all features in the models (including fea- 
tures related to pCREs, DAP-seq sites, and/or DHSs) across 
the post-wounding time course (Figure 3). We found that 
DHSs tend to be the most important features for most 
time-points (Figure   3, A–J) apart from late downregulated 
time-points (Figure 3, K and L). However, in each of these 
clusters we found some pCREs to be more important than 
DHS features. For example, at 1hr_up 169 out of the top 
200 features were pCREs. Finally, DAP-seq sites were less im- 
portant than DHSs and pCREs except at 12-h and 24-h 
time-points for downregulated genes. Although the DHS 
data used was not generated under wounding stress (Zhang 
et al., 2012), it is surprisingly useful and we cannot rule out 
the possibility that the plants were actually wounded during 
sample preparation. To completely capture the importance 
of chromatin accessibility in wound response, we will need 
DHS data generated with wounded plant samples instead of 
using DHSs data generated in a different context. We should 
also note that DAP-seq sites are always of the least impor- 
tance. With our findings that adding DHS/DAP-seq informa- 
tion does not improve our models (Figure 2A) and the fact 
that pCREs are also important at every time-point, this indi- 
cates that the identified pCREs may better uncover the reg- 
ulatory code complexity underlying wound-response 

regulation than, particularly DAP-seq sites that are available 
for a subset of TFs in Arabidopsis. 

 
Correlation to TF families and cis-regulatory 
differences across time 
Figure 4 shows the importance rank across all time-points 
for the top 10 most important pCREs for each wounding 
model. Like how similar sets of genes were differentially 
expressed at nearby time-points (i.e. the cascading effect), 
we found more important pCREs were shared between 
closer time-points (Figure 4). Because the pCREs were dis- 
covered from genes with similar wound-response patterns, 
this cascading effect on the shared number of important 
pCREs was expected. However, some pCREs were uniquely 
important for a narrow time frame (for the importance rank 
of pCRE and PCC of pCREs with known TF binding motifs 
(TFBMs), see Supplemental Data Set S7; for raw importance 
scores, see Supplemental Data Set S8). Next, we determined 
which pCRE was similar to a known TFBM and which was 
likely a previously unknown regulatory element. We first cal- 
culated the sequence similarity between each pCRE and 
each known binding motif. For this we used DAP-seq sites, 
which are generated in vitro, as well as CIS-BP sites 
(Weirauch et al., 2014), which are TFBSs found in vivo using 
chromatin immunoprecipitation sequencing. 
For early time-points after wounding (i.e. 0.25, 0.5, and 1 

h), many of the top important pCREs were shared and re- 
sembled TFBSs in the CG-1/CAMTA, bZIP/BZR, FAR1, LOB, 
and bHLH TF families (right two panels; Figure 4; 
Supplemental Data Set S7). The finding that different bind- 
ing sites resemble multiple TF families is consistent with the 
notion that a variety of signals, and thus TFs, are induced by 
wounding (Howe, 2004; Zhang et al., 2016). However, not all 
pCREs were highly correlated with known TF binding fami- 
lies as 26 correlations between DAP-seq sites and pCREs, 
and 77 correlations between CIS-BP sites and pCREs shown 
in Figure  4 had PCCs 50.75, indicative of substantial differ- 
ences between pCREs and known TFBSs. Focusing on the 
top 3 most important pCREs for each time-point (Figure 5, 
based on average rank—see “Materials and Methods”), the 
pCREs CCGCGT and CACGTG were most similar to the 
binding motifs of CG-1/CAMTA and MYC2 bHLH TFs, re- 
spectively. Thus, the timing when they were important for 
predicting wounding response was consistent with the tim- 
ing when known CREs for CAMTA and MYC2 TFs were im- 
portant for the models built using only known CREs, DAP- 
seq, and DHSs (Figure 2B). The CACGTG element, which is 
important in binding TFs for JA response (Fernández-Calvo 
et al., 2011), remained important at both 3 and 6 h after 
wounding (ranked 10 and 5, respectively), indicating JA 
responses have been activated. Other top 3 important early 
pCREs remained important across the wider range of time- 
points and were not known as wounding CREs. One exam- 
ple is ACACGT, a pCRE most similar to the binding motif 
for bZIP family TFs, which are activated by ABA (Yamamoto 
et al., 2011) and regulate responses to water deprivation 
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Figure 3 Scaled importance values for each wound-response model (rows) for all features used in the final model. For (A)–(L), density plots show 
normalized importance value on the x-axis and the density of the features on the y-axis. The importance value is scaled from 0 to 1 for each 
model. Only the top 200 features are shown, thus the x-axis varies depending on how many features in total there are for a given time-point. 
DAP-seq sites are in purple, DHSs are in yellow, and pCREs are in blue. The higher value correlates with higher importance of a given feature for a 
given model. (A–G) models for upregulated wounding-response clusters at (A) 0.25, (B) 0.5, (C) 1, (D) 3, (E) 6, (F) 12, and (G) 24 h. (H–L) models 
for downregulated wounding-response clusters at (H) 0.25, (I) 0.5, (J) 1, (K) 12, and (L) 24 h. 
 
 
(Figure 5). This pCRE was enriched in the promoters of 
genes from all time-points and important (rank 5 11) for 
models of wounding response at all time-points except 24 
h (Figure 4; Supplemental Data Set S7). Two pCREs 
(GTCGGC and GTCACA) that did not resemble known 
wounding CREs were uniquely important for models built 
for mid-range time-points (i.e. 3 and 6 h after wounding), 
as the 5th most important pCREs for the genes upregu- 
lated at 3 h and 6th most important at 6 h, respectively 
(Figure 5). These elements were most similar to binding 
motifs of B3 and Homeodomain family TFs, respectively. 
Given these TF families are involved in development, re- 
sponse to auxin, and secondary wall biogenesis, this indi- 
cates that by 3–6 h after wounding, the damage is likely 
being repaired. At the last two time-points (12 and 24 h 
after wounding), ATATTAT, which was most similar to 
binding motifs of TFs in the ARID family, was ranked 24th 
and 14th respectively (Figure 5; Supplemental Data Set 
S7). The ARID family is involved in regulating glucosino- 
late metabolism, indicating that specialized metabolism 
pathways are turned on or augmented 12 h after wound- 
ing and are still important after 24 h. Another two 

important pCREs at the latest time-points, ATAATAA 
and AAAATGT, resemble elements that were bound by 
TFs from Homeodomain and GRF (Growth-regulating fac- 
tors) families, respectively (Figure 5; Supplemental Data 
Set S7), which regulate development, which may be im- 
portant in repairing the wound (van der Graaff et al., 
2009; Omidbakhshfard et al., 2015; Wu et al., 2019). 
In summary, we found that pCREs important for our 

