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Abstract

The electron VDF in the solar wind consists of a Maxwellian core, a suprathermal halo, a field-aligned component
strahl, and an energetic superhalo that deviates from the equilibrium. Whistler wave turbulence is thought to
resonantly scatter the observed electron velocity distribution. Wave–particle interactions that contribute to Whistler
wave turbulence are introduced into a Fokker–Planck kinetic transport equation that describes the interaction
between the suprathermal electrons and the Whistler waves. A recent numerical approach for solving the Fokker–
Planck kinetic transport equation has been extended to include a full diffusion tensor. Application of the extended
numerical approach to the transport of solar wind suprathermal electrons influenced by Whistler wave turbulence is
presented. Comparison and analysis of the numerical results with observations and diagonal-only model results are
made. The off-diagonal terms in the diffusion tensor act to depress effects caused by the diagonal terms. The role of
the diffusion coefficient on the electron heat flux is discussed.

Unified Astronomy Thesaurus concepts: Solar wind (1534)

1. Introduction

The electron velocity distribution function (VDF) in the solar
wind differs significantly from a thermal equilibrium state and
reveals an enhanced suprathermal tail (Feldman et al. 1974;
Feldman et al. 1975; Marsch et al. 1982). Typically, the electron
VDF can be modeled as being composed of four components: a
Maxwellian “core,” “halo,” “strahl,” and “superhalo” in ascending
electron energy (Ergun et al. 1998; Wang et al. 2012). These
components are significantly different from each other in their
underlying distribution functions and relative number densities.
The strahl is field-aligned anisotropic with respect to the magnetic
field, while the remaining three components are nearly isotropic.
At 1 au the Maxwellian core comprises the majority of the total
number density (∼95%), and the halo, strahl, and superhalo
together form the remaining <∼ 5%. Although suprathermal
electrons (the halo, strahl, and superhalo) comprise a minute
fraction of the total electrons, they are chiefly responsible for most
of the heat flux transported away from the Sun due to their high
energy and mobility (Štverák et al. 2009).

Observations and theoretical studies of the solar wind electron
velocity distribution have been implemented for decades
(Montgomery et al. 1968; Feldman et al. 1975; Pilipp et al.
1987a, 1987b; McComas et al. 1992). The most frequently
adopted fitting model is the dual Maxwellian–kappa model
which mainly possesses three ingredients: a Maxwellian core, a
kappa halo, and a drifting-kappa strahl (Lazar et al. 2017).
Suprathermal electrons are believed to originate in the solar
corona (Pierrard et al. 1999; Štverák et al. 2008; Che &
Goldstein 2014) and to escape from the solar corona along open
interplanetary magnetic field lines. The strahl component is
found in either the parallel or antiparallel magnetic field direction
or in both in certain environments (Pilipp et al. 1987a; Anderson

et al. 2012). The radial evolution of the pitch-angle width of the
strahl component is contrary to an adiabatic expanding model
(for instance, Lemons & Feldman 1983) which predicts that
strahl electrons would be focused into a narrow beam (<1° at
1 au) due to magnetic moment conservation as the magnetic field
strength weakens. Helios-1 observations from 0.3–1 au showed
strahl widths from 5° to 60° (Pilipp et al. 1987a; Pilipp et al.
1987b). Based on ACE data, Anderson et al. (2012) reported that
the strahl widths exihibit a range of at least 5°–90°. Ulysses
observations showed that the average strahl pitch-angle width
increases with heliocentric distance from ∼1 to 2.5 au
(Hammond et al. 1996). Using Cassini electron measurements,
Graham et al. (2017) extended the radial evolution of strahl
width to a heliocentric distance of about 9 au and found that
there is a constant rate of broadening of strahl pitch-angle
distributions with heliocentric distance between ∼1 and 5.5 au,
and that beyond this distance the strahl is likely to be completely
scattered, to form part of the halo. Besides the strahl width,
observations of the radial evolution of solar wind electrons from
0.3 to 4 au demonstrate that the relative number density (to the
total number density) of the Maxwellian core remains unchanged
with increasing heliocentric distance, while the number density
of strahl electrons decreases, and halo electrons increases
(Maksimovic et al. 2005; Štverák et al. 2009; Tao et al. 2016).
In the latest observations from PSP, Halekas et al. (2020) found
that near perihelion (∼0.17 au) the strahl is narrower and
dominates the suprathermal fraction of the distribution. They
also found that the halo almost disappears and its relative
number density is much smaller than that at larger heliocentric
distance (McComas et al. 1992), and is considerably smaller
even than those reported at 0.3 au (Maksimovic et al. 2005;
Štverák et al. 2009). This finding suggests that at ever closer
distances, the solar wind electron VDF probably comprises only
a Maxwellian core and a strahl.
The opposite radial evolution characteristic of the strahl and