models contain some known wounding CREs, but mostly 
regulatory sequences that are not known to be involved in 
wounding response. Additionally, while similar to TFBSs, 
most pCREs are not identical and contain slight changes in 
key positions, which may affect binding specificity. PCREs 
important for wound-response models at early time-points 
(0.25–0.5 after wounding) tend to be associated with multi- 
ple stress and hormone responses, while pCREs important 
for models 1–h after wounding tend to be associated with 
TFs involved in JA and ABA signaling. Finally, 3–24 h after 
wounding the important pCREs tend to be associated with 
TFs involved in growth and pCREs important for very late 
responses (12–24 h after wounding) are associated with 
some TFs related to metabolic defense. Our models of the 
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Experimental validation of important CREs in early 
wound response 
We validated our findings using the CRISPR/Cas9 system in 
planta to evaluate the biological significance of two of the 
important pCREs (CCGCGT and CACGTG) based on our 
model and prior studies. CCGCGT is the top (most impor- 
tant) pCRE found for models of 0.25 (rank = 1), 0.5 
(rank = 1), and 1 h (rank = 3) after wounding 
(Supplemental Data Set S7). CACGTG, a known CRE in- 
volved in wounding response (Figueroa and Browse, 2012), 
is ranked 30, 17, and 8 at 0.25, 0.5, and 1 h after wounding 
(Supplemental Data Set S7). CCGCGT is a variation of the 
CGCG box, that has been previously characterized as re- 
sponsive to wounding signals, as well as other hormone 
(ABA) and oxidative signals, by binding the TF CAMTA5 
(CALMODULIN-BINDING   TRANSCRIPTION   ACTIVATOR 2, 
AT4G16150)   to   the   ethylene-responsive   gene EIN3 
(ETHYLENE-INSENSITIVE3,  AT3G20770; Yang and  Poovaiah, 
2002). The CAMTA-related TF family and its binding to the 
CGCG box has also been shown to respond to cold treat- 
ment and may impart freezing tolerance in Arabidopsis 
(Doherty et al., 2009). However, it is unknown how this mo- 
tif affects other wound-responsive genes and has not been 
assessed in vivo via CRISPR-Cas9. Thus, we chose CRISPR/ 
Cas9 target promoters that contain the CCGCGT motif and 
sorted out the candidates by the following criteria. First, the 
expression level of the gene, which has the target motif on 
its promoter region, was relatively high in fold change at the 
early time-points in response to wounding stress. Second, 
the pCRE site is near the PAM sequence such that the site 
renders susceptible to the CRISPR/Cas9 mutation (Osakabe 
et al., 2016). We finally selected genes JAZ2 (JASMONATE- 
ZIM-DOMAIN  PROTEIN  2, AT1G74950) and GER5   (GEM- 
RELATED 5, AT5G13200). GER5, although not known to be 

Importance 
rank 

1 50 100 150 
 

 
PCC 1 0.9 0.8 0.7 PCC 1 0.9 0.8 0.7 involved in wounding response, was highly expressed 0.5, 1, 

and 3 h after wounding and contained the CCGCGT motif 
Figure 4 Average importance rank for the top 10 pCREs for each 
wound-response model and their association to a TF family. Wound- 
response models are the columns while pCREs are the rows. The top 
10 pCREs for each model are shown, and how those pCREs overlap 
with other models in terms of importance rank. The average impor- 
tance rank shown is the rank of average importance of a feature across 
five duplicate models ran for the same time-point. Highest rank (1) is 
red and ranks 150 or lower are blue. Gray color indicates that the 
pCRE is not present at that wound-response time-point. Association 
between pCREs and TF families was based on the similarity (measured 
using PCC) between sequences of pCREs and the previously reported 
binding sites (identified by DAP-seq or cis-BP) of TF families. The TF 
family with the maximum PCC to a pCRE was associated with the 
pCRE in question. PCC is shown for both DAP-seq (degrees of blue 
color) and cis-BP (degrees of green color) sites. 

 
cis-regulatory code in response to wounding demonstrate 
how sets of pCREs, which are likely bound by a variety of 
TFs, are important at different response times after 

in the promoter region. JAZ2 is a well-known JA-responsive 
gene (Fernández-Calvo et al., 2011) and the promoter region 
contained the G-box motif (CACGTG), which can be utilized 
as a positive control in our mutation assay (Figueroa and 
Browse, 2012), as well as the CCGCGT motif. 
Next, we made the CRISPR/Cas9 construct that targets 

the pCREs in JAZ2 and GER5 promoters and transformed it 
into Arabidopsis with the Col-0 background. From antibiotic 
resistance T1 plants, we found a homozygous mutant called 
jaz2-4 ger5-3. The jaz2-4 ger5-3 mutant had one base pair in- 
sertion in the CCGCGT motif on both JAZ2 and GER5 pro- 
moters, where T insertion in the JAZ2 promoter led to no 
significant nucleotide change from CCGCGT to CCGCGTT, 
while G insertion in the GER5 promoter caused a base alter- 
ation from CCGCGT to CCGCGGT (Figure 6). Further, we 
generated a homozygous mutant called jaz2-5 that harbored 
a mutation within the G-box motif of JAZ2 promoter, in 
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which the CACGTG motif was mutated to CACGTTG 
(Figure 6). To determine the effect of the motif mutations 
on their downstream gene expression upon wound treat- 
ment, we harvested the seedlings of jaz2-4 ger5-3 and jaz2-5 
mutants, as well as Col-0 controls, 1 h after wounding. The 
transcript abundances of both mutants and Col-0 were ana- 
lyzed by reverse transcription quantitative polymerase chain 
reaction (RT-qPCR). 
In the jaz2-4 ger5-3 mutant the expression of the JAZ2 

gene was upregulated after wounding, exhibiting the same 
phenotype as the Col-0 control (Figure 6). Thus, as 
expected, regulation of JAZ2 was not altered in jaz2-4 ger5-3 
by wounding, because the CRISPR–Cas9 mutation had 
resulted in a synonymous change. Although this in itself 
does not show that the G-box affects wounding, it is what 
was expected from the CRISPR result since CACGTT is also 
considered to be a G-box, and this was previously shown to 
be important for regulating JA/wound expression (Figueroa 
and Browse, 2012). Interestingly, the expression level of 
GER5 was not changed in jaz2-4 ger5-3 upon wound treat- 
ment, while the expression of GER5 was significantly upregu- 
lated in the Col-0 control (fold increase = 5.52). This 
indicates that CCGCGT, a derivative of the stress-responsive 
motif CGCG-box, enables the GER5 gene to respond to early 
wounding and is disabled by the G insertion. 
The JAZ2 expression was upregulated in response to the 

wounding treatment in both Col-0 and the jaz2-5 mutant. 
Additionally, the GER5 transcript level increased after 
wounding in the jaz2-5 mutant (Supplemental Figure S2). In 
the case of JAZ2, the G-Box CACGTG was changed to 
CACGTT, which is a G-Box variant (Dombrecht et al., 2007). 
Thus, while significant, the change did not substantially alter 
the JAZ2 response (fold increase = 1.04) compared with the 
jaz2-4ger5-3 mutant (fold increase = –0.08). The GER5 ex- 
pression was also not markedly different in the jaz2-5 mu- 
tant relative to the Col-0 in response to wounding (fold 
increase = –1.73, P = 8.07E-05). Taken together, these 
results indicate that the CCGCGT CRE is responsible for the 
wounding response of GER5. 
 
Experimental validation of important unknown 
pCREs at later time-points 
In addition to CREs important for early wounding response 
at or before 1 h, we validated important pCREs at 3 and 6 h 
time-points (see Supplemental Data Set S7) using amplified 
luminescent proximity homogeneous assay (ALPHA) in vitro 
DNA-binding experiments complemented by mutations in 
protoplasts coupled with a reporter gene to evaluate in vivo 
DNA binding (see “Materials and Methods”). For genes 
upregulated after 3 h of wounding, the most important 
pCRE to be GTCGGC, a site most similar to sites that bind 
the AP2EREBP TF family, and the next most important 
pCRE to be ACACGT, similar to BZR TFBSs. For genes upre- 
gulated 6 h after wounding, the most important pCRE is 
AACGTG, a derivative of the G-box motif (CACGTG) that 
also binds Myc TFs (Fernández-Calvo et al., 2011). Thus, we 

decided to test the next most important unknown pCRE, 
GTCACA, which is most similar to NAC TFBSs. The next 
most important pCRE for the 6-h time-point is ACACGT, 
which was also important at three hours. In the end, we tar- 
geted three additional pCREs: GTCGGC, ACACGT, and 
GTCACA from the promoters of three genes AT5G07010, 
AT2G02990, and AT5G13220, respectively, for further 
testing. 
For each pCRE, we first identified candidate TF of which 

the binding site is the most similar to the CRE sequence 
(see “Materials and Methods” and Supplemental Data Set 
S7). For the ALPHA assay, recombinant proteins for TF can- 
didates were purified (Supplemental Figure S3A) and tested 
against their predicted motif for binding. For GTCACA and 
GTCGGC, more than one of the TF candidates were tested 
(Supplemental Data Set S9) where a subset did not bind 
(Supplemental Figure S3, B–D). For all three pCREs, the WT 
probes produced strong Alpha signals indicating protein 
binding to the DNA at all tested TF protein concentrations 
(Figure 7). In contrast, the probes containing the mutated 
pCRE sequences either did not produce signals or at a signif- 
icantly lower level compared to WT probes (Figure 7). 
These findings indicate that the WT pCRE sequence is im- 
portant for binding the candidate TFs. 
Next, we checked in vivo binding using a protoplast as- 

say for GTCGGC and GTCACA important for 3-h and 6-h 
post-wounding, respectively. For each gene containing ei- 
ther the GTCGGC or GTCACA pCRE in their promoters, 
we first measured mRNA accumulation levels in 
unwounded and wounded Arabidopsis plants and in 
Arabidopsis protoplasts (Supplemental Figure S4). We 
found expression for each gene increased after wounding 
compared to unwounded plants. In addition, we found 
expression in protoplasts for each gene exceeded the 
amount of expression in unwounded plants, and some- 
times that of wounded plants. Therefore, transcript levels 
increased due to wounding was similar to the expression 
increase seen in protoplasts, relative to unwounded 
plants. We hypothesize that because of the similarity in 
gene expression there may be similarities in how the 
genes of wound response and protoplasts are regulated. 
Next, we assembled each pCRE site or its mutated version 
as a tetramer in a head-to-tail orientation upstream of a 
luciferase reporter gene (harboring a minimal CaMV 35S 
promoter, see “Materials and Methods”; Figure 8A) that 
was co-transfected into the Arabidopsis protoplasts. For 
both pCREs, we found significantly higher luminescence 
levels in protoplasts with WT sequences than with mu- 
tated ones (Figure 8B). This indicates that each motif is 
sufficient to induce expression in Arabidopsis protoplasts 
while the mutated motifs are not. Thus, the predicted 
GTCGGC and GTCACA motifs regulate reporter gene ex- 
pression in vivo, providing evidence for their functionality 
in wound-response regulation, but stress that this does 
not experimentally show these pCREs to be directly in- 
volved in wound response. 
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Figure 5 Motif logos for the top three pCREs for each upregulated wound-response cluster. Chart is divided by time-point (0.25–24 h after 
wounding). The first column is the top 3 ranked pCREs for each time-point. Note that ranking includes other features such as DHSs and DAP-seq 
sites, therefore the actual pCRE rank may be lower. The second column shows the average rank for a pCRE in the given model. The third and 
fourth columns show the best matched TFBM logos, with forward and reverse complement sequences, respectively. PCC values between pCREs 
and the TFBMs are indicated in the third column. Columns 5–7 are the TF that binds to a given binding site (column 6), the TF family the TF 
belongs to (column 5), and GO categories of the TF (column 7). 
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Figure 6 Mutation in predicted cis-regulatory motif abolished the induction of GER5 by wounding. A, CRISPR/Cas9 mutation in the CCGCGT mo- 
tif in the JAZ2 promoter region (resulting in the jaz2-4 ger5-3 line). B, CRISPR/Cas9-mediated mutation in the CCGCGT motif in the GER5 pro- 
moter region in jaz2-4 ger5-3. Chromatogram represents the sequence of the JAZ2 or GER5 promoter region modified by CRISPR/Cas9 (upper 
chromatograms), and the corresponding region in Col-0 (lower chromatograms). Blue and red boxes indicate PAM sequence and gRNA target 
regions, respectively. C and D, Wound responses of JAZ2 (C) and GER5 (D) expression in Col-0 and in jaz2-4 ger5-3. Transcript abundances of JAZ2 
or GER5 evaluated by RT-qPCR were normalized to ACTIN2. NW and W indicate no wound, collection after 1 h, and wound treatment after 1 h, 
respectively. Values for biological triplicates are shown using individual bars, while values for three technical repeats for each biological replicate 
were depicted with error bars. Significance levels of differences from the one-way analysis of variance were indicated with asterisks (Non- 
Significant [NS] P 4 0.05, *P 5 0.05, **P 5 0.01). 
 
 

Modeling the regulatory code of JA-dependent and 
JA-independent gene response across wounding 
time-points 
Having demonstrated pCREs important for predicting 
wound response, we next studied the regulatory differences 
between  JA-dependent  and  JA-independent  genes  in  the 
context of wound response. JA-independent wounding 
responses include those induced by RNase and nuclease ac- 
tivities that are triggered by wounding but not by the appli- 
cation of JA (LeBrasseur et al., 2002). Thus, to understand 
how  JA-independent  wound  responses  are  regulated,  we 
used the hormone treatment data (Goda et al., 2008) to 
identify wound-responsive genes that were also responsive 
to JA or not at 0.5, 1, and 3 h, for which data for both JA 
and wounding treatments are available. For these three 
time-points, 84%, 74%, and 72% of genes were upregulated 
after wounding but not after JA treatment, respectively 
(Supplemental Figure S5), consistent with the findings of a 
prominent JA-independent component in wounding re- 
sponse in other studies (León et al., 1998; LeBrasseur et al., 

2002). With this information, we divided the wound-re- 
sponse clusters from the 0.5-, 1-, and 3-h time-points into 
JA-dependent and JA-independent gene subclusters and 
generated model predicting wound response for each cluster 
using known CREs, DAP-seq sites, DHSs, and/or pCREs. 
Similar to our earlier results, pCRE-based models (F-meas- 
ures: 0.73–0.87) outperformed both known CREs (0.67–0.74) 
and known CREs/DAP-seq/DHSs-based models (0.66–0.73; 
Figure 9; for SVM models: Supplemental Figure S1B and 
Supplemental Data Set S4). Thus, pCREs were able to better 
model the regulation of JA-dependent and JA-independent 
wounding response across time-points, than known TFBSs. 
By comparing the importance of known CREs, DAP-seq 