halo populations, as well as their both lying in the same energy
range (102–103 eV) suggests that they are essentially the same
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suprathermal component and that probably only the strahl
component exists in the corona, and the halo electrons are
pitch-angle scattered from the strahl by some mechanism as
they propagate in the solar wind. The solar wind plasma is
tenuous, strahl electrons are energetic, and Coulomb collisions
are too infrequent to scatter suprathermal electrons efficiently
into a halo that matches observations (Hammond et al. 1996;
Vocks et al. 2005). At 1 au the mean free path is comparable to
the typical length scale of the system (Štverák et al. 2008). It is
necessary therefore to include wave–particle interactions.
Vocks & Mann (2003), Vocks et al. (2005), and Vocks et al.
(2008) considered the formation of the halo and strahl in the
electron VDF in the solar corona and solar wind as a
consequence of Whistler turbulence wave–particle interactions
for electrons with a very broad energy range, even as high as
hundreds of keV. They show that the quiet solar corona is able
to produce suprathermal electrons by Whistler wave turbulence
and that such an electron component should be present in the
solar wind. By contrast, Pierrard et al. (2011) added a diffusion
coefficient derived from Whistler wave turbulence to the
exospheric model of Maksimovic et al. (1997), and found that
the nonthermal tails of solar wind electron VDF emerge from
an original Maxwellian distribution by wave–particle interac-
tions associated with Whistler wave turbulence.

In the above models, electrons as a whole are subjected to
certain scattering mechanisms collectively as they propagate in
the solar wind. Alternatively, Kim et al. (2015) and Yoon et al.
(2015), by assuming that the local solar wind electron VDF is a
superposition of individual components (Maxwellian core,
halo, and superhalo), proposed an asymptotic scattering theory
for solar wind electrons in local equilibrium with plasma wave
turbulence. The Maxwellian core does not experience colli-
sionless scattering, the halo electrons only interact with
Whistler wave turbulence, and the superhalo electrons interact
only with Langmuir wave turbulence. Results from Yoon et al.
’s (2013) asymptotic scattering theory were comparable with
observations at 1 au. Boldyrev & Horaites (2019) presented an
extended kinetic theory for strahl electrons scattered by
multiple mechanisms, including both Coulomb collisions and
wave–particle interactions of Whistler waves. They solve the
drift-kinetic equation and obtain an analytic solution for the
suprathermal electrons along the Parker-spiralled magnetic
field lines; however, they simplified the kinetic transport
equation and only considered the effect of the pitch-angle
scattering term.

The latest PSP observations present a great challenge for
previous models of solar wind acceleration and scattering
(Halekas et al. 2020). Tang et al. (2020, Paper I) introduced a
wave–particle interaction diffusion term into the kinetic
transport equation that describes the interaction of only
superathermal electrons with Whistler waves and developed a
numerical method to solve an advection-diffusion-like Fokker–
Planck kinetic equation in 3D phase space under the
assumption that the diffusion tensor was purely diagonal. This
numerical method was used to investigate the resonant wave–
particle interaction of the suprathermal electrons in the solar
wind. In the present paper, we extend the numerical approach
to include the full kinetic diffusion tensor, including the off-
diagonal terms whose magnitude is comparable to the diagonal
ones (Tang et al. 2020) and hence are important to the kinetic
transport equation. The temporal and radial evolution of the
suprathermal electrons shows that resonant wave–particle

interactions due to Whistler turbulence can significantly
pitch-angle scatter a highly anisotropic field-aligned suprather-
mal electron VDF injected near the Sun into a nearly isotropic
distribution at 1 au.
The layout of the present paper is as follows. Section 2

briefly reviews the suprathermal electron transport model and
describes the extended kinetic transport equation with a full
diffusion tensor. Section 3 presents numerical results and
discussions of the electron VDFs and macroparameters. The
influence of the diffusion coefficient on the radial evolution of
the electron heat flux is also discussed. The summary and
conclusions are given in Section 4.

2. Description of the Model

2.1. Numerical Model in an Expanding Solar Wind
Background

Details of the numerical model have been given in Tang
et al. (2020), and we briefly review the basic features. With
increasing heliocentric distance, the relative number density of
strahl electrons decreases and that of halo electrons increases,
while the relative number density of the core remains
unchanged (Maksimovic et al. 2005; Štverák et al. 2009; Tao
et al. 2016). Beyond about 5.5 au, the strahl is almost
completely scattered into a halo (Graham et al. 2017). PSP
observations show that near perihelion (∼0.17 au), the strahl is
narrower and dominates the suprathermal fraction of the
distribution, and the halo is almost absent (Halekas et al.
2020). We assume that the halo and strahl components are the
same electron population, the halo being the result of pitch-
angle scattering of the strahl as it propagates in the solar wind.
At an inner boundary of 0.1 au, it is assumed that there are only
a Maxwellian core and a highly field-aligned strahl component.
These different components interact with different scattering
mechanisms individually since the distinct components may
have different origins (Pierrard et al. 1999; Maksimovic et al.
2005). We simply assume, for the present, that a core
Maxwellian distribution exists, does not experience scattering,
and is maintained throughout the solar wind (Kim et al. 2015).
We then follow the radial evolution of suprathermal electrons
(at an inner boundary it is a strahl only) subject to certain
scattering mechanisms in an expanding plasma and magnetic
field background. Therefore the electron VDF comprises two
parts,

( )f f f , 1t c s= +

where fc is the Maxwellian core and fs the superimposed
suprathermal electron distribution. At the inner boundary of
0.1 au, the suprathermal electron distribution is only the strahl,
while at heliocentric distances >0.1 au the suprathermal
electron distribution may include both halo and strahl electrons.
The Maxwellian core VDF is isotropic,
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where nc and Tc denote the number density and temperature of
Maxwellian core electrons, respectively.
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A narrow cold beam represents the strahl component injected
at the inner boundary of 0.1 au and can be expressed as:

( )

( ) ( )

( )

f r r v n
m

k T

mv

k T

m v v

k T

, ,
2

exp
1

2 2
, 0

3

s L s0
B s0

3 2

2 2

B s0

d
2

B s0

m
p

m m
m

= =

´ -
-

-
-

>

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

where ns0 is the number density of suprathermal electron and vd
is the drifting velocity in the solar wind frame. Ts0= Tc0∼
5× 105 K is the temperature of the suprathermal electrons
which corresponds to the temperature of the Maxwellian core at
the inner boundary. The value of ns0 is chosen such that the
calculated number density of suprathermal electrons ns at 1 au
equals one twentieth of the Maxwellian core electrons since
observations show that the suprathermal electrons comprise
approximately only 5% of the total electron number density.
The drifting velocity vd was chosen such that in the solar wind
frame the suprathermal electron beam has a kinetic energy of
100 eV.

At the outer boundary of r∞= 3 au, no electrons enter from
infinity:

( ) ( )f r r v, , 0, 0. 4s m m= = <¥

The radially expanding background magnetic field corre-
sponds to that of Adhikari et al. (2017), as adapted from Weber
& Davis (1967),
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where r is in au, ra∼ 0.05 au, ωa= 2.9× 10−6 rad s−1,
U= 400 km s−1 and Ba= 2.08× 103 nT, so that B(r= 1)=
0.45 nT is the magnetic field at 1 au. The rest of the parameters
of the expanding background plasma are adopted from Horaites
et al. (2015, 2017) and Tang et al. (2020):

( )n n r ; 6c c0
2= -
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0.4= -
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T k
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where nc0 and Tc0 are the Maxwellian core electron number
density and temperature at 1 au, respectively, r is in au, and kB
is the Boltzmann’s constant.

2.2. The Full Form of the Kinetic Transport Equation with
Diffusion Tensor

The kinetic equation for the suprathermal electron VDF f (r,
v, μ, t) in a radial magnetic field and a constant radial flow is:
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where r is the heliocentric distance, v and μ the velocity
magnitude and the cosine of pitch angle in the solar wind
frame, and m is the electron mass. E∥ represents the parallel

electric field along the magnetic field and (δf/δt)sc the
scattering term including wave–particle interactions, Coulomb
collisions, and any other possible scattering mechanisms.
For heliocentric distances�0.1 au, the solar wind is too

tenuous for Coulomb collisions to produce the scattering
necessary to match the suprathermal electron observations
(Vocks et al. 2005). The scattering mechanisms must involve
wave–particle interaction rather than collisions (Pagel et al.
2007; Saito & Gary 2007). Of the possible wave–particle
interactions, the most likely candidate is resonant scattering
associated with Whistler wave turbulence (Graham et al. 2017).
We follow the assumption in Paper I that suprathermal
electrons resonate only with Whistler wave turbulence (Pierrard
et al. 2001; Kim et al. 2015; Yoon 2015). The scattering term
hence becomes:
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which is chosen to be of the form (Schlickeiser 1989),
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The diffusion tensor for nonrelativistic electrons is expressed
as (Steinacker & Miller 1992 and Pierrard et al. 2011)
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where β= v/c, a e
2

pe
2w= W . A= 0.1 is the normalization

constant and s= 3/2∼ 2 the spectral index of Whistler waves.
In order to avoid the singularity as Dμv at μ tends to 0, we

have assumed an empirical form of resonance broadening near
μ=0 both in Paper I and the present paper and treat this region
as follows:
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This ensures that the diffusion coefficients do not blow up as μ
goes to 0. However, following Tang et al. (2020), we can
alternatively use a spectral index for the Whistler wave pdf of
s= 2 in the calculation. This choice avoids the singularity
problem with Dμv since μ goes to 0; the denominator of Dμμ

disappears when s= 2.
In Paper I, we showed that the diffusion coefficients (11a) are