sites, DHSs, and pCREs across models, we identified how JA- 
dependent and JA-independent responses differed in which 
known CREs and pCREs were important. At 30 min and 1 h 
after wounding, for example, CGCGTT, the RWR element, 
and CACGTG, the G-box recognized by many bHLH factors 
(Heim, 2003; Dombrecht et al., 2007), were the most impor- 
tant known elements for the JA-independent and JA- 
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dependent models, respectively (see Supplemental Data Set 
S10 for pCREs, DHSs, and DAP-seq sites and their respective 
importance  scores  for  JA-independent  and  JA-dependent 
models). Interestingly, the G-box element also ranks as the 
third most important feature in the JA-independent models. 
This could be because other TFs that are not involved in JA 
response (e.g. Myc-LIKE and BIM3 TFs) can also bind to this 
element (O’Malley et al., 2016) or because the Myc element 
may be necessary to facilitate TF binding to a different regu- 
latory element important for JA-independent response. For 
pCREs, with the exception of the G-box motif and the bZIP 
binding site (ACGTGT), there was little overlap in the rank- 
ing of important motifs between the JA-dependent and JA- 
independent models (Supplemental Figure S6). For example, 
AACGTG and CACGTTT were ranked from 1st to 7th across 
time-points in JA-dependent  models  but were not present 
or were ranked much lower (69th to 157th) for JA- 
independent models (Supplemental Figure S4 and 
Supplemental Data Set S8). In contrast, CCGCGT and 
GCCGAC were the most important pCREs 0.5 and 3 h after 
wounding in the JA-independent models but were not pre- 
sent or were ranked much lower (232nd importance) for JA- 
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Figure 7 Binding of three TFs to identified cis-regulatory motifs. WT 
probes containing motifs ACACGT (A) from promoter AT2G02990, 
GTCGGC (B) from promoter AT5G07010, and GTCACA (C) from pro- 
moter AT5G13220, and their corresponding mutant probes were incu- 
bated with recombinant His6-AT4G18890, His6-AT4G32040, and 
His6-AT4G36900 proteins, respectively, and the DNA binding affinity 
was determined by ALPHA assay. Three different concentrations (0, 
50, and 100 nM) of the proteins were examined with 10-nM probe in 
three technical replicates and two biological replicates. Similar trends 
of the results were obtained from the two biological repeats and one 
representative was shown with error bars indicating the standard devi- 
ation of technical replicates. The tested cis-regulatory motifs and the 
mutated sequences within the motifs are indicated shaded and under- 
lined, respectively. The different letters indicate significant differences 
between groups evaluated by one-way analysis of variance followed by 
the Tukey’s multiple comparison test at 5% significance level. 

 
 
 
 
 
 

Figure 8 Mutation in the GTCACA and GTCGGC motifs attenuate 
expression of a reporter gene, when placed as tetramers upstream 
of a minimal 35S promoter. A, Firefly luciferase fused to the cis-reg- 
ulatory motifs (WT or mutant–WT constructs are shown) were co- 
electroporated into Arabidopsis Col-0 protoplasts together with 
p35S:Renilla reporter, and luminescence levels were evaluated by 
dual bioluminescence assay. B, Luciferase activity was normalized 
by Renilla luciferase activity. Data represent mean ± SD of three bio- 
logical replicates of each WT and respective mutant construct, and 
an asterisk indicates P 5 0.05 (Student’s t test). 
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dependent models (Supplemental Data Set S10). Finally, we 
found that, of the top 10 most important features for each 
model, four to eight were DHSs for JA-independent models 
but none for JA-dependent models (Supplemental Data Set 
S10). Taken together, these findings highlight how JA- 
dependent and JA-independent responses were regulated by 
different sets of regulatory elements and were characterized 
by distinct chromatin accessibility patterns. 
 
Modeling metabolic pathway regulation using 
wound stress data 
We next assessed whether the regulatory sequences identified 
allow us to understand wounding response at the level of 
metabolic pathways. Here, we asked which specialized metab- 
olism pathways were enriched in genes upregulated across 
the wounding time series (Supplemental Data Set S11). 

Responses 
Wound JA 

 
 
 
 
 
 
 
 
 
 
 
 
 
JA dependent 
JA independent 

 
F-measure 

 
 
 
 
 
 
 
 
 
 
 
 

Input dataset 
+ + - 
- + - 
- - + 

 
# genes 

 
 
 
 
 
 
 
 
 
 
 
 
 
- Known CREs 
+ DAP-seq/DHS 
+ pCREs 

Depending on the time-point, 5 –11 pathways were signifi- 
cantly enriched in wound-response genes. From 0.25 to 3 h 
after wounding, JA biosynthesis was the most highly enriched 
pathway (P-values range from 1.5e–3 to 3.5e–7; Supplemental 
Data Set S11). However, by 12 h it is no longer significantly 
enriched. Another example was the glucosinolate biosynthesis 
from tryptophan (Gluc-Trp) pathway, its pathway genes were 
enriched 0.5 h after wounding (P = 0.008), peaked at 12 h 
(P = 0.0008) and were not significantly enriched by 24 h. In 
addition, AT2G38240 (JASMONATE-INDUCED OXYGENASE4) 
and AT5G05600 (JASMONATE-INDUCED OXYGENASE2) from 
the JA biosynthesis pathway were upregulated at 0.5 h after 
wounding and remained upregulated throughout the time 
course (Supplemental Data Set S11). These examples demon- 
strate the effect of wounding on metabolic pathways and 
that these wounding-responsive pathways exhibit distinct re- 
sponse patterns. Using the Gluc-Trp pathway as an example, 
we further assessed the regulatory basis of the wounding 
responses of genes in this pathway. By 0.5 h after wounding, 
three Gluc-Trp genes were significantly upregulated and at 1 
h three additional genes were significantly upregulated (see 
stars; Figure 10A). Looking beyond the first hour, we saw a 
cascading effect, whereby 3 h after wounding, the genes upre- 
gulated at 1 h were still upregulated, but the three genes that 
were first upregulated at 0.5 h were no longer upregulated. 
Continuing this trend, by 6 h after wounding, only one gene 
that was upregulated at 1 and 3 h after wounding was still 
significantly upregulated (Figure 10A). This pattern could be 
because genes upstream in the pathway are involved, directly 
or indirectly, in upregulating downstream genes in the 
pathway. 
To understand how the cascading response was regulated, 

we mapped the pCREs found from each of the wounding- 
response time-point models built for upregulated genes to 
the putative promoters of the Gluc-Trp pathway genes 
(Figure 10B). Starting at 0.5 h after wounding, there was lit- 
tle overlap of important pCREs (red in Figure 10B) across 
time-points except for pCREs present at 6 and 12 h after 
wounding. This indicates that for the Gluc-Trp pathway, 
genes turned on at different times have different CREs. For 

 
Figure 9 Model performance of each JA-dependent and JA-indepen- 
dent wounding-responsive cluster. Each row is a single cluster (JA-re- 
sponsive [orange] or JA-non-responsive [blue-NC = no change]), for 
which a separate model was built using RF. Each column represents 
the data sets used as features in the model. Known only refers to CREs 
reported in the literature (Supplemental Data Set S3). DAP-seq and 
DHS refer to the DAP-seq and DHSs, respectively. FET enriched 6-mer 
refers to the pCREs, which were enriched for a specific cluster. The F- 
measure range is from 0.5 (white) to 1 (red), and gradient as well as 
actual F-measure is shown in each cell. The bar chart next to the heat 
map corresponds to each row/cluster and represents the number of 
genes in that cluster. Note that the models were not generated for 
genes downregulated 3 h after wounding because there were not 
enough genes available for training. 
 

example, ACACGT, which resembles bZIP binding motif 
(PCC = 1), is the most important element at 0.5 h after 
wounding (Figure 10C) and is not found in Gluc-Trp path- 
way genes upregulated at other time-points except at 24 h. 
The treatment-time-specific nature is generally true among 
the top pCREs except for AACGTG, which was enriched in 
the promoters of Gluc-Trp pathway genes upregulated 1, 3, 
6, 12, and 24 h after wounding. In summary, pCREs responsi- 
ble for upregulation of Gluc-Trp pathway genes upon 
wounding varied for different time-points after wounding, 
indicating that timing of response is an important consider- 
ation when identifying CREs. Furthermore, these results 
highlight that a series of regulatory elements acting at differ- 
ent times, rather than one canonical element, is central to 
regulating pathways triggered by a specific environment. 