much larger than the realistic values obtained from observation.
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In order to use them in our calculation, we multiply the diffusion
coefficients by a small constant fraction fr, which is an artificial
method to reduce the diffusion coefficients to possibly more
realistic values. Furthermore, we also showed that Dμμ>
Dvμ>Dvv, showing that pitch-angle scattering dominates. In
our previous paper, we kept only Dμμ and Dvv, but ignored the
off-diagonal term Dvμ despite its being larger than Dvv. In the
present paper, we retain the full diffusion tensor (11a) in our
calculation. The inclusion of the off-diagonal terms in the kinetic
transport equation gives rise to new effects on the transport of
the suprathermal electron VDF as shown in Section 3. The off-
diagonal diffusion terms Dvμ, unlike the diagonal terms Dμμ and
Dvv which are monotonic with respect to the variables r, v, and
μ, are odd functions about μ= 0, as shown in Figure 1.

By introducing a new distribution function Y= Y(r, v, μ)
such that f= Y/v2r2, we obtain an advection-diffusion-like
kinetic transport equation with the full form diffusion tensor
in the new variable Y in the three-dimensional phase space
(r, v, μ):
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where the constant fraction fr was omitted for the sake of
notational simplicity.
The last three terms on the left-hand side are equations of

characteristics, along which electrons move in the phase space
(r, v, μ). There is one additional term in the third and fourth
terms on the left-hand side that comes directly from Dvv and Dvμ,
respectively. The third term in general is positive, and causes
electrons to move in a direction of increasing velocity which
therefore leads to an acceleration effect. The value of the third
term depends on the pitch angle, and determines the direction in
μ along which an electron moves. Figure 2 shows the effects of
including the off-diagonal terms into the characteristics in phase
space (r, v, μ). Graph A shows the characteristics for the full
diffusion tensor, while graph B shows the characteristics when
only the diagonal diffusion terms are included (Tang et al. 2020).
All characteristics start near the inner boundary. Black lines
represent characteristics starting with μ> 0, while red lines with
μ< 0. Apparently, by including the off-diagonal terms in the
diffusion tensor, the characteristics are first bent toward the
central (r,v) plane where μ= 0, which is the new effect caused
by off-diagonal diffusion terms. Then the characteristics bend
toward the top of the (r,v) plane where μ≈ 1 again and move to
large distances. The first and second terms on the right-hand side
give rise to diffusion in velocity space (v, μ), which corresponds
to heating and pitch-angle scattering of the electron distribution
function. The third and fourth terms are off-diagonal terms that
were ignored in Tang et al. (2020). We show in the next section
that the off-diagonal terms introduce additional advection in the
(v, μ) plane, and ultimately depress the diffusion caused by the
diagonal terms.

3. Numerical Results

3.1. The Electron Velocity Distribution Functions

The kinetic transport Equation (12) yields the radial
evolution of the distribution function fs when approaching
steady state. The total electron VDF ft comprises the
Maxwellian core fc and the suprathermal electron fs which is
the solution of the kinetic transport Equation (12). In our
simulations, the fractional constant fr= 2.5× 10−5 is used as in
case 1 of Paper I.

Figure 1. The off-diagonal diffusion terms Dvμ as a function of μ at different
positions, which is plotted based on Equation (11a) in which the spectral index
of Whistler waves is chosen to be s = 2.
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The total VDF ft at 1 au is shown in Figure 3 in which the left
graph displays the result of the full diffusion tensor. The
suprathermal electron distribution is a combination of a halo
and strahl since the strahl has been pitch-angle scattered by
Whistler waves. The observed solar wind electron VDF is
given by Wang et al. (2012; Figure 5) and by Yoon et al. (2013;
Figure 3). Our constructed electron VDF (Figure 3, left)
resembles those observed results in the energy range of the
Maxwellian core and halo (and strahl). This similarity with the
typical form of the observed electron VDF indicates that wave–
particle interactions associated with Whistler wave turbulence
are able to scatter a cold beam of electrons (strahl) to form the
observed distribution.

The right graph of Figure 3 is the electron VDF obtained
from the diagonal diffusion tensor presented in Paper I. The
two electron VDFs are basically similar but the new
distribution does not extend to a velocity as high as ∼108 m
s−1. As discussed in Paper I, particle energization is due to
velocity diffusion caused by Whistler turbulence scattering of

electrons. Evidently, electron energization is less effective
when the full diffusion tensor is included.
Figure 4 shows the evolution of the electron VDF with

heliocentric distance in the two-dimensional phase space
(v∥, v⊥). The left panel shows results using the full diffusion
tensor. The injected suprathermal electron VDF is thoroughly
pitch-angle scattered from a cold beam and evolves gradually
into an isotropic distribution at about 0.1 au where the scattering
of Whistler wave–particle interactions is strong. The suprather-
mal electron distribution at 0.1 au is almost isotropic and
different from the cold beam distribution injected on the inner
boundary. This is because as a steady-state solution is
approached, the inner boundary distribution of the suprathermal
electrons is different from the initial cold beam (t= 0) since
scattered and focused electrons can return to their point of origin.
The energy and angular distribution of those electrons returning
to the Sun (μ< 0 at r= r0) is calculated by the code. At large
distance as far as ∼1–2 au where wave–particle scattering is
weak, sunward electrons, although the proportion is minute,

Figure 2. Comparison of characteristics. (A) shows the characteristics for the full diffusion tensor, while (B) shows characteristics when only the diagonal diffusion
terms are included. All characteristics start near the inner boundary. Black lines represent characteristics starting with μ > 0, while red lines with μ < 0.

Figure 3. Comparison of the theoretical construction of the total VDF ft = fc + fs at 1 au. The left graph uses the full diffusion tensor, while the right graph use a
diagonal-only diffusion tensor.
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Figure 4. Comparison of the total electron VDF in the (v∥, v⊥) plane at 0.1, 0.5, 1, and 2 au. The left column derives from solving Equation (12) with the full tensor
code, while the right column shows solutions corresponding to using a diagonal diffusion tensor only.
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persist. In addition, although Dvv is the smallest element of the
diffusion tensor and has the weakest effect, it nonetheless acts to
heat the electron distribution function which can be seen from
the suprathermal electrons experiencing diffusion in velocity
space, becoming broader in v.

The right panel of Figure 4 shows results from using a
diagonal diffusion tensor, i.e., Equation (13) in Paper I. A
distinct feature of the full diffusion tensor solutions is that the
electron VDFs are cooler (narrower) than those corresponding
to the diagonal-only diffusion tensor solution at all heliocentric
distances. The off-diagonal terms Dvμ and Dμv, surprisingly,
depress the diffusion of the electron VDF in the (v∥, v⊥) plan.
Second,the inclusion of the off-diagonal terms leads to fewer
antisunward propagating electrons in the right half plane. Thus
the effect of pitch-angle scattering is weakened as well.
Consequently, Dvμ and Dμv reduce the pitch-angle scattering
and heating compared to the diagonal tensor-only solutions.

Figure 5 shows the cuts of a total solar wind electron VDF
parallel and perpendicular to the magnetic field. Štverák et al.
(2009) presented the radial evolution of the parallel cut of
observed electron VDFs in the slow and fast solar wind (see
their Figures 6 and 10). The correspondence of Figure 5 with
observational results is good in that a similar radial evolution
tendency is exhibited. Sunward-propagating electrons are
apparent as an enhancement in the v∥< 0 region which can
also be seen in Figure 4. They apparently do not belong to the
Maxwellian core, but were scattered from the antisunward
propagating strahl by wave–particle interactions with Whistler
turbulence. The emergence of sunward-propagating electrons
shows the effectiveness of Whistler scattering of a highly
anisotropic field-aligned cold beam into an almost isotropic
distribution. The parallel cut of the solar wind electron VDF is
asymmetric which means that although the highly anisotropic
field-aligned cold beam is scattered into an almost isotropic
distribution, there is an imbalance between inward- and
outward-propagating electrons. Since the suprathermal elec-
trons streaming in the antisunward direction are still field-
aligned, they can be regarded as part of the strahl.

In Paper I, we showed the radial evolution tendency of the
parallel and perpendicular cuts through the solar wind electron
VDF for cases with different fractional constants fr in Figures 8
and 11. In the present paper, we use the same fractional
constant fr= 2.5× 10−5, as in case 1. By comparing the new
graphs with those in Paper I, we find that although the full
diffusion tensor results are calculated with the same fractional
constant, they resemble more closely case 2 in which the

fractional constant is smaller (1× 10−5). The wave–particle
interaction in case 2 is weaker than in case 1, illustrating that
the off-diagonal terms Dvμ and Dμv reduce the effect of wave–
particle scattering.

3.2. The Plasma Parameters

Once the steady state is approached, we have constructed the
(total) solar wind electron VDF ft at different heliocentric
distances. By taking moments of the electron VDF, various
plasma parameters (for instance, electron number density,
temperature, and especially, heat flux), pitch-angle distribution,
and anisotropy can be calculated. The appropriate definitions
are given in Paper I.
In Figures 6 and 7 black lines show the differential

anisotropy ξ and pitch-angle distributions (PADs) of the
suprathermal electrons from 0.1 to 3 au for a full diffusion
tensor solution. The differential anisotropy increases with
increasing electron radial distance and kinetic energy,
approaching ∼0.8. It is evident that the suprathermal electron
VDF at smaller distances is more isotropic than that at larger
distances which reveals that the initially highly field-aligned
cold beam at the inner boundary is efficiently scattered by
Whistler waves at smaller distances. As heliocentric distance

Figure 5. The parallel and perpendicular cuts of the solar wind electron VDF with respect to the magnetic field at 0.1, 0.5, 1, and 2 au.