Conclusion 
The aim of this study was to better understand the tempo- 
ral differences in transcriptional response to wounding stress 
in Arabidopsis. We accomplished this by integrating multiple 
levels of regulatory information (e.g. sequence-based and 
epigenetic features) into machine learning models of the 
regulatory code that could be used to predict if a gene was 
up- or downregulated at a specific time-point after wound- 
ing. This system-wide, modeling approach adopted in this 
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study allows us to address the critical question: how well 
the known CREs allow for predicting whether a gene would 
be wound responsive or not. We demonstrated that wound- 
ing response is regulated by a diverse set of regulatory ele- 
ments that are likely bound by TFs from a wide range of TF 
families, in addition to elements that were previously identi- 
fied. We identify 4,255 pCREs derived from wounding co- 
expression clusters which are upregulated at different time- 
points, with 3,493 (82%) having high sequence similarity 
(PCC 4 0.8) to known TFBSs, although they are not identi- 
cal and it is mostly unknown whether they are involved in 
wound response. These pCREs were more predictive of dif- 
ferential expression at each wounding time-point than mod- 
els based on known TFBSs (derived from the literature and 
the DAP-seq database) and information about open chro- 
matin sites. From our machine learning models, we quanti- 
fied the relative importance of each pCRE included in the 
model for each time-point. While some pCREs were impor- 
tant across multiple time-points, we generally found that 
pCREs were either important for early or late time-points 

after wounding. Our study also provides a comparison of 
the  cis-regulatory  programs  of  JA-dependent  and  JA-inde- 
pendent responses. We identified 2,569 pCREs important for 
predicting genes upregulated in response to wounding but 
not upregulated in response to JA treatment. Of these, 2,371 
(92%) had strong sequence similarity (PCC 4 0.8) to known 
TFBSs. Finally, by focusing on genes in the Gluc-Trp path- 
way, we identified pCREs important for predicting genes in 
this wound-responsive specialized metabolite pathway. 
While our models perform notably better than ran- 

dom expectation, there remains room for improvement. 
One possible reason we could not predict differential ex- 
pression more precisely is that we limited our study to 
focus on CRE sites in the promoter region ( + 1-kb up- 
stream of the transcription start site). However, CREs lo- 
cated in other regions, including the downstream 
untranslated regions, introns, or coding regions of a 
gene, can be useful for predicting whether the gene in 
question is stress responsive (Azodi et al., 2020) and 
could be evaluated in future studies. Another limitation 
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Figure 10 Co-expression and regulation of glucosinolate from tryptophan pathway genes. A, Heatmap showing the log2FC values of all genes in 
the Gluc-Trp pathway across the seven wounding time-points. Genes are clustered using hierarchical clustering. Genes are on the y-axis, wounding 
time-points are on the x-axis, and log2FC is represented as the color gradient from a value of 2 or greater (red) to a value of –1 or less (blue). Stars 
indicate genes are significantly upregulated at a given time-point. B, Scaled importance score of pCREs mapped to Gluc-Trp genes, which are upre- 
gulated at a given wounding time-point. Importance is scaled from 0 to 1, where 1 is the most important and 0 is the least important. Each row is 
a pCRE and each column is the wounding time-point. C, The most important pCRE for Gluc-Trp pathway genes at a given time-point. First three 
columns show the wounding time-point, pCRE, and the correlation of the pCRE to a known TF binding site shown as a motif logo, respectively. 
The fourth column shows the scaled importance value of that particular pCRE for the Gluc-Trp genes at each time-point. 
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is that genes up- or downregulated at a particular time- 
point might not be all regulated the same way. This is 
especially likely for larger time-point gene groups, like 
the 1hr_up cluster, which contained 760 genes. If we 
could further break down this group, perhaps based on 
the genes’ responses to other stresses, we may be able to 
model more specific responses at 1 h and improve the 
overall performance. Finally, the data sets regarding 
DAP-seq and DHS sites did not come from wounded 
plants, and therefore were not capturing any changes 
that may occur in TFBSs or chromatin state after 
wounding. DAP-seq and DHSs data may indeed improve 
predictions if drawn from a similar treatment specific 
data set. Other studies have shown that the association 
with histone proteins can change under stress response 
(Kim et al., 2017) and DAP-seq sites have been shown to 
be important in temporal nitrogen signaling gene ex- 
pression in Arabidopsis roots and shoots (Varala et al., 
2018). 
Many of the important pCREs found in this study have 

not been shown to be associated with wounding. This is es- 
pecially true for pCREs found at later time-points, which 
have been less well studied. With technologies such as 
CRISPR–Cas9, it is feasible to generate precise edits to the 
DNA to test the role of these pCREs in temporal wounding 
response experimentally. We mutated the pCRE CCGCGT 
and this resulted in a significant decrease in expression of 
the target gene GER5 under wounding treatment. 
Additionally, we show three predicted CREs, GTCGGC, 
GTCACA, and ACACGT, to bind to their predicted TF 
in vitro, and two of these to control protoplast expression 
in vivo, and can be followed up with experiments using sta- 
ble transgenic lines to show clear association with wound re- 
sponse. Our study demontrates the feasibility of modeling 
temporal response to wounding computationally and, 
through intepreting the models, identifies a set of important 
putative cis-regulatory targets. Finally, the computational 
framework in this study can be applied to assess the cis-reg- 
ulatory mehanisms in other contexts. We found regulatory 
sequences previously unknown but likely to be important to 
JA dependent or independent responses which should be 
tested in future experiments. Another example is the Gluc- 
Trp pathway donstrating that we were able to identify 
pCREs regulating wound response at the pathway level. 
Therfore, we expect that the same approach can be applied 
generally to any sets of genes commonly regulated in a spe- 
cific environment, stage of development, tissue/cell type, 
and timing to generate model supported hypotheses of cis- 
regulation. 

Materials and Methods 
Expression data sets and analysis 
Microarray data from three different AtGenExpress studies 
were downloaded from TAIR and CEL files were processed 
using the Affy package (1.68.0; Gautier et al., 2004) in R 
(4.0.1). The studies included biotic stress (Wilson et al., 

2012), abiotic stress (Kilian et al., 2007; Wilson et al., 2012), 
and hormone treatment (Goda et al., 2008), where wound- 
ing is part of the abiotic stress data set. Arabidopsis plants 
used in those studies grew under similar conditions and 
were treated 18 days after germination. Those studies were 
all part of the AtGenExpress project. Each study had eight 
different treatments of either different stresses or hormones, 
resulting in a total of 24 data sets. Samples from each data 
set were collected after treatment at a range of time-points, 
including 15 min, 30 min, 1 h, 2 h, 3 h, 4 h, 6 h, 12 h, and 
24 h after treatment. Note that not all time-points were 
used in this study for each treatment. For each data set, 
controls were collected at the same time in order to control 
for circadian effects. 
Differential expression was calculated using Affy and 

limma (3.46.0) packages in R (Gautier et al., 2004; Ritchie 
et al., 2015), and significantly differentially expressed genes 
were those that  had  an  absolute log2FC 51 (log2FC  51: 
upregulated, log2FC less than or equal to –1: downregu- 
lated) and adjusted (false discovery rate corrected for multi- 
ple comparisons) P 5 0.05. For each treatment within each 
expression data set, PCC was calculated for all pairwise 
combinations. 
 