Figure 6. The differential anisotropy of suprathermal electrons as a function of
kinetic energy for a full diffusion tensor (black lines) at 0.1, 0.5, 1, and 3 au.
Red lines show the corresponding data from the diagonal-only tensor model of
Paper I.
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increases, the scattering effect of Whistler waves is weaker,
hence the suprathermal electrons are not scattered sufficiently
by Whistler waves to maintain quasi-isotropy, and their VDFs
return to anisotropic again.

Red lines in Figures 6 and 7 represent the corresponding
data of the diagonal-only tensor model of Paper I. It can be
seen that the anisotropy ξ of the full tensor result increases
faster than that of the diagonal-only tensor. Therefore, we
find that the full tensor results are more anisotropic, which is
a consequence of the off-diagonal diffusion terms depressing
pitch-angle scattering.

Figure 8 shows the radial evolution of the solar wind
electron number density and bulk velocity. Here nc represents
the Maxwellian core number density in Equation (6). ns,diag is
the suprathermal electron number density calculated using the
diagonal diffusion terms only, while ns,full uses the full
diffusion tensor. At 1 au, both ns,diag and ns,full are about
20 times smaller than nc, consistent with observations. us is
exactly the bulk velocity of the total electrons since the mean
velocity of a Maxwellian distribution disappears in the solar
wind frame. The heliocentric evolution of the electron number
density does not change greatly after including the off-diagonal

Figure 7. Pitch-angle distributions (PADs) of the suprathermal electron VDF (black lines) at 0.3, 0.5, 1, and 3 au. Red lines show the corresponding data from the
diagonal-only tensor model of Paper I.

Figure 8. Left: radial evolution of the number densities of the suprathermal electrons and Maxwellian core (blue dashed line). Right: radial evolution of the bulk
velocities of suprathermal electrons. Red lines represent results calculated using only the diagonal diffusion terms, and the black lines refer to results using a full
diffusion tensor.
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tensor terms. However, including the off-diagonal terms in the
model reduces the electron bulk velocity.

In Figure 9(A), the black solid line shows the suprathermal
electron temperature Ts,t as a function of distance, while dotted
and dashed–dotted black lines are the parallel and perpendicular
temperature that satisfy Ts,t= (1/3)(Ts,∥+ 2Ts,⊥). Figures 9B and
9C compare temperatures for the full diffusion tensor case and
the diagonal-only case, showing that temperatures for the full

diffusion tensor are slightly smaller than that for the diagonal-
only case. Although Ts,t becomes smaller, it is still higher than
that shown in Figure 1(b) of Pierrard et al. (2016). However, the
temperature anisotropy A= T⊥/T∥ for the full diffusion tensor
case becomes larger than that for the diagonal diffusion-terms-
only case. Furthermore, the temperature anisotropy for the full
diffusion tensor case exceeds 1 at very small heliocentric
distances and decreases to less than 1 with increasing distance.

Figure 9. (A): electron temperature vs. distance. Black solid, dotted, and dashed–dotted lines are the total, parallel, and perpendicular temperature of suprathermal
electrons separately, while the blue dashed line is the temperature of the background Maxwellian core plotted from Equation (7). (B) and (C): comparison of
temperatures for the full diffusion tensor case (black) and the diagonal diffusion-terms-only case (red). (D): comparison of the radial evolution of the temperature
anisotropies for the full diffusion tensor case (black) and diagonal diffusion-terms-only case (red).

Figure 10. Left: radial evolution of electron heat flux. q∥ is the parallel heat flux. The blue dashed line shows the result qe obtained from Ulysses observations by
Scime et al. (2001). Right: comparison of total heat fluxes calculated from the full diffusion tensor model (black line) and the diagonal-only model (red line). The two
curves are not offset from one another but illustrate that the amplitudes are different by a factor of about 2.
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3.3. Solar Wind Electron Heat Flux

Another parameter of great interest both theoretically and
observationally is the solar wind electron heat flux qe. In
contrast to fluid models, the electron heat flux is not assumed
a priori, but calculated everywhere from the third moment of
the electron velocity distribution. The calculated suprathermal
electron heat flux is the solar wind electron heat flux since the
total solar wind VDF is assumed to be composed of a
Maxwellian core and the scattered suprathermal distribution,
and the heat flux of a Maxwellian distribution is zero. Figure 10
displays the solar wind electron heat flux radial evolution.
Scime et al. (2001) show that the solar wind electron heat flux
varies as qe= 7.4× r−2.9μ Watts/m2 from Ulysses observa-
tions which is shown by the blue dashed line. The calculated
heat fluxes of our numerical method decrease as r−2.2, which is
flatter than observed. The right graph in Figure 10 compares the
radial evolution of electron heat flux between the diagonal-only
model (red line) and full diffusion tensor model (black line).
The two heat fluxes follow the same r−2.2 radial scaling but the
heat flux from the full diffusion tensor model is smaller by a
factor of about 2 than that from the diagonal-only model. Thus
the inclusion of the off-diagonal terms just slightly reduces the
heat flux.

We check the possible radial dependence of the electron
heat flux on the assumed value of the diffusion coefficients
since the full diffusion tensor is used and therefore makes this
test reliable. We first increase the fractional constant fr from
2.5× 10−5 to 7.5× 10−5 to model larger diffusion. The
results are shown in the left panel of Figure 11. The index of
radial evolution for the electron heat flux decreases from r−2

and can be divided into two stages. The radial evolution
index decreases to −2.6 within 1 au and achieves a value of
−2.1 beyond 1 au. This result suggests some dependence of
the electron heat flux radial evolution index on the diffusion
coefficients. The larger the value of the diffusion coefficients,
the steeper the radial evolution and hence, the smaller the
index.

Figure 11 (right) shows the comparison of the electron heat
flux calculated using different fractional constants. We find that
a larger fr produces a larger heat flux intensity. We ascribe this
to the stronger Dvv that increases the heat flux intensity. On the
left-hand side of the transport Equation (12), the second term
inside the derivative of velocity v is related to Dvv. This term

results from the conversion of the transport equation into a
conservative form by introducing f= Y/v2r2, i.e., the equation
solved in our numerical code. The positive value of the
derivative of the velocity generates a larger electron velocity, as
we can see from the characteristics in Figure 2A. This is the
motion of the electrons as a whole, yielding electrons with
higher velocity. A larger fr (a larger Dvv) results in a more
intense motion of this kind for all electrons and hence a larger
heat flux intensity. Second, as the fractional constant fr
increases from 2.5× 10−5 to 10× 10−5, the two heat fluxes
have the same radial evolution indices. This suggests that the
electron heat flux radial evolution index will not keep
decreasing as diffusion is further strengthened, but approaches
a final value. The comparison also shows that as the fractional
constant is continuously increased, the intensity of the heat flux
increases as well and, although it is still smaller than observed,
is approaching the observational intensity gradually, which
suggests that a stronger diffusion produces a larger heat flux. In
order to produce the observed heat flux, the diffusion terms
should be suitably strong. Matching the observed intensity of
the heat flux is probably not that important since it can be
adjusted by increasing the number density at the inner
boundary.
Besides using the third moment of the electron VDF to

calculate the heat flux, we use a second indirect method to
calculate the electron heat flux based on the lower-order
moments. This serves as a useful check. The energy flux Q,
heat flux q, bulk velocity u, scalar pressure p, and viscosity
tensor π are related via (Zank 2014):

· ( )Q q u u up mnu
5

2

1

2
, 132p= + + +

where ( )Q vmn v1 2 2º á ñ.
If we ignore the viscous transport of energy π · u and choose

a coordinate system such that êz is along the magnetic field, we
obtain the formula for the parallel heat flux (also see Meyer-
Vernet 2007),
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Figure 12 compares the solar wind electron heat fluxes
calculated using the two methods, assuming a larger fractional
constant fr= 7.5× 10−5. The black line (labeled old) represents

Figure 11. Left: the radial evolution of solar wind electron heat flux using the full diffusion tensor with larger values of the fractional constant fr = 7.5 × 10−5. Right:
the comparison of electron heat fluxes calculated with different fractional constants. The black lines represent the fractional constant fr = 2.5 × 10−5, 7.5 × 10−5 and
10 × 10−5, respectively, and the blue dashed line shows the observational result obtained by Scime et al. (2001).
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the heat flux calculated from the third-moment method used
before, while the red line (labeled new) illustrates the heat flux
calculated from Equation (14). The two lines overlap each
other showing that the two approaches for calculating the heat
flux produce the same results. The convergence of the two
approaches indicates the accuracy of the third-order moment
approach for the electron heat flux and the numerical method
for electron transport.

4. Summary and Conclusion

We have completed development of the previous numerical
method proposed in Paper I for solving the Fokker–Planck kinetic
transport equation for solar wind suprathermal electrons interact-
ing with Whistler wave turbulence. Specifically, the diffusion
tensor has been extended from a diagonal only to a full general
form. The solar wind electron VDF is assumed to be composed of
two components: a Maxwellian core and suprathermal electrons
which interact with Whistler wave turbulence. By adopting an
expanding background of constant velocity radial flow and
magnetic field, we obtained the transport equation for suprather-
mal electrons that describes their spatial and temporal evolution in
the solar wind. By solving the equation with the full diffusion
tensor, we follow the transport of the suprathermal electrons, and
hence the spatial evolution of the solar wind electron VDF. The
numerical result demonstrates that wave–particle interactions due
to Whistler wave turbulence play an important role in the
formation of the solar wind electron VDF and hence the radial
evolution of macroparameters, such as the electron heat flux.