Gene clusters 
The wounding time-point clusters were determined by two 
considerations: (1) time-point after wounding (0.25, 0.5, 1, 3, 
6, 12, and 24 h), (2) direction of differential expression (up- 
or downregulated). For example, genes that were upregu- 
lated at 0.25 h after wounding belong to the 0.25hr_up clus- 
ter, while genes that are downregulated at 1 h after 
wounding made the cluster 1hr_down. This created a total 
of 14 wounding clusters. For wounding and JA clusters, 
genes were placed in a cluster based on whether they were 
differentially expressed in one or both treatments at the 
same time-point. For example, a gene X upregulated in both 
1 h after wounding and 1 h after JA treatment would be 
placed in cluster 1hr_up/1hr_up, while gene Y upregulated 
in 1 h after wounding but not differentially expressed under 
1 h after JA treatment would be placed in cluster 1hr_up/ 
1hr_NC (NC: no changes). Thus, a gene Z upregulated in 1 
h after wounding but downregulated in 1 h after JA treat- 
ment would be placed in cluster 1hr_up/1hr_down. 
Therefore, for the three time-points available for both 
wounding and JA treatment data sets (0.5, 1, and 3 h), there 
are potentially 18 clusters: 3 time-points 2 regulation 
directions after wounding (up- or downregulated) 3 regu- 
lation directions after JA treatment (up- or downregulated, 
or no changes). Three of these potential clusters contained 
no genes and were subsequently omitted (0.5hr_up/ 
0.5hr_down, 0.5hr_up/1hr_down, 0.5hr_up/3hr_down). In 
addition, a nondifferentially expressed cluster was deter- 
mined by genes, which were not differentially expressed 
across all stress and hormone treatments, including all time- 
points. For the information of all gene clusters (genes and 
the number of genes for each cluster) and the overlap be- 
tween clusters, see Supplemental Data Set S1. 
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Known CRE curation and pCRE finding 
Known regulatory elements, including elements reported to 
be responsive to JA treatment, wounding, or insect stress, 
were curated from a literature search (Supplemental Data 
Set S3). Both the known CREs with experimental evidence 
and predicted by computational approaches were included. 
For pCRE finding, putative promoter regions of each gene 
(identified as 1-kb upstream of the transcription start site) 
were downloaded from TAIR for Arabidopsis. Homemade 
python scripts (https://github.com/ShiuLab/MotifDiscovery) 
were used to identify all possible combinations of k-mers 
(oligomer sequences of length k) present in gene promoters. 
The Fisher’s exact test (FET) was then used to determine 
the overrepresented pCREs in the promoter region (defined 
as 1,000-bp upstream of gene start site) for a given wound- 
responsive gene cluster compared with the nondifferentially 
expressed cluster. Four P-value cutoffs (adjusted P 5 0.01, 
P 5 0.01, adjusted P 5 0.05, and P 5 0.05) were explored 
for the FET, and the second one (P 5 0.01) performed best 
for the later machine-learning models. Starting with all pos- 
sible 6-mers, pCREs which were found to be significantly 
overrepresented in the target clusters were kept. Next, the 
k-mer finding was performed for 7-mers, which were 
produced by adding one nucleotide to the enriched 6-mers 
on either side, thus there were eight possible 7-mers for 
each 6-mer. These 7-mers were again tested to see if they 
were significantly overrepresented in the given cluster, and if 
their P-value was lower than that of the parent 6-mer. If 
this was true, the 7-mer was kept and the 6-mer was dis- 
carded. If not, the 7-mer was discarded and the 6-mer was 
kept. This progressive procedure of “growing” k-mers contin- 
ued until the longest k-mer with a P-value lower than its 
predecessor was obtained. The enriched pCREs were then 
used as features (present or absent for a pCRE in a gene) to 
predict whether a gene belongs to a particular wound- 
responsive cluster or the non-differentially expressed cluster 
in machine-learning models. 

Arabidopsis cistrome and epicistrome 
Two data sets with in vitro TFBMs were used to correlate 
the pCREs with the TFBMs. For the first, the position weight 

WT and ddm1-2 mutant plants. The DHS peak coordinates 
were obtained from BED files (https://www.ncbi.nlm.nih.gov/ 
geo/query/acc.cgi?acc=GSE34318) and then mapped to the 
Arabidopsis genome. If the peak overlapped with the pro- 
moter of a gene of interest, the peak was considered present 
as a feature for that gene. 

 
Machine learning models 
Prediction models were built for each wound-responsive clus- 
ter as well as for wounding-JA cluster, where the presence or 
absence of enriched pCREs from the promoter analysis were 
used as features to predict whether a gene belongs to the 
cluster in question or the non-differentially expressed cluster. 
Two machine learning algorithms implemented in the scikit- 
learn package (Pedregosa et al., 2011), RF and SVM, were 
used to build the model for each cluster. Python scripts used 
to run the models can be found here: https://github.com/ 
ShiuLab/ML-Pipeline. For each model, 10% of the data were 
withheld from training as an independent, testing set. 
Because the data set was unbalanced (e.g. there were 760 
genes in the 1hr_up cluster while 6,855 genes in the nondif- 
ferentially expressed cluster [null genes]), 100 balanced data 
sets were created by randomly drawing genes from the null 
gene cluster to match with the number of genes in the target 
cluster. Using the training data, grid searches over the param- 
eter space of RF (max_depth = 3, 5, 10, max_features = 0.1, 
0.5, sqrt, log2, None, n_estimators = 100, 500, 1,000) and SVM 
(Kernel=Linear, C = 0.001, 0.01, 0.1, 0.5, 1, 10, 50) were per- 
formed. The optimal hyperparameters identified from the grid 
search were used to conduct a 10-fold cross-validation run 
(90% of the training data set were used to build the model, 
the remaining 10% were used for validation) for each of the 
100 balanced data sets. 
We compare model performance using F-measure defined 

as: 
  2   precision · recall  

1 recall-1   precision-1 precision recall 
tp 

 
 ¼ tp þ 1 ðfp þ fnÞ : 

Where Precision ¼ tp and Recall ¼ tp and tp = true 
matrices for Arabidopsis TFBMs determined from protein tpþfp tpþfn 

 
binding arrays (Weirauch et al., 2014) were downloaded 
from the CisBP database (http://cisbp.ccbr.utoronto.ca). For 
the second, DNA affinity purification sequencing (DAP-seq) 
peaks (O’Malley et al., 2016) were downloaded from the 
PlantCistrome Database (http://neomorph.salk.edu/ 
PlantCistromeDB). The coordinates of the peaks (which are 
determined by the previous research group) were then 
mapped to the Arabidopsis genome using python scripts. If 
the peak overlapped with the promoter of a gene of inter- 
est, the peak was considered present as a feature for that 
gene. To provide insight into chromatin structure, bed files 
for DHSs in Arabidopsis (Zhang et al., 2012) were obtained 
from the National Center for Biotechnology Information 
database under the ID number GSE34318. The DHS sites 
were assessed using samples from leaf and flower of both 