A highly field-aligned cold beam of electrons, representing
the suprathermal electrons, is injected at the inner boundary.
Numerical results are summarized as follows.

1. The full form of the wave–particle interaction tensor
associated with Whistler wave turbulence affects the
electron pitch-angle scattering and heating, which can be
inferred from the full form of the kinetic transport
Equation (12). Specifically, Dμμ describes pitch-angle
scattering and Dvv electron heating.

2. The constructed solar wind electron VDFs at 1 au and
their radial evolution extended to 4 au resemble observa-
tions, which validates the assumption and treatment that
the electron VDF is composed of two individual
components: the Maxwellian core electron distribution
function and the suprathermal electron VDF that is
subject to wave–particle interactions throughout the
solar wind.

3. The radial evolution of the differential anisotropy and the
pitch-angle distribution, together with the electron VDF,
shows that the initially highly field-aligned anisotropic
suprathermal electrons are significantly pitch-angle
scattered and modestly heated by Whistler waves. The
effect of Whistler wave turbulence decreases with
increasing distance, being unable to scatter the suprather-
mal electrons sufficiently strongly. The suprathermal
electron cannot maintain quasi-isotropy with increasing
heliocentric distance and the electron VDF returns to
anisotropy far from the Sun.

4. The suprathermal electron temperature slightly increases
with increasing distance, which is consistent with observa-
tions shown by Pierrard et al. (2016). The temperature of the
full diffusion tensor is slightly smaller than that of the
diagonal case, but it is still higher than observed. By contrast,
the temperature anisotropy of the full diffusion tensor model
becomes larger than that for the diagonal diffusion-terms-
only case, exceeds 1 at very small heliocentric distances, and
decreases to less than 1 with increasing distance. By contrast,
the temperature anisotropy of the diagonal-only model is
smaller than the unit (see Paper I).

5. A second method to calculate the electron heat flux, besides
taking the third moment of the electron VDF directly, using
other lower-order moments, is adopted. A comparison
between the two methods is shown in Figure 12. The
convergence of the two approaches indicates the accuracy of
the third-order moment approach for the electron heat flux
and the numerical method for electron transport.

6. The off-diagonal terms of the diffusion tensor Dμv and
Dvμ act to depress diffusion in both pitch-angle and
velocity space caused by the diagonal diffusion terms
Dμμ and Dvv. Compared with prior simulation results in
Paper I, the suprathermal electron temperature and heat
flux intensity are slightly smaller, while the number
density and bulk velocity scarcely change.

We note that our numerical results yield a strong anisotropy
at ∼1 au due to relatively weak scattering of electrons by
Whistler wave turbulence, which is contrary to most observa-
tions. The diffusion tensor corresponding to Whistler wave
turbulence used in the present paper rapidly decreases with
distance and fr is a constant. Unfortunately, there is little
information available to guide our choice in how the energy
density of Whistler wave turbulence changes with increasing
heliocentric distance. Thus, it is entirely possible that the
diffusion tensor should not decrease as fast, and of course fr is
an empirical parameter that attempts to ensure that the
scattering of electrons is not overwhelmingly strong based on
the theoretical model of Whistler turbulence that seems to
overestimate the levels. Second, although electrons in the halo/
strahl energy range appear to best resonate with Whistler
waves, it is possible that we should not be neglecting other
waves. It is also possible that electrons propagate in a marginal
stability regime, thereby introducing the possibility that the

Figure 12. Comparison of solar wind electron heat flux using the two
calculation methods. The black line (old) represents the heat flux calculated
from the third-moment method used before, while the red line (new) illustrates
the heat flux calculated from Equation (14). The blue dashed line shows the
fitting result obtained by Scime et al. (2001).
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electron beam alternates between a scattered state and a beam
state with the concomitant alternating between self-generation
of Whistler turbulence and decay of turbulence (this is the
essence of a stochastic growth theory of electron beam
propagation advocated by, e.g., Robinson & Cairns 1993).
This level of sophistication is beyond the scope of the current
paper, however.

The numerical results can be considered to describe the
formation and evolution of the solar wind halo and strahl,
which is consistent with the consensus that halos are pitch-
angle scattered from the strahl as electrons propagate in the
solar wind. We find that the value of the diffusion coefficients
associated with Whistler wave turbulence affects the intensity
and radial evolution property of electron heat flux. The
observations of heat flux consequently can be used as criteria
for determining the required wave–particle interaction of
whistler turbulence in theoretical models. The intensity of the
calculated heat flux, which is an order of magnitude smaller
than observed, can be increased by increasing the halo electron
number density at the inner boundary. However, the index
describing the radial variation of the heat flux is sensitive to the
value of the diffusion tensor. In this sense, observations can
place constraints on the index, which provides some insight
into physical values of the diffusion tensor and possibly fr.
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