positive, fp= false positive, fn = false negative. Throughout 
the manuscript, we compare the RF models as model 
performance can change based on the algorithm, but all 
F-measures are reported in Supplemental Data Set S4. Thus, 
in a binary model, a perfect prediction has an F-measure of 
1 and the F-measure of random expectation is 0.5. The RF 
models also provide an importance score for each input fea- 
ture, which is determined by the average decrease in impu- 
rity of a node in a decision tree across the forest when the 
feature is used. Thus, features with higher importance scores 
are more important for a RF model (Breiman, 2001; Louppe, 
2014). Importance values were then normalized by scaling 
between 0 and 1. Features were ranked based on their im- 
portance scores for a model, and the average rank of a fea- 
ture across five duplicate models run for the same time- 
point was used as the average importance rank of the 
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feature. Percentile rank is calculated as dividing the rank of 
a feature by the total number of features. Performance of re- 
gression models were measured using Pearson’s correlation 
of predicted log2FC to actual log2FC, where a PCC of 1 is a 
perfect correlation, 0 indicates no correlation, and –1 indi- 
cates an anti-correlation. 
For each cluster, models with only known CREs were built, 

and then models with known CREs plus DAP-seq and DHSs 
information were built. Finally, models with DAP-seq, DHSs 
and enriched pCRE information were built. Additionally, for 
the final model type, five separate models for each wound- 
ing time-point cluster, each with 100 balanced replicates 
were run to determine the rank for each feature (pCREs) 
from most important to least important. This was then 
used to get an average importance rank of features from 
the five models (for average importance ranks, see 
Supplemental Data Set S7; for raw importance scores from 
each of the five models, see Supplemental Data Set S8). 
Before ranking, reverse complement pCREs were removed, 
so that essentially the same pCRE was not ranked twice. To 
assess random expectation, gene clusters chosen randomly 
from the expression data sets, pCREs were found using the 
same methods as above, and were used to build machine 
learning models using the methods above. Random gene 
clusters were made for genes at n = 30, 50, 100, 150, 200, 
and 250 at 20 repetitions each. Model results are reported 
in Supplemental Data Set S4. 
 
Sequence similarity between pCREs with known 
TFBSs 
TAMO/1.0 (Gordon et al., 2005) was also used to create a 
tamo file for each pCRE, which was then used to measure 
the similarity of the pCRE to known TFBSs. To compare 
pCREs to known TFBSs, pairwise PCC distance between 
pCREs and TFBSs (both DAP-seq and TFBMs from CIS-bp) 
was generated using the TAMO program (version 1.0; 
Gordon et al., 2005). After calculating the PCC distance to 
all possible TFBSs, the TFBSs with the lowest distance (high- 
est PCC) was determined for each pCRE as its best match 
and was then used for visualization of the binding site logo. 
Code for parsing TAMO output can be found at: https:// 
github.com/ShiuLab/MotifDiscovery/tree/master/TAMO_ 
scripts. 
 
CRISPR–Cas9 mutagenesis 
The and CRISPR/Cas9 mutants generated in this study were 
grown on soil (Suremix growth medium, Michigan Grower 
Products Inc., USA) or Murashige and Skoog (MS) media 
(PhytoTech Labs, USA) containing 0.8% agar under a photo- 
period of 16-h white light/8-h dark at 23oC, with the light 
provided by fluorescent bulbs of 100 mmol m–2 s–1. 
Wound treatments were done on plants grown on MS me- 
dium when they were 18 days old as in Kilian et al. (2007). 
For each set of three biological replicates, three individual 
plants were wounded using hemostats as in Koo et al. 
(2009), plant tissues were pooled and harvested 1 h after 
wounding, frozen in liquid nitrogen, and then stored at 

–80oC until RNA was extracted. For the construction of 
CRISPR plasmids, two gRNAs were simultaneously assembled 
into the pHEE401E vector by the Golden Gate assembly 
method (Wang et al., 2015). The gRNA sequences used in 
this study are shown in Supplemental Data Set S12. The 
CRISPR plasmids were transformed into GV3101 
Agrobacterium strain, followed by floral dipping into 
Arabidopsis (Col-0). The T1 transgenic plants were grown in 
MS media containing hygromycin (25 mg L–1) for 3 weeks. 
Genomic DNA was extracted from the rosette leaf of the 
hygromycin-resistant T1 plants, and the promoter regions of 
JAZ2 and GER5 were amplified by genomic PCR using the 
primers, which are listed in Supplemental Data Set S12. The 
sequences of the regions targeted by CRISPR/Cas9 were vali- 
dated by Sanger sequencing. All statistical tests for experi- 
ments are described in Supplemental Data Set S13. 
The expression levels of JAZ2 and GER5 were analyzed in 

the T2 generation with three biological replicates, for which 
different sets of seedlings were individually collected. Total 
RNA from CRISPR–Cas9 mutants was extracted with RNeasy 
Plant Mini Kit (Qiagen, USA) following manufacturer’s 
instructions. Approximately 500 ng of RNA was used for 
cDNA synthesis with SuperScript II Reverse Transcriptase 
(Invitrogen, USA). The transcript levels of JAZ2 and GER5 
were determined by quantitative real-time polymerase chain 
reaction (PCR) (Quantstudio 3 Real-Time PCR, Thermo 
Scientific, USA) using SYBR Green PCR Master Mix followed 
by manufacturer’s instruction (ThermoFisher Scientific, CA, 
USA). The Ct values of the genes were normalized to those of 
ACTIN2. The PCR primer sets were described in Supplemental 
Data Set S12. 
 
Protein expression and purification 
For the DNA-binding affinity test, Gateway donor vectors 
obtained from the ABRC (Supplemental Data Set S8) were 
recombined into pDEST17 vector (ThermoFisher Scientific, 
USA) using LR Clonase (ThermoFisher Scientific, USA). The 
pDEST17 constructs harboring the TFs were used for the 
protein expression and purification. For protein purification, 
the His6-tagged TFs were transformed into Escherichia coli 
BL21 (DE3) strain. The cells were cultured in 50 mL until 
reached optical density (OD)600 0.4 at 37oC. For recombi- 
nant protein induction, 0.5-mM isopropyl b-D-1-thiogalacto- 
pyranoside was added to the cultured media and incubated 
at 37oC for 2 h. The cells were collected, resuspended in 5- 
mL modified phosphate-buffered saline (PBS) buffer (500- 
mM NaCl, 10-mM Na2HPO4, 2-mM KH2PO4, 0.05%, and 
Triton X-100), and lysed by a sonication (Misonix Ultrasonic 
Liquid Processors S-4000, USA). After centrifugation at 
3,500g for 20 min at 4oC, the supernatant was incubated 
with 100 mL of 50% (w/v) slurry of Ni–NTA agarose 
(Thermo Fisher Scientific, USA) for 1 h and washed with 10 
mL of PBS buffer containing 50-mM imidazole. The resin 
was eluted by 200 mL of 400-mM imidazole in PBS buffer 
four times. All protein purification procedures were per- 
formed at 4oC. The quality and quantity of protein was veri- 
fied  on  sodium  dodecyl  sulfate-polyacrylamide   gel 

D
ow
nloaded from

 https://academ
ic.oup.com

/plcell/advance- article/doi/10.1093/plcell/koab287/6448773 by guest on 24 January 2022 



THE PLANT CELL 2021: Page 19 of 22 | 3 Modeling regulation of plant response to wounding 
 

· 

· 

x 

 
electrophoresis (SDS–PAGE) gel (15%, 37.5:1 acrylamide:bis- 
acrylamide, BioRad, USA) followed by Coomassie Brilliant 
Blue (G-250, Thermo Scientific, USA) staining. 

 
Evaluating DNA-binding activity using ALPHA 
DNA binding affinity test was carried out by ALPHA accord- 
ing to the manufacturer’s protocol (PerkinElmer, USA; Lee 
et al., 2021). Briefly, the purified His6-tagged proteins (0, 50, 
and 100 nM) were incubated with 0 and 10 nM of 
streptavidin-conjugated DNA probes for 1 h at room tem- 
perature. The mixture of protein and probe was incubated 
with   anti-His6   AlphaLISA   Acceptor   beads  (20  lg mL–1, 
PerkinElmer, USA) for 1 h at room temperature followed by 
incubation with AlphaScreen Streptavidin Donor beads (20 
lg mL–1,  PerkinElmer,  USA)  for  30  min  at  room  tempera- 
ture. The total mixture was transferred into white 384-well 
OptiPlate (PerkinElmer, Waltham, MA, USA) and the signal 
was read in an Alpha-compatible reader. For two biological 
replicates, two sets of recombinant proteins were obtained 
from different batches and were subjected to the assays 
with three technical replicates for each Alpha reaction. 

 
Measuring induced gene expression by RT-qPCR in 
protoplast 
For a luciferase assay, the DNA fragments containing four 
copies of cis-regulatory motifs and corresponding mutant 
probes were synthesized by Integrated DNA Technologies and 
cloned into the pENTR/SD/D-TOPO vector (ThermoFisher 
Scientific, USA). The pENT constructs were subcloned into 
the pLUC2 vector (Kim and Somers, 2010). The primers and 
DNA probes used in this study are in Supplemental Data Set 
S11. Protoplasts were isolated from 3-week-old Col-0 as in a 
previous study (Arai et al., 2019) with around 1 105 cells 
for each transformation. The isolated protoplasts were co- 
transfected with 500 ng of reporter construct and 100 ng of 
Renilla construct containing Renilla luciferase gene driven by 
35S promoter (Elomaa et al., 1998) as described previously 
(Arai et al., 2019). After co-transfection, protoplasts were incu- 
bated for 12 h at room temperature in darkness and the lucif- 
erase activity was measured by dual-luciferase reporter assay 
kit (Promega, USA) according to the manufacturer’s protocol 
using a microplate luminometer. Total RNA was extracted 
from the protoplasts using RNeasy Plant Mini Kit (Qiagen, 
USA) following manufacturer’s instructions. Around 10 ng of 
RNA was used for cDNA synthesis with SuperScript II Reverse 
Transcriptase (Invitrogen, USA). The transcript abundance of 
the gene of interests was determined by quantitative real- 
time PCR (Quantstudio 3 Real-Time PCR, Thermo Scientific, 
USA) using SYBR Green PCR Master Mix followed by manu- 
facturer’s instruction (ThermoFisher Scientific, CA, USA) by 
normalizing it to the level of ACTIN. The primers used in this 
study are described in Supplemental Data Set S12. 

 
Pathway enrichment and pCRE mapping 
Pathway annotations were downloaded from the Plant 
Metabolic Network Database (https://www.plantcyc.org/). 
Enrichment tests were performed by using python scripts 

(https://github.com/ShiuLab/GO-term-enrichment) and the 
Python Fisher 0.1.9 package, which implements the FET. To 
map the enriched pCREs to the promoter regions of genes 
in the glucosinolate from tryptophan (Gluc-Trp) pathway, 
gff files were created that contained the coordinates of 
pCREs in the promoters of all Arabidopsis genes. Genes that 
were annotated in the Gluc-Trp pathway and expressed at a 
wounding time-point were examined for the presence/ab- 
sence of the enriched pCREs. Finally, the importance scores 
of pCREs, which were mapped to Gluc-Trp genes were de- 
termined for each wounding time-point model. 

 
Accession numbers 
AtGenExpress data from TAIR: https://www.arabidopsis.org/ 
portals/expression/microarray/ATGenExpress.jsp 
CisBP database: http://cisbp.ccbr.utoronto.ca 
Plant Cistrome Database: http://neomorph.salk.edu/ 

PlantCistromeDB 
DHS sites: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 

acc=GSE34318 
The following genes and promoter elements can be found 

in the indicated data sets: 
JAZ2 (AT1G74950, Supplemental Data Set S12), GER5 

(AT5G13200, Supplemental Data Sets S9 and S12), 
RIBONUCLEASE 1 (AT2G02990, Supplemental Data Set 
S9), SULFOTRANSFERASE 2A (AT5G07010, Supplemental 
Data Set S9). 

Supplemental data 
The following materials are available in the online version of 
this article. 
Supplemental Figure 1. Heatmap of the F-measure for all 

wounding SVM models (supports Figure 2). 
Supplemental Figure 2. Mutation in the CACGTG motif 

of the JAZ2 promoter led to the downregulation of JAZ2 ex- 
pression following wound treatment (supports Figure 6). 
Supplemental Figure 3. Recombinant proteins used in 

ALPHA experiments and ALPHA assay for CRE–TF pairs 
with no significant binding (supports Figure 7). 
Supplemental Figure 4. Wound-responsive expression of 

the genes downstream of GTCACA or GTCGGC cis- 
regulatory motifs (supports Figure 8). 
Supplemental Figure 5. Gene overlap of JA-dependent 

and JA-independent clusters (supports Figure 9). 
Supplemental Figure 6. Average importance rank for the 

top  10  pCREs  for  each  JA-dependent  and  JA-independent 
wound-responsive model and the associated TF families 
(supports Figure 9). 
Supplemental Data Set S1. Sample cluster overlap and 

genes in each cluster. 
Supplemental Data Set S2. Between sample PCC results. 
Supplemental Data Set S3. Known cis-regulatory ele- 

ments derived from literature. 
Supplemental Data Set S4. All machine learning model 

results. 
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Supplemental Data Set S5. Feature importance for mod- 
els using only known elements or sites. 
Supplemental Data Set S6. All pCREs enriched for each 

wounding time-point cluster and their P-values. 
Supplemental Data Set S7. Summary table for the im- 

portance rank of each pCRE for each cluster and their corre- 
lation to DAP-seq or cis-BP sites. 
Supplemental Data Set S8. Raw importance scores for 

wounding models. 
Supplemental Data Set S9. DNA binding activity of six 

TFs. 
Supplemental Data Set S10. Overall feature importance 

score   for   wounding   JA-dependent   and   JA-independent 
clusters. 
Supplemental Data Set S11. Pathway enrichment for 

each wounding time-point cluster and P-values. 
Supplemental Data Set S12. Primers used for CRISPR- 

cas9 and qPCR and promoter sequences of experimental 
genes. 
Supplemental Data Set S13. Statistical analyses for each 

experimental figure. 
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Rushton PJ, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) 
Synthetic plant promoters containing defined regulatory elements 
provide novel insights into pathogen- and wound-induced signal- 
ing. Plant Cell 14: 749–762 

Schilmiller AL, Howe GA (2005) Systemic signaling in the wound re- 
sponse. Curr Opin Plant Biol 8: 369–377 

Stotz HU, Mueller S, Zoeller M, Mueller MJ, Berger S (2013) TGA 
transcription factors and jasmonate-independent COI1 signalling 
regulate specific plant responses to reactive oxylipins. J Exp Bot 64: 
963–975 

Tierens KFM-J, Thomma BPHJ, Brouwer M, Schmidt J, Kistner K, 
Porzel A, Mauch-Mani B, Cammue BPA, Broekaert WF (2001) 
Study of the role of antimicrobial glucosinolate-derived isothiocya- 
nates in resistance of Arabidopsis to microbial pathogens. Plant 
Physiol 125: 1688–1699 

Uygun S, Seddon AE, Azodi CB, Shiu S-H (2017) Predictive models 
of spatial transcriptional response to high salinity. Plant Physiol 
174: 450–464 

Varala K, Marshall-Colón A, Cirrone J, Brooks MD, Pasquino AV, 
